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Abstract. The Madden-Julian Oscillation (MJO) is a crucial predictability source on a sub-seasonal to seasonal (S2S) timescale. 17 

Therefore, the models participating in the WWRP/WCRP S2S prediction project focus on accurately predicting and analyzing 18 

the MJO. This study provided a detailed description of the configuration within the IAP-CAS S2S forecast system. We assessed 19 

the accuracy of the IAP-CAS model's MJO forecast using traditional RMM analysis and cluster analysis. Then, we explained 20 

the reasons behind any bias observed in the MJO forecast. Comparing the 20-year hindcast with observations, we found that 21 

the IAP-CAS ensemble mean has a skill of 24 days. However, the ensemble spread still has potential for improvement. To 22 

examine the MJO structure in detail, we used cluster analysis to classify the MJO events during boreal winter into four types: 23 

fast-propagating, slow-propagating, standing, and jumping patterns of MJO. The model exhibits biases of overestimated 24 

amplitude and faster propagation speed in the propagating MJO events. Upon further analysis, it was found that the model 25 

forecasted a wetter background state. This leads to stronger forecasted convection and coupled waves, especially in the fast 26 

MJO events. The overestimation of the strength and length of MJO-coupled waves results in a faster MJO mode and quicker 27 

dissipation in the IAP-CAS model. These findings show that the IAP-CAS skilfully forecasts signals of MJO and its 28 

propagation, and they also provide valuable guidance for improving the current MJO forecast by developing the ensemble 29 

system and moisture forecast. 30 

Keywords: MJO prediction, S2S, IAP-CAS, FGOALS-f2, Cluster Analysis 31 
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1 Introduction 32 

With the increasing occurrence of metrological disasters in recent years, there has been growing attention toward S2S forecast, 33 

as it bridges the gap between weather and climate forecasts and reduces disaster risks through early warnings. In November 34 

2013, the WWRP/WCRP S2S prediction project (Phase 1) was launched, with the principal objectives of enhancing S2S 35 

forecast accuracy and advancing our comprehension of its dynamics and climate drivers.  Then, work on the S2S research 36 

continued in Phase 2, from 2018 to 2023. The whole project has made a significant contribution to the development of S2S 37 

prediction. 38 

MJO (Madden and Julian, 1971) is a crucial predictability source of S2S forecasts. It is a significant tropical oscillation with 39 

a period of 30-60 days, characterized by expansive cloud masses and precipitation systems that propagate eastward along the 40 

equatorial regions. Accurate S2S prediction requires a good representation of MJO. Many studies have clarified the relationship 41 

between the MJO and global weather and climate, such as monsoons (Goswami, 2012; Hsu, 2012; Lau and Chan, 1986; 42 

Wheeler et al., 2009; Liu et al., 2022), tropical cyclones (Bessafi and Wheeler, 2006; Ferreira et al., 1996; Hall et al., 2001) 43 

and El Niño-Southern Oscillation (ENSO; Lau et al., 2005; Zhang, 2005). The convective and circulation anomalies associated 44 

with MJO establish intricate connections across global weather and climate systems on the S2S timescale. Being able to 45 

accurately forecast the MJO can have a positive impact on the forecast of other related systems (Cassou, 2008; Vitart and 46 

Molteni, 2010; Wu et al., 2007). Achieving an accurate forecast of MJO becomes a primary objective in the field of S2S 47 

forecasts. 48 

With an enhanced comprehension of the underlying physical mechanisms governing the MJO and the continuous improvement 49 

of numerical models, remarkable advancements have been achieved in the MJO forecast. In Coupled Model Intercomparison 50 

Project Phase 6 (CMIP6), models that exhibited lower forecast skills (Hung et al., 2013) in Coupled Model Intercomparison 51 

Project Phase 5 (CMIP5) have demonstrated noteworthy improvements in the simulation of MJO (Chen et al., 2022). Generally, 52 

the models in CMIP6 simulate more realistic eastward propagation and precipitation over the Maritime Continent (MC) region 53 

(Ahn et al., 2019; Ahn et al., 2020).  54 

However, for S2S forecasts, the improvement of model physics is one aspect of advancing S2S forecasts, as various factors 55 

impact MJO forecast skills, such as initialization and ensemble generation (Kim et al., 2018). The forecast skills of the MJO 56 

in most models is typically 3-4 weeks (Vitart, 2017), while the estimate of predictability of MJO is approximately 5-7 weeks 57 

(Waliser et al., 2003; Neena et al., 2014). These facts underscore the persisting challenges in the S2S forecasts.  58 

The realistic forecast of MJO eastward propagation is one of the challenges repeatedly mentioned in recent years (Jiang, 2017; 59 

Kim, 2019; Lim et al., 2018; Wang and Lee, 2017). The MJO propagation skill is closely related to the forecast of the state in 60 

the Maritime Continent (MC) region (Gonzalez and Jiang, 2017). Many studies have pointed out the "MC barrier" (Hendon 61 

and Salby, 1994; Rui and Wang, 1990a; Vitart et al., 2017) during the MJO's propagation through the MC region. The "MC 62 
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barrier" refers to a notable deterioration of the MJO signal when it traverses the MC area, but this phenomenon is usually 63 

amplified in the climate models (Kim et al., 2014b; Neena et al., 2014; Xiang et al., 2022, 2015), showing the model's limitation 64 

in preserving MJO propagation within the MC region. The moisture mode theory (Raymond and Fuchs, 2009) has been 65 

proposed to explain this phenomenon. It suggests that the advection of seasonal mean moisture by the MJO-related circulation 66 

anomalies in the lower troposphere is crucial to MJO’s propagation through the MC region (Jiang, 2017; Kim, 2019). In models 67 

that are hard to capture the realistic propagation of MJO, the mean low-troposphere moisture amplitude over the MC is 68 

underestimated, resulting in a weakened horizontal moisture gradient (Gonzalez and Jiang, 2017; Kim, 2017). This discrepancy 69 

in moisture advection hinders MJO propagation. 70 

The Institute of Atmospheric Physics at the Chinese Academy of Sciences (IAP-CAS) has been actively involved in climate 71 

model development and applications since the CMIP1 in the 1990s. As for the IAP-CAS model, it has already shown a 72 

significant enhancement in MJO simulation in CMIP6 compared to CMIP5 (Chen et al., 2022), but the performance of the 73 

S2S system in IAP-CAS remains uncertain and requires comprehensive evaluation. Therefore, the objectives of this article are 74 

fourfold: Firstly, the aim is to introduce the S2S forecast system of the IAP-CAS model. Secondly, to evaluate the forecast 75 

skills of the IAP-CAS in the MJO forecast. Thirdly, the aim is to analyze the evaluation results to identify the sources of 76 

forecast errors. This will facilitate further improvements in the MJO forecast. At last, we hope that the verification and analysis 77 

process can provide some valuable insights for other models. 78 

The structure of the paper is as follows. A thorough review of the IAP-CAS model and S2S ensemble forecast system is 79 

introduced in Section 2. Section 3 describes the observation data and primary methodology utilized in the article. Section 4 80 

assesses the overall MJO forecast skills in IAP-CAS. Section 5 focuses on analyzing the propagation details of the fast-81 

propagating and slow-propagating MJO. After that, in Section 6, we discuss the potential causes of any bias observed in the 82 

