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Abstract. Infrared thermal cameras offer reliable means of assessing atmospheric conditions by measuring the downward ra-

diance from the sky, facilitating their usage in cloud monitoring endeavors. Precise identification and detection of clouds in

images pose great challenges stemming from the indistinct boundaries inherent to cloud formations. Various methodologies for

segmentation have been previously suggested. Most of them rely on color as the distinguishing criterion for cloud identification

in the visible spectral domain and thus lack the ability to detect cloud structure on gray-scaled images with satisfying accuracy.5

In this work, we propose a new complete deep-learning framework to perform image classification and segmentation with Con-

volutional Neural Networks. We demonstrate the effectiveness of this technique by conducting a series of tests and validations

on self-captured infrared sky images. Our findings reveal that the models can effectively differentiate between image types

and accurately capture detailed cloud structure information at the pixel level, even when trained with a single binary ground-

truth mask per input sample. The classifier model achieves an excellent accuracy of 99% in image type distinction, while the10

segmentation model attains a mean pixel accuracy of 94% on our dataset. We emphasize that our framework exhibits strong

viability and can be used for infrared thermal ground-based cloud monitoring operations over extended durations. We expect

to take advantage of this framework for astronomical applications by providing cloud cover selection criteria for ground-based

photometric observations within the StarDICE experiment.

1 Introduction15

Accurate and continuous monitoring of cloud properties contributes to a profound understanding of atmospheric processes

and their subsequent impacts on various Earth systems (Liou, 1992). It provides essential insights for weather predictions

and climate dynamics (Hu et al., 2004; Petzold et al., 2015). Observation methods can be divided into two primary distinct

categories: downward satellite-based observations (Roy et al., 2017; Martin, 2008) and upward ground-based observations with

all-sky cameras, lidar, radar, and other instruments (Wilczak et al., 1996). The principal aim of satellite-based observations20

is to investigate the upper regions of clouds, facilitating the examination and analysis of global atmospheric patterns and

climate conditions over expansive geographical areas (Schiffer and Rossow, 1983; Boers et al., 2006; Geer et al., 2017; Várnai
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and Marshak, 2018). In contrast, ground-based cloud observation excels in the surveillance of localized regions, furnishing

valuable data pertaining to the lower segments of clouds by giving information on cloud altitude, cloud extent, and cloud

typology (Bower et al., 2000; Zhou et al., 2019). A combination of these two measurement techniques enhances our overall25

comprehension of cloud behavior (Mokhov and Schlesinger, 1994; Schreiner et al., 1993; Yamashita and Yoshimura, 2012;

Yoshimura and Yamashita, 2013).

Ground-based observations have been extensively used in recent years and have become a viable means to detect, study

and identify cloud formations (Paczyński, 2000; Skidmore et al., 2008; Tzoumanikas et al., 2016; Ugolnikov et al., 2017;

Mommert, 2020; Tzoumanikas et al., 2016; Román et al., 2022). As technological evolution has ushered in a new era of30

monitoring methodologies (Mandat et al., 2014), the utilization of infrared thermal cameras has emerged as a promising avenue

for atmospheric investigations through precise radiometric measurements (Szejwach, 1982; Shaw and Nugent, 2013; Liandrat

et al., 2017b; Lopez et al., 2017; Klebe et al., 2014; Nikolenko and Maslov, 2021).

Because of their practical use, high sensitivity, low-cost, operating range and wide field-of-view (FOV) (Rogalski, 2011;

Rogalski and Chrzanowski, 2014; Kimata, 2018), it makes them particularly useful for medicine (Ring and Ammer, 2012),35

agriculture (Ishimwe et al., 2014), aerial (Wilczak et al., 1996), defense (Gallo et al., 1993; Akula et al., 2011), surveillance

(Wong et al., 2009), weather forecast (Sun et al., 2008; Liandrat et al., 2017a), or even astronomical related applications to

determine the cloud cover fraction during operations and therefore assess the quality of scientific observations (Sebag et al.,

2010; Lewis et al., 2010; Klebe et al., 2012, 2014; Reil et al., 2014). Indeed, uncooled infrared microbolometers array sensors

working in the 8-14 µm spectral band can directly detect the long-wave infrared (LWIR) thermal emission of both clouds40

and the atmospheric background, excluding the scattered light of the sun or starlight (Houghton and Lee, 1972). These LWIR

sensors are able to provide high-contrast images and allow fine radiometric measurements to detect low-emissivity cirrus clouds

(Lewis et al., 2010; Shaw and Nugent, 2013).

Across recent years, multiple automatic ground-based observation systems have been developed. For example, the infrared

cloud imager (ICI, see Thurairajah and Shaw 2005), can detect clouds and assess cloud coverage both in daylight and at45

nighttime with a dedicated infrared sensor. Sharma et al. (2015) designed an instrument to detect the cloud infrared radiations to

be used in search for a potential site for India’s National Large Optical Telescope project. The development of the Radiometric

All-Sky Infrared Camera (RASICAM, referenced in Lewis et al. 2010 and Reil et al. 2014) was aimed at enabling automated,

real-time quantitative evaluation of nighttime sky conditions for the Dark Energy Survey (Dark Energy Survey Collaboration

et al., 2016). This particular camera is designed to detect, locate, and analyze the motion and properties of thin, high-altitude50

cirrus clouds and contrails by measuring their brightness temperature against the sky background. The all-sky infrared visible

analyzer (ASIVA) is a similar instrument whose primary goal is to provide radiometrically calibrated imagery in the LWIR

band to estimate fractional sky cover and sky/cloud brightness temperature, emissivity, and cloud height (Klebe et al., 2014).

