Response to comments by Reviewer #1

We would like to thank the reviewer for the helpful comments on the manuscript. Please find

below our responses to the comments.

The authors have addressed my previous comments. The ms is clearly improved. I still have a
few editorial comments.

1, Inthe comparison of predictive skill between ANTSIC-UNet and HIS-V, how does ANTSIC-

UNet perform in terms of ACC 7

Thanks for this question and concern about the ACC of DL models. Figure R1 shows the ACC
of HIS-V trained by historical data without incorporating the future 6 months linear trend
predictions of SIC, and the difference in ACC between HIS-V and ANTSIC-UNet. For the Pan-
Antarctic, ANTSIC-UNet shows higher ACC from February to July and October to December
at short lead times, and lower ACC as lead time increases, with contributions from all five
sectors. Specifically, lower ACC is found in the Weddell Sea, Indian Ocean, and Pacific Ocean
from December to April as the lead time exceeds 3 months. Higher ACC is observed in the
Ross Sea from January to March, and the Amundsen and Bellingshausen Seas show a broad
coverage of relatively high ACC. Additionally, the Pacific Ocean consistently exhibits higher
ACC from July to September across all lead times. These differences in the interannual
variability of SIE anomalies may be linked to the different inherent sea ice trends in these
regions. For instance, the Indian Ocean experiences significant interannual fluctuations, with
total sea ice area reaching its maximum in October 2010, followed by a decline to a record low
in 2016, and subsequent recovery. Therefore, incorporating the linear trend prediction of SIC
may reduce the predictive performance of the deep learning model in most seasons of the Indian
Ocean. Furthermore, when incorporating the linear trend predictions of SIC and considering
the interactions between sea ice and other climate variables, the ANTSIC-UNet shows
improved skill in capturing the interannual variability of SIE anomalies throughout the year in

the Ross Sea, Amundsen and Bellingshausen Seas, and during summer in the Pacific Ocean.
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Figure R1. The ACC (al-f1) between the observed and HIS-V (DL model trained by historical
data, without incorporating the future 6 months linear trend predictions of sea ice concentration)
predicted regional SIE anomalies for different target months and forecast lead times during

1981-2023. (a2-f2) as (al-f1) but for the ACC difference between HIS-V and ANTSIC-UNet.



2. The authors use the permutation feature-importance method to explain model variance,

which is primarily based on the distance between predictions and observations. Given this, are

the variable importances consistent with RMSE in terms of the prediction of the SIC variability?

Yes, the permutation feature importance is consistent with the RMSE of SIC spatial variability.
We quantify the importance of each variable by calculating the change in the model evaluation
metric (RMSE between the predicted SIC by the trained model and observed SIC) before and
after permuting the particular variable.



Response to comments by Reviewer #2

We would like to thank the reviewer for the helpful comments on the paper. Please find below

our responses to the comments.

This is a well written paper exploring the development and application of a convolutional
neural network (CNN), ANTSIC-UNet, for seasonal predictions of Antarctic sea ice
concentration (SIC). The paper demonstrates how ANTSIC-UNet outperforms two benchmark
models, as well as the SEAS5 numerical sea ice forecasting model. This paper also explores
variable importance via the use of the explainable Al tool, permute and predict. I recommend

this paper for publication subject to the major revisions outlined below.

Whilst the research presented here is of high quality, the abstract, introduction and discussion
need to emphasise the novelty brought by this paper. This is currently not clear to the reader.
The introduction highlights that fewer studies have predicted SIC in the Antarctic compared
with the Arctic. Although the application of sea ice forecasts to the Antarctic provides some
novelty, greater clarification of the methodological novelty provided by this study is also
required. For example, previous studies have already applied CNNs for sea ice forecasting,
undertaken analysis of feature importance and compared ML model outputs to SEASS. This
clarification of methodological novelty will make it easier for the reader to follow the paper.
Linked to this point, whilst it is true that far fewer papers have forecast Antarctic SIC, some
key publications are missing. Please cite these and contextualise the findings of this paper to
these manuscripts:

Dong, X., Yang, Q., Nie, Y., Zampieri, L., Wang, J., Liu, J. and Chen, D., 2024. Antarctic Sea
Ice Prediction with A Convolutional Long Short-Term Memory Network. Ocean Modelling,
p-102386.