MJO forecast. In Section 7, we summarize our findings and have a discussion. 83 

2 The global S2S ensemble forecast system of IAP-CAS 84 

The architecture of the IAP-CAS S2S ensemble forecast system is depicted in Figure 1. In this section, we will give a thorough 85 

description of the S2S system, covering the model, initialization methods, ensemble generation approaches, and the resulting 86 

datasets. 87 

2.1 Configuration of IAP-CAS model 88 

The climate system model CAS FGOALS-f2 (The Flexible Global Ocean-Atmosphere-Land System model Finite Volume 89 

version 2, Chinese Academy of Sciences; Bao 2019; Bao et al. 2020) is the core of the IAP-CAS S2S ensemble forecast system.  90 

It is developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid 91 
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Dynamics (LASG) at the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS). We utilize the 92 

institution name, IAP-CAS, as a proxy for the model. 93 

FGOALS-f2 is a fully coupled model that encompasses four components: atmospheric, land, oceanic, and sea ice models, with 94 

its configuration detailed in Table 1. The atmospheric component is version 2 of the Finite-volume Atmospheric Model 95 

(FAMIL2; Li et al. 2019), with a standard horizontal resolution of C96, which means 96 × 96 grid points in each tile of the 96 

cube sphere, roughly equivalent to 1-degree resolution. Vertically, it features 32 hybrid sigma-pressure levels, with the 97 

uppermost level situated at 1 hPa (The Hybrid coefficients are listed in Table A1). The land surface component used in 98 

FGOALS-f2 is version 4 of the Community Land Model (CLM4.0; Oleson et al. 2010; Lawrence et al. 2011), featuring a 99 

horizontal resolution nearly at 1-degree resolution. The oceanic component is Parallel Ocean Program version 2 (POP2; 100 

Kerbyson and Jones 2005), which utilizes a displaced-pole grid with the North Pole shifted to Greenland. This grid has a 101 

resolution of gx1v6, approximately equivalent to a 1-degree horizontal resolution, and includes 60 vertical layers. The sea ice 102 

component is the Los Alamos Sea Ice Model version 4.0 (CICE4; Hunke et al. 2010), sharing the exact horizontal resolution 103 

as the ocean model. These four components are coupled via the coupler version 7 in the Community Earth System Model 104 

(CESM; Craig et al. 2012).  105 

It is worth noting that FAMIL2, the latest generation atmospheric model from LASG, has adopted the Finite-Volume Cubed-106 

Sphere Dynamical Core (FV3; Lin 2004; Putman and Lin 2007; Harris et al., 2020) as its dynamical core. FV3 solves the fully 107 

compressible Euler equations on the gnomonic cubed-sphere grid and a Lagrangian vertical coordinate. The hydrostatic solver 108 

of FV3 is used in our model. This enhancement of the atmospheric component results in improved computational efficiency 109 

and accuracy. Besides, the key parameterization in FAMIL2 is a Resolved Convection Precipitation scheme (RCP), which is 110 

independently developed to calculate the microphysics processes in the convective precipitation for both deep and shallow 111 

convection (Bao and Li, 2020). Due to the rapid phase changes occurring within the convective cloud, a sub-time step of 150 112 

seconds is employed for the calculation of microphysical processes within a physical timestep of 30 minutes. FAMIL2 has 113 

also implemented the University of Washington Moist Turbulence parameterization scheme (UWMT, Park and Bretherton 114 

2009) as its boundary layer scheme. The microphysical parameterization used in FAMIL2 is the revised Lin scheme, which is 115 

a single-moment scheme (Zhou et al., 2019).  116 

2.2 Initialization scheme of the S2S forecast system 117 

The S2S forecast system of the IAP-CAS model adopts a Newtonian nudging method with time-varying treatment (Jeuken et 118 

al., 1996) to complete the initialization of the atmosphere and ocean. The reanalysis nudging and the forecast nudging are the 119 

two components that make up the initialization process, which is seen in Figure 2. Table A2 provides a summary of the detailed 120 

technical specifics for these two nudging processes. 121 
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The reanalysis nudging initializes the atmospheric variables, including temperature, surface pressure, sea level pressure, and 122 

surface wind from the NCEP Final Operational Global Analysis datasets (FNL, http://rda.ucar.edu/datasets/ds083.2, 123 

ds083.2|DOI: 10.5065/D6M043C6). The oceanic variable of potential temperature from the National Oceanic and Atmospheric 124 

Administration (NOAA) Optimum Interpolation Sea Surface Temperature (OISST) reanalysis data (Reynolds et al., 2007) is 125 

also included. These reanalysis data serve as observations in the eq. (1) to diminish errors in the initial condition: 126 

𝑥𝑥(𝑡𝑡) = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) + 𝑁𝑁𝑟𝑟𝑚𝑚𝑟𝑟(𝑡𝑡)[𝑥𝑥𝑚𝑚𝑜𝑜𝑜𝑜(𝑡𝑡) − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)]        (1) 127 

where 𝑡𝑡 is the time, 𝑥𝑥(𝑡𝑡) is the filed after nudging process, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) represents the model forcing, 𝑥𝑥𝑚𝑚𝑜𝑜𝑜𝑜(𝑡𝑡) represents the 128 

“truth” value, and 𝑁𝑁𝑟𝑟𝑚𝑚𝑟𝑟(𝑡𝑡) is a relaxation coefficient that varies over time, which constantly adjusts the model results during 129 

the integration process, making it approximate to the observed values while being constrained by the dynamical constraints of 130 

the physical model. The calculation process for 𝑁𝑁𝑟𝑟𝑚𝑚𝑟𝑟(𝑡𝑡) is as follows: 131 

𝑁𝑁𝑟𝑟𝑚𝑚𝑟𝑟(𝑡𝑡) = 𝛥𝛥𝛥𝛥
𝑇𝑇

1+𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋∙𝑡𝑡%𝑇𝑇
𝑇𝑇 )

+𝛥𝛥𝛥𝛥
           (2) 132 

∆𝑡𝑡 is the time step in FAMIL2, which is 0.5h for C96 resolution (approximately 1-degree resolution). 𝑇𝑇 represents the time 133 

window with a value of 6 hours. As depicted in Figure 2a, the relaxation coefficient varies as a cosine function. It is large at 134 

the beginning and end of the temporal window, thereby facilitating accelerated convergence of the model results toward 135 

observations. While in the middle of the time window, 𝑁𝑁𝑟𝑟𝑚𝑚𝑟𝑟 becomes smaller and even drops to zero, which indicates the 136 

reliability of the reanalysis data decreases. The reason is that the reanalysis data within the time window is obtained through 137 

interpolation between its start and end values. 138 

In the forecast nudging, the initialization process adheres to a similar nudging algorithm at 6-h intervals, as shown in eq. (3). 139 

𝑥𝑥(𝑡𝑡) = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) + 𝑁𝑁𝑓𝑓𝑓𝑓𝑜𝑜𝛥𝛥(𝑡𝑡)[𝑥𝑥𝑓𝑓𝑓𝑓𝑜𝑜𝛥𝛥(𝑡𝑡) − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)]        (3) 140 

