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Abstract. Antarctic sea ice has experienced rapid change in recent years, with the total sea ice extent abruptly decreasing after

a period of gradual increase from the late 1970s until 2014. Accurate long-term predictions of Antarctic sea ice concentration

are crucial for supporting expanding activities in the Southern Ocean, related to for instance scientific research, tourism and

fisheries. However, dynamical models often face difficulties in accurately predicting Antarctic sea ice due to limited

representations of air-ice-sea interactions, especially on seasonal timescales and during the summer months. In response to

these challenges, we develop a deep learning model (named ANTSIC-UNet), trained by physically enriched climate variables,

and evaluate its skill for extended up-to-six-months seasonal prediction of Antarctic sea ice concentration. We compare the

predictive skill of ANTSIC-UNet in the Pan- and regional Antarctic with two benchmark models (a linear trend and an anomaly

persistence model). In terms of root-mean-square error (RMSE) for sea ice concentration and integrated ice-edge error (IIEE),

leted: which garners increasing attention for its prediction. In
this study,
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ANTSIC-UNet shows much better skills relative to the two benchmark models for the extended seasonal prediction, especially

for the extreme events in recent years, Sea ice prediction errors increase with lead time, and are smaller during autumn and

CDeIeted: (up to 6 months in advance). )
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: C" leted: , relative to the two benchmark models

winter than in summer, The Pacific and Indian Oceans show accurate prediction performance at the sea ice edge during

summer, and ANTSIC-UNet provides high, predictive skill in capturing the interannual variability of Pan-Antarctic and

regional sea ice extent anomalies. Jn addition, we quantify the importance of variables, through a post-hoc interpretation

method. [This analysis suggests, that the ANTSIC-UNet prediction at short lead times Js sensitive to sea surface temperature,

radiative flux, and atmospheric circulation in addition to sea ice conditions. At longer lead times, zonal wind in the stratosphere

appears to be an important influencing factor for the prediction.

[Deleted: better predictive skills at the sea ice edge zone in summer

(Deleted: We also

(Deleted: in addition to sea ice conditions,
k(DeIeted: shows

Deleted: The predictive skill of ANTSIC-Unet is season and region
dependent. Low values of RMSE are found from autumn to spring in
the Pan-Antarctic and all sub-regions for all lead times, but large
values of RMSE are found in summer for most sub-regions which
increase as lead times increase. Small values of IIEE are found in
summer at 1-3 month lead, large errors occur from November to
January as the lead time exceeds 2-4 months.

compared to other regions. Moreover, ANTSIC-UNet shows good
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1 Introduction

Sea ice affects the climate system through modulating the exchange of radiation, heat, momentum, moisture and gases between
the atmosphere and ocean. Antarctic sea ice is an essential component of the climate system, It strongly affects the local

(Deleted: , which

atmosphere and ocean and the extrapolar Southern Hemisphere through dynamical and thermodynamic processes, particularly
in a warming climate (Massom and Stammerjohn, 2010; Kidston et al., 2011; Abernathey et al., 2016; Zhu et al., 2023). The
summer total Antarctic sea ice extent (SIE) has gradually increased until 2014 since the late 1970s and then abruptly decreased
(Turner et al., 2013; Hobbs et al., 2016; Comiso et al., 2017; Fogt et al., 2022; Liu et al., 2023). Antarctic SIE shows large

seasonal and interannual variability, with trends that are spatially, heterogeneous (Liu et al., 2004; Raphael and Hobbs, 2014;

CDeIeted: sea ice

(" leted: and its trend is spatially

Libera et al., 2022).

Compared to the Arctic, the prediction of Antarctic sea ice has received much less attention. Yet subseasonal to extended

seasonal Antarctic sea ice predictions are increasingly demanded due to the expanding range of activities in the Southern

Ocean (Zampieri et al., 2019; Bushuk et al., 2021; Libera et al., 2022). Accurate sea ice concentration predictions can provide

early warnings about sea ice changes and related hazards. This is particularly important for managing the risks of shipping

activities in the Southern Ocean. For example, two polar vessels, Akademik Shokalskiy and Xuelong became trapped in rapidly

formed sea ice in the Antarctic coastal region (Wang et al., 2014). Commercial fishing and tourism operations mostly use ice-

strengthened vessels rather than icebreakers, which are vulnerable to sea ice hazards. Improved predictions will support

ecosystem management and inform policy decisions, since the seasonal variations in Antarctic sea ice have a profound

influence on marine productivity and fisheries (Libera et al., 2022),

Deleted: , but it is also in demand associated with the increase in

Statistical models, such as the Markov model (e.g., Chen and Yuan, 2004; Pei, 2021) and the Koopman mode decomposition

model (Hogg et al., 2020), have been employed to forecast seasonal Antarctic sea ice concentration. However, these statistical

models were inferior to the anomaly persistence model for some seasons and regions. Additionally, there have been limited

planning operational activities like scientific research, tourism, and
fishing in the Southern Ocean (Bushuk et al., 2021; Libera et al.,
2022)....
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efforts to forecast seasonal Antarctic sea ice using dynamical models due to the challenges associated with faithfully simulating
complex air-ice-sea interaction processes in the Southern Ocean (Morioka et al., 2019; Bushuk et al., 2021). Dynamically, sea

ice movement and deformation are driven by wind and ocean currents. Thermodynamically, sea ice melting and formation are

influenced by convection associated with ocean vertical mixing, heat exchange driven by surface radiation budget and

turbulence. and heat advection through horizontal transport of air and water masses. However, most dynamical forecast
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systems overestimate the extent of the Antarctic sea ice edge at the sub-seasonal scale with their predictive skill falling below
climatological benchmarks (Zampieri et al., 2019). Starting in 2017, the Sea Ice Prediction Network South (SIPN South) has
coordinated the evaluation of forecasting methods and systems used to predict summer Antarctic sea ice (Massonnet et al.,
2023). The evaluation reveals that both statistical and dynamical models have substantial biases and ensemble spread.