Lin, Y, Yang, Q., Li, X., Dong, X., Luo, H., Nie, Y., Wang, J., Wang, Y. and Min, C., 2025. Ice -

kNN -South: A lightweight machine learning model for Antarctic sea ice prediction. Journal of

Geophysical Research: Machine Learning and Computation, 2(1), p.e2024JH000433.

Wang, Y., Yuan, X., Ren, Y., Bushuk, M., Shu, Q., Li, C. and Li, X., 2023. Subseasonal prediction
of regional Antarctic sea ice by a deep learning model. Geophysical Research Letters, 50(17),
p.e2023GL104347.



Thank you for your comment. We have revised the abstract, introduction and discussion to
more clearly emphasize the novelty and contributions of our study. In the abstract and
discussion, we have clarified the distinctions and advantages of our deep learning model
compared to previous studies on Antarctic sea ice prediction. Specifically, we address key
challenges in both deep learning models and dynamical models, particularly their limited
representation of air-ice-sea interactions and lack of interpretability, by training our deep
learning model (ANTSIC-UNet) using multiple climate variables. In addition, we explore the
relative importance of these variables using the permutation feature importance approach to
enhance the interpretability of our model. Moreover, we place significant emphasis on the
model’s performance for extended seasonal predictions (i.e., longer lead times) and conduct a
systematic evaluation during extreme sea-ice years, which have both received little attention in

previous studies.

In the introduction, we have added the recent key publications on Antarctic SIC prediction, as
highlighted by the reviewer, to provide a comprehensive context for our work. For example,

we revised the introduction as follows:

Original: “Recently, Wang et al. (2023) developed a SIPNet model with encoder-decoder
structure for subseasonal Antarctic sea ice concentration prediction, which outperforms some
dynamical models and advanced linear statistical models. Nevertheless, these DL methods
were trained by pure historical sea ice concentration data without considering underlying

physical processes governing the variation of Antarctic sea ice.”

Revised: “Recently, Wang et al. (2023) developed a SIPNet model with encoder-decoder
structure for subseasonal Antarctic sea ice concentration prediction, which outperforms some
dynamical models and advanced linear statistical models at lead times of 1-8 weeks. Dong et
al. (2024) employed a convolutional long short-term memory (ConvLSTM) network to predict
Antarctic SIC up to 60 days ahead, which shows skillful predictions within 30 days and
accurately forecasts annual maximum and minimum sea ice extents from 2017 to 2022.
However, ConvLSTM demands significant computational resources during training, and relies
on iterative forecasting which leads to error accumulation over time and requires a trade-off
between accuracy and prediction length. Lin et al. (2025) proposed Ice-KNN-South, a
lightweight machine learning model for predicting daily Antarctic SIC at lead times of 1-90

days. While these studies have made significant contributions, they primarily rely on historical
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SIC data without considering underlying physical processes governing the variation of
Antarctic sea ice. Furthermore, they focus on shorter prediction horizons, and their skillfulness

in extended seasonal forecasting remains unknown.”

As a general point, I also believe this paper requires some restructuring. The comparison of
ANTSIC-UNet to SEASS is not mentioned until the discussion section on line 395. The use of
SEASS requires mentioning in the introduction, methods, and results. Further, it is not common
for the discussion section to provide new results and figures. I suggest Figures 10, 11 and 12,
alongside the supporting text and equations describing these results, are moved to the results
section. This will allow the discussion section to focus on the relevance and contextualisation

of the results, making the paper easier to follow for the reader.