Nevertheless, the atmospheric variables assimilated into the S2S system are sourced from the GFS weather forecast, denoted 141 

as 𝑥𝑥𝑓𝑓𝑓𝑓𝑜𝑜𝛥𝛥(𝑡𝑡). The relaxation coefficient 𝑁𝑁𝑓𝑓𝑓𝑓𝑜𝑜𝛥𝛥(𝑡𝑡) is as follows: 142 

𝑁𝑁𝑓𝑓𝑓𝑓𝑜𝑜𝛥𝛥(𝑡𝑡) = 𝛥𝛥𝛥𝛥
𝑇𝑇

1+𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋∙𝑡𝑡%𝑇𝑇
𝑇𝑇 )

+𝛥𝛥𝛥𝛥
∙ 𝑐𝑐𝑐𝑐𝑐𝑐( 𝜋𝜋

2
∙ (𝛥𝛥−𝛥𝛥%𝑇𝑇)

4𝑚𝑚𝑇𝑇
)         (4) 143 

Compared to 𝑁𝑁𝑟𝑟𝑚𝑚𝑟𝑟, 𝑁𝑁𝑓𝑓𝑓𝑓𝑜𝑜𝛥𝛥  is multiplied by a decay factor, which also varies in accordance with the cosine function. In this 144 

context, the number of days for forecast nudging is denoted by 𝑚𝑚, and the system is configured with a 10-day forecast nudging 145 

period. Figure 2b illustrates the variation of 𝑁𝑁𝑓𝑓𝑓𝑓𝑜𝑜𝛥𝛥 . which decreases as the reliability of weather forecast data diminishes over 146 

time, ultimately reaching zero by the 10th day. 147 

In forecast nudging, we used 10 days of GFS weather forecast data for nudging. One purpose of this approach is to avoid 148 

coupling shock at initialization. Additionally, we aim to enhance the quality of initial forecasts in S2S by nudging GFS weather 149 

forecast data to ultimately improve S2S prediction accuracy, as the skill of weather forecasts is higher than that of S2S forecasts 150 

during the initial period. 151 
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Summarily, the S2S forecast system commences its daily forecast from the initial condition derived via reanalysis nudging. It 152 

then fine-tunes the forecasts with weather prediction data through the forecast nudging process. This initialization system 153 

effectively reduces system errors in the model and augments forecast accuracy. 154 

2.3 Time-lagged method for ensemble generation 155 

The value of ensemble forecasts in medium to long-term forecasts has been repeatedly emphasized (Liu, 2003; Vitart and 156 

Molteni, 2009). In addition to improving the physical scheme of the model, devising an effective approach for ensemble 157 

generation might have a considerable impact on the MJO forecast. The IAP-CAS S2S ensemble forecast system utilizes the 158 

time-lagged method (Hoffman and Kalnay, 1983) to generate ensemble members. 159 

A schematic diagram of the time-lagged method is depicted in Figure 2b. During the initial day of the forecast nudging, the 160 

S2S system issues forecasts from 00Z, 06Z, 12Z, and 18Z, resulting in the generation of 4 ensemble members. The core idea 161 

behind this approach is to introduce perturbations by leveraging lagged initialization times. 162 

2.4 Hindcast experiment and real-time forecast 163 

The S2S ensemble forecast system provides daily forecasts, forecasting weather and climate conditions for the upcoming 65 164 

days. Out of the 65 days, 5 days are reserved for extending the ensemble members by using the time-lagged method, ensuring 165 

a complete forecast for at least 60 days. Since June 1st, 2019, the IAP-CAS S2S system has been operating 16 ensemble 166 

members daily for real-time forecasts. So far, approximately 8.2TB of real-time data has been uploaded to the S2S website. 167 

For hindcast experiments from 1999 to 2018, the system has run 4 ensemble members daily, generating a dataset of 168 

approximately 11TB. Our subsequent research is based on the 20-year hindcast experiment. 169 

In 2021, the IAP-CAS model participated in phase II of the S2S Project (Vitart et al., 2017) successfully, providing the 20-170 

year hindcast and real-time forecast data generated by the S2S ensemble forecast system. Detailed information regarding the 171 

data is listed in Table A3, and Table A4 shows the list of output variables. The output data is interpolated to a standardized 172 

horizontal resolution of 1.5°×1.5°, following the S2S's requirements, and is stored in version 2 of General Regularly-distributed 173 

Information in Binary (GRIB2) format. The output data of the S2S system is publicly available on three S2S Data Portals 174 

(ECMWF, CMA, and IRI). 175 

3 Datasets and methods 176 

3.1 datasets 177 

The observational datasets used for the MJO verification include the NOAA daily outgoing longwave radiation (OLR; 178 

Liebmann and Smith 1996), daily wind from the National Centers for Environmental Prediction (NCEP)/Department of Energy 179 

(DOE) Reanalysis 2 dataset (Kanamitsu et al., 2002), daily specific humidity from ECMWF Reanalysis version 5 (ERA5; 180 
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ERA 2017), and the precipitation product from the Global Precipitation Climatology Project (GPCP; Adler et al. 2003). To 181 

facilitate computation and meaningful comparisons, both observation and hindcast datasets have been uniformly interpolated 182 

to a horizontal resolution of 2.5°×2.5°. Seven pressure levels (1000, 925, 850, 700, 500, 300, and 200hPa) of wind and specific 183 

humidity are extracted for analysis.  184 

3.2 MJO RMM index 185 

To conduct a quantitative assessment of MJO, we have employed the widely used Real-time Multivariate MJO (RMM) index 186 

(Wheeler and Hendon, 2004a) to extract the MJO signal. This index consists of two components, RMM1 and RMM2, which 187 

are the first and second principal components of the combined empirical orthogonal functions (EOFs) of multiple variables, 188 

including OLR, 200hPa zonal wind (U200), and 850hPa zonal wind (U850). It serves as a tool for tracking the location and 189 

amplitude characteristics of MJO. 190 

The calculation of the RMM index refers to the method described in Gottschalck et al. (2010). Detailed calculation steps are 191 

as follows:  192 

1) Remove the 0-3 waves of the climatology and low-frequency variability of the U200, U850, and OLR variables from both 193 

the observation and hindcast data. It is noteworthy that removing low-frequency variability is to subtract the mean of the 194 

past 120 days from the anomalies. For model forecast, this is the mean model anomalies of the previous forecast days, 195 

plus the mean observed anomalies of the remaining days. 196 

2) Average the anomalies between 15° S and 15° N and normalize the three variables, using the pre-computed coefficients 197 

as in Gottschalck et al. (2010).  198 

3) Project the anomalies onto the observed combined EOF eigenvectors from Wheeler and Hendon (2004b) to get RMM1 199 

and RMM2. 200 

Bivariate anomaly correlation coefficient (ACC) and bivariate root mean square error (RMSE) are calculated using the 201 

observed and hindcast RMM indices to represent the forecast skills of the IAP-CAS model as  202 

