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Response to comments by Reviewer #1 
 
We would like to thank the reviewer for the helpful comments on the manuscript. Please find 
below our responses to the comments. 
 
This article introduces a deep learning model called ANTSIC-UNet for predicting the extended 
seasonal variations in Antarctic sea ice concentration, with the ability to forecast up to 6 
months in advance. The study utilized a rich set of climate variables for model training and 
compared it against two benchmark models (linear trend and anomaly persistence models). 
The results demonstrate that ANTSIC-UNet exhibits superior predictive skills in sea ice 
concentration and integrated ice-edge error, especially in forecasting extreme events in recent 
years. The strengths of the article include the consideration of both sea ice and related 
atmospheric and oceanic variables enhances the accuracy of the predictions. The results are 
interesting and the work could be published after moderate revision. My comments are intended 
to improve the presentation of the paper and require clarifying unclear points. 
 
Comments 
1. L76“57 is the dimension of the variables” However, when we calculate 12+1+14*3+1, it 

equals 56. So, what is the extra one? 
 
The dimension with 57 elements includes sea ice concentration for the past 12 months, the 
linear trend prediction of sea ice concentration for the following 6 months, 12 climate variables 
for the past 3 months, 2 climate variables for the past 1 month, and the land mask. Therefore, 
the calculation is 12 + 6 + 12*3 + 2 + 1 = 57. For the details of climate variables, please refer 
to Table 1, which provides the variable names along with their respective lead or lag times. We 
clarified this in the revision. 
 
2. L184 For September, compared to anomaly persistence, ANTSIC-UNet shows a larger 

negative bias in the sea ice edge region. What could be the possible reasons for this error? 
 
Thanks for your comment. The larger negative bias in the sea ice edge region in September for 
the ANTSIC-UNet prediction relative to the anomaly persistence as the lead time increase is 
due to the limited number of years used for calculating the average of sea ice errors, which 
only includes the testing years of 2017, 2020 to 2023 (anomalously low ice extents), and 2014 
(record high). Specifically, this averaging results in large positive and negative anomalies in 
different years offsetting each other for the anomaly persistence prediction. To demonstatrate 
this, we selected three sub-regions that show larger negative bias in the sea ice edge region in 
September for ANTSIC-UNet at 5-month lead compared to the anomaly persistence prediction 
(see Figure R1), including the Weddell Sea, the Pacific Ocean, and the Amundsen and 
Bellingshausen Seas. Here we used the mean absolute error (MAE) as the evaluation metrics 
(Figure R2). ANTSIC-UNet shows smaller prediction errors in the sea ice edge across all 
regions compared to anomaly persistence, except for the Weddell Sea as the lead time exceeds 
4 months. 



2 
 

 
Figure R1. September mean sea ice concentration errors predicted by (a) ANTSIC-UNet and 
(b) anomaly persistence model at 5-month lead for the testing years. The red boxes indicate the 
three regions where ANTSIC-UNet shows larger negative bias compared to the anomaly 
persistence model: region 1 – eastern Weddell Sea (53°-63°S, 20°W-30°E), region 2 – eastern 
Pacific Ocean (60°-65°S, 115°-160°E) and region 3 - Amundsen and Bellingshausen Seas (62°-
72°S, 130°-60°W). 
 

 
Figure R2. September sea ice concentration mean absolute error (SIC MAE) between the 
predictions and NSIDC observations for (a) eastern Weddell Sea, (b) eastern Pacific Ocean, 
and (c) Amundsen and Bellingshausen Seas for the testing years. (ANTSIC-UNet: red line; 
anomaly persistence model: blue line) 
 
3. L186 Is the lower RMSE in September compared to February related to the size of the area 

considered during the calculation? Are the regions used for calculating each indicator 
consistent with the respective months? 

Thanks for your comment. The RMSE is calculated based on the area where sea ice 
concentration is more than 15% in observations or predictions. The IIEE is the sum of 
overestimated and underestimated sea ice extent where sea ice concentration is more than 15%. 

The area size varies in different months. Both RMSE and IIEE with the respective months are 
measured in units of area. Figure R3 shows the percentage of the sea ice edge error relative to 
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the actual sea ice extent. In February, although the Antarctic sea ice extent reaches its seasonal 
minimum, the relative percentage of the sea ice edge error is large and increases as lead times 
increase. In September, the Antarctic experiences extensive sea ice coverage, but the relative 
percentage is smaller for all lead months, resulting in the overall low RMSE.  

 
Figure R3. Percentage of the sea ice edge error relative to the actual sea ice extent (where sea 
ice concentration more than 15% in observations or predictions).  
 
4. L274 Is the high importance of variables in the model due to the seasonal cycle? Does the 

importance of variables change for SIC anomaly? 
 
Thanks for your comment. The importance of relevant climate variables is independent of the 
seasonal cycle. All non-SIC variables were converted to anomalies (by subtracting the 
climatological mean for each calendar month during 1979-2011) before being input into 
ANTSIC-UNet. SIC has a pronounced seasonal cycle, which serves as an important reference 
for predicting future changes.  
 
Variable importance changes across different seasons in the context of SIC anomaly. For 
example, Table R1 (see below) gives the variable importance ranking for the target months of 
January and June at 1-month lead. For January, ANTSIC-UNet relies mostly on the upwelling 
solar radiation and 10-hPa zonal wind in the stratosphere. For June, sea surface temperature 
and initial sea ice state are more important. Additionally, the linear trend predictions of SIC at 
the target month are important for both months though it ranks as the third.  
 
Table R1. Variable importance ranking for the target months of January and June at 1-month 
lead averaged for the testing years 2020-2023. 
 