Thank you for your comment. We agree that reorganizing the paper would improve its clarity
and flow. In response to the comment, we have moved the introduction of SEASS to the
methods section. We now include the comparison of ANTSIC-UNet with the statistical models
(a linear trend model and an anomaly persistence model) and a dynamical model (SEASS) in
the results section. Additionally, we have added a new Section 3.5: “Physical constraints” to
describe the results with the incorporation of physical constraints into ANTSIC-UNet. Finally,
we have revised the abstract and discussion sections to align with these changes. We hope this

restructuring addresses the reviewer’s concern.

Overall, the paper reads very well with very few typographical errors, I suggest these further
minor corrections:
Line 77 — 79: please provide detail on the algorithm used to convert from passive microwave

brightness temperatures to sea ice concentration values.

Thank you for your comment. The monthly SIC data are derived using the Bootstrap algorithm,
which utilizes brightness temperature observations from the 37H, 37V, and 19V channels to
estimate sea ice concentration (Comiso et al., 1997; Comiso and Nishio, 2008). We modified

the sentence as follows:

Original: “In this study, monthly Antarctic sea ice concentration (SIC) data obtained from the
National Snow and Ice Data Center (NSIDC) (https://nsidc.org/data/nsidc-0079/versions/3) are

used as the input of ANTSIC-UNet, and are derived from brightness temperature of the
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Scanning Multichannel ~Microwave Radiometer (SMMR), the Special Sensor
Microwave/Imager (SSM/I) sensors, and the Special Sensor Microwave Imager/Sounder

(SSMIS).”

Revised: “In this study, monthly Antarctic sea ice concentration (SIC) data obtained from the
National Snow and Ice Data Center (NSIDC) (https://nsidc.org/data/nsidc-0079/versions/3) are
used as the input of ANTSIC-UNet, and are derived from brightness temperature of the
Scanning Multichannel Microwave Radiometer (SMMR), the Special Sensor
Microwave/Imager (SSM/I) sensors, and the Special Sensor Microwave Imager/Sounder
(SSMIS). SIC is retrieved using the Bootstrap algorithm, which utilizes brightness temperature
observations from the 37H, 37V, and 19V channels to estimate sea ice concentration (Comiso

et al., 1997; Comiso and Nishio, 2008).”

Reference:
Comiso, J. C., Cavalieri, D. J., Parkinson, C. L., and Gloersen, P.: Passive microwave
algorithms for sea ice concentration: A comparison of two techniques, Remote Sensing of

Environment, 60, 357-384, https://doi.org/10.1016/S0034-4257(96)00220-9, 1997.

Comiso, J. C. and Nishio, F.: Trends in the sea ice cover using enhanced and compatible
AMSR-E, SSM/I, and SMMR data, Journal of Geophysical Research: Oceans, 113,
https://doi.org/10.1029/2007JC004257, 2008.

Section 2.2. Please justify the use of a CNN with UNet architecture. Some recent papers have
shown generative models or other Al approaches to outperform UNets. Were other ML

algorithms and architectures considered?

Thank you for your comment. The primary goal of this study was to explore the feasibility of
using complex climate variables to predict Antarctic sea ice concentration (SIC) and to
investigate the interpretability of deep learning models. The fully convolutional neural network
(FCN) based on the U-Net architecture, known for its simplicity and effectiveness in handling
spatial data, was chosen as a useful tool to achieve this objective. Our results show that
ANTSIC-UNet based on a relatively simple U-Net architecture, can effectively capture the
complex relationships between climate variables and sea ice dynamics, and outperform

benchmark models and state-of-the-art dynamical models (e.g., SEASS) in predicting Antarctic
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sea ice.

While generative models, such as Generative Adversarial Networks (GANs), have shown
promise in certain applications, they often require significantly more computational resources
and training time. Given the exploratory nature of this study and the need for efficient
experimentation, we opted for the U-Net architecture, which strikes a balance between
performance and computational efficiency. In future work, we plan to explore the use of these
Al-based models to assess whether they can provide additional predictive improvements. We
will also continue to investigate the interpretability of these models and their ability to

incorporate physical constraints to advance our understanding of Antarctic sea ice change.