In recent years, dgep learning (DL) methods have been widely used for Arctic sea ice prediction at various temporal scales

(patat

(e.g., Chi and Kim, 2017; Fritzner et al., 2020; Kim et al., 2020; Y. Ren and X. Li, 2021). Andersson et al. (2021) introduced

IceNet to predict probabilities of Arctic sea ice edge with uncertainty quantification. Y. Ren and X. Li (2023) developed a DL
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method with a physically constrained loss function to improve Arctic sea ice predictions at lead times of 90 days. However.
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In contrast )

very limited effort has been made to apply DL methods to Antarctic sea ice prediction and associated assessments are still at
an early stage. For the SIPN South summer Antarctic sea ice extent forecast (Massonnet et al., 2023), one contributor provided
the prediction using a k-nearest neighbors (KNN) method. Recently, Wang et al. (2023) developed a SIPNet model with
encoder-decoder structure for subseasonal Antarctic sea ice concentration prediction, which outperforms some dynamical

models and advanced linear statistical models. Nevertheless, these DL methods were trained by pure historical sea ice

(" leted: Both the )

concentration data without considering underlying physical processes governing the variation of Antarctic sea ice.
The purposes of this study are to 1) develop a DL model, named ANTSIC-UNet, to achieve extended seasonal prediction of

Antarctic sea ice concentration by considering not only the sea ice itself but also a wealth of yariables associated with ocean-

C" leted: knowledge in terms of )

ice-atmosphere interactions, 2) assess the predictive skill of ANTSIC-UNet for both Pan- and regional Antarctic sea ice,

especially for recent extreme years, and 3) apply a post-hoc interpretation method to quantify the variable importance that

(" leted: conduct )

affects sea ice predictability.

2 Data and Method
2.1 Data

In this study, monthly Antarctic sea ice concentration (SIC) data obtained from the National Snow and Ice Data Center

(NSIDC) (https://nsidc.org/data/nsidc-0079/versions/3) are, used as the input of ANTSIC-UNet, and are derived from

Cl" d: is

brightness temperature of the Scanning Multichannel Microwave Radiometer (SMMR), the Special Sensor Microwave/Imager
(SSM/1) sensors, and the Special Sensor Microwave Imager/Sounder (SSMIS). The SIC data have, a size of 332x316 erid
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points with a spatial resolution of 25km, spanning from 1979 to 2023. A linear least-squares trend was fit to observed SIC over
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the past 30 years at each grid cell for each calendar month and used to predict SIC values for the corresponding calendar month

in the following year. In addition, these SIC predictions from this linear trend model are also used as the input of ANTSIC-

UNet,,

Deleted: We also use the linear trend prediction of SIC as the input

Long-term observations are scarce in the Antarctic, which cannot provide the comprehensive and consistent three-dimensional

and time-evolving gridded field of atmosphere and ocean parameters necessary to understand sea ice changes. Reanalysis

datasets, which assimilate observations and satellite data, are valuable tools for investigating climate changes in polar regions

offering multivariate descriptions of atmospheric and oceanic conditions. ECWMF Reanalysis v5 (ERAS, Hersbach et al.

2020) provides high-resolution and three-dimensional gridded data of comprehensive atmospheric variables from 1940 to the

present. ERAS and its predecessor ERA-Interim are widely regarded as the best-performing reanalysis datasets in polar regions

with particularly reliable analyses over the Southern Ocean compared with surface and upper-level observations (Bracegirdle

& Marshall, 2012; Bromwich et al., 2011). Ocean Reanalysis System 5 (ORASS5, Zuo et al., 2019) is a global eddy-permitting

ocean and sea-ice ensemble reanalysis which provides historical ocean and sea-ice conditions from 1979 to the present, and is

based on the assimilation of the same sea surface temperature observations as is the case of ERAS. Sea ice changes are strongly

3

which is computed by the linear least squares fitting for the calendar
month corresponding to the period of 1-year ahead from the target
month....
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influenced by the atmosphere above and the ocean below through dynamical and thermodynamic processes. Therefore, the

relevant atmospheric variables selected from ERAS5 and oceanic variables obtained from ORASS are also used as inputs by

ANTSIC-UNet to investigate the key factors contributing to sea ice predictions in the complex interaction between sea ice

ocean and atmosphere, These variables include 2m air temperature (T2), 500-hPa air temperature (T500), sea surface

Deleted: The atmospheric and oceanic variables obtained from the

temperature (SST), ocean temperature (PT), ocean heat content for the upper 300m (OHC300), downwelling solar radiation
(DSR), upwelling solar radiation (USR), sea level pressure (SLP), 500-hPa geopotential height (H500), 250-hPa geopotential
height (H250), 10m u-component of wind (U10), 10m v-component of wind (V10), and 10-hPa zonal wind (U10hPa). The
averaged ocean temperature at different depths in the upper Southern Ocean, 50-100m (PT50) and 100-150m (PT100), has
been calculated. Before integrating into ANTSIC-UNet, these variables are bilinearly interpolated to the NSIDC sea ice polar
stereographic grid and pormalised. Additionally, a land mask obtained from the NSIDC is used for the consistency of SIC and

ECWMEF Reanalysis v5 (ERAS, Hersbach et al., 2020) and Ocean
Reanalysis System 5 (ORASS, Zuo et al., 2019) are also used as the
inputs, which are related to dynamic and thermodynamic processes of
Antarctic sea ice.

other variables.