𝐴𝐴𝐴𝐴𝐴𝐴(𝜏𝜏) = ∑ [𝑟𝑟1(𝛥𝛥)𝑜𝑜1(𝛥𝛥,𝜏𝜏)+𝑟𝑟2(𝛥𝛥)𝑜𝑜2(𝛥𝛥,𝜏𝜏)]𝑁𝑁
𝑡𝑡=1

�∑ [𝑟𝑟1
2(𝛥𝛥)+𝑟𝑟2

2(𝛥𝛥）]𝑁𝑁
𝑡𝑡=1 �∑ [𝑜𝑜1

2(𝛥𝛥,𝜏𝜏)+𝑜𝑜2
2(𝛥𝛥,𝜏𝜏)]𝑁𝑁

𝑡𝑡=1

, and        (5) 203 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜏𝜏) = �1
𝑁𝑁
∑ [(𝑎𝑎1(𝑡𝑡) − 𝑏𝑏1(𝑡𝑡, 𝜏𝜏))2 + (𝑎𝑎2(𝑡𝑡) − 𝑏𝑏2(𝑡𝑡, 𝜏𝜏))2]𝑁𝑁
𝛥𝛥=1       (6) 204 

Here 𝑎𝑎1(𝑡𝑡) and 𝑎𝑎2(𝑡𝑡) are the observation RMM1 and RMM2 at time 𝑡𝑡; 𝑏𝑏1(𝑡𝑡) and 𝑏𝑏2(𝑡𝑡) are the forecasting RMM1 and 205 

RMM2 at time 𝑡𝑡 for lead 𝜏𝜏 days; 𝑁𝑁 is the total number of times. It is commonly accepted that days with ACC above 0.5 are 206 

considered to have valid forecasts. Therefore, the forecast skill of a model is quantitively defined as the maximum lead time 207 

exceeding 0.5, which approximately corresponds to the day when RMSE reaches √2. 208 

RMM index can also be adapted to quantitively evaluate the forecasted intensity and velocity through the calculation of the 209 

error of amplitude (𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑚𝑚𝑎𝑎(𝜏𝜏)) and phase (𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎ℎ𝑟𝑟𝑜𝑜𝑚𝑚(𝜏𝜏)) as a function of lead time 𝜏𝜏:  210 

𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑚𝑚𝑎𝑎(𝜏𝜏) = 1
𝑁𝑁
∑[𝐴𝐴𝑅𝑅𝑃𝑃𝑜𝑜(𝑡𝑡, 𝜏𝜏) − 𝐴𝐴𝑅𝑅𝑃𝑃𝑟𝑟(𝑡𝑡)], and        (7) 211 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎ℎ𝑟𝑟𝑜𝑜𝑚𝑚(𝜏𝜏) = 1
𝑁𝑁
∑ 𝑡𝑡𝑎𝑎𝑡𝑡−1[ 𝑟𝑟1(𝛥𝛥)𝑜𝑜2(𝛥𝛥,𝜏𝜏)−𝑟𝑟2(𝛥𝛥)𝑜𝑜1(𝛥𝛥,𝜏𝜏)

𝑟𝑟1(𝛥𝛥)𝑜𝑜1(𝛥𝛥,𝜏𝜏)+𝑟𝑟2(𝛥𝛥)𝑜𝑜2(𝛥𝛥,𝜏𝜏)
]        (8) 212 

Negative (positive) 𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑚𝑚𝑎𝑎(𝜏𝜏) indicates weaker (stronger) amplitude in forecasts. Similarly, Negative (positive) 213 

𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎ℎ𝑟𝑟𝑜𝑜𝑚𝑚(𝜏𝜏) indicates slower (faster) propagation in forecasts. Here the MJO amplitude for observation (𝐴𝐴𝑅𝑅𝑃𝑃𝑟𝑟(𝑡𝑡)) and 214 

forecast (𝐴𝐴𝑅𝑅𝑃𝑃𝑜𝑜(𝑡𝑡)) is defined as  215 

𝐴𝐴𝑅𝑅𝑃𝑃𝑟𝑟(𝑡𝑡) = �𝑎𝑎1(𝑡𝑡)2 + 𝑎𝑎2(𝑡𝑡)2, and          (9) 216 

𝐴𝐴𝑅𝑅𝑃𝑃𝑜𝑜(𝑡𝑡, 𝜏𝜏) = �𝑏𝑏1(𝑡𝑡, 𝜏𝜏)2 + 𝑏𝑏2(𝑡𝑡, 𝜏𝜏)2.         (10) 217 

3.3 Cluster analysis of MJO events 218 

Another crucial method used in this research is cluster analysis. In Section 5, we select the representative MJO events and 219 

classify them following the work Wang et al. (2019) did. This facilitates a more focused and targeted investigation into the 220 

forecast bias of MJO in the IAP-CAS model. 221 

An MJO event was chosen if the regional average of OLR, spanning from 10° S to 10° N and 75° E to 95° E, remained below 222 

one standard deviation for a consecutive period of 5 days during the boreal winter (November–April). Subsequently, the K-223 

means cluster analysis is employed to categorize the chosen MJO events based on the propagation patterns from day -10 to 20 224 

(day 0 is the day with the peak MJO in the Indian Ocean). At last, we use silhouette clustering evaluation criteria (Rousseeuw, 225 

1987) to identify and eliminate poorly classified MJO events.  226 

Finally, a total of 50 MJO events were selected from 1999 to 2018 winter and four types of MJO events were identified, namely 227 

the fast-propagating (10 cases), slow-propagating (16 cases), standing (12 cases), and jumping (12 cases) patterns of MJO (Fig. 228 

5).  229 

The fast-propagating MJO and slow-propagating MJO belong to the propagating type of MJO, characterized by their 230 

consecutive eastward propagation across the Indian Ocean to the Pacific Ocean region. On the other hand, the standing and 231 

jumping MJO represent relatively non-propagating types, where the convection remains relatively fixed or exhibits  232 

discontinuous movement. Wang et al. (2019) believe that propagating MJO events are often associated with strong and tightly 233 

coupled Kelvin waves, especially for fast-propagating MJO. This is the biggest difference between propagating MJO and non-234 

propagating MJO. 235 

4 Evaluation of MJO forecast skill from the IAP-CAS model 236 

The evaluation in this section was conducted for the annual MJO events. Figure 3 demonstrates the overall MJO forecast skill 237 

in the IAP-CAS model and the improvement brought by the time-lagged ensemble method. Figure 3a shows the forecast skill 238 

of the ensemble mean is 24 days with the criterion of ACC exceeding 0.5, while the skill of individual members is about 21-239 

22 days. Meanwhile, the ensemble mean RMSE reaches √2 at 21 days and the individual members exhibit larger RMSE, 240 



10 
 

reaching √2 at 16 days (Fig. 3b). The solid blue line in Figure 3b represents the ensemble spread (Leutbecher and Palmer, 241 

2008) of IAP-CAS. When this ensemble spread approaches the RMSE of the ensemble mean (solid red line), it indicates that 242 

the ensemble members are sufficiently dispersive. Figure 3b illustrates that the ensemble exhibits an underdispersive 243 

characteristic in the early stage of the forecast. We have also observed similar issues of " underdispersive" in many other 244 

models (Rashid et al., 2011; Neena et al., 2014; Kim et al., 2014b; Xiang et al., 2015), and addressing this aspect may be a 245 

focal point for future model enhancements.  246 

Increasing the number of ensemble members within a certain range proves effective in forecasting the uncertainty of weather 247 

and climate (Hou et al. 2001). We employed the time-lagged ensemble method to further augment the ensemble members. The 248 

time-lagged ensemble includes the ensemble members generated on the forecast day and from lag times. For instance, by 249 

incorporating ensemble members with a lag of 𝑖𝑖 (𝑖𝑖 = 0, 1, 2, . ..) days, the total number of members becomes 4 ∗ (𝑖𝑖 + 1). 250 