The ASC-200 system (Wang et al., 2021b) combines information from two all-sky cameras facing the sky operating in both

the visible spectrum (450-650 nm) and the LWIR band.55

As next-generation cosmological surveys require more demanding precision on photometric observations – implying better

characterization of the atmosphere – monitoring telescope instruments FOV with LWIR thermal cameras may provide sig-
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nificant asset to ; (i) classify observations quality in real-time; (ii) evaluate potential cloud coverage (Smith and Toumi, 2008;

Liandrat et al., 2017b; Aebi et al., 2018; Wang et al., 2021b); (iii) estimate precipitable water vapor (PWV) content (Kelsey

et al., 2022; Hack et al., 2023; Salamalikis et al., 2023).60

In this study, we plan to address the first objective. We use a LWIR thermal infrared camera with a specifically chosen

narrower FOV that aims to image the surrounding area of the StarDICE telescope FOV. The StarDICE metrology experiment

(Betoule et al., 2022) aims at measuring CALSPEC (Bohlin, 2014) spectrophotometric standard stars absolute flux at the

0.1% relative uncertainty level. Enhanced characterization of atmospheric conditions is required to reach the target sensitivity

(Hazenberg, 2019). As a preliminary step, basic knowledge of the atmosphere conditions in the telescope FOV may provide65

valuable insights into the quality of spectrophotometric measurements. However, these kinds of infrared instruments operate at

high frame rates and produce considerable amounts of data which makes it extremely difficult to analyze by human observers.

Therefore, to determine cloud presence in infrared images, deep convolutional neural networks (CNNs) appear to be a viable

approach to process images in real-time. Multiple models relying on CNNs have been developed such as CloudSegnet (Dev

et al., 2019a), CloudU-Net (Shi et al., 2021b) CloudU-Netv2 (Shi et al., 2021a), SegCloud (Xie et al., 2020), TransCloud-70

Seg (Liu et al., 2022), CloudDeepLabV3 (Li et al., 2023), ACLNet (Makwana et al., 2022), DeepCloud (Ye et al., 2017),

CloudRaednet (Shi et al., 2022), DMNet (Zhao et al., 2022) and DPNet Zhang et al. (2022). Nonetheless, these methodologies

exclusively address RGB-colored images (Li et al., 2011; Dev et al., 2016). Colors or hue provides the essential information

for segmentation (especially red and blue channels). In the case of LWIR thermal images, we implement a model capable of

achieving comparable accuracy for single-channel gray-scaled images. Inspired by their large successes in image classification75

and structure detection for various computer vision tasks, we propose a dedicated deep-learning framework. Our approach is

specifically designed towards gray-scaled infrared images and consists of: (i) classifying images (e.g, detecting if any cloud is

present in the image and discriminating between clear and cloudy images); (ii) identifying cloud structure (e.g., generating a

pixel-based probabilistic segmentation map and verify if the CCD camera FOV is impacted).

The remainder of the paper is structured as follows. Background about the scientific context and related works are presented80

in Sect. 2. Section 3 details the experimental setup and dataset. Section 4 introduces the proposed framework, describing

deep-learning architectures and training procedures. Experimental results and comparisons with other datasets are provided in

Sect. 5. Relevant matters and future perspectives are discussed in Sect. 6. Section 7 summarizes the main results and finally

concludes the paper.

2 Background85

2.1 Motivation

StarDICE represents one of the initiatives focused on creating a measurement process that bridges the gap between laboratory

flux standards (such as silicon photodiodes calibrated by NIST, see Larason and Houston 2008) and the stars found in the CAL-

SPEC library of spectrophotometric references (Bohlin et al., 2020). Since type Ia supernovae (SNe Ia) and most astronomical

surveys rely on the calibration of these standard stars for their measurements (Bohlin et al., 2011; Conley et al., 2011; Rubin90
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et al., 2015; Scolnic et al., 2015; Currie et al., 2020; Brout et al., 2022; Rubin et al., 2022), successfully establishing this con-

nection with high precision effectively addresses the calibration challenge associated with the Hubble diagram for cosmology

and the study of dark energy driving the accelerated expansion of the Universe (see Goobar and Leibundgut 2011 for a review

of SNe Ia in cosmology).

StarDICE proposal relies on the near-field calibration of a stable light source (Betoule et al., 2022). It serves as a distant95

in situ reference for a compact astronomical telescope. One of the largest remaining sources of systematic uncertainty when

observing stellar sources from the ground is the Earth’s atmosphere transmission (Stubbs and Tonry, 2012; Stubbs and Brown,

2015; Li et al., 2016). It is dependent on many environmental conditions and processes, including: absorption and scattering by

molecular constituents (O2, O3, and others), absorption by PWV, scattering by aerosols, and shadowing by larger ice crystals

and water droplets in clouds that is independent of wavelength and responsible for gray extinction (Burke et al., 2010, 2017).100

Current atmospheric transmission or extinction models do not integrate the possible impact of clouds. Indeed, the formation

of thin clouds through the condensation of water droplets and ice can result in clouds that are extremely faint and cannot be

perceived in the visible spectrum with the naked eye. These clouds often exhibit complex spatial structures, as demonstrated in

Burke et al. (2013). Clouds passing through the photometric instrument’s FOV result in an attenuation of stellar flux. Previously,

this issue was addressed by incorporating a gray extinction correction, involving the fitting of an empirical normalization105

parameter for each observation. Nevertheless, as highlighted by Burke et al. (2010), this approach has been proven insufficient

due to calibration limitations arising from the dynamic and evolving nature of cloud cover conditions. To tackle this challenge

in the StarDICE experiment, our solution involves employing an infrared thermal camera. This specialized equipment offers

high-sensitivity radiometric measurements, capturing the sky radiance within the atmosphere’s transparency window (10-12

µm). With the help of additional cloud spatial structure identification analytical capabilities, this instrument may be the key to110

assess photometric observations quality and label science images with superior state-of-the-art accuracy. The primary initial

objective is to generate a catalog of optical exposures from the telescope suitable for extracting stellar photometric flux and

conducting subsequent analysis.