The input vector is a 3-dimensional matrix with the size of 332x316x57, The dimension with 57 elements yepresents all

(" leted: standardized )
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variables_mentioned above, jncluding sea ice concentration for the past 12 months, the linear trend prediction of sea ice

o CDeIeted: is the dimension of the

concentration for the following 6 months, 12 climate variables for the past 3 months, 2 climate variables for the past 1 month,

. CDeIeted: N

and the land mask. All variable fields are mapped on 332x316, grids (see Table 1 for the details of all input variables). The

. (Deleted: 14 climate variables for the past 1 to 3 months

final output provides the 6-month forecast of Antarctic sea ice concentration.

2.2 ANTSIC-UNet model

In this study, we construct an ensemble deep learning model, aiming at providing, seasonal six-months Antarctic sea ice

AN NN
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concentration prediction. The ANTSIC-UNet consists of 20 members possessing the encoder and decoder structure associated

with a fully convolutional network (Fig. 1). A U-shaped architecture based on convolutional neural networks is widely used

for many applications, i.e., remote sensing image segmentation tasks (Marmanis et al., 2016: Wang et al., 2023). Recently

Andersson et al. (2021) employed the U-Net for three-class predictions of Arctic sea ice concentration.

For accurate forecasts of Antarctic sea ice concentration, we made necessary modifications to the original architecture of U-

Net and turned it into single value regression rather than the classification. The ANTSIC-UNet’s inputs are feature maps of

high-resolution sea ice concentration and other multiple climate variables related to sea ice changes over different lead/lag

months and a land mask. The outputs are high-resolution sea ice concentration maps for the future months, To avoid

‘ CDeIeted: extended

NN

Deleted: Such encoder and decoder framework is also employed in

deformation, we resize the spatial shape to a 336x320 grid, by applying the nearest neighbor method, before input to the

encoder, and we adopt a padding technique to avoid too much data reduction. The inputs are processed into a large number of

feature maps with decreased dimensionality by the encoder part of ANTSIC-UNet. Such deep layers and large-scale features

allow the model to capture complex nonlinear relationships and provide an interpretation of the inputs. The decoder then

upscales the feature maps extracted by the encoder into upsampled features and uses four skip connections to combine them

with multi-scale features from different scale levels of the encoder. This process results in high-resolution output maps that

align with the spatial dimensions of the input data. Finally, sigmoid activation functions are used in the last six convolutional

4

IceNet used for Arctic probabilistic forecasting (Andersson et al.,
2021), and originally designed in the U-Net for image recognition
(Ronneberger et al., 2015). The encoder is designed to extract
abstract features through convolutional layers and downscale features
using maxpooling layers, which increases the robustness and reduces
the amount of computation for a deeper network. The decoder is
designed to recover and reconstruct the abstract features through
convolutional layers, and generate outputs of the same spatial size as
the inputs through unsampling layers. Four skip connections linking
feature maps in the same semantic level provide multi-scale and
multi-level information and retain high-resolution details in the initial
convolution process.
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layers, and the output module extracts slices with dimensions of 332x316x6, which generate the regression predictions for

Antarctic sea ice concentration maps over a six -month period,,

d

We divide the data into three groups: the training data from 1979 to 2011, the validation data from 2012 to 2019 (with exclusion
years 2014 and 2017), and testing data in 2017, from 2020 to 2023 (anomalously low extent period) and 2014 (record high)

for independent evaluation. An early stopping strategy is adopted to avoid overfitting when the performance on the validation

data does not improve after 10 epochs as suggested by Prechelt (2012). The testing data do not participate in the training

process so that the performance of the testing data provides an independent assessment,of ANTSIC-UNet’ ability to generalize

to,new data.

Finally, we extract the slices from the output module

function to transform output values.

1
[which contains six convolutional layers using the sigmoid activation

J
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Figure 1. Configuration of ANTSIC-UNet model used for extended seasonal Antarctic sea ice prediction._Inputs are sea ice
concentration, other climate variables related to sea ice changes over different lead/lag months and a land mask. The U-shaped

for adapting




215

220

225

architecture includes the encoder, decoder and four skip connections. Sigmoid activation functions (fs) are used in the final six
convolutional layers to generate regression predictions of Antarctic sea ice concentration maps for six months.

Input variables | Variable long name Source %rflz(rllth(s); lag
SIC sea ice concentration NSIDC 1to 12
SIC trend linear trend forecast for sea ice concentration NSIDC 1to6
T2A 2 m air temperature anomaly ERAS 1to3
T500A 500-hPa air temperature anomaly ERAS 1to3
SSTA sea surface temperature anomaly ERAS 1to3
PTS0A ocean temperature anomaly averaged over 50-100 m | ORAS5 1to3
PT100A ocean temperature anomaly averaged over 100-150m | ORASS 1to3
OHC300A ocean heat content anomaly for the upper 300 m ORASS 1to3
DSRA surface downward solar radiation ERAS 1to3
USRA surface upward solar radiation ERAS 1to3
SLPA sea level pressure anomaly ERAS 1to3
H500A 500-hPa geopotential height anomaly ERAS 1to3
H250A 250-hPa geopotential height anomaly ERAS 1to3
U10hPa 10-hPa zonal wind ERAS 1to3
ul10 10 m zonal wind ERAS 1

V10 10 m meridional wind ERAS5 1
landmask Southern Hemisphere land mask NSIDC N/A

Table 1. The information of all input variables for ANTSIC-UNet
2.3 Evaluation metrics

In this study, the linear trend and anomaly persistence predictions are used as benchmarks to assess the predictive skill of
ANTSIC-UNet. The linear trend prediction is described in section 2.1. The anomaly persistence prediction is calculated as

follows:

SICprea(t +F) = SICeym(t + Ty + SICanom () M
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where SIC,p,..q is the target month ice concentration at the lead time 7, SICy;,is the climatogy ice concentration at the target

month, and SIC,,,,, is the observed ice concentation anomaly relative to the climatology at the initial time. The climatology

for each month is computed for the period of the training data (1979-2011). The anomaly persistence works by preserving the

deviations from the climatological anomalies and assuming these anomalies will persist into the future. For example, if a
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particular region currently has more sea ice than average, this positive anomaly will continue as time increases. This statistical

method has been widely used as a benchmark for predicting sea ice concentration on seasonal timescales since sea ice

conditions often change gradually rather than abruptly (Wayand et al., 2019; Bushuk et al., 2021; Niraula and Goessling, 2021).