Upon examining the relationship between lag 𝑖𝑖 days and forecast skill, it was found that the skill increases as 𝑖𝑖 increases at 251 

first, but then it reaches a plateau when 𝑖𝑖 > 3 (see Fig. A2). This suggests that the forecast skill of the 16 members may 252 

represent the limit of the time-lagged ensemble method in IAP-CAS. Figure 3d shows the ensemble of 16 members is more 253 

dispersive than 4 members, which is illustrated by less distinction between RMSE and Spread in the 16-member system. The 254 

ensemble mean of 16 members achieves a skill of 26 days, surpassing the skill of 4 members by two days (Fig. 3c). 255 

Numerous prior investigations have demonstrated that MJO forecast skill is sensitive to the MJO amplitude in many models 256 

(Lin et al., 2008; Rashid et al., 2011; Wang et al., 2014; Xiang et al., 2022), and this characteristic is also evident in the IAP-257 

CAS model. We classify an MJO case as an initial (target) strong case if its initial (target) amplitude is greater than 1, while 258 

an event with an initial (target) amplitude less than 1 is classified as an initial (target) weak case. Figures 4a-b show that in the 259 

IAP-CAS model, the forecast skills of strong MJO cases are generally higher than weak cases, especially in the target strong 260 

(weak) cases. 261 

The amplitude and phase of MJO serve as additional indicators for a detailed assessment of MJO forecast performance. For 262 

initially strong MJO cases, we analyze the MJO amplitude and forecasted phase angle error (Figs. 4b-c). The individual 263 

member has a stronger amplitude than observation, which leads to a relatively strong amplitude in the ensemble mean during 264 

the initial 40 days. However, as the noise rapidly increases, the phase error of the individual members also escalates (as shown 265 

in Fig. 4c). The phase error results in a mutual cancellation in positive and negative phases of MJO among ensemble members, 266 

leading to a rapid weakening of the amplitude in the ensemble mean. In Figure 4d, the phase error of the ensemble mean 267 

indicates that the speed of forecasted MJO tends to decrease at first and then start increasing around the 10th day. A more 268 

detailed investigation into the speed of propagating MJO events will be described in Section 5. 269 
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5 The forecast of MJO propagation 270 

We present a qualitative diagnostic of a 20-year hindcast experiment to evaluate the overall forecast skills of IAP-CAS in 271 

Section 4. This analysis provides us with preliminary insights into the performance and biases of the system. Given that the 272 

MJO is more pronounced during boreal winter, our focus is concentrated from November to the following April. Based on 273 

Wang et al. (2019), we aim to conduct further investigations into different types of boreal winter MJO events to explore the 274 

physical explanation of system biases.  275 

In Section 3, we have already described the methodology for classifying MJO events and results. Figure 5 compares the 276 

composited propagation patterns of precipitation and U850 between observation and forecast for four different MJO types. In 277 

observations, the fast-propagating (Fig. 5a) and slow-propagating (Fig. 5b) MJO exhibit a consecutive eastward propagation 278 

structure from the Indian Ocean across the MC region to the Pacific Ocean. The primary distinction between the two types lies 279 

in their propagation speed. The fast-propagating MJO demonstrates a faster speed, with a velocity of 4.58 m/s, compared to 280 

the slow-propagating type, which moves at 4 m/s. The standing MJO (Fig. 5c) remains relatively stationary over the Indian 281 

Ocean and does not continue to propagate eastward. The jumping MJO (Fig. 5d) shows a convective system that bypasses the 282 

MC region and directly jumps from the Indian Ocean to the Pacific Ocean. Here, fast MJO and slow MJO are considered 283 

propagating MJO events, while the latter two types are regarded as non-propagating MJO events. 284 

The observed U850 displays a coupled structure characterized by equatorial westerly anomalies of the Kelvin wave component 285 

located west of the convection, and easterly anomalies of the Rossby wave component located east of the convection (Rui and 286 

Wang, 1990b; Adames and Wallace, 2014; Wang and Lee, 2017). As illustrated in Figure 5, a distinct contrast between 287 

propagating MJO and non-propagating MJO can be found in the circulation at the low level: in the propagating MJO events, 288 

the Kelvin wave response is strong and tightly coupled with the center of convection, which is shown in the stronger and 289 

eastward-extending easterly wind component, particularly prominent in fast MJO events. Many previous studies (Benedict 290 

and Randall, 2007; Hsu and Li, 2012; Wang and Lee, 2017) have also indicated that the presence of low-level easterly winds 291 

is a key signal that contributes to the eastward propagation of MJO by inducing low-level convergence and premoistening to 292 

the east of the major convection. In the non-propagating MJO events, the easterly wind is weak and tends to decouple from 293 

the major convection. 294 

The model accurately reproduces the propagating morphology of the MJO and exhibits coupled signals of Kelvin and Rossby 295 

waves (Figs 5e and 5f). However, a noticeable acceleration in speed is evident, particularly in the case of fast MJO, reaching 296 

speeds of 6 m/s, while the simulated slow MJO moves at 5 m/s. Figure 5g also shows that the forecast for standing MJO 297 

remains somewhat imprecise. This aspect is also evident in the MJO forecast skill depicted in Figure 6, where the standing 298 

MJO has the lowest skill (13 days). For each MJO type, we consider the skill as the ACC of the cases initiated from day -20 299 
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to day 15 (Xiang et al., 2015). Figure 6 displays that the fast MJO achieves the highest skill at 32 days, while the jumping MJO 300 

and slow MJO exhibit skills of 23 and 21 days, respectively. 301 

Additionally, from the Hovmöller diagram of observed propagating MJO (Figs. 5a and 5b), a significant change in convection 302 

is observed after crossing the MC region, which is marked by a decrease in intensity and a slower propagation speed. This 303 

change is roughly delineated by the 135° E, which is commonly referred to as the “MC barrier”. As mentioned above, the “MC 304 

barrier” effect is usually amplified in the climate models. In the IAP-CAS model, the forecasted convective signal of slow 305 

MJO appears to halt after crossing the MC region. Could this indicate an amplification of the "MC barrier" issue in the IAP-306 

CAS model? However, this phenomenon is less pronounced in the simulation of fast MJO. Due to the zonal averaging in the 307 

Hovmöller diagram, some information may be obscured. Further investigation is required to determine the detailed 308 

characteristics of the propagating MJO simulated by the model. 309 

Figure 7 presents the evolution patterns of propagating MJO. In the first 10 days, it is noticeable that the forecasted precipitation 310 

intensity of propagating MJO is significantly higher than observed, especially in the case of fast MJO. Coupled winds in 850 311 

hPa also exhibit stronger magnitudes, with a larger zonal scale. The forecasted location of the major convection is relatively 312 

biased towards the east, which further confirms that there is an overestimation of the propagation speed. On the 15th day, the 313 