2.2 Related work

In recent years, numerous cloud sky/cloud segmentation algorithms have been introduced along with the increased develop-115

ment of all-sky ground-based cloud monitoring stations (Long et al., 2006; Yang et al., 2012; Krauz et al., 2020; Fa et al., 2019;

Mommert, 2020; Li et al., 2022). Indeed, cloud segmentation is a big challenge for remote sensing applications as clouds come

in various shapes and forms. Most modern approaches aim to use computer vision algorithms and train them onto very specific

publicly available cloud image databases such as: SWIMSEG (Dev et al., 2016), SWINSEG (Dev et al., 2019b, 2017), SWINy-

SEG (Dev et al., 2019a), WSISEG (Xie et al., 2020), HYTA (Li et al., 2011) and TLCDD (TLCDD, 2022). Many proposed120

solutions are focused on visible RGB images. CloudSegNet (Dev et al., 2019a) is a lightweight deep-learning encoder/de-

coder network that detects clouds in daytime and nighttime visible color images. CloudU-Net (Shi et al., 2021b) modifies

CloudSegNet architecture by adding dilated convolution, skip connection, and fully connected conditional random field (CRF,

see McCallum 2012) layers to demonstrate better segmentation performance overall. It uses the powerful U-Net architecture
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(Ronneberger et al., 2015) originally applied to medical image segmentation. CloudU-Netv2 (Shi et al., 2021a) replaces the125

upsampling in CloudU-Net with bilinear upsampling, improves the discrimination ability of features representation, and uses

rectified Adam optimizer (rADAM is a variant of the Adam stochastic optimizer (Kingma and Ba, 2014) that introduces a term

to rectify the variance of the adaptive learning rate, see Liu et al. 2019). SegCloud (Xie et al., 2020) has been trained onto

400 images and possesses a symmetric encoder-decoder structure and outputs low/high-level cloud feature maps to the same

resolution as input images. TransCloudSeg (Liu et al., 2022) addresses the loss of global information due to the limited recep-130

tive field size of the filters in CNN by proposing a hybrid model containing both the CNN and a transformer (Vaswani et al.,

2023) as the encoders to obtain different features. CloudDeepLabV3+ (Li et al., 2023) designs a lightweight ground-based

cloud image adaptive segmentation method that integrates multi-scale feature aggregation and multi-level attention feature

enhancement. ACLNet (Makwana et al., 2022) uses EfficientNet-B0 as the backbone, “à trous spatial pyramid pooling” (ASPP

see Chen et al. 2017) to learn at multiple receptive fields, and global attention module (GAM see Liu et al. 2021) to extract135

fine-grained details from the image. It provides a lower error rate, higher recall, and higher F1-score than state-of-the-art cloud

segmentation models. DeepCloud (Ye et al., 2017) uses the method of Fisher vector encoding which is applied to executing the

spatial feature aggregation and high-dimensional feature mapping on the raw deep convolutional features. CloudRaednet (Shi

et al., 2022) proposes a residual attention-based encoder-decoder network and trains it over the SWINySEG dataset.

The majority of these models are typically structured using an encoder-decoder architecture, which is the primary inno-140

vation brought forth by incorporating CNNs (O’Shea and Nash, 2015). The encoder is tailored to acquire representational

features, facilitating the extraction of semantic information while the decoder reconstructs these representational features into

the segmentation mask, allowing for pixel-level classification (Badrinarayanan et al., 2017; Alzubaidi et al., 2021).

Others have proposed solutions for all-sky infrared image classification. Liu et al. (2011) applies pre-processing steps

(smoothing noise reduction, enhancement through top-hat transformation and high-pass filtering, and edges detection) before145

extracting features that are useful for distinguishing cirriform, cumuliform, and waveform clouds. A simple rectangle method

as a supervised classifier is applied. They find a 90% agreement between a priori classification carried out manually by visual

inspection and their algorithm on 277 images. Sun et al. (2011) suggested: (i) a method for determining clear sky radiance

threshold; (ii) cloud identification combined threshold method with texture method; (iii) an algorithm to retrieve cloud base

height from downwelling infrared radiance. They showed that structural features are better than texture features in classifying150

clouds. Luo et al. (2018) proposed a three-step process: (i) pre-processing; (ii) feature extraction; (iii) classification method

to group images into five cloud categories (stratiform, cumuliform, waveform, cirriform and clear) based on manifold and

texture features using support vector machine (SVM see Cortes and Vapnik 1995). Their experimental results demonstrate a

higher recognition rate with an increase of 2%-10% on ground-based infrared image datasets. These methods classify clouds

into separate categories based on their typology. Until now, all the previously examined approaches, while effective within155

their specific domains, proved to be unsuccessful when applied to our particular use case. Therefore, we propose a new deep-

learning framework based on a linear classifier and U-Net architectures to identify cloud images and detect cloud structures in

real-time.
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3 Experimental setup and datasets

3.1 Description of the instrument160

Our instrument is an infrared thermal camera similar to the Thurairajah and Shaw (2005) device – specifically the FLIR Tau2