Line 81 — 84: “A linear least-squares trend was fit....” This information does not fit under the
subsection 2.1, as these lines are describing a method applied to the passive microwave data,
rather than the data itself. Please create a new subsection in the methods section on the

benchmark models.

Thank you for your comment. We agree that the information in lines 81-84 should be moved
to a more appropriate section. As suggested, we have removed these sentences and created a
new subsection (Section 2.3) to describe the benchmark models, and subsequent section

numbers have been updated accordingly to maintain the proper structure.

“2.3 Benchmark models

In this study, the linear trend and anomaly persistence predictions are used as benchmarks to
assess the predictive skill of ANTSIC-UNet. The linear trend model involves fitting a linear
least-squares trend to observed SIC over the past 30 years at each grid cell for each calendar
month. This trend is then used to predict SIC values for the corresponding calendar month in
the following year. Additionally, these SIC predictions from this linear trend model are also
used as the input to ANTSIC-UNet.

The anomaly persistence prediction is calculated as follows:

Slcpred (t+ 1) = SICim (t + T) + SICom () @
where SIC,,¢q is the target month predicted ice concentration at the lead time 7, SICipis
the climatogy ice concentration at the target month, and SIC,,,,, 1s the observed ice

concentration anomaly relative to the climatology at the initial time. The climatology for each



month is computed for the period of the training data (1979-2011). The anomaly persistence
works by preserving the deviations from the climatological anomalies and assuming these
anomalies will persist into the future. For example, if a particular region currently has more sea
ice than average, this positive anomaly will continue as time progresses. This statistical method
has been widely used as a benchmark for predicting sea ice concentration on seasonal
timescales, since sea ice conditions often change gradually rather than abruptly (Wayand et al.,
2019; Bushuk et al., 2021; Niraula and Goessling, 2021). While this method is effective for
short-term forecasts, its accuracy declines over longer lead times as the influence of initial

anomalies weakens.”

Line 95 - 105: Please refer to Table 1 when listing all the variables.

Thank you for your comment. We revised the MS to refer to Table 1 when listing all the

variables.

Original: “These variables include 2m air temperature (T2), 500-hPa air temperature (T500),
sea surface temperature (SST), ocean temperature (PT), ocean heat content for the upper 300m
(OHC300), downwelling solar radiation (DSR), upwelling solar radiation (USR), sea level
pressure (SLP), 500-hPa geopotential height (H500), 250-hPa geopotential height (H250), 10m
u-component of wind (U10), 10m v-component of wind (V10), and 10-hPa zonal wind

(U10hPa).”

Revised: “These variables are listed in Table 1 and include 2m air temperature (T2), 500-hPa
air temperature (T500), sea surface temperature (SST), ocean temperature (PT), ocean heat
content for the upper 300m (OHC300), downwelling solar radiation (DSR), upwelling solar
radiation (USR), sea level pressure (SLP), 500-hPa geopotential height (H500), 250-hPa
geopotential height (H250), 10m u-component of wind (U10), 10m v-component of wind
(V10), and 10-hPa zonal wind (U10hPa).”

Line 110: Please make clear here or somewhere else the temporal resolution of the forecasts.

Is it monthly, daily, seasonal or some other resolution?

Thank you for your comment. To clarify the temporal resolution of the forecasts, we revised

the sentence as follows:



Original: “The final output provides the 6-month forecast of Antarctic sea ice concentration.”

Revised: “The final output provides the 6-month forecast of monthly Antarctic sea ice

concentration.”

Line 135: Please describe the hyperparameter selection and tuning process you employed.

Thank you for your comment. We added the description of the hyperparameter selection and

tuning process as follows:

“Here, we use typical hyperparameters for the deep learning model. The kernel size for the
convolutional layers is set to (3,3). Due to memory constraints, we set the batch size to 2. The
loss function applied is the mean squared error (MSE), with a learning rate of 0.0001 and a

weight decay of 0. The Adam optimizer is used for training.”