MJO convective system crosses the MC region and reaches the eastern Pacific. It is worth noting that the forecasted negative 314 

phase of MJO exhibits a significant development, with an accelerated speed, gradually intruding into the positive phase (Figs. 315 

7b and 7d). By the 20th day, the development of the negative phase has further intensified, extending its influence into the 316 

tropical eastern Pacific region, while in the observation, the negative phase remains east of the MC region. In the later stages, 317 

as the negative phase intrudes, the forecasted convective signal in the positive phase is almost absent due to the inherently 318 

weaker convection in slow MJO. The disappearance of the slow MJO signal observed in the Hovmöller diagram after crossing 319 

the MC region may stem from the intrusion of the negative phase. This might differ from the commonly defined issue of "MC 320 

barrier" amplification observed in many models. 321 

In Figure A3, simulations show that both standing and Jumping MJO also exhibit overall enhanced convective intensity. 322 

However, they accurately capture the non-propagating characteristics of the observed MJO, such as the weak coupling of 323 

Kelvin waves and the strong coupling of Rossby waves. 324 

6 The possible physical explanation for the forecast biases 325 

Section 5 highlights some biases observed in the forecast of propagating MJO, which includes stronger amplitude and faster 326 

propagation speed in the IAP-CAS model. These biases are also mentioned in Section 4. In this section, we aim to unravel the 327 

physical mechanisms underlying these biases.  328 
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As a large-scale convective system, MJO’s genesis, evolution, and dissipation are intricately linked to atmospheric moisture 329 

(Wang, 1988; Kemball-Cook and Weare, 2001; Maloney, 2002; Wang and Lee, 2017). Given that the model forecasts exhibit 330 

a systematic bias of stronger amplitude, we start with the diagnosis of the background state in moisture. Figure 8 shows the 331 

winter mean specific humidity averaged over 10° S–10° N. A clear positive bias of the background moisture state in the IAP-332 

CAS model is observed (Fig. 8c), which can enhance the convection in the MJO. However, the distribution of this moisture 333 

bias is non-uniform. Figure 8c illustrates that the positive moisture bias is more pronounced towards the western Indian Ocean 334 

and the central-eastern Pacific, and this bias gradually spreads to the upper levels. However, in the MC region, the positive 335 

moisture bias is smaller and primarily concentrated in the low level. We speculate that higher evaporation fluxes in the model 336 

may be the reason for the positive moisture bias. Therefore, the reduction in oceanic surface area within the MC region 337 

contributes to a decrease in this positive bias.  338 

Figure 9 displays the precipitation-induced condensational heating (𝑄𝑄2 ) during fast MJO and slow MJO events. The 339 

condensational heating serves as a proxy for the distribution of convection, which was estimated by the moisture sink defined 340 

as  341 

𝑄𝑄2 = −𝐿𝐿𝑣𝑣(𝜕𝜕𝜕𝜕
𝜕𝜕𝛥𝛥

+ 𝑉𝑉�⃗ ∙ 𝛻𝛻𝑞𝑞 + 𝜔𝜔 𝜕𝜕𝜕𝜕
𝜕𝜕𝑎𝑎

),          (11) 342 

where 𝑞𝑞 is the specific humidity, 𝑉𝑉�⃗  is the horizontal circulation, 𝜔𝜔 is vertical pressure velocity, and 𝐿𝐿𝑣𝑣 is the latent heat 343 

at condensation, which is a constant here. The vertical distribution of 𝑄𝑄2 reveals that both fast MJO and slow MJO events in 344 

the model forecasts trigger stronger convection, particularly in the fast MJO events. Furthermore, the enhanced convective 345 

heating leads to a strong response in the coupled MJO-related circulation (Fig. 9). From the 1st day to the 10th day, there is a 346 

gradual strengthening process observed in the simulated convection, particularly pronounced in fast MJO, with its intensity 347 

peaking on the tenth day. 348 

To further understand the propagation and intensity variations of MJO in the IAP-CAS model, it is necessary to comprehend 349 

the underlying physical processes associated with it. Under the framework of “moisture mode”, Jiang (2017) performed a 350 

moisture budget analysis on the latest generation of general circulation models (GCMs) and identified the key processes for 351 

the eastward propagation of MJO. This research revealed that the advection (𝑉𝑉′���⃗ ⋅ ∇𝑄𝑄�) of the seasonal mean moisture (𝑄𝑄�) by 352 

the MJO anomalous circulations (𝑉𝑉′���⃗ ) plays a crucial role in the propagation of MJO. By increasing moisture eastward and 353 

decreasing it westward of the MJO convection, the advection regulates the propagation. (Kim et al., 2014a; Adames and Kim, 354 

2016; Jiang et al., 2018). Among the two determining factors (𝑉𝑉′���⃗  and 𝑄𝑄�), the role of the moisture gradient term is further 355 

emphasized. Many studies (Gonzalez and Jiang, 2017; DeMott et al., 2018; Ahn et al., 2020) have demonstrated that the mean 356 

moisture's horizontal gradient plays a crucial role in determining the propagation of MJO (Fig. 10a). It is well-forecasted in 357 

the models that simulate MJO well, leading to realistic horizontal mean moisture gradients and, thus, well-forecasted horizontal 358 

moisture advection associated with the MJO (Hsu and Li, 2012; Kim et al., 2014a; Nasuno et al., 2015; Adames and Wallace, 359 
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2015; Gonzalez and Jiang, 2017). The IAP-CAS model is capable of reproducing this gradient, although there is an overall 360 

stronger moisture bias (Fig. 10b). Here, the 𝑄𝑄�  presented is the winter mean specific humidity at 850 hPa (𝑄𝑄�850). Research has 361 

indicated that the 𝑄𝑄�850 is representative (Kim, 2019), and subsequent analysis also focuses on the 850 hPa level. 362 

Figure 11 shows the composite equatorial U850 anomalies averaged over the 15° S-15° N for fast MJO and slow MJO 363 

respectively. It depicts the transition from westerly to easterly winds in the MC region (as enclosed by the two blue dashed 364 

lines), leading to the change from positive advection to negative advection. On the 1st and 5th days, the MC region is 365 

predominantly occupied by easterly winds, while from the 10th to the 20th day, the region is primarily characterized by westerly 366 

winds in both fast MJO and slow MJO. However, the forecasted amplitude of low-level wind is significantly stronger, which 367 

can be caused by the enhanced MJO convection as explained earlier. 368 

The MJO anomalous circulation patterns in the MC region result in a positive moisture advection on the eastern part of the 369 

MJO during the early stages of MJO’s development, which facilitates the propagation of convection in the positive phase. We 370 

refer to this process as the "developing phase". Figure 12 provides a detailed illustration of this process. Conversely, during 371 

the later stages, there is a negative moisture advection on the western side of the MJO, which leads to the propagation of 372 

convection in the negative phase and promotes the dissipation of the MJO. We refer to this process as the "decaying phase" 373 

(Fig. 12). Compared to the observation, the stronger amplitude of the low-level moisture advection (𝑉𝑉′���⃗ ⋅ ∇𝑄𝑄�) in the model 374 

explains the gradual enhancement of convective moist phases during the early stages and the amplification of convective dry 375 

phases during the later stages (Fig. 13). The model's moist environment leads to intensified convection, triggering the 376 

strengthening of coupled wind fields, which in turn enhances the moist phase in the early stage and the dry phase in the later 377 

stage of convection. Consequently, during the development phase of the MJO, its amplitude gradually strengthens. Conversely, 378 

during the decaying phase of the MJO, the intensity of the dry phase also progressively increases. 379 