While this method is effective for short-term forecasts, its accuracy declines over longer lead times as the influence of initial

anomalies weakens.

We quantify the predictive skill of both the Pan- and regional Antarctic sea ice using four metrics: 1) root-mean-square error
(RMSE), 2) anomaly correlation coefficient (ACC), 3) mean squared error skill score (MSSS), and 4) integrated ice-edge error

(IIEE). RMSE reflects the proximity between the prediction and observation. ACC is a measure of the accuracy of the

prediction anomalies based on the relationship between the predicted and observed deviation from fheir respective Cl‘ leted: model
climatologies,(Wang et al., 2016). MSSS is a skill score based on a comparison between the model predictions and climatology ‘ (Deleted: the
which are considered as a reference forecast, The value of MSSS varies from negative infinity, to 1, with a negative value (Deleted: y
indicating no predictive skill and below the reference forecast (due to deviations from observations being larger than observed | (Deleted: ofthe
. (Deleted: that takes into account both ACC and conditional bias

annual fluctuations), and 1 indicating a perfect forecast (Murphy, 1988). Here we use ACC = 0.5 and MSSS = 0.0 as the lowest
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limit for predictive skill, which js widely used in previous research (e.g., Goddard et al., 2012; Choi et al., 2016; Bushuk et al., |
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2021). The integrated ice-edge error (IIEE) is a verification metric for sea ice forecasts representing the sum of overestimated (Deleted:
and underestimated sea ice extent where sea ice concentration > 15% (Goessling et al., 2016). These metrics are calculated as
follows:
RMSE = MSE = jmean((p - 0)?), Q . (Deleted
‘ (Deleted:
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where p is the predicted ice concentration or sea ice extent by ANTSIC-UNet and o is the observed ice concentration or ice
extent; p and o are the mean of the prediction and observation.

2.4 Variable importance analysis

We use the permutation feature importance approach to determine which variables are important for Antarctic sea ice
prediction in ANTSIC-UNet. This method was introduced by Breiman (2001) and Fisher et al. (2018) to interpret the model’s
decisions. Specifically, when a particular variable is selected, the original input feature matrix is X, and the permutation
feature matrix is Xperm. The evaluation metric e; ; used is the root-mean-square error (RMSE) between the output f; ; (the

predicted SIC by the trained model for the target month at the lead time ranging from 1 to 6 months) and the target ¥; (observed

Jmean(y(p - 0)%)
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SIC) for a given month. Thus, the feature importance value /7 ;;is defined as the accuracy change of the evaluation metric

where i refers to the target month to be predicted and j refers to the lead month.

Fli,j = Ei,jperm - Ei,jorig, (6)
where

ei,jwig =RMSE(Y;; fi,j(Xorig))» @
e,P°™ = RMSE (Yi;fi,,-(Xperm)), ®

The importance of each particular variable is measured by 1) randomly shuffling the variable across spatial grids and replacing
it in the original input vector to generate a new input vector, and 2) calculating the error of the evaluation metric after permuting

the variable. The positive increase of /7;; means that the variable is important,and, no change and decrease of /7, indicates

(el
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that the variable plays little role. Here we iteratively shuffle, each input variable and compare the performance, and repeat the (Deleted: >
procedure 10 times. The mean feature importance value is calculated with the testing data for the period of 2020-2023. ... (Deleted: has
“, (Deleted: the permutation and evaluation

3 Results
3.1 Pan-Antarctic and regional predictive skill

Pan-Antarctic sea ice concentration predictions from ANTSIC-UNet, linear trend and anomaly persistence models for the
testing years averaged for all lead times are shown in Table 2. Overall, ANTSIC-UNet has smaller RMSEs and significantly

reduced ITEE compared to the linear trend and anomaly persistence models. In order to consider the variations of,the metrics
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Jesults with lead times and different regions, we compare the three models for lead times ranging from 1 to 6 months for the

Considering

Pan-Antarctic and five sub-regions (Fig. 2). For ANTSIC-UNet and anomaly persistence model, both RMSE and IIEE grow
with increasing lead time, reflecting a decrease of predictive skill for the extended seasonal forecast. Compared to the anomaly
persistence model, ANTSIC-UNet exhibits significantly lower RMSE over the entire Antarctic and all sub-regions for all lead
times, except for the Indian Ocean for lead time exceeding,3 months. In addition, RMSE of ANTSIC-UNet also exceeds the
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linear trend model when the lead time exceeds 3 months, which is due to the reduced predictive skill in the Indian Ocean,

as the
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Pacific Ocean, Amundsen and Bellingshausen Seas. Encouragingly, the IIEE of ANTSIC-UNet is consistently smaller than

that of the two benchmark models, though it is comparable to the linear trend model for lead times exceeding 3 months in the
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Amundsen and Bellingshausen Seas. Overall, ANTSIC-UNet shows high predictive skill in the Weddell and Ross Seas,
putperforming the two benchmark models.

as
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ANTSIC-UNet Linear trend Anomaly persistence
RMSE 0.21 0.22 0.23
IIEE 1.68 2.13 2.47

which
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Table 2. The averaged predictive skill of Antarctic sea ice for ANTSIC-Unet, linear trend and anomaly persistence
310 models for all testing years (RMSE: root-mean-square error; IIEE: integrated ice-edge error).
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Figure 2. (a) Domian of sub-regions: 60°W—-20°E (Weddell Sea), 20°~90°E (Indian Ocean), 90°-160°E (Pacific Ocean), 160°E-130°W
(Ross Sea), and 130°-60°W (Amundsen and Bellingshausen Seas). (b) and (c) the averaged predictive skill of Pan- and regional
Antarctic sea ice for ANTSIC-UNet, linear trend and anomaly persistence predictions. (b) SIC RMSE and (c) IIEE. Note that the

rediction with the linear-trend model is based on the same calendat month one year before and is hence independent of lead time.