Figure 2: Please provide some background in the introduction on how and why the Southern

Ocean is split into these five regions.

Thank you for your comment. We added more details in the introduction regarding the division

of the Southern Ocean into five sectors as follows:

“Sea ice in different regions exhibits complex spatial patterns of change in growth, retreat, and
duration (Liang et al., 2023). The Southern Ocean sea ice region is divided into five sectors:
the Weddell Sea, Indian Ocean, Pacific Ocean, Amundsen and Bellingshausen Seas, and Ross
Sea. These regions are characterised by their unique climatic, oceanographic, and geographical
characteristics (Zwally et al., 2002; Grieger et al., 2018; Josey et al., 2024). This division has
been widely used in studying the regional dynamics and prediction of Antarctic sea ice (e.g.,

Eayrs et al., 2019; Bushuk et al., 2021; Liang et al., 2023).”

Reference:
Bushuk, M., Winton, M., Haumann, F. A., Delworth, T., Lu, F., Zhang, Y., Jia, L., Zhang, L.,
Cooke, W., Harrison, M., Hurlin, B., Johnson, N. C., Kapnick, S. B., McHugh, C., Murakami,

H., Rosati, A., Tseng, K.-C., Wittenberg, A. T., Yang, X., and Zeng, F.: Seasonal Prediction and
10



Predictability of Regional Antarctic Sea Ice, Journal of Climate, 34, 6207-6233,
https://doi.org/10.1175/JCLI-D-20-0965.1, 2021.

Eayrs, C., Holland, D., Francis, D., Wagner, T., Kumar, R., and Li, X.: Understanding the
Seasonal Cycle of Antarctic Sea Ice Extent in the Context of Longer-Term Variability, Reviews

of Geophysics, 57, 1037-1064, https://doi.org/10.1029/2018RG000631, 2019.

Grieger, J., Leckebusch, G. C., Raible, C. C., Rudeva, 1., and Simmonds, I.: Subantarctic
cyclones identified by 14 tracking methods, and their role for moisture transports into the
continent, Tellus A: Dynamic Meteorology and Oceanography, 70, 2018.

Liang, K., Wang, J., Luo, H., and Yang, Q.: The Role of Atmospheric Rivers in Antarctic Sea
Ice Variations, Geophysical Research Letters, 50, €2022GL102588,
https://doi.org/10.1029/2022GL.102588, 2023.

Zwally, H. J., Comiso, J. C., Parkinson, C. L., Cavalieri, D. J., and Gloersen, P.: Variability of
Antarctic sea ice 1979-1998, Journal of Geophysical Research: Oceans, 107, 9-1-9-19,
https://doi.org/10.1029/2000JC000733, 2002.

Figure 2 caption: typo: “based on the same calendat month”.

The typo has been corrected.

Figure 3 a) and e), please flip the colour ramp so white is ice and water is blue, or use a

separate colour ramp altogether. Same for Figure 7.

Thank you for your comment. We modified the figures and used a separate colour ramp.

Additionally, we included the SEASS predictions for comparison.
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Figure R2. The monthly mean sea ice concentration of the NSIDC observations for (a) February
and (f) September, and the errors in predicting by ANTSIC-UNet (b1-b3, gl-g3), the linear
trend model (c and h), anomaly persistence model (d1-d3, i1-i3) and SEASS (el-e3, j1-j3) at

lead time of 1, 3, and 5 months for February (upper panel) and September (lower panel) during

the testing years.
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Figure R3. February and September 2023 SIC of NSIDC observations (a, €) and errors
predicted by ANTSIC-UNet (b1-b3, gl-g3), the linear trend model (¢ and h), anomaly
persistence model (d1-d3, i1-i13) and SEASS (el-e3, j1-j3) at lead time of 1, 3 and 5 months

(lowest sea ice extent on record).
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Figure 3: Please make clear whether these are February and September means for a particular

year or the whole date range.