– which operates in the LWIR band, covering the 8-14 µm range. It features a focal plane array (FPA) consisting of 640 ×
512 uncooled microbolometers, capturing images at a framerate of 8.33 Hz. The camera is paired with a 60 mm lens at f#1.25

aperture, resulting in a 10.4 × 8.3 deg2 imaging area. The primary purpose of deploying this instrument on the equatorial

mount adjacent to the StarDICE photometric telescope is to continuously assess the atmospheric conditions (specifically gray165

extinction) within the line of sight of the visible CCD camera during observations. The IR instrument FOV is chosen to be

larger than the telescope FOV (0.5 × 0.5 deg2) to anticipate the movement of clouds in the smaller FOV of interest. Through

meticulous calibration, radiative transfer calculations, and data analysis using simulations, we can extract valuable information

about the sky to monitor real-time atmospheric conditions. In Fig. 1, we show the instrument mounted on the equatorial mount

inside the observatory dome, with the necessary command and control equipment. We also monitor the surrounding and internal170

temperatures of the camera in real-time to correct for temperature-related variations in sensor response. The device is controlled

and commanded via the ThermalCapture ThermalGrabber USB 2.0 interface, which grants access to full 14-bit radiometric

raw data. We have developed an open-access PYTHON program, available on GitHub1, to control the camera’s functions and

capture images. These images are saved in FITS format (Wells et al., 1981). In this study, we only consider raw analog-to-digital

units (ADU) images for simplification purposes but the method would be identical with radiometrically calibrated images.175

3.2 Datasets and pre-processing

A substantial quantity of images is essential for the effective training and testing of both the classifier and segmentation

algorithms. Our dataset comprises LWIR sky images that we captured ourselves. It encompasses a total of 3400 cloudy and

clear sky images for the classifier and 4445 sky images with cloudy-only images for the segmentation algorithm and their

associated ground truth masks. To speed up computations and minimize memory consumption, we downsampled the original-180

sized images into 160 × 128 resolution. Cloudy sky images were collected during a three-night period at Observatoire de

Haute-Provence (43° 55’ 51" N, 5° 42’ 48" E) during highly-variable weather conditions. Conversely, cloud-free images were

obtained over a shorter time span during the same week.

To compensate for the lack of cloud-free images and prevent potential biases in training due to data imbalance, we generated

synthetic cloud-free images to create a composite dataset containing as many images as the cloudy dataset. These synthetic185

images replicate realistic observations by simulating 2D horizontal gradients, mimicking the increase in sky downwelling

radiance as the camera’s field of view tilts toward high zenith angles (i.e. low elevation angles). Realistic sources of noises

affecting uncooled infrared thermal cameras are introduced, including: read noise, fixed pattern noise, sky noise, and narcissus

effect. This addition ensures that the spatial noise in the synthetic images closely resembles that of actual cloud-free images.

1https://github.com/Kelian98/tau2_thermalcapture
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Figure 1. (a) Infrared instrument installed onto the equatorial table of the StarDICE experiment at Observatoire de Haute-Provence (France),

next to the CCD camera and telescope performing photometric measurements of stars. (b) Original gray-scale raw infrared thermal image in

ADU (640 × 512 pixels).
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Figure 2. Comparison of a real observed clear sky image (a) and a synthetically generated realistic image (b). Spatial noise is indicated in

the top right corner of each image. Synthetic images demonstrate high fidelity concerning overall spatial noise.

Figure 2 illustrates a typical cloud-free image alongside a synthetically generated one, with spatial noise indicated for each.190

It’s worth noting that the absolute ADU value has no impact, as the data is normalized before training.

All images and masks are visually inspected. Samples presenting artifacts such as tree branches from surroundings or

buildings in the FOV corners are discarded. As the camera acquisition framerate enables to get ∼ 8 images per second, the
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pre-processing algorithm included constraints on consecutive image selection based on their time series. Selected frames are

taken from at least 2 seconds between each other to introduce a wider range of displayed clouds.195

Ground-truth masks identifying cloud structure on cloud images were manually created through multiple distinct steps of

non-linear stretching procedures using ASTROPY (Astropy Collaboration, 2013, 2018) methods for each image in the dataset.

They consist of a boolean 2D array of the same image size, where True identified pixels represent cloud pixels and False

identified pixels represent clear sky areas. This step has been partially automated. Binary masks that do not capture the cloud

structure sufficiently have been kept aside to test segmentation model performance. Figure 4 depicts three raw images with200

their associated manually generated ground-truth cloud masks for training purposes.

Furthermore, we performed multiple random augmentations (e.g, flip, shear, rotate, shift, and zoom) on each original image

to artificially enlarge the size of each dataset and reduce overfitting (Perez and Wang, 2017; Mikołajczyk and Grochowski,

2018; Yang et al., 2022). All augmented images are produced through the random sequential applications of these five distinct

operations to initial images. These operations are executed with a random varying degree of intensity contained in specific205

ranges. Random rotations are applied within an amplitude ranging from -45 to +45 degrees. Shear is introduced with a ran-

dom magnitude ranging from -0.2 to +0.2. Shifting operations are applied between 0 and 50 pixels in both width and height

directions to avoid the generation of unrealistic symmetric structures. Zoom operation is applied within the range of 1 to 3.

No other transformation such as histogram equalization or contrast enhancement is applied to prevent any bias or alteration

in the segmentation performance. After the selection and augmentation procedures, we conducted a visual examination of all210

the created sky/cloud images to ensure that they appeared realistic. Since all the parameters in the image augmentation process

undergo controlled adjustments, our generated images closely mirror authentic sky/cloud scenes. Datasets for both models are

split into training and validation subsets with ratios of 80% and 20% respectively.

4 Methodology

4.1 Overall framework215

In this section, we outline the architectural designs of two distinct deep-learning models tailored to automate classification

and segmentation tasks. On the one hand, we implement a linear classifier for image classification, whose specific goal is

to discriminate between cloud-free (photometric) and cloudy images (non-photometric). On the other hand, the segmentation

for cloud structure detection is performed via an optimized U-Net model (Ronneberger et al., 2015) on pre-classified cloudy

images. The output probability map can later be thresholded according to the user’s needs to produce the desired predicted220

binary pixel segmentation map and allow to obtain finer details regarding the photometric state of the field, at the pixel level.