Fig. 3 shows the spatial distribution of February and September SIC. In February (seasonal minimum), the linear trend model
overestimates SIC in the Ross Sea and western and central Weddell Sea and underestimates SIC in the Amundsen and
Bellingshausen Seas. Compared to the linear trend model, the anomaly persistence model has relatively small biases at 1-

month lead. However, the magnitude and coverage of the biases become larger as the lead time increases,and are large positive

(negative) biases in parts of the eastern Pacific sector (the Indian sector) at 5-month lead. Moreover, the anomaly persistence

model leads to an unrealistic northward expansion of the biases, as the initial spring months cover a broader area of sea ice t

(l‘ leted: , i.c., it shows

(Deleted: the

¢than the target month, By contrast, the ANTSIC-UNet prediction shows the smallest biases (mostly negative across much of

(Deleted: fake

the Antarctic) at 1-month lead. As the lead time increases, the magnitude of the biases gradually increases, except that the

negative bias in the Ross Sea changes to become positive. In September (seasonal maximum), the linear trend and anomaly

Deleted: due to sea ice during the initial months (i.e., spring)
having broader coverage

(" leted: (i.c., summer) as the lead time increases

persistence (at 1-month lead) models tend to have alternating negative and positive biases near the sea ice edge. By contrast,

the ANTSIC-UNet prediction has smaller and mostly negative biases across much of the Antarctic at 1-month lead. As the

‘ (Deleted: in

(Deleted: the

lead time increases, both the ANTSIC-UNet and anomaly persistence models show biases becoming, larger in the sea ice edge

zone. Moreover, large biases also appear in the compact ice zone for the anomaly persistence model.

Fig. 4 shows spatially and temporally averaged RMSE and IIEE between the ANTSIC-UNet predictions and observations for
each target month and different lead times. In terms of RMSE, Pan-Antarctic exhibits low values from autumn to spring (from
April to November), though there is an increase in RMSE during summer months (from December to March) as the lead time
exceeds 2 months. In terms of IIEE, Pan-Antarctic has small values at 1-month lead, which extend to 2-3 month lead in
February and March. In general, the values of IIEE increase as lead times increase, and large values occur from November to
January as the lead time exceeds 2-3 months. As shown in Fig. 4b1-f1, the large values of RMSE are also found in summer
for all sub-regions, but relatively small values are found in the Weddell Sea. For 1IEE in Fig. 4b2-f2, all sub-regions show
similar distributions, except that the low IIEE in the Indian and Pacific Oceans have broader coverage. Increased ITEEs are
found in the Weddell Sea (Ross Sea) from November to January (from December to March) as the lead time exceeds 2-3
months. Overall, the Pacific and Indian Oceans show better predictive skills at the sea ice edge zone in summer relative to

other regions.
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Figure 4. The predictive skill of sea ice concentration (spatially and temporally averaged during the testing years) in terms of RMSE
and IIEE (units: million square kilometers) between the ANTSIC-UNet predictions and NSIDC observations for different target
360 months and forecast lead times.

3.2 Predictive skill for interannual variability

We assess the performance of the predicted year-to-year variability of Pan-Antarctic and regional sea ice extent (SIE)
anomalies (Fig. 5). For the Pan-Antarctic, the observed ice extent anomaly shifts from the positive phase to the negative phase
around 2016 (Fig. 5a). Both the linear trend and anomaly persistence models cannot capture the observed shift after 2016, and
365 the anomaly persistence model shows much larger positive anomalies and variability compared to the observation. By contrast,

ANTSIC-UNet reproduces the observed shift during 2014-2017 and the predicted interannual variability is well correlated
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375

380

with the observation (R=0.76). Moreover, the majority of the observed ice extent anomalies fall within the spread of the
ANTSIC-UNet prediction, which is also true for most sub-regions (Fig. 5b-f). The highest correlation is found in the Weddell
Sea (R=0.79), followed by the Indian Ocean (R=0.63) and Ross Sea (R=0.59). The Pacific Ocean, Amundsen and
Bellingshausen Seas have relatively low correlations. Thus ANTSIC-Unet outperforms two benchmark models from the

perspective of the SIE interannual variability prediction.
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Figure 5. Sea ice extent lies from 2012 to 2023 (including both validation and testing years) for Pan- and regional Antarctic (r leted: Time series of s
for, NSIDC observations (black), the linear trend model (grey), the ly persistence model (blue) and ANTSIC-UNet model (red), Deleted:
The red (blue) shading represents the ensemble spread of ANTSIC-Unet (anomaly persistence model) at different lead times_up to .\ eletec: .

6 months, while the solid lines corresponding to the ensemble means. (units: million square kilometers)

Fig. 6 further shows the evaluation metrics (ACC and MSSS) between the observed and predicted interannual sea ice extent.
For the Pan-Antarctic, high values of ACC are found from January to September at 1-3 months lead, which decrease as the
lead times increase (Fig. 6a). Reduced values of ACC are found from October to December as the lead time exceeds 2 months.
MSSS exhibits a similar pattern as that of ACC (Fig. 6b). All sub-regions show similar distributions, high values of ACC and
MSSS at 1-month lead and slowly decreasing with increasing lead times. Low values of ACC and MSSS occur in the Indian