Rank (a) For Jan forecasts (b) For Jun forecasts 
1 Dec USRA (0.90%)  May SSTA (0.79%)  
2 Dec U10hPaA (0.55%)  May SIC (0.46%)  
3 Jan SIC trend(0.46%)  Jun SIC trend (0.35%)  
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5. The main improvement of this article compared to other DL methods is the inclusion of 
relevant variables that affect sea ice in the training data of the model. How significant is 
the impact of these variables compared to a model trained solely using historical data? 

 
Thanks for this question and concern about the improvement made by incorporating relevant 
variables for training. We did compare the performance of DL models trained by three sets of 
input variables (Table R2). 
 
As shown in Table R2, compared to HIS-V which is trained by historical data without 
incorporating the future 6 months linear trend predictions of sea ice concentration, ANTSIC-
UNet shows relatively reduced RMSE and notable improvement in IIEE during all testing years 
and extreme years. This suggests that incorporating future sea ice trends enhances the deep-
learning model’s predictive accuracy, particularly at the sea ice edge.  
 
Furthermore, compared to SIC-V, which is trained by only sea ice data, including the future 6 
months linear trend predictions and past 12 months of historical sea ice concentration, Both 
ANTSIC-UNet and HIS-V show significant improvement of IIEE, which indicates that using 
enriched climate variables as inputs allows ANTSIC-UNet to effectively capture the complex 
nonlinear relationships in air-ice-sea interactions and enhance the predictive skill for Antarctic 
sea ice concentration. 
 
Table R2. The averaged predictive skill of ANTSIC-UNet (the original DL model trained by 
57 variables, see Table 1 in the manuscript for the details of all input variables), HIS-V (DL 
model trained by historical data, without incorporating the future 6 months linear trend 
predictions of sea ice concentration), and SIC-V (DL model trained by pure SIC data, including 
the future 6 months linear trend predictions of sea ice concentration and past 12 months of 
historical sea ice concentration). (RMSE: root-mean-square error; IIEE: integrated ice-edge 
error.) 

    ANTSIC-UNet HIS-V SIC-V 
All testing 

years 
RMSE 0.21 0.22 0.22 
IIEE 1.68 1.75 1.95 

2017 
RMSE 0.21 0.22 0.22 
IIEE 1.80 1.92 2.27 

2022 
RMSE 0.21 0.22 0.22 
IIEE 1.68 1.77 1.98 

2023 RMSE 0.24 0.25 0.24 
IIEE 1.99 2.07 2.57 

 
6. The section on the importance of each variable is very insightful. The author presents some 

viewpoints that are inconsistent with statistical models, such as the minimal impact of 
variables like temperature and wind speed in DL methods. Does this suggest that DL 
methods have not learned the underlying mechanisms of these variables to some extent? 

 
Thank you for your comment. Our study showed that ANTSIC-UNet had been trained to learn 
the nonlinear and indirect relationships among climate variables that contribute to improved 
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accuracy of Antarctic sea ice prediction. The variable importance results from ANTSIC-UNet 
are generally consistent with known causal links between climate variables and sea ice, 
suggesting that physically plausible statistical relationships have been learned. For example, 
sea surface temperature and air temperature play a crucial role in Antarctic sea ice predictions 
at 1-2 months lead, influencing sea ice formation and melting through thermodynamic 
processes. 10m meridional wind is also important at short lead times, affecting sea ice variation 
through sea ice advection, air-sea heat flux, and ocean mixing. As the lead time increases, the 
influence of these variables tends to be reduced, and the 10-hPa zonal wind in the stratosphere 
becomes more important. This is consistent with previous studies showing that the changes in 
stratospheric zonal circulation affect sea ice variability by influencing the circumpolar westerly 
winds in the troposphere through downward propagation (Wang et al., 2019; Cordero et al., 
2023). The relatively not very significant importance of tropospheric variables (i.e., H500A) 
may be related to the inherent structure of the deep learning model that still has not learned all 
underlying mechanisms, which requires further investigation in future research.  
 
When a variable shows small or even negative importance, as Andersson et al. (2021) suggested 
the DL model might be overlooking that feature or has not yet fully captured the intrinsic 
relationships involving that variable. 
 
Reference:  
Andersson, T. R., Hosking, J. S., Pérez-Ortiz, M., Paige, B., Elliott, A., Russell, C., Law, S., 
Jones, D. C., Wilkinson, J., Phillips, T., Byrne, J., Tietsche, S., Sarojini, B. B., Blanchard-
Wrigglesworth, E., Aksenov, Y., Downie, R., and Shuckburgh, E.: Seasonal Arctic sea ice 
forecasting with probabilistic deep learning, Nature Communications, 12, 5124, 
https://doi.org/10.1038/s41467-021-25257-4, 2021. 
 
Cordero, R. R., Feron, S., Damiani, A., Llanillo, P. J., Carrasco, J., Khan, A. L., Bintanja, R., 
Ouyang, Z., and Casassa, G.: Signature of the stratosphere–troposphere coupling on recent 
record-breaking Antarctic sea-ice anomalies, The Cryosphere, 17, 4995–5006, 
https://doi.org/10.5194/tc-17-4995-2023, 2023. 
 
Wang, G., Hendon, H. H., Arblaster, J. M., Lim, E.-P., Abhik, S., and van Rensch, P.: 
Compounding tropical and stratospheric forcing of the record low Antarctic sea-ice in 2016, 
Nat Commun, 10, 13, https://doi.org/10.1038/s41467-018-07689-7, 2019.  

https://doi.org/10.1038/s41467-021-25257-4


6 
 

Response to comments by Reviewer #2 
 
We would like to thank the reviewer for the helpful comments on the paper. Please find below 
our responses to the comments. 
 