As the simulated propagating MJO gradually intensifies, we observe an enhancement of easterly winds on the east of the 380 

convective center, accompanied by an overestimation in zonal scale, indicating the triggering of stronger Kelvin waves (Figs 381 

7b and 7d). According to Wang et al. (2019), MJO with a larger zonal scale will experience an increased eastward propagation 382 

speed since the phase speed is inversely proportional to the wave number. This phenomenon is also observed in observation, 383 

where the Kelvin wave response to fast MJO exhibits a larger zonal scale compared to slow MJO. Subsequently, during the 384 

decay phase of the propagating MJO, the model exhibits a pronounced Rossby wave response triggered by the MJO, leading 385 

to the intrusion of convective negative phases and facilitating the dissipation of the MJO. 386 

In addition to examine the winter mean moisture state (𝑄𝑄�), we have analyzed MJO-related moisture anomalies (𝑄𝑄′) as well 387 

(Fig. 14). By comparing the evolution pattern of moisture anomalies between slow MJO and fast MJO, it is found that the 388 

moisture anomalies in the eastern part of fast MJO are more intense compared to the slow MJO. This results in stronger low-389 

level moisture transport towards the convective region, thereby also facilitating the intensification and acceleration of the MJO. 390 

Moreover, there is a significant distinction in the spatial correlation between fast and slow MJO and it happens as early as the 391 
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1st day. As the forecast lead time progresses, the accuracy of the moisture forecast deteriorates, while fast MJO events display 392 

comparatively better performance. The disparity in moisture anomalies is possibly a pivotal factor contributing to differences 393 

in forecast skills between the fast (32 days) and the slow MJO (21 days). This underscores the significance of improving 394 

moisture forecast in the MJO forecast. 395 

7 Summary and discussion 396 

7.1 Summary 397 

The graphical abstract presents a workflow for this paper, outlining the structure of this work. This study introduces a newly 398 

developed S2S ensemble forecast system of the IAP-CAS model. The introduction primarily focuses on the numerical model, 399 

initialization, ensemble generation, and post-processing aspects of the S2S system. Then we aim to identify potential 400 

possibilities for developing this S2S system through a comprehensive assessment of its forecast skills. Based on the 20-year 401 

hindcast experiment, the IAP-CAS model shows comparable skill (24 days) to other S2S models. However, the ensemble 402 

forecast for MJO has been demonstrated to be underdispersive. A detailed examination of the propagating MJO forecasted in 403 

the IAP-CAS model reveals that the amplitude of the convection is overestimated with an increasing propagation speed, 404 

particularly in the fast MJO events. These biases are accompanied by a faster dissipation of the MJO.  405 

The root cause of these biases lies in the model's wetter environment, which leads to enhanced convection and strengthened 406 

circulation coupled with convection. This, in turn, further amplifies convection during the development of propagating MJO. 407 

The gradual intensification of MJO strength and coupled Kelvin waves is mainly associated with the stronger amplitude of the 408 

low-level moisture advection (𝑉𝑉′���⃗ ⋅ ∇𝑄𝑄�) in the forecast. The overestimate in the zonal scale of Kelvin waves accelerates the 409 

propagation of the propagating MJO in the model. Similarly, the strengthening of Rossby waves also hastens the dissipation 410 

of the MJO. Moreover, the differences in forecast skills between the fast MJO and the slow MJO may be attributed to 411 

discrepancies in moisture anomalies (𝑄𝑄′) forecast. This further underscores the significance of accurate moisture forecasts. 412 

7.2 Discussion 413 

In Figure A4, we compare the forecast skill of the IAP-CAS model with 11 other S2S models. The MJO index of 12 S2S 414 

models and ERA-Interim from the S2S website (http://www.s2sprediction.net/) is used for evaluation during the standard 415 

hindcast period 2001-2010. In Figure A4, we observe improved forecast skill in ensemble forecasts compared to deterministic 416 

forecasts. Among the 12 S2S models, the IAP-CAS model exhibits MJO skill above the mean skill level, while the ECMWF 417 

model stands out as the highest-performing model. Figure A5a shows that the skill of individual members in ECMWF is 418 

approximately 17-18 days, whereas the ensemble mean demonstrates an extended skill of up to 30 days. This phenomenon 419 

may be attributed to the ECMWF model's considerable dispersion (Fig. A5b), which once again underscores the critical role 420 

of ensemble dispersion in forecasting uncertainties of weather and climate.  421 
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Therefore, the forthcoming phase in our model's development plan encompasses increasing model dispersion through 422 

improved ensemble perturbation methods, with the ultimate goal of improving model forecast skills. The method of orthogonal 423 

conditional nonlinear optimal perturbations (CNOPs, Mu et al. 2003) and the second-order exact sampling (Pham, 2001) are 424 

both promising approaches for generating initial perturbations in the model. This method allows the generation of a set of 425 

initial perturbations in different orthogonal perturbation subspaces, each with the maximum potential for nonlinear 426 

development. When applied to ensemble forecast using a simple Lorenz-96 model, the CNOPs method has demonstrated 427 

higher forecast skill compared to the commonly used linear Singular Vectors (SVs) method (Lorenz, 1996). Furthermore, 428 

PDAF (Parallel Data Assimilation Framework, Nerger et al., 2020) provides an efficient method known as second-order exact 429 

sampling, which uses the long-time variability of the model dynamics to estimate the uncertainty. Evidence has already 430 

suggested that the use of second-order exact sampling can greatly improve the skill in sea ice extent throughout the Arctic and 431 

along the Northern Sea Route (Yang et al., 2020). We plan to explore the application of CNOPs and second-order exact 432 

sampling in the IAP-CAS model in the future and eagerly anticipate the potentially significant results it may yield. Additionally, 433 

using machine learning to improve the skill of ensemble forecast is also a viable way to enhance the ensemble forecast of our 434 

model.  435 

In addition to exploring ensemble perturbations, we also intend to enhance the initialization system of the model. Recognizing 436 

the moisture is crucial in the forecast of MJO and acknowledging the issue of moisture bias in the IAP-CAS model, it is 437 

essential to take measures to ameliorate moisture forecast in our model. The recent research by Zeng (Zeng et al., 2023) 438 

provides convincing evidence that humidity initialization can indeed significantly enhance MJO forecast in the IAP-CAS S2S 439 

forecast system, especially in the 2 and 3 phase of MJO propagation. However, it is worth noting that changes in the mean 440 

state have a significant impact on MJO development (Hannah et al., 2015; Kim, 2019), we must pay attention to the influence 441 

of moisture initialization on the mean state. Moreover, the current S2S system’s initialization process uses the nudging method, 442 

and it is worthwhile to explore more efficient methods to enhance the initialization process. 443 

We are also considering increasing the resolution of the model to C384 (25 km) globally. A High-resolution coupled model 444 

could better represent the MJO (Crueger et al., 2013). This improvement could be attributed to the enhanced resolution, which 445 

better captures the ocean-atmosphere interaction – a critical factor for MJO convection. Increasing the resolution is also 446 

meaningful for enhancing forecasts in the MC region by accurately depicting terrain distortion (Hsu and Lee, 2005; Inness and 447 