Ocean from Januray to March, the Pacific Ocean from November to January, and the Amundsen and Bellingshausen Seas from
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September to October, which limit the interannual predictive skill of the Pan-Antarctic. Overall, the Weddell and Ross Seas
have broad coverage of high ACC and MSSS which suggests the possibility of long-lead extended seasonal predictions there.
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Figure 6. The ACC (al-f1) and MSSS (a2-f2) between the observed and ANTSIC-UNet predicted regional SIE lies for different
target months and forecast lead times during 1981-2023.
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3.3 Extreme cases

(" leted: Extremes

Next, we evaluate to what extent the ANTSIC-UNet prediction can capture extreme years. The average predictive skills for
the three extremely low sea ice extent years averaged for all lead times are shown in Table 3. During all extreme years,
ANTSIC-UNet exhibits the smallest RMSEs and improves sea ice edge predictions with notably reduced IIEE, compared to
the linear trend and anomaly persistence models. The spatial distribution of February and September SIC of 2023 (record low)
is shown in Fig. 7. In February, the linear trend model overestimates sea ice concentration for much of the Antarctic. The
anomaly persistence model shows clusters of large positive biases near the coastal area and extended northward coverage of
negative biases at 1-month lead, and both magnitude and coverage of the biases increase dramatically as the lead time increases.
ANTSIC-UNet exhibits better performance than the two baseline models with smaller sea ice edge error for all lead times,
though as lead time increases, the positive biases in the Amundsen and Ross Seas gradually increase. In September, the
ANTSIC-UNet prediction shows smaller biases in the entire Antarcic at 1-month lead compared to the two benchmark models,
and still outperforms the two models in most regions as the lead time increases. Though there are different spatial distributions
of SIC errors for 2017 and 2022, ANTSIC-UNet also shows superior predictive skill (Figs. S1 and S2).

The predictive skill of seasonality errors of extremely low sea ice extent of 2023 based on ANTSIC-UNet and two benchmark
models are further accessed against the NSIDC observations (Fig. 8). Both the linear trend and anomaly persistence prediction
models excessively overestimate the SIE in the Pan-Antarctic and all sub-regions for nearly all months, except for the
Amundsen and Bellingshausen Seas. In contrast, these positive SIE errors have been greatly reduced in the ANTSIC-UNet
predictions. ANTSIC-UNet outperforms the linear trend model throughout the year for all the lead times and most regions,
except for the Amundsen and Bellingshausen Seas. This is also true for 2017 and 2022 (Figs. S3 and S4). Therefore, ANTSIC-

UNet has good predictive skills for extreme events in recent years.

Observed SIEA | Metrics | ANTSIC-UNet Linear trend Anomaly persistence
RMSE 021 0.25 0.24
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Table 3. The averaged predictive skill of ANTSIC-Unet, linear trend and ly persi dels for the extreme summer years,
of Antarctic sea ice. Here, Observed SIEA represents February monthly anomalies of sea ice extent from NSIDC observations for

these extreme years, calculated by subtracting the February average sea ice extent for the period 1981-2011 (units: million square
kilometers). RMSE: root-mean-square error; I1EE: integrated ice-edge error.
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Figure 7. February and September SIC 2023 of NSIDC observations (a, e) and errors predicted by the linear trend model (c, g),

anomaly persistence model (d1-d3, h1-h3) and ANTSIC-UNet (b1-b3, f1-f3) at lead time of 1, 3 and 5 months (lowest sea ice extent Cr leted: for 2023
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3.4 Variable importance

In this study, 14 atmospheric and oceanic variables from ERAS and ORASS are selected to capture the key physical

mechanisms influencing sea ice variation. Variables such as sea surface temperature, 2m air temperature, and radiation impact

heat flux exchanges at the air-ice-sea interface (Bourassa et al., 2013). Near surface winds drive sea ice movement and large-

scale tropospheric circulation impacts sea ice through its effects on winds, temperature, precipitation, and cloud cover (Raphael

and Hobbs, 2014). The 10-hPa zonal wind represents stratospheric zonal circulation, which impacts surface circulation through

downward propagation, influencing sea ice dynamics (Cordero et al., 2023). Sea temperature anomalies and the upper-ocean

heat content anomaly for the upper 300 m taken from ORASS play a crucial role in the heat energy exchange at the ocean—ice

interface (Purich and Doddridge, 2023; Bianco et al., 2024). The upwelling of warmer subsurface water can further influence

sea ice formation and melting in the high latitude of the Southern Ocean (Cai et al., 2023). ,As discussed, ANTSIC-UNet shows

better performance compared to the linear trend and anomaly persistence models. This implies that ANTSIC-UNet has learned

~(Moved (insertion) [1]

(Deleted: above

NN

to predict extended seasonal Antarctic sea ice based on the physical relationships of the input variables.

Previous studies suggested that the evaluation metrics of jynodel’s predictive skill, especially for models, with strong

generalization ability, correlate closely with feature importance (FI) (Andersson et al., 2021; Molnar, 2019). The permutation

CDeIeted: the

‘ (Deleted: of a particular model with excellent

feature importance method based on testing yariables can yeveal model-dependence variables and jndicate the contribution

extent of the variables to the performance of the model on unseen data. Here we use the permutation feature-importance method

to explain model variance based on the testing data from 2020-2023. The variable importance js Pan-Antarctic averaged for

: (Deleted: are strongly correlated to

(Deleted: data

i CDeleted: help us to figure out the

all calendar months (Fig. 9). and indicates that ANTSIC-UNet js gaining skills from some important variables, including sea

ice conditions, sea surface temperature, radiative flux, and stratospheric wind. ANTSIC-UNet also jgnores some peripheral

variables, such as sea level pressure and subsurface ocean temperature. At short lead times, on timescales of up to two months,
ANTSIC-UNet relies more on the initial sea ice state and linear trend prediction, as well as the surface upward shortwave
radiation, sea surface temperature, atmospheric conditions in the troposphere, and 10-hPa zonal wind in the stratosphere. This
implies that ANTSIC-UNet has learned the dynamic and thermodynamic physical mechanisms directly forcing sea ice
variations (Son et al., 2009; Turner et al., 2016). At longer lead times, in addition to historical SIC conditions and linear trend
predictions of SIC at the target month, the 10-hPa zonal wind stands out as an important influencing factor which manifests
the lagged response in Antarctic sea ice to changes in stratospheric circulation. (Raphael and Hobbs, 2014; Wang et al., 2021).