This paper documents the results from a deep learning effort at predicting maps of Antarctic 
sea ice from the NSIDC. The model is generally well-described, with well documented results 
that are effectively compared to simple linear trends and anomaly persistence. However, the 
paper focus is only on the performance of a single effort of sea ice prediction and contains no 
effort to use this tool to add any scientific knowledge or insight to Cryospheric science. There 
is only the briefest attempt to contextualise the importance of Antarctic Sea Ice prediction, and 
the reasoning behind the variable selection is not described at all. There is very little 
documentation on how the model was developed and any insight into what was learnt during 
the development process. The publishing criteria for the Cryosphere is that there needs to be a 
scientific aspect to the publications beyond model description and results, therefore this paper 
is not acceptable=and in opinion needs to be rejected. 
 
Particular issues: 
Throughout the paper there is a lack of knowledge of the system that is being investigated, and 
the study is only focused or representing the input data and the physical system. For example 
the title says it ‘predicts’ sea ice – there are many aspects of sea ice that are not considered 
here. This paper only looks at monthly sea ice concentration maps from the NSIDC – possibly 
the simplest representation of sea ice. There are many other datasets available – this needs to 
be documented. The introduction is very brief and contains no description of the system being 
investigated. 
 
Thank you for your comments. Firstly, we modified the introduction to emphasize the 
importance of accurate predictions for Antarctic sea ice concentration. Compared to the Arctic, 
the prediction of Antarctic sea ice has received much less attention. Yet subseasonal to extended 
seasonal Antarctic sea ice predictions are increasingly demanded due to the expanding range 
of activities in the Southern Ocean (Zampieri et al., 2019; Bushuk et al., 2021; Libera et al., 
2022). Accurate sea ice concentration predictions can provide early warnings about sea ice 
changes and related hazards. This is particularly important for managing the risks of shipping 
activities in the Southern Ocean. For example, two polar vessels, Akademik Shokalskiy and 
Xuelong became trapped in rapidly formed sea ice in the Antarctic coastal region (Wang et al., 
2014). Commercial fishing and tourism operations mostly use ice-strengthened vessels rather 
than icebreakers, which are vulnerable to sea ice hazards. Improved predictions will support 
ecosystem management and inform policy decisions, since the seasonal variations in Antarctic 
sea ice have a profound influence on marine productivity and fisheries (Libera et al., 2022). 
 
Secondly, the deep learning model developed for Antarctic sea ice concentration predictions 
has been described in Figure R1. To further address your concerns, we have included more 
details about the model system being developed. A U-shaped architecture based on 
convolutional neural networks is widely used for many applications, i.e., remote sensing image 
segmentation tasks (Marmanis et al., 2016; Wang et al., 2023). Recently, Andersson et al. (2021) 
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employed the U-Net for three-class predictions of Arctic sea ice concentration. For accurate 
forecasts of Antarctic sea ice concentration, we made necessary modifications to the original 
architecture of U-Net and turned it into single value regression rather than the classification. 
The ANTSIC-UNet’s inputs are feature maps of high-resolution sea ice concentration and other 
multiple climate variables related to sea ice changes over different lead/lag months and a land 
mask. The outputs are high-resolution sea ice concentration maps for the future months. The 
inputs are processed into a large number of feature maps with decreased dimensionality by the 
encoder part of ANTSIC-UNet. Such deep layers and large-scale features allow the model to 
capture complex nonlinear relationships and provide an interpretation of the inputs. The 
decoder then upscales the feature maps extracted by the encoder into upsampled features and 
uses four skip connections to combine them with multi-scale features from different scale levels 
of the encoder. This process results in high-resolution output maps that align with the spatial 
dimensions of the input data. Sigmoid activation functions are used in the final six 
convolutional layers to generate regression predictions of Antarctic sea ice concentration maps 
for six months. There are also other attempts in the training algorithm for enhancing the 
predictive skill of the proposed model, for example, the hybrid loss function combining sea ice 
concentration mean square error (MSE) and integrated ice-edge error (IIEE) (see details in 
Section 4). The results presented evidence that models trained with this approach predict more 
accurately at the sea ice edge, thereby improving prediction performance.  
 

 
Figure R1. Configuration of ANTSIC-UNet model used for extended seasonal Antarctic sea 
ice prediction. Inputs are sea ice concentration, other climate variables related to sea ice 
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changes over different lead/lag months and a land mask. The U-shaped architecture includes 
the encoder, decoder and four skip connections. Sigmoid activation functions (fs) are used in 
the final six convolutional layers to generate regression predictions of Antarctic sea ice 
concentration maps for six months. 
 
Thirdly, this work is motivated by the fact that the Antarctic sea ice extent exhibits significant 
variability driven by the complex air-ice-sea interactions that are not yet fully understood. In 
this study, we clarified how each climate variable contributes to sea ice variation selected for 
the training of ANTSIC-UNet and explored which specific variable plays more important roles 
in the different months of sea ice prediction. Our results show evidence that ANTSIC-UNet 
can successfully extract key information from the complex ocean-ice-atmosphere interactions 
to predict sea ice concentration and capture seasonal variations through the different important 
climate variables. This approach could be effectively extended to other sea ice variables once 
the relevant long-term data becomes available (i.e., sea ice thickness). This potential for 
broader applicability underscores the significance of our work and its contribution to advancing 
Antarctic sea ice predictions.  
 
Finally, sea ice concentration is the essential variable for investigating the variation of sea ice 
(i.e., extent) and the satellite observation provides long-term records of the data. Thus, our 
study focused on sea ice concentration, and used monthly maps from the NSIDC which 
provides long-term records of data for the training of deep learning models since the late 1970s. 
Following the reviewer’s suggestion, in the discussion, we further documented other available 
datasets and discussed the potential for extending our research by integrating these additional 
datasets into future studies. These include Antarctic sea ice thickness data from satellite 
altimetry missions including the ICESat data (from 2003-2008), ICESat-2 data (from late 2018 
onward) and CryoSat-2 data (from 2010 onward) remain limited in terms of confidence and 
temporal coverage and are not yet suitable for deep learning applications (Hendricks et al., 
2018; Kacimi and Kwok, 2020; Fons et al., 2023). Additional efforts are needed for refining 
and integrating these datasets into predictive models. The Polar Pathfinder product (Tschudi et 
al. 2019) provides daily sea ice motion vectors at a spatial resolution of 25 km, which are 
valuable for investigating sea ice movement patterns under the influence of wind and ocean 
currents. In future research, we will explore whether incorporating ice drift can enhance the 
accuracy of sea ice predictions. 
 