Thank you for your comment. We indicated in the figure caption that the data represent the

mean for February and September for the testing years.

Figure 4 f1 and f2: please make clear that A and B stand for Amundsen and Bellingshausen.

Thank you for your comment. We modified the caption of Figure 4 as follows:

Original: “Figure 4. The predictive skill of sea ice concentration (spatially and temporally
averaged during the testing years) in terms of RMSE and IIEE (units: million square kilometers)
between the ANTSIC-UNet predictions and NSIDC observations for different target months

and forecast lead times.”

Revised: “Figure 4. The predictive skill of sea ice concentration (spatially and temporally
averaged during the testing years) in terms of RMSE and IIEE (units: million square kilometers)
between the ANTSIC-UNet predictions and NSIDC observations for different target months
and forecast lead times. ‘A and B’ in (fl) and (f2) refer to the Amundsen Sea and

Bellingshausen Seas, respectively.”

Discussion section: Due to the large similarities between this paper and the IceNet model
published in Andersson et al. (2021), please provide detailed discussion on the relative

performance of ANTSIC-UNet and IceNet.

Thank you for your comment. Although ANTSIC-UNet and the IceNet model proposed by
Andersson et al. (2021) have similarities in their underlying U-Net architecture, the two models

differ in design, objectives, and application domains, making direct comparisons difficult.

IceNet was designed for Arctic sea ice classification, aiming to predict three discrete SIC
categories: open water (SIC<=15%), marginal ice (15%<SIC<80%), and full ice (SIC>=80%).
In contrast, ANTSIC-UNet is developed for Antarctic sea ice concentration (SIC) regression
prediction. This difference in task leads to different loss functions being used during training:

classification models like IceNet use categorical loss functions (e.g., cross-entropy), while
14



ANTSIC-UNet employs regression-based loss functions (e.g., mean squared error) to predict

continuous SIC values.

Moreover, the Arctic and Antarctic have different geographical features, which lead to major
differences in oceanic and atmospheric circulation patterns (Maksym, 2019). As a result, the
sea ice in the Antarctic and Arctic shows completely different trends and behaviors. The
Antarctic and Arctic also experience extreme sea ice events in different ways, which are driven

by different atmospheric and oceanic factors.

Deep learning models such as IceNet and ANTSIC-UNet exhibit strong nonlinear learning
capabilities, which are particularly valuable in predicting extreme events that deviate from
climatological norms. Figure R4 in Andersson et al. (2021) shows IceNet’s predictive skill for
seasonal September forecasts in the Arctic. The 2012-2020 period contains three anomalous
September Arctic SIEs: 2012 (lowest extent on record), 2013 (anomalously high extent), and
2020 (second lowest extent on record). IceNet shows skillful predictions for these extreme
events, outperforming the linear trend predictions and SEASS, except in September 2013, when
its error slightly exceeded that of SEASS at 2-3 months lead. In our study, we placed particular
emphasis on evaluating model performance during three extreme summer sea ice events in the
Antarctic (2017, 2022 and 2023). As shown in Figure R5, ANTSIC-UNet outperforms SEASS5
and linear trend predictions for sea ice edge error in all extreme summer years. Therefore,
despite bring designed for different hemispheres and sea ice prediction tasks, both IceNet and
ANTSIC-UNet highlight the strength of deep learning models in capturing nonlinear changes,

particularly in extreme sea ice years.
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Figure R4. Comparing IceNet with SEASS and the linear trend for seasonal September
forecasts. a—1 IceNet’s improvement in binary accuracy relative to SEASS and the linear trend
models for September forecasts at 4- to 2-month lead times for the validation and test years

(2012-2020) (From Andersson et al., 2020; Figure 4).
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Figure RS. Integrated ice-edge error (IIEE) of ANTSIC-UNet, the linear trend forecast and
SEASS for February forecasts at lead time of 1, 3, and 5 months for the extreme summer years.