When a variable shows minimal or even negative importance, it suggests that the ANTSIC-UNet might be overlooking that

feature or has not yet fully captured the intrinsic relationships involving that variable. It may also be related to the accuracy of

the reanalysis data used as input. For example, the lack of predictive importance for downward solar radiation could be due to

this variable being poorly represented in the Southern Ocean within the reanalysis as discussed above. Thus, it is crucial to

consider the accuracy of input variables chosen from reanalysis data for Antarctic sea ice predictions.
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Figure 9. The results of variable importance analysis for Pan-Antarctic based on the permutation feature importance measurement
(see Table 1 for full name of the variables).
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4 Discussion and Conclusion

Antarctic sea ice extent exhibits significant variability driven by the complex air-ice-sea interactions that are not yet fully

understood. Sea ice concentration is the essential variable for investigating the variation of sea ice (i.e., extent) and the satellite

observation provides long-term reliable records of the data since the late 1970s. In this study, we have introduced a deep

learning model, ANTSIC-UNet, to predict the extended seasonal Antarctic monthly-mean sea ice concentration. Considering

the complex physical processes influencing Antarctic sea ice variability, jn addition to sea ice itself also related atmospheric

and oceanic variables are used for ANTSIC-UNet’s forecasts. We compare the deep learning predictions against two
benchmark models, the linear trend and anomaly persistence models, to evaluate the predictive skill of both Pan- and regional
Antarctic sea ice. ANTSIC-UNet exhibits superior predictive skill for Antarctic sea ice for at least 6 months lead, and provides

particularly improved predictions of extreme low sea ice gvents in recent years. The prediction performance of ANTSIC-UNet
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shows pronounced seasonality and regional dependence, which affects the predictive skill of the Pan-Antarctic. Specifically,
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during the autumn to spring, low RMSE are observed for most sub-regions. However, increased RMSE is evident in summer
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error (IIEE) are found in summer at 1-3 months lead, but large errors occur from November to January as the lead time exceeds

2-4 months. Low RMSE and broader coverage of small IIEE suggest superior predictive skills in the Pacific and Indian Oceans

at the sea ice edge zone in summer.

We further assess the prediction performance for year-to-year variability;, ANTSIC-UNet shows good predictive skill in
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capturing the interannual variability of Pan-Antarctic and regional sea ice extent anomalies. Consistently high values of ACC
and MSSS seen in the Weddell and Ross Seas encouragingly suggest the possibility of performing long-lead extended seasonal

predictions. Moreover, the results from the variable importance analysis, computed by a post-hoc interpretation method,

suggest that ANTSIC-UNet has learned jmportant relationship between the sea ice and other climate variables having

impacts across different lead times. Specifically, at short lead times, ANTSIC-UNet predictions are sensitive to initial
conditions and linear trend predictions of SIC, sea surface temperature, radiative flux and vertical atmospheric circulation
conditions. At longer lead times, predictions are dependent on historical conditions and linear trend predictions of SIC, and
stratospheric circulation patterns. The issue that Amundsen and Bellingshausen Seas have the lowest predictive skill might be

associated with that ANTSIC-UNet ignoring, the sea level pressure and hence the tropical teleconnection relationship
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associated with the, strengthening of Amundsen Sea Low (ASL) in recent decades (Li et al., 2021; Cai et al., 2023). (Deleted: and does not consider the relationships of
In addition, the ANTSIC-UNet model is trained based on minimizing the loss function which measures the difference between (Deleted: and

the output and the desired targets. We optimize ANTSIC-UNet using the mean square error (MSE) of SIC as its original loss

function. However, the pronounced prediction errors often occur in the vicinity of, the sea ice edge, Jikely associated with (l‘ leted: at

oceanic influence and wind dynamics. Interestingly, Y. Ren and X. Li (2023) suggested that the normalized integrated ice- (Deleted: which might be

edge error loss might be suitable for long sequence SIC predictions. The question is whether a physically constrained loss

function in deep learning models can improve the extended seasonal forecast of Antarctic sea ice. Here we test a hybrid loss
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function combining MSE and IIEE to optimize spatial predictions and minimize sea ice edge errors. IIEE loss is calculated by
dividing the difference between the predicted and observed sea ice extent by the sum of SIE where SIC > 0.15% in both the
prediction and observation. We assign a weight of 0.05 to the IIEE components for values balance in the hybrid loss expression

(Eq. 10). Hence, the two loss functions are calculated as:

Original Loss = MSE = mean(z(p —0)?), ©)
Hybrid Loss = MSE + 0.05 —— (10)
SIEpUSIE,

where p (SIE,) is the predicted sea ice concentration (ice extent) by ANTSIC-UNet and o (SIE,) is the observed ice
concentration (ice extent). For clarity, we denote the original loss (hybrid loss) as subscripts "o" ("h") for distinguish between
the ANTSIC-UNet models trained with two different loss functions.