Reference: 
 
Andersson, T. R., Hosking, J. S., Pérez-Ortiz, M., Paige, B., Elliott, A., Russell, C., Law, S., 
Jones, D. C., Wilkinson, J., Phillips, T., Byrne, J., Tietsche, S., Sarojini, B. B., Blanchard-
Wrigglesworth, E., Aksenov, Y., Downie, R., and Shuckburgh, E.: Seasonal Arctic sea ice 
forecasting with probabilistic deep learning, Nature Communications, 12, 5124, 
https://doi.org/10.1038/s41467-021-25257-4, 2021. 
 
Bushuk, M., Winton, M., Haumann, F. A., Delworth, T., Lu, F., Zhang, Y., Jia, L., Zhang, L., 
Cooke, W., Harrison, M., Hurlin, B., Johnson, N. C., Kapnick, S. B., McHugh, C., Murakami, 
H., Rosati, A., Tseng, K.-C., Wittenberg, A. T., Yang, X., and Zeng, F.: Seasonal Prediction and 
Predictability of Regional Antarctic Sea Ice, Journal of Climate, 34, 6207–6233, 
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https://doi.org/10.1175/JCLI-D-20-0965.1, 2021. 
 
Libera, S., Hobbs, W., Klocker, A., Meyer, A., and Matear, R.: Ocean-Sea Ice Processes and 
Their Role in Multi-Month Predictability of Antarctic Sea Ice, Geophysical Research Letters, 
49, e2021GL097047, https://doi.org/10.1029/2021GL097047, 2022. 
 
Marmanis, D., Datcu, M., Esch, T., and Stilla, U.: Deep Learning Earth Observation 
Classification Using ImageNet Pretrained Networks, IEEE Geoscience and Remote Sensing 
Letters, 13, 105–109, https://doi.org/10.1109/LGRS.2015.2499239, 2016. 
 
Fons, S., Kurtz, N., and Bagnardi, M.: A decade-plus of Antarctic sea ice thickness and volume 
estimates from CryoSat-2 using a physical model and waveform fitting, The Cryosphere, 17, 
2487–2508, https://doi.org/10.5194/tc-17-2487-2023, 2023. 
 
Hendricks, S., Paul, S., and Rinne, E.: ESA Sea Ice Climate Change Initiative (Sea_Ice_cci): 
Southern hemisphere sea ice thickness from CryoSat-2 on the satellite swath (L2P), v2.0, 
Centre for Environmental Data Analysis [data set], 
https://doi.org/10.5285/fbfae06e787b4fefb4b03cba2fd04bc3, 2018. 
 
Kacimi, S. and Kwok, R.: The Antarctic sea ice cover from ICESat-2 and CryoSat-2: freeboard, 
snow depth, and ice thickness, The Cryosphere, 14, 4453–4474, https://doi.org/10.5194/tc-14-
4453-2020, 2020. 
 
Tschudi, M., Meier, W. N., Stewart, J. S., Fowler, C., and Maslanik, J.: Polar Pathfinder Daily 
25 km EASE-Grid Sea Ice Motion Vectors, Version 4, Boulder, CA, USA, NASA National 
Snow and Ice Data Center Distributed Active Archive Center, 
https://doi.org/10.5067/INAWUWO7QH7B, 2019 
 
Wang, X., Hu, Z., Shi, S., Hou, M., Xu, L., and Zhang, X.: A deep learning method for 
optimizing semantic segmentation accuracy of remote sensing images based on improved UNet, 
Sci Rep, 13, 7600, https://doi.org/10.1038/s41598-023-34379-2, 2023. 
 
Wang, Z., Turner, J., Sun, B., Li, B., and Liu, C.: Cyclone-induced rapid creation of extreme 
Antarctic sea ice conditions, Sci Rep, 4, 5317, https://doi.org/10.1038/srep05317, 2014. 
 
Zampieri, L., Goessling, H. F., and Jung, T.: Predictability of Antarctic Sea Ice Edge on 
Subseasonal Time Scales, Geophysical Research Letters, 46, 9719–9727, 
https://doi.org/10.1029/2019GL084096, 2019. 
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The most useful aspect of the study can be to inform of what variables from the chosen 
reanalysis are the strongest predictors. This is attempted in section 3.4 – but it has no 
contextualization. Key aspects that need including: Why physically may each variable be useful 
in prediction? How accurate are each variable within the reanalysis product? The lack of 
predictive importance for Downward solar for example may be due to this variable being 
poorly represented within the reanalysis. What other scientific analysis has been performed 
using this reanalysis? How has it been used outside of Deep learning to investigate sea ice? 
 
Thank you for your comments. In this revision, we have made several improvements to address 
your concerns.  
 