Figure 3 illustrates the proposed deep-learning framework compared to conventional segmentation algorithms.

8

https://doi.org/10.5194/egusphere-2024-101
Preprint. Discussion started: 22 March 2024
c© Author(s) 2024. CC BY 4.0 License.



Ground-based 
infrared image

Binary 
classifier

Probabilistic 
segmentation 

map

Clear sky 
image

Cloudy 
image

In
pu
t

O
ut
pu
t

Modified
U-Net

Figure 3. Schematic diagram of the framework proposed in this work. An original infrared image goes through the classifier and is labeled

as cloudy or clear. Then, the modified U-Net segmentation model identifies cloud structure on the image to finally produce a probabilistic

segmentation map that is used to produce reliable metric for our application.
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4.2 Image classification

For our image classification model, we used a RidgeClassifier from SCIKIT-LEARN (Pedregosa et al., 2011) to classify images

as pure sky (clear) or cloudy. The RidgeClassifier is a linear classification model that employs ridge regression (Hoerl and225

Kennard, 1970), a technique that introduces a regularization term. This regularization helps in addressing multicollinearity,

improving the model’s stability and robustness, particularly in scenarios with high-dimensional data or collinear predictors. By

balancing the trade-off between bias and variance, the RidgeClassifier effectively minimizes overfitting, making it a suitable

choice for our image classification task. The training process for the model involves using a dataset consisting of 2720 images,

where half of them are cloud infrared images and the other half are cloud-free infrared images, each paired with appropriate230

ground truth labels. The datasets are deliberately balanced to avoid any biases in the model that might favor one class over the

other.

4.3 Image segmentation

For cloud structure identification, we adopted the U-Net architecture due to its proven efficiency in semantic segmentation

tasks (Ronneberger et al., 2015). The U-Net model comprises an encoder and a decoder, which facilitate the capturing of235

context-rich features and precise delineation of cloud structures. The encoder employs convolutions and max-pooling layers to

progressively downsample the input image, thereby capturing high-level features. These features are then decoded using up-

convolutions and skip connections, enabling the accurate reconstruction of the segmented cloud structures. Figure 4 illustrates

some examples of infrared cloud images alongside their corresponding ground-truth masks and predictions. Figure 5 depicts

the architecture of the segmentation model.240

4.3.1 Encoder block

The encoder block of the segmentation model consists of four sets of double convolution blocks (hereafter DoubleConv) and

four max-pooling layers. A normalized and binned radiometric image of a fixed input size (160 × 128 pixels) is fed into

the model. The DoubleConv contains two sequential convolutional layers, each followed by a Rectified Linear Unit (ReLU)

activation function (Agarap, 2018). The initial DoubleConv block applies a set of learnable filters to the input image, extracting245

low-level features. Subsequent DoubleConv blocks increase the complexity of the learned features by applying convolutions

to the feature map generated by the previous layer, creating a hierarchy of increasingly abstract features. Following each set

of DoubleConv blocks, a max-pooling layer is applied to downsample the feature map, reducing its spatial dimensions while

retaining the most salient information. The architecture follows a pattern of decreasing spatial dimensions while increasing the

feature depth as we move through the encoder, with the specified channels at each level being 128, 64, 32, and 16 respectively.250

4.3.2 Decoder block

The decoder block also comprises four sets of DoubleConv blocks, mirroring the encoder structure in reverse order (so in

our case 16, 32, 64, and 128). In contrast to the encoder’s sequence, which involves a max-pooling layer following each
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Figure 4. Examples of results with the segmentation model and Otsu’s method. Each line represents a different image. The segmentation

model displays well-defined cloud structure edges and gives better results than the ground-truth masks and Otsu’s algorithm.
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Figure 5. Schematic diagram of the proposed U-Net based segmentation model architecture. Yellow boxes represent convolutions. Each

double convolution is followed by a Rectified Linear Unit (ReLU) activation function. Each convolution size is indicated on its lower right.

The input image is a 160× 128 grayscale image. The output image is a probabilistic mask prediction of pixels being cloudy or clear. Arrows

represent operations, specified by the legend-notably, green arrows represent convolutions, while purple ones represent skip connections.

Tensor dimensions at the output of each block are specified.

DoubleConv block for downsampling, the decoder employs an upsampling layer preceding each DoubleConv block. The

upsampling operation effectively increases the spatial dimensions of the feature map, preparing it for concatenation with the255

corresponding, non-downsampled feature map from the encoder provided by the skip connections. Post concatenation, the

DoubleConv block is applied to process the merged feature map. This upsampling followed by a convolution is also known

as Convolutional Transpose or ConvTranspose. These skip connections ensure coherent and effective feature fusion. This

structural configuration is essential for seamlessly integrating both local and global contextual information, thereby improving

the accuracy of segmentation.260

4.3.3 Model output

The image segmentation model generates a probabilistic mask, assigning a probability value to each pixel, indicating its like-

lihood of being associated with the cloud category. Using an array of 160 × 128 sigmoid functions, the model produces a

continuous probability range between 0 and 1 for individual pixels.
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4.3.4 Fine-tuning the U-Net model265

In the original U-Net paper from Ronneberger et al. (2015), a basic convolutional block was interposed between the encoder and

decoder, functioning as a bottleneck to refine feature maps before their upscaling in the decoding path. Yet, through empirical

analysis, we identified that this bottleneck wasn’t necessary for our data processing. While many U-Net adaptations utilize a

basic convolutional block for both encoding and decoding, our findings indicated that, during training, the double convolution

blocks outperformed the simple convolution approach.270

4.4 Training procedure and implementation details

The training process comprises two distinct phases, addressing the classifier model and the U-Net segmentation model. The

loss function employed for training is the binary cross-entropy, which quantifies the difference between predicted probabilities

and actual binary class labels for each instance in the dataset. Mathematically, given an instance’s true binary label y (0 or 1)

and the predicted probability p of it belonging to class 1, the binary cross-entropy loss L is calculated as:275