Our results show similar distributions of sea ice edge errors predicted by two ANTSIC-UNet models (Fig. 4 a2-f2 and Fig. 10
al-fl) with small values of ITEE at 1-month lead and large values from November to January as the lead time exceeds 2-4
months. ANTSIC-UNet_h trained with the hybrid loss slightly reduces the IIEE for the Pan-Antarctic compared to ANTSIC-
UNet_o, especially in Weddell Ocean, Ross Amundsen and Bellingshausen Seas (~0.02-0.05 million km?). However increased

errors occur in these regions as lead time exceeds 3-4 months (Fig. 10 a2-2).
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Figure 10. The IIEE of ANTSIC-UNet_h (al-f1) and difference (b2-f2) between the two ANTSIC-UNet models trained with different
loss functions for different target months and forecast lead times spatially and temporally averaged during the testing years. (units:
million square kilometers)

To further assess the Antarctic sea ice predictive skill of ANTSIC-UNet against other prediction efforts, we included a

dynamical model’s monthly mean Antarctic sea ice concentration predictions calculated by the ensemble mean of 51 members
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of SEASS5, provided by the Copernicus Climate Change Service (C3S) Prediction project (Thépaut et al., 2018). SEAS5

555 ECMWEF's fifth-generation seasonal forecast system, is recognized for its state-of-art predictive skill among the dynamical

models which provides Antarctic sea ice concentration prediction for up to six months (Johnson et al., 2019). As shown in

Figure 11, ANTSIC-UNet has small root-mean-square errors (RMSE) for Antarctic sea ice concentration, and outperforms the

anomaly persistence predictions at all lead times. Compared to RMSE of SEASS5, those of ANTSIC-UNet are slightly larger

errors at 1-3 month lead, and smaller errors as lead time exceeds 4 months, suggesting that the computationally cheaper

560 machine-learning model is highly competitive relative to the dynamical model. In terms of IIEE, ANTSIC-UNet shows

significantly superior performance relative to all other models. The superior skills in sea ice edge predictions of ANTSIC-

UNet become more pronounced as the lead time increases.
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Figure 11. The average predictive skill of Pan-Antarctic sea ice for ANTSIC-UNet, linear trend, anomaly persistence and SEAS5
565 redictions during the testing years. (a) SIC RMSE: root-mean-square error and (b) IIEE: integrated ice-edge error.
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The past three extreme Antarctic summer SIE events (Table 3) have been linked to key climate drivers and underlying

mechanisms. For example, the anomalous sea ice melting during the summer of 2017 might be associated with early spring

atmospheric conditions over the Southern Ocean being primarily influenced by a positive phase of the zonal wave 3 (ZW3)

pattern, followed by a near-record negative Southern Annular Mode (SAM) (Turner et al., 2017; Schlosser et al., 2018). The

significant weakening of the polar stratospheric vortex was identified as a key driver of the SAM changes (Wang et al., 2019).

The extremely low sea ice events in the summer of 2022 and 2023 occurred with the deepening of the Amundsen Sea Low
(ASL), triggering feedbacks that played a crucial role in the reduction of summer sea ice (Turner et al., 2022; Wang et al.,

2022). A few studies have emphasized that the influence of a warm subsurface ocean is a contributor to the recent record-low

summer sea ice events (Liu et al., 2023; Purich and Doddridge, 2023). Different large-scale atmospheric circulation patterns

may also lead to similar regional prevailing winds, driving the negative Antarctic sea ice extent anomalies (Mezzina et al.

2024).

To our knowledge., little research has focused on the predictability of Antarctic sea ice extent in extreme years. We further

compared the ANTSIC-UNet’s accuracy performance on sea ice edge predictions for the extreme summer years, relative to

linear trend predictions and SEASS5. As shown in Figure 12, both ANTSIC-UNet and SEASS5 have increasing sea ice edge

errors as lead time increases. Note again that the linear trend predictions are independent of lead time. ANTSIC-UNet

outperforms SEASS and linear trend predictions at sea ice edge error in all extreme summer years. At short lead times

ANTSIC-UNet has substantial improvement relative to the linear trend predictions and moderate improvement compared to

SEASS. Atlong lead times, ANTSIC-UNet’s improvements relative to SEASS become more significant. These results suggest
that ANTSIC-UNet has high predictive skills for extended seasonal predictions of Antarctic sea ice concentration, especially

for extreme events, compared to other statistical and dynamical models.

(a) Feb 2017 (b) Feb 2022 (c) Feb 2023

2. = ANTSIC-UNet = Linear trend == SEAS5
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Figure 12. Integrated ice-edge error (IIEE) of ANTSIC-UNet, the linear trend forecast and SEASS for February forecasts at lead
time of 1, 3, and 5 months for the extreme summer years. (a) 2017, (b) 2022 and (c) 2023.
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Thus ANTSIC-UNet provides a useful tool for extended seasonal prediction of Antarctic sea ice concentration and extent, and

Jor analyzing physical processes important for, sea ice variations in different regions. The results from variable importance

(" leted: which also provides valuable information

analysis show evidence that ANTSIC-UNet successfully extracts key information from the complex ocean-ice-atmosphere

interactions to predict sea ice concentration and capture seasonal variations through different climate variables. This approach

could be effectively extended to other sea ice variables once the relevant long-term data becomes available (i.e., sea ice

thickness). Existing data on Antarctic sea ice thickness, derived from satellite altimetry missions including the ICESat data

(from 2003-2008), ICESat-2 data (from late 2018 onward) and CryoSat-2 data (from 2010 onward) remain limited in terms of

confidence and temporal coverage and are not yet suitable for direct deep learning applications (Hendricks et al., 2018; Kacimi

and Kwok, 2020; Fons et al., 2023). Additional efforts are needed for refining and integrating these datasets into predictive

models. The Polar Pathfinder product (Tschudi et al. 2019) provides daily sea ice motion vectors at a spatial resolution of 25

km, which are valuable for investigating sea ice movement patterns under the influence of wind and ocean currents. Future

research will explore whether incorporating dynamic factors such as ice drift can enhance the accuracy of sea ice predictions.

In addition, further investigation is also needed based on physically enriched deep learning modelsjs needed to explore more

h (Deleted: the influencing factors of

NN

(oot

thoroughly the physical mechanisms between SIC and other climate variables with long-term memory, such as sea ice thickness
and ocean heat content (Marchi et al., 2019; Bushuk et al., 2021; Libera et al., 2022).
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