Firstly, we provided an overview of how reanalysis products have been applied to sea ice 
investigations outside of deep learning and summarized the representation accuracy within the 
chosen reanalysis products. Reanalysis products are vital tools for studying climate variability 
in the Antarctic due to the sparse observations. They are widely used as inputs of dynamical 
models, serving as initial and boundary conditions, and are also crucial for validating model 
simulations and predictions (Hobbs et al., 2020; Goosse et al., 2023; Mezzina et al., 2024). The 
ECWMF Reanalysis v5 (ERA5) data is generally considered the best-performing atmospheric 
reanalysis dataset for polar regions. Previous studies have extensively evaluated the 
performance of ERA5, which accurately represents near-surface wind, temperature, and sea 
level pressure in the Antarctic (Gossart et al., 2019; Tetzner et al., 2019; Andres-Martin et al., 
2024). However, deficiencies in cloud cover and water content have resulted in significant 
surface radiation biases during the austral summer, particularly due to the underestimation of 
cloud cover (Wang et al., 2020; Mallet et al., 2023). The limited observational data in the mid-
to-upper troposphere and the stratospheric leads to certain uncertainty in mid- and high-level 
pressure and temperature, and the representation of the stratospheric polar vortex (Orr et al., 
2021). In addition to atmospheric reanalysis, oceanic reanalysis products like Ocean Reanalysis 
System 5 (ORAS5) are crucial for understanding the principal mechanism of the Southern 
Ocean. ORAS5 has been shown to effectively capture sea surface temperatures in the Antarctic, 
with the vertical temperature structure also aligning closely with observations (Cai et al., 2023). 
 
Secondly, we elaborated on the physical relevance of each variable for predicting sea ice 
concentration. In our study, 14 atmospheric and oceanic variables from ERA5 and ORAS5 are 
selected to capture the key physical mechanisms influencing sea ice variations. Variables such 
as sea surface temperature, 2m air temperature, and radiation impact heat flux exchanges at the 
air-ice-sea interface (Bourassa et al., 2013). Near surface winds drive sea ice movement and 
large-scale tropospheric circulation impacts sea ice through its effects on winds, temperature, 
precipitation, and cloud cover (Raphael and Hobbs, 2014). The 10-hPa zonal wind represents 
stratospheric zonal circulation, which impacts surface circulation through downward 
propagation, influencing sea ice dynamics (Cordero et al., 2023). Sea temperature anomalies 
and the upper-ocean heat content anomaly for the upper 300 m taken from ORAS5 play a 
crucial role in the heat energy exchange at the ocean–ice interface (Purich and Doddridge, 2023; 
Bianco et al., 2024). The upwelling of warmer subsurface water can further influence sea ice 
formation and melting in the high latitude of the Southern Ocean (Cai et al., 2023). 
 
Finally, we discussed the reasons for the lack of predictive importance of variables such as 



11 
 

downward solar radiation in ANTSIC-UNet. When a variable shows minimal or even negative 
importance, it suggests that the ANTSIC-UNet might be overlooking that feature or has not yet 
fully captured the intrinsic relationships involving that variable. It may also be related to the 
accuracy of the reanalysis data used as input. For example, the lack of predictive importance 
for downward solar radiation could be due to this variable being poorly represented in the 
Southern Ocean within the reanalysis as discussed above. Thus, it is crucial to consider the 
accuracy of input variables chosen from reanalysis data for Antarctic sea ice predictions. 
 
Reference: 
 
Andres-Martin, M., Azorin-Molina, C., Serrano, E., González-Herrero, S., Guijarro, J. A., 
Bedoya-Valestt, S., Utrabo-Carazo, E., and Vicente Serrano, S. M.: Near-surface wind speed 
trends and variability over the Antarctic Peninsula, 1979–2022, Atmospheric Research, 309, 
107568, https://doi.org/10.1016/j.atmosres.2024.107568, 2024. 
 
Bianco, E., Iovino, D., Masina, S., Materia, S., and Ruggieri, P.: The role of upper-ocean heat 
content in the regional variability of Arctic sea ice at sub-seasonal timescales, The Cryosphere, 
18, 2357–2379, https://doi.org/10.5194/tc-18-2357-2024, 2024. 
 
Bourassa, M. A., Gille, S. T., Bitz, C., Carlson, D., Cerovecki, I., Clayson, C. A., Cronin, M. 
F., Drennan, W. M., Fairall, C. W., Hoffman, R. N., Magnusdottir, G., Pinker, R. T., Renfrew, 
I. A., Serreze, M., Speer, K., Talley, L. D., and Wick, G. A.: High-Latitude Ocean and Sea Ice 
Surface Fluxes: Challenges for Climate Research, https://doi.org/10.1175/BAMS-D-11-
00244.1, 2013. 
 
Cai, W., Jia, F., Li, S., Purich, A., Wang, G., Wu, L., Gan, B., Santoso, A., Geng, T., Ng, B., 
Yang, Y., Ferreira, D., Meehl, G. A., and McPhaden, M. J.: Antarctic shelf ocean warming and 
sea ice melt affected by projected El Niño changes, Nat. Clim. Chang., 13, 235–239, 
https://doi.org/10.1038/s41558-023-01610-x, 2023. 
 
Cordero, R. R., Feron, S., Damiani, A., Llanillo, P. J., Carrasco, J., Khan, A. L., Bintanja, R., 
Ouyang, Z., and Casassa, G.: Signature of the stratosphere–troposphere coupling on recent 
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Finally there is little to no contextualization of results amongst contemporary literature and 
other prediction efforts. Section 4 contains only a handful of citations when it is essential to 
contrast the results here with other efforts at sea ice predictions. How do the reported skills in 
forecasting compare to other efforts, Andersson et al. (2021) is an important bench mark here. 
How are the extreme years (2017, 2022, 2023) described in literature? What other hypothesis 
exist about what affected sea ice in these years? 
 