L=− 1
N

∑

i

yi · log(fw(xi)) + (1− yi) · log(1− fw(xi)) (1)

where L is the binary cross-entropy loss. N is the total number of instances in the dataset, i is the index representing an

individual instance, yi is the i-th true binary label (0 or 1), and fw(xi) is the predicted probability that belongs to class 1,

based on the model with parameters w. The goal of training is to minimize this loss function by adjusting the model parameters

weights w to better align the predicted probabilities fw(xi) with the true labels yi.280

Both the classifier and the segmentation algorithms are implemented using the PYTHON programming language, with the

aid of the FLAX package (Heek et al., 2023), a neural network library that is part of the JAX ecosystem (Bradbury et al., 2018).

Training is conducted on the GPU cluster infrastructure of the MESO@LR2 high-performance computing center, utilizing an

NVIDIA Quadro RTX 6000. To expedite computations and encapsulate the global trend, images are normalized and down-

sampled to the fixed resolution of 160 × 128. The models are trained using the ADAM optimizer (Kingma and Ba, 2014)285

with a batch size of 64 images. The learning rate is initiated at λ = 10−3 and decreases with a cosine learning rate decay

function (Loshchilov and Hutter, 2017). To prevent overfitting and expedite the training process, an early stopping mechanism

is employed, which halts the training if the loss value doesn’t exhibit a decline below a certain threshold after 15 epochs.

During the training of the U-Net model, the hyperparameter tuning process is carried out to identify the optimal architecture

configuration. This process is facilitated by the OPTUNA framework (Akiba et al., 2019), which employs a sampling strategy290

algorithm to explore various configurations. The configurations tested range over different numbers and sizes of filters in the

convolutional layers of the U-Net. Among the numerous configurations tested, the architecture with channels specified as 128,

64, 32, and 16 for the encoder and decoder blocks achieved the lowest loss, indicating superior performance in segmenting

cloud structures.
2https://meso-lr.umontpellier.fr/
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Furthermore, a pruning strategy is integrated within the OPTUNA framework to curtail the exploration of sub-optimal con-295

figurations early in the training process, thereby significantly reducing the computational resources and time required for the

hyperparameter tuning process. This strategy employs a Median Pruner, which ceases the training of trials exhibiting perfor-

mance lower than the median performance of completed trials (He et al., 2018; Vadera and Ameen, 2020). The results of the

hyperparameter tuning process reveal that the architecture with the specified channels of 128, 64, 32, and 16 outperforms others

in terms of loss minimization.300

5 Experiments

5.1 Performance metrics

In order to evaluate the performance of the proposed models, we adopt several metrics: accuracy (A), precision (P), recall (R),

F1-score (F1), the area under the curve (AUC), and the binary cross-entropy loss L defined in Equation 1. All of these metrics

are defined in the following equations,305

A =
TP + TN

TP + TN + FP + FN
(2)

P =
TP

TP + FP
(3)

R =
TP

TP + FN
(4)310

F1 =
2 ·P ·R
P + R

(5)

AUC =

1∫

0

R(FPR−1(t))dt (6)

with True Positives (TP) as the number of correctly classified positive instances; False Positives (FP) as the number of negative315

instances that were incorrectly classified as positive; False Negatives (FN) as the number of positive instances that were

incorrectly classified as negative; True Negatives (TN) the number of correctly classified negative instances; False Positive

Rate (FPR) measures the model’s ability to incorrectly identify negative instances as positive among all actual negatives and is

calculated as FPR = FP / (FP + TN).
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5.2 Results320

5.2.1 Classifier

We measure the performance of our models using precision and recall metrics. In this context, precision measures the propor-

tion of correctly predicted cloudy images among all images classified as cloudy. It reflects the classifier’s ability to minimize

false positives, where a false positive is an instance of predicting an image to contain clouds when it does not. On the other

hand, the recall metric quantifies the proportion of actual cloudy images that are correctly identified by the classifier, addressing325

its capacity to reduce false negatives. A false-negative classification in our case refers to an image that contains clouds but is

not recognized as such by the classifier. Table 2 presents the results of the chosen model for the validation subset. All metrics

prove the model effectiveness in classifying images, with accuracy, precision, recall, and F1-score all above 99%. The AUC

value of 0.99 portrays the classifier as robust. The training process on the entire dataset with ten-fold cross-validation takes

under 5 minutes of computing on an average desktop computer.330

5.2.2 Segmentation

The results presented in Table 1 demonstrate the efficacy of our segmentation model, achieving an accuracy of 94.64% and

AUC value of 0.97. Figure 6 depicts the binary cross-entropy loss as a function of training epochs. The shape of the decay

in these curves aligns with anticipated training patterns, confirming the model’s normal training behaviour. The loss stabilizes

around the 300-iteration mark, serving as a benchmark for the model’s application.335

Figure 7 illustrates the resulting ROC curve. As in Dev et al. (2019a), we adopt a threshold of 0.5, nearly balancing true and

false positive rates. However, users can adjust this threshold to meet specific TPR and/or FPR requirements. Figure 4 shows

the results for some images of the validation subset. We find excellent segmentation of cloud structure in the infrared images.

5.3 Application with cloud counting

In our methodological framework, the initial step involves the application of Otsu’s thresholding (Otsu, 1979) to transform340

infrared sky images into a binary format. This effectively segregates the cloud features from the background, providing a

simplified representation where clouds are distinctly highlighted. Following this, the connected component labeling technique,

as implemented by the function skimage.measure.label, is employed. This function discerns connected regions within

the binary array, where connectivity is defined by the presence of adjacent pixels sharing the same value.