(a) 2017, (b) 2022 and (c) 2023.
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Reference:

Maksym, T.: Arctic and Antarctic Sea Ice Change: Contrasts, Commonalities, and Causes,
Annual Review of Marine Science, 11, 187-213, https://doi.org/10.1146/annurev-marine-
010816-060610, 2019.

Figure 6 line 262-263: “ANTSIC-UNet (anomaly persistent model) at different lead times up

to 6 months....” How are different lead times represented in this figure?

Thank you for your comment. In Figure 6, the different lead times are represented on the x-
axis, which ranges from 1 to 6 months, corresponding to the lead times up to 6 months as

mentioned in the caption of Figure 6.

Section 3.3: As a general discussion point, what is the suitability of using the anomaly
persistence model as a benchmark model for forecasting extreme events? Isn't it always
destined to underrepresent these extremely anomalous cases? Are there more appropriate

benchmark models that could be used for these circumstances?

Thank you for your comment. For shorter lead times, the anomaly persistence model does not
always underestimate such cases due to the inherent characteristics of sea ice. The persistence
of sea ice anomalies can often continue in the short term, errors tend to become more significant
because the anomaly persistence model fails to capture the longer-term variability and more
complex interactions of extreme events as lead time increases. Using more complex benchmark
models, such as multiple linear regression and random forest, which can incorporate additional
predictors (e.g., atmospheric and oceanic variables) and partially capture the nonlinear
relationship, may provide a more appropriate reference for evaluating the predictive ability of

deep learning models.

Table 3 line 298: Typo “Here, Observed..” change to lower case.

The typo has been corrected.

Figure 8: Help the reader- in which month when did the extreme event(s) occur.

Thank you for your comment. We modified the caption for Figure 8 as follows:
17



Original: “Figure 8. Seasonality errors of the Pan- and regional Antarctic monthly mean SIE
(SIC > 15%) between NSIDC observations and ANTSIC-UNet (a-f) and anomaly persistence
model (g-1) predictions at different lead times for 2023 (lowest sea ice extent on record). The
black lines show the seasonality SIE errors between observations and linear trend model. (units:

million square kilometers)”

Revised: “Figure 8. Seasonality errors of the Pan- and regional Antarctic monthly mean SIE
(SIC > 15%) between NSIDC observations and ANTSIC-UNet (a-f) and anomaly persistence
model (g-1) predictions at different lead times for 2023 (lowest sea ice extent on record in
February). The black lines show the seasonality SIE errors between observations and linear

trend model. (units: million square kilometers)”

Section 3.4. There are some points that are more appropriate for the discussion, particularly

where references are made to other papers. For example from line 320 “previous studies....."

Thank you for your comment. Regarding the sentence, “Previous studies suggested that the
evaluation metrics of model’s predictive skill, particularly for models with strong
generalization ability, correlate closely with feature importance (FI) (Andersson et al., 2021;
Molnar, 2019).” we would like to clarify that the principle behind the permutation feature
importance method we use is consistent with the method described in the referenced studies.
We intend to retain this content as it provides the necessary background and theoretical support,
helping readers understand how this method has been applied in previous research and its

relevance to our study.

However, to better contextualize our findings in relation to other studies, we expanded on this
in the discussion section. For example, as the reviewer suggested, we associated our feature
importance results with those of Uebbing et al. (2025).

Line 334: Typo: Circulation. (Raphael...) — remove full stop.

The typo has been corrected.

Discussion: Please contextualise your findings on feature importance for sea ice forecasting
18



with the following paper that also carried out a similar study:

Uebbing, L., Joakimsen, H.L., Luppino, L.T., Martinsen, 1., McDonald, A., Wickstrom, K.K.,
Lefevre, S., Salberg, A.B., Hosking, S. and Jenssen, R., 2025, January. Investigating the Impact
of Feature Reduction for Deep Learning-based Seasonal Sea Ice Forecasting. In Northern

Lights Deep Learning Conference 2025.