Thank you for your comments. Andersson et al. (2021) focused on Arctic sea ice prediction, 
comparing deep learning model performance at sea ice edge with the dynamical model and 
linear trend predictions, including extreme September sea ice events. Antarctic sea ice 
prediction has received less attention compared to the Arctic. To further assess the Antarctic 
sea ice predictive skill of ANTSIC-UNet against other prediction efforts, we included a 
dynamical model’s monthly mean Antarctic sea ice concentration predictions calculated by the 
ensemble mean of 51 members of SEAS5, provided by the Copernicus Climate Change Service 
(C3S) Prediction project (Thépaut et al., 2018). SEAS5, ECMWF's fifth-generation seasonal 
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forecast system, is recognized for its state-of-art predictive skill among the dynamical models 
which provides Antarctic sea ice concentration prediction for up to six months (Johnson et al., 
2019). As shown in Figure R2, ANTSIC-UNet has small root-mean-square errors (RMSE) for 
Antarctic sea ice concentration, and outperforms the anomaly persistence predictions at all lead 
times. Compared to RMSE of SEAS5, those of ANTSIC-UNet are slightly larger errors at 1-3 
month lead, and smaller errors as lead time exceeds 4 months, suggesting that the 
computationally cheaper machine-learning model is highly competitive relative to all other 
models. In terms of IIEE, ANTSIC-UNet shows significantly superior performance relative to 
all other models. The superior skills in sea ice edge predictions of ANTSIC-UNet become more 
pronounced as the lead time increases. 
 

 
Figure R2. The average predictive skill of Pan-Antarctic sea ice for ANTSIC-UNet, linear 
trend, anomaly persistence and SEAS5 predictions during the testing years. (a) SIC RMSE: 
root-mean-square error and (b) IIEE: integrated ice-edge error. 
 
To our knowledge, little research has focused on the predictability of Antarctic sea ice extent 
in extreme years. We further compared the ANTSIC-UNet’s accuracy performance on sea ice 
edge predictions for the extreme summer years, relative to linear trend predictions and SEAS5. 
As shown in Figure R3, both ANTSIC-UNet and SEAS5 have increasing sea ice edge errors 
as lead time increases. The linear trend predictions are independent of lead time. ANTSIC-
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UNet outperforms SEAS5 and linear trend predictions at sea ice edge error in all extreme 
summer years. At short lead times, ANTSIC-UNet has substantial improvement relative to the 
linear trend predictions and moderate improvement compared to SEAS5. At long lead times, 
ANTSIC-UNet’s improvements relative to SEAS5 become more significant. These results 
suggest that ANTSIC-UNet has high predictive skills for extended seasonal predictions of 
Antarctic sea ice concentration, especially for extreme events, compared to other statistical and 
dynamical models. 
 

 
Figure R3. Integrated ice-edge error (IIEE) of ANTSIC-UNet, the linear trend forecast and 
SEAS5 for February forecasts at lead time of 1, 3, and 5 months for the extreme summer 
years. (a) 2017, (b) 2022 and (c) 2023. 
 
Antarctic sea ice has decreased in recent years, with summer sea ice coverage frequently 
reaching historic lows, including three extreme summer events. Some research has been carried 
out to investigate the key climate drivers and potential mechanisms behind these extreme 
conditions. The anomalous sea ice melting during the summer of 2017 might be associated 
with early spring atmospheric conditions over the Southern Ocean being primarily influenced 
by a positive phase of the zonal wave 3 (ZW3) pattern, followed by a near-record negative 
Southern Annular Mode (SAM) (Turner et al., 2017; Schlosser et al., 2018). The significant 
weakening of the polar stratospheric vortex was identified as a key driver of the SAM changes 
(Wang et al., 2019). The extremely low sea ice events in the summer of 2022 and 2023 occurred 
with the deepening of the Amundsen Sea Low (ASL), triggering feedbacks that played a crucial 
role in the reduction of summer sea ice (Turner et al., 2022; Wang et al., 2022). A few studies 
have emphasized that the influence of a warm subsurface ocean is a contributor to the recent 
record-low summer sea ice events (Liu et al., 2023; Purich and Doddridge, 2023). Different 
large-scale atmospheric circulation patterns may also lead to similar regional prevailing winds, 
driving the negative Antarctic sea ice extent anomalies (Mezzina et al., 2024). 
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“sea ice concentration” or area or extent needs mentioning in the title. 
 
As suggested by the reviewer, we modified the title to “Extended seasonal prediction of 
Antarctic sea ice concentration using ANTSIC-UNet”. 
 
L 9 the changes to Antarctic Sea Ice a subtle and require more than this introductory sentence 
– after a period of increasing summer minima there have then been reductions. 
 
The Abstract needs more description on why Antarctic sea ice needs predicting. L 15 – 20 can 
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be removed as this is too much detail for an abstract. The final 5 lines are ok as a summary. 
Some contextualization amongst previous publications is needed for the abstract too. 
 
Thank you for your comments. We modified the abstract to emphasize the subtle change of 
Antarctic sea ice and the importance of accuracy prediction.  
 
Antarctic sea ice has experienced rapid change in recent years, with the total sea ice extent 
abruptly decreasing after a period of gradual increase from the late 1970s until 2014. Accurate 
long-term predictions of Antarctic sea ice concentration are crucial for supporting expanding 
activities in the Southern Ocean, related to for instance scientific research, tourism and fisheries. 
However, dynamical models often face difficulties in accurately predicting Antarctic sea ice 
due to limited representations of air-ice-sea interactions, especially on seasonal timescales and 
during the summer months. In response to such challenges, we develop a deep learning model 
(named ANTSIC-UNet), trained by physically enriched climate variables, and evaluate its skill 
for extended up-to-six-months seasonal prediction of Antarctic sea ice concentration. We 
compare the predictive skill of ANTSIC-UNet in the Pan- and regional Antarctic with two 
benchmark models (linear trend and anomaly persistence models). In terms of root-mean-
square error (RMSE) for sea ice concentration and integrated ice-edge error (IIEE), ANTSIC-
UNet shows much better skills relative to the two benchmark models for the extended seasonal 
prediction, especially for the extreme events in recent years. Sea ice prediction errors increase 
with lead time, and are smaller during autumn and winter than in summer. The Pacific and 
Indian Ocean regions show accurate prediction performance at the sea ice edge during summer, 
and ANTSIC-UNet provides high predictive skill in capturing the interannual variability of 
Pan-Antarctic and regional sea ice extent anomalies. In addition, we quantify the importance 
of variables through a post-hoc interpretation method. This analysis suggests that the ANTSIC-
UNet prediction at short lead times is sensitive to sea surface temperature, radiative flux, and 
atmospheric circulation in addition to sea ice conditions. At longer lead times, zonal wind in 
the stratosphere appears to be an important influencing factor for the prediction. 
 