This labeling process assigns a unique identifier to each contiguous cloud region, thus enabling an accurate enumeration345

of individual cloud formations. By comparing this automated count to visual assessments, our analysis revealed a consistent

accuracy in the segmented image counts. The segmented images frequently provided counts that closely matched visual esti-

mations, surpassing the performance of raw and binary mask-derived counts, particularly in scenarios where images suffered

from high noise levels. Such robustness underscores the advantage of our segmentation approach in providing reliable cloud

quantification.350
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Figure 6. Training and testing losses of the segmentation model over epochs. The blue curve is for the training subset whereas the red curve

is for the testing subset. After 300 epochs, both curves asymptotically stabilize at a value of approximately 0.10.

6 Discussion

6.1 Limited benchmarking comparison

Comparing machine-learning models optimized for different types of input data can be meaningful in certain contexts, but

it requires careful consideration. The most critical factor is the nature of the data. State-of-the-art models presented in Sect.

2 are optimized for different types of data (3-channel RGB images). It may seem uncoherent to compare the performance355

with single-channel grayscale infrared images. Indeed, these data types have distinct characteristics, and models may perform

differently based on these differences. Some models Sun et al. (2011); Liu et al. (2011); Luo et al. (2018) have been proposed

to target infrared images with categorization tasks. Considering whether the models can be adapted or fine-tuned to work with

both RGB and infrared data is challenging. This might involve multi-modal learning approaches (Liu et al., 2018; Li et al.,

2020; Wei et al., 2023) or transfer learning techniques (Manzo and Pellino, 2021; Wang et al., 2021a; Zhou et al., 2021) which360

are not the intended purpose of this work.
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Figure 7. ROC curve of the segmentation and classification models. The AUC value represents the area under the curve.

Nevertheless, we attempt to evaluate the robustness of our segmentation model by testing its ability to generalize to other

datasets including SWIMSEG (Dev et al., 2016), SWINSEG (Dev et al., 2019b, 2017) and WSISEG (Xie et al., 2020)

We transform RGB images into gray-scaled images with OPENCV (Bradski, 2000) color conversion method COLOR_RGB2GRAY

defined by the following equation,365

RGB→ Gray = 0.299 ·R + 0.587 ·G + 0.114 ·B (7)

where R, G, and B are respectively red, green, and blue channels of the input color image. Metrics for each dataset are

summarized in Table 1.

While the results indicate accurate recognition of most cloud structures in the images by our models, applying a model trained

on our dataset directly to another dataset yields less satisfactory performance due to the suboptimal transformation of color370
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Figure 8. Examples of cloud counting different input images. The number of automatically identified clouds is shown in the top-left corner

of each subplot. For the upper and center rows, the segmentation map allows the computation of the most accurate result. The last row depicts

an example where the computation fails on the original image, the ground-truth mask, and the probabilistic segmentation mask.

images to grayscale. The method’s efficiency is hindered by the strong blue color channels resulting from Rayleigh scattering

(Bates, 1984), particularly affecting its performance on publicly available datasets transformed in this manner. Further efforts

are required to enhance the conversion of RGB color to grayscale images, aiming for comparable contrast to infrared thermal

images. Still, our framework demonstrates satisfactory results when exclusively trained on the modified images (FS in Table

1), as opposed to our original grayscale images.375

6.2 Comparison of segmentation predictions against ground-truth binary mask

The segmentation model occasionally exhibited superior performance compared to the ground-truth masks, as evidenced by

examples in Fig. 4. Notably, in this instance, the ground-truth mask failed to identify certain sky patches on the left side of the

image. Conversely, the segmentation model’s prediction demonstrated a non-zero probability of the existence of sky patches

in those areas. This discrepancy arises from the model’s utilization of a non-linear mapping technique employing a multi-layer380
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Table 1. Evaluation metrics for the proposed segmentation model on publicly available state-of-the-art datasets. Note that RGB color images

are transformed into gray-scale images as the IRIS-CloudDeep segmentation model is optimized for this type of data. Best values are denoted

in bold font (A = accuracy, BC Loss = binary cross-entropy loss, AUC = area under the curve). FS describes From Scratch training where as

FT means Fine Tuning training.

Datasets A [%] BC Loss AUC

LWIRISEG 94.64 0.1292 97.63

SWIMSEG 57.51 6.4259 53.32

SWIMSEG FT 84.56 0.3425 84.30

SWIMSEG FS 88.65 0.2680 95.76

SWINSEG 67.06 4.7272 69.55

SWINSEG FT 91.64 0.1999 91.29

SWINSEG FS 93.25 0.1670 93.64

perceptron with ReLU activations. This mapping aims to transform a normalized continuous pixel array into a binary pixel

array. Consequently, regions containing sky pixels (denoted by low pixel values) possess the potential to be assigned a low

probability value for cloud presence, even when the ground-truth mask assigns certainty (a value of 1) to those patches as

cloud-covered areas.