Thank you for your comment. Following line 368 in the Discussion section, we have added the

following to link our feature importance results with the study by Uebbing et al. (2025):

“Our feature importance findings can be associated with recent work by Uebbing et al. (2025)
investigating the impact of feature reduction on seasonal Arctic sea ice forecasting by using the
state-of-the-art IceNet model (Andersson et al., 2021) combined with explainable Al (XAI)
techniques. Their study showed that using only a subset of key features (such as historical sea
ice concentration, linear trend forecasts, and seasonal encoding), high predictive accuracy
under general scenarios was still obtained. However, their research also highlighted that for
extreme events, such as anomalous sea ice extents, models incorporating additional climate
variables perform better. This suggests that further studies might benefit from exploring
different XAI methods for estimating feature importance and investigating the extent to which
the reduction of the number of features affects deep learning model predictions for Antarctic

sea ice.

Discussion: Why does the performance differ between the different regions of the Southern
Ocean? For example, the disparities between 4 bl — f1. There is mention of this on lines 367 —
369, but please expand further. Also, please comment on the better predictive performance of

the tool in the Austral summer.

Thank you for your comment. The differences in model performance across regions could be
attributed to regional variability due to oceanographic conditions, sea ice dynamics, and the
influence of atmospheric and oceanic circulation patterns. We expanded on this in discussion
section. As observed in our results, ANTSIC-UNet shows better predictive performance
relative to the two benchmark models and SEASS during the Austral summer, particularly in
the sea ice edge zone. We added the further discussion of the spatial forecasting performance

as follows:
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“Our findings are consistent with those of Marchi et al. (2019) and Bushuk et al. (2021) that
sea ice concentration prediction tends to be more accurate in the winter months but less so in
the summer due to rapid and irregular changes in the ice edge during that season. Inspiringly,
ANTSIC-UNet shows lower summer sea ice edge error and SIC RMSE compared to both the
two benchmark models and SEASS, especially during extreme years. The differences in model
performance across regions could be attributed to regional variability due to oceanographic
conditions, sea ice dynamics, and the influence of atmospheric and oceanic circulation patterns.
Regional seas in the West Antarctic, including the Ross Sea, Amundsen Sea, Bellingshausen
Sea, and Weddell Sea, exhibit larger interannual variability in sea ice concentration compared
to the East Antarctic (Cavalieri and Parkinson, 2008). These regions are influenced by the
Circumpolar Deep Water (CDW), with warm-shelf regions such as the Amundsen and
Bellingshausen Seas being particularly sensitive to climate changes, with sea ice concentration
and the position of the ice edge strongly driven by wind forcing (Stammerjohn et al., 2003;
Saenz et al., 2023). The ice flux driven by wind in the Weddell Sea along the Antarctic
Peninsula and the Pacific Ocean plays a crucial role in modulating sea ice dynamics, with the
dynamical influence being more pronounced in the Pacific sector (Holland and Kwok, 2012).
The sea ice increase (decrease) in the Ross Sea (Bellingshausen Sea) is linked to the Amundsen
Sea Low (ASL) which is a key climate feature of these regions (Hosking et al., 2013; Turner
et al., 2016). In contrast to other regions of Antarctica, sea ice expansion in the Indian Ocean
sector is significant throughout all seasons and is associated with surface cooling and ocean
renewal processes that stabilize the ocean and limit the intrusion of warmer subsurface waters
into the surface layer (Bintanja et al., 2013; Purich et al., 2018). Additionally, seasonal
variability in sea ice in the Indian Ocean sector is closely linked to the Southern Annular Mode

(SAM) (Yadav et al., 2022).”

Reference:
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Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion,
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There is no conclusion section. Please check if this is required.

Thank you for your comment. In the manuscript, we have included a section titled “Discussion

and Conclusion”, which combines the interpretation of findings with the main conclusion of

the study.
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