L 25 a first general sentence on the nature of sea ice will help here. 
 
As suggested by the reviewer, we added the sentence “Sea ice affects the climate system 
through modulating the exchange of radiation, heat, momentum, moisture and gases between 
the atmosphere and ocean.” 
 
L 27 this is only true for the summer minimum. 
 
We modified the sentence “The summer total Antarctic sea ice extent (SIE) has gradually 
increased until 2014 since the late 1970s and then abruptly decreased.” 
 
L 29, variability in what? I guess extent? 
 
Yes, we modified the sentence “Antarctic SIE shows large seasonal and interannual variability, 
with trends that are spatially vheterogeneous.” 
 
L 32 everything here after “like” is very vague and needs rewriting. 
 
Thanks for your comment. We rewrote the sentence “Compared to the Arctic, the prediction of 
Antarctic sea ice has received much less attention. Yet subseasonal to extended seasonal 
Antarctic sea ice predictions are increasingly demanded due to the expanding range of activities 
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in the Southern Ocean (Zampieri et al., 2019; Bushuk et al., 2021; Libera et al., 2022). Accurate 
sea ice concentration predictions can provide early warnings about sea ice changes and related 
hazards. This is particularly important for managing the risks of shipping activities in the 
Southern Ocean. For example, two polar vessels, Akademik Shokalskiy and Xuelong became 
trapped in rapidly formed sea ice in the Antarctic coastal region (Wang et al., 2014). 
Commercial fishing and tourism operations mostly use ice-strengthened vessels rather than 
icebreakers, which are vulnerable to sea ice hazards. Improved predictions will support 
ecosystem management and inform policy decisions, since the seasonal variations in Antarctic 
sea ice have a profound influence on marine productivity and fisheries (Libera et al., 2022).” 
 
L 37 these air-ice-sea interaction processes need further description. 
 
Thanks for your comment. We added further elaboration of air-ice-sea interaction processes. 
“Dynamically, sea ice movement and deformation are driven by wind and ocean currents. 
Thermodynamically, sea ice melting and formation are influenced by convection associated 
with ocean vertical mixing, heat exchange driven by surface radiation budget and turbulence, 
and heat advection through horizontal transport of air and water masses.” 
 
L 64 this sentence is difficult to follow. Are linear monthly trends extrapolated to future dates 
used as a model input? 
 
Thanks for your comment. The linear monthly trends are extrapolated to future dates and are 
also used as input to the model. We agree that this sentence was not very clear, therefore we 
modified this sentence “A linear least-squares trend was fit to observed SIC over the past 30 
years at each grid cell for each calendar month and used to predict SIC values for the 
corresponding calendar month in the following year. In addition, these SIC predictions from 
the linear trend model are also used as the input of ANTSIC-UNet.” 
 
L 66 a description of why reanalysis data is sought is required either here or in an earlier 
description of the project incentives. What do each data represent and why are they needed for 
predictions? 
 
Thanks for your comments. We added the text at the beginning of L66 to clarify the reason for 
using reanalysis data. “Long-term observations are scarce in the Antarctic, which cannot 
provide the comprehensive and consistent three-dimensional and time-evolving gridded field 
of atmosphere and ocean parameters necessary to understand sea ice changes. Reanalysis 
datasets, which assimilate observations and satellite data, are valuable tools for investigating 
climate changes in polar regions, offering multivariate descriptions of atmospheric and oceanic 
conditions.”  
 
We added a more detailed description of ERA5 and ORAS5 to explicitly state what each dataset 
represents and why they are essential for Antarctic sea ice predictions. “ECWMF Reanalysis 
v5 (ERA5, Hersbach et al., 2020) provides high-resolution and three-dimensional gridded data 
of comprehensive atmospheric variables from 1940 to the present. ERA5 and its predecessor 
ERA-Interim are widely regarded as the best-performing reanalysis datasets in polar regions, 
with particularly reliable analyses over the Southern Ocean compared with surface and upper-
level observations (Bracegirdle & Marshall, 2012; Bromwich et al., 2011). Ocean Reanalysis 
System 5 (ORAS5, Zuo et al., 2019) is a global eddy-permitting ocean and sea-ice ensemble 
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reanalysis which provides historical ocean and sea-ice conditions from 1979 to the present, and 
is based on the assimilation of the same sea surface temperature observations as is the case of 
ERA5. Sea ice changes are strongly influenced by the atmosphere above and the ocean below 
through dynamical and thermodynamic processes. Therefore, the relevant atmospheric 
variables selected from ERA5 and oceanic variables obtained from ORAS5 are also used as 
inputs by ANTSIC-UNet to investigate the key factors contributing to sea ice predictions in the 
complex interaction between sea ice, ocean and atmosphere.” 
 
L 76 Is the input data volume held static throughout all development? The data lag is often an 
option that requires testing and investigation. 
 
Yes, the input data volume was static throughout all development. The variable importance 
analysis helped identify the most effective combination of relevant variables at different time 
lags to enhance prediction accuracy. In future research, we plan to investigate the impact of the 
time length of individual climate variables by retraining the deep learning model. This will 
allow us to assess how such changes in data lags affect the model's predictive performance, 
though it will require significant computational resources. 
 
L 72 why is v10hPa not included also? 
 