6.3 Comparison of segmentation model with Otsu’s method385

To validate its effectiveness, the segmentation model is evaluated against the conventional Otsu’s algorithm with the validation

subset from our own LWIRISEG dataset. Otsu’s method consists of an adaptative thresholding algorithm that automatically

computes the threshold from the image histogram distribution without parameters, supervision or any prior information (Otsu,

1979). Figure 4 depicts some typical comparison results between the two methods and the ground-truth masks given to the

deep-learning model for training. The metrics defined in Sec. 5.1 are computed with Otsu’s algorithm and presented in Table390

2. It demonstrates that the proposed deep-learning modified U-Net model performs significantly better than Otsu’s algorithm

with mean pixel accuracies being 95.17% and 59.16% respectively. Perfect precision of 100% means Otsu’s algorithm does

not produce any false positives, implying it is overly conservative in making positive predictions. As noted by Xie et al. (2020),

the primary reason for the subpar performance of Otsu’s algorithm is its reliance on pixels of the same class having similar

gray values, which contradicts the characteristics exhibited by clouds. These experimental findings validate the effectiveness395

of the segmentation model, highlighting its practical significance for upcoming observations.
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Table 2. Evaluation metrics for the proposed classification models and comparison between segmentation methods (A = accuracy, P =

precision, R = recall, F1 = F1-score, AUC = area under the curve). Best values are denoted in bold font.

Classification models A [%] P [%] R [%] F1 [%] AUC

Ridge regression 99.26 99.31 99.28 99.28 0.99

Logistic regression 94.85 94.95 95.25 94.85 0.94

Perceptron 93.14 93.27 93.86 93.12 0.93

SVM 91.35 91.52 92.50 91.31 0.91

Segmentation methods

LWIRISEG 95.17 96.54 97.89 97.21 0.98

Otsu’s algorithm 59.16 100.00 52.53 68.88 0.76

6.4 Comparison between linear and non-linear methods for classification

In our analysis of infrared sky images, we assessed the suitability of linear classifiers against more complex deep-learning

models. Employing linear classifiers such as SVM, Logistic Regression, Perceptron, and Ridge Regression, optimized via

Stochastic Gradient Descent (SGD) with l2 regularization, we aimed to prevent overfitting and maintain model simplicity.400

Among these, Ridge Regression emerged as the top performer.

Dimensionality reduction techniques supported these findings. Principal Component Analysis (PCA) demonstrated that two

principal components could explain a significant portion of the variance (96.1%), implying that the data is almost linearly

separable. However, non-linear dimensionality reduction through Uniform Manifold Approximation and Projection (UMAP)

perfectly segregated cloud from cloud-free images, indicating that while the data is nearly linearly separable, non-linear meth-405

ods provide strong separation as shown in Fig. 9.

In summary, for the task at hand, deep learning models such as ResNet (He et al., 2015) may seem excessive. A well-tuned

linear model, particularly Ridge Regression, is equally effective, if not more, due to its interpretability and simplicity. The

near-linear nature of the data suggests that simpler models could suffice for such classification challenges.

6.5 Future perspectives410

The framework established in this paper is one subpart of the StarDICE data processing operations. This will serve the rest of

the analysis by identifying and classifying the quality of photometric exposures performed in parallel.

The work undertaken in this paper will be used and the associated module will include the following operations for analysis:

(i) classifying infrared sky images obtained by the imaging system in real-time; (ii) analyzing cloud-labeled sky images and
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Figure 9. Left: first two principal components of the PCA of the entire dataset, representing 96.1% of the variance, with the

label clear being the cloud-free images. Right: two-dimension representation of UMAP of the same dataset.

deriving the corresponding cloud structure and cover using the segmentation algorithm; (iii) generating alerts/flag in accordance415

with the results.

As mentioned in Sect. 6.1, we were able to train a model on our grayscale images and another model on RGB images, and

both models produced great results. However, using a model trained on grayscale images to predict masks for RGB images

or even RGB images transformed to grayscale yielded poor results. Additionally, training a model on all the data resulted in

suboptimal performance. As a future endeavor, we can explore the usage of a multimodal deep-learning model that can work420

with both RGB and grayscale images.

Improving the accuracy and robustness of our framework could involve further training on a larger dataset in more variable

conditions. With the upcoming remote operations capabilities of the telescope system expected to yield a substantial volume of

data next year, we anticipate capturing a broader spectrum of sky atmospheric conditions. In this case, a single network could

predict two types of outputs (e.g, pixel segmentation map and a metric describing image quality). Still, additional effort will be425

necessary to categorize the images based on the varying cloud coverage types.

Finally, the standard U-Net model lacks temporal correlation. No information about the displacment of the cloud is taken

into account. We could gain in model accuracy by incorporating the temporal information using RNN-based algorithms (Sher-

stinsky, 2020) or temporal U-Net to effectively model temporal information in sequences (Funke et al., 2023).
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7 Conclusion430

In this paper, we proposed a deep-learning framework for the classification and segmentation of ground-based infrared thermal

images. As far as we know, it is the first framework that attempts to apply two sequential models for complementary tasks on

single-channel gray-scaled infrared images. Specifically, we presented the linear classifier and the U-Net based segmentation

model tailored to extract cloud structures on pre-identified cloud images whether during the day or at night. The segmentation

model provides the capability to identify clear sky portions in infrared images, creating a catalog of optical images suitable for435

photometric measurements and analysis. Extensive experimental results on a combination of self-acquired data and transformed

publicly available datasets have demonstrated the effectiveness and performance of the proposed framework. We successfully

increased the size of training, testing, and validation subsets with random application of augmentation methods. We developed

an accurate simulation tool to produce realistic clear sky images. Some limitations are due to the low amount of strictly

different images in various conditions and errors introduced by ground-truth masks incorrectly labeled manually. Nevertheless,440

we demonstrated that the segmentation model can rectify poor ground-truth masks and sometimes produce better results. In

the future, additional data will be collected by the infrared instrument, capturing various weather conditions. The framework

may be re-trained on heavier datasets which will probably increase its accuracy. Furthermore, if enough data is collected with

many different cloud categories and proven-to-be accurate radiometric calibration, we will be able to expand the segmentation

model to perform cloud typology through multi-label segmentation. The framework established in this work will serve as a445

basis for the sky quality assessment and further analysis for the StarDICE metrology experiment.
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