Thank you for your query regarding the exclusion of v10hPa. Other studies have already 
clarified that the changes in stratospheric zonal circulation predominantly affect the 
circumpolar westerly winds in the troposphere through downward propagation, which in turn 
affects the sea ice distribution and variability (Wang et al., 2019; Cordero et al., 2023). 
Therefore, we only include 10-hPa zonal wind.  
 
Reference: 
 
Cordero, R. R., Feron, S., Damiani, A., Llanillo, P. J., Carrasco, J., Khan, A. L., Bintanja, R., 
Ouyang, Z., and Casassa, G.: Signature of the stratosphere–troposphere coupling on recent 
record-breaking Antarctic sea-ice anomalies, The Cryosphere, 17, 4995–5006, 
https://doi.org/10.5194/tc-17-4995-2023, 2023. 
 
Wang, G., Hendon, H. H., Arblaster, J. M., Lim, E.-P., Abhik, S., and van Rensch, P.: 
Compounding tropical and stratospheric forcing of the record low Antarctic sea-ice in 2016, 
Nat Commun, 10, 13, https://doi.org/10.1038/s41467-018-07689-7, 2019. 
 
L 108 The linear trend prediction is not described well in section 2.1 
 
Thanks for your comment. We agree that this statement was not very clear. We rewrote the 
description of the linear trend prediction as “A linear least-squares trend was fit to observed 
SIC over the past 30 years at each grid cell for each calendar month and used to predict SIC 
values for the corresponding calendar month in the following year. In addition, these SIC 
predictions from the linear trend model are also used as the input of ANTSIC-UNet.” 
 
L 112 This implies that the RHS of equation 1 is just the observed ice concentration field. What 
benefit is this? Further description of how anomaly persistence works as a prediction is needed 
here. 
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The benefit of the anomaly persistence model lies in its straightforward application to give a 
continuous prediction of the variable by carrying forward the initial state of anomalies. This 
statistical method has been widely used as a benchmark for predicting sea ice concentration on 
seasonal timescales since sea ice conditions often change gradually rather than abruptly 
(Wayand et al., 2019; Bushuk et al., 2021; Niraula and Goessling, 2021). The effectiveness of 
the anomaly persistence decreases with increasing lead time as the influence of initial 
anomalies diminishes.  
 
We updated the explanation in the text “The anomaly persistence works by preserving the 
deviations from the climatological anomalies and assuming these anomalies will persist into 
the future. For example, if a particular region currently has more sea ice than average, this 
positive anomaly will continue as time increases. This statistical method has been widely used 
as a benchmark for predicting sea ice concentration on seasonal timescales since sea ice 
conditions often change gradually rather than abruptly (Wayand et al., 2019; Bushuk et al., 
2021; Niraula and Goessling, 2021). While this method is effective for short-term forecasts, its 
accuracy declines over longer lead times as the influence of initial anomalies weakens.” 
 
Reference: 
 
Bushuk, M., Winton, M., Haumann, F. A., Delworth, T., Lu, F., Zhang, Y., Jia, L., Zhang, L., 
Cooke, W., Harrison, M., Hurlin, B., Johnson, N. C., Kapnick, S. B., McHugh, C., Murakami, 
H., Rosati, A., Tseng, K.-C., Wittenberg, A. T., Yang, X., and Zeng, F.: Seasonal Prediction and 
Predictability of Regional Antarctic Sea Ice, Journal of Climate, 34, 6207–6233, 
https://doi.org/10.1175/JCLI-D-20-0965.1, 2021. 
 
Niraula, B. and Goessling, H. F.: Spatial Damped Anomaly Persistence of the Sea Ice Edge as 
a Benchmark for Dynamical Forecast Systems, Journal of Geophysical Research: Oceans, 126, 
e2021JC017784, https://doi.org/10.1029/2021JC017784, 2021. 
 
Wayand, N. E., Bitz, C. M., and Blanchard-Wrigglesworth, E.: A Year-Round Subseasonal-to-
Seasonal Sea Ice Prediction Portal, Geophysical Research Letters, 46, 3298–3307, 
https://doi.org/10.1029/2018GL081565, 2019. 
 
L 165 key acronyms need defining in each figure caption. (and all others too) 
 
Thank you for your comment. We updated all relevant figure and table captions to include 
definitions for acronyms such as RMSE (root-mean-square error) and IIEE (integrated ice-edge 
error), ensuring that readers can easily understand the terms used without needing to look back 
to the main text. For example, we modified the caption for Table. 2 as follows: 
 
“Table 2. The averaged predictive skill of Antarctic sea ice for ANTSIC-UNet, linear trend and 
anomaly persistence models for all testing years (RMSE: root-mean-square error; IIEE: 
integrated ice-edge error).” 
 
L 253 “extremely low” rephrase with better accuracy.  
 
L 253 this table needs extra columns to show what was extreme about these years – SIE/SIC 
anomalies perhaps. 
 
Thank you for your comments. We modified the title of the table and added the extra columns. 
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Table 3. The averaged predictive skill of ANTSIC-UNet, linear trend and anomaly persistence 
models for the extreme summer years of Antarctic sea ice extent. Here, Observed SIEA 
represents February monthly anomalies of sea ice extent from NSIDC observations for these 
extreme years, calculated by subtracting the February average sea ice extent for the period 
1981-2011 (units: million square kilometers). RMSE: root-mean-square error; IIEE: integrated 
ice-edge error. 

  Observed SIEA Metrics ANTSIC-UNet Linear trend Anomaly persistence 

2017 -0.76 
RMSE 0.21 0.25 0.24 
IIEE 1.80 2.56 2.52 

2022 -0.84 
RMSE 0.21 0.22 0.23 
IIEE 1.68 2.24 2.45 

2023 -1.14 
RMSE 0.24 0.27 0.31 
IIEE 2.00 3.05 3.11 

 