Slingo, 2006; Wu and Hsu, 2009). Further optimizing the model's physical processes and dynamic-physical coupling is also 448 

believed to enhance the forecast of the MJO (Zhou and Harris, 2022). As the foreseeable resolution and complexity of the 449 

model increase in the future, the issue of power consumption on X86 architecture processors for handling the growing amount 450 

of data will become more pronounced. We have plans to port the model to the computing platform based on ARM architecture 451 

to address the challenges posed by the explosive growth of data. 452 
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Table 1 Configuration of the coupled climate system model CAS FGOALS-f2 453 

Component Model name 
Horizontal 

Resolution 
Vertical levels Reference 

Atmosphere FAMIL2 Cubed Sphere 

Grid (C96, 

~1°×1°) 

32 in the hybrid 

levels  

Li et al. 2019 

Land CLM4.0 Nested subgrid 

hierarchy (f09, 

~1°×1°) 

15 soil levels and 

3 snow levels 

Oleson et al. 2010; 

Lawrence et al. 

2011 

Ocean POP2 Displaced-pole 

grid (gx1v6, 

~1°×1°) 

60 levels Kerbyson and 

Jones 2005 

Sea ice CICE4 Displaced-pole 

grid (gx1v6, 

~1°×1°) 

5 levels Hunke et al. 2010 
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 454 
The graphical abstract 455 
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 456 
Figure 1. The structure of the IAP-CAS S2S ensemble forecast system  457 
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 458 

Figure 2. The initialization scheme of the S2S ensemble forecast system in the IAP-CAS model. The relaxation coefficient (N) as a 459 
function of time (t) in (a) the reanalysis nudging and (b) the forecast nudging. In (a), The reanalysis nudging begins on January 1, 460 
1976. The dots indicate the nudging process every 30 minutes. In (b), the solid lines of 4 colors represent the 4 ensemble members 461 
with their generation facilitated through the application of the time-lagged method. 462 
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 463 
Figure 3. MJO forecast skill of IAP-CAS for the annual MJO events over 20 years (1999-2018) re-forecast data. (a) The bivariate 464 
anomalous correlation coefficient (ACC) and (b) The Root Mean Squared Error (RMSE) varied with forecast lead days for 465 
individual members (gray solid line) and ensemble mean (red solid line). The blue solid line denotes the ensemble spread. (c) The 466 
ACC of individual members and ensemble mean, as generated by the time-lag method resulting in 16 ensemble members. The dashed 467 
line in (a) and (c) has the values of 0.5, and it represents 1.414 in (b). (d) The difference between RMSE and Spread of 4-member 468 
ensemble mean (purple solid line) and 16-member ensemble mean (green solid line). 469 
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 470 
Figure 4. The ACC (a) varied with forecast lead days for initially strong (red) and weak (black) cases and (b) varied with forecast 471 
lag days for target strong (red) and weak (black) cases from the ensemble mean. The dashed lines in (a) and (b) have the values of 472 
0.5. (c) The forecast of MJO amplitude varied with forecast lead days for initially strong cases from observation (black solid line), 473 
individual ensemble members of the model (red dashed line) and their ensemble mean (red solid line). (d) The forecast of MJO phase 474 
angle error (°) for initially strong cases (black solid line). The dashed line in (d) is the reference line with the values of 0. 475 
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 476 
Figure 5. 10° S–10° N averaged Precipitation anomalies (shading; mm day-1) and 850-hPa zonal winds anomalies (contours with an 477 
interval of 1 m s−1) varied with longitude (x-axis) and time lag (y-axis; days) composited for four types of the boreal winter MJO. 478 
The top row is for observation (NCEP winds and GPCP precipitation), and the bottom row is for model forecasts. The thin solid 479 
black lines represent positive values and the dashed lines represent negative values. The thick solid black line represents the 480 
propagation trajectory of the MJO, derived via least squares regression. The propagation speed of the propagating MJO is annotated 481 
in the top right corner of the panels. 482 

  



24 
 

 483 

Figure 6. The bivariate ACC as a function of forecast lead days for fast, slow, jumping, and standing MJO events. The dashed line 484 
has a value of 0.5.  485 
  486 
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 487 
Figure 7. Evolution patterns of the composite precipitation (shading; mm day-1) and 850-hPa winds (vectors; m s-1) anomalies 488 
(exceeding 2 m/s) for day 1, day 5, day10, day15 and day 20 in (a) observed fast MJO, (b) simulated fast MJO, (c) observed slow 489 
MJO and (d) simulated slow MJO. 490 
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 491 

Figure 8. The longitude-vertical profiles of winter (November–April) mean specific humidity (g kg-1) averaged over 10° S–10° N for 492 
(a) observation, (b) IAP-CAS model, and (c) the difference between IAP-CAS model and observation. 493 
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 494 

Figure 9. The composited longitude‐vertical structure of precipitation heating (contours; 1×10-2 J kg-1 s-1) and zonal and vertical 495 
winds anomalies (vectors; units are m/s for zonal winds and 0.01 Pa s−1 for vertical winds) averaged over 10° S–10° N for day 1, day 496 
5, day 10 in (a) observed fast MJO, (b) simulated fast MJO, (c) observed slow MJO and (b) simulated slow MJO.  497 
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 498 
Figure 10. The winter (November–April) mean specific humidity (g kg-1) on 850hPa for (a) observation and (b) IAP-CAS model. 499 
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 500 

Figure 11. The composited longitudinal structure of the 850hPa zonal wind anomalies (m s-1) averaged over 15° S–15° N for day 1, 501 
day 5, day10, day15 and day 20 from observation (black solid line) and IAP-CAS model (red solid line) in fast and slow MJO events. 502 
The gray dashed line is the reference line with the values of 0. The two blue dashed lines are 110° E and 150° E respectively, which 503 
denote the extension of the MC region. 504 
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 505 
Figure 12. Schematic diagrams illustrating the moisture mode theory on MJO propagation in the MC region. 506 

  



31 
 

 507 

Figure 13. The composited −𝑽𝑽′ ∙ 𝜵𝜵𝑸𝑸 (g kg-1 s-1) averaged over the MC region (15° S-15° N, 110° E-150° E) as a function of forecast 508 
lead days from observation (black solid line) and IAP-CAS model (red solid line) in (a) fast MJO and (b) slow MJO events. The gray 509 
dashed line is the reference line with the values of 0. 510 
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 511 
Figure. 14. Evolution patterns of the composite specific humidity anomalies (g kg-1) and winds (vectors; m s-1) anomalies (exceeding 512 
2 m/s) on 850hPa for day 1, day 5, day10, day15 and day 20 (a) observed fast MJO, (b) simulated fast MJO, (c) observed slow MJO 513 
and (b) simulated slow MJO. The spatial correlation coefficient between simulated and observed moisture anomalies is shown to the 514 
right of panels (b) and (c). 515 
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Appendix 516 

Table A1 Hybrid coefficient of hybrid sigma-pressure coordinates at layer interfaces in CAS FGOALS-f2 517 

Layer 
Coefficient of pressure 

coordinates 

The coefficient of 

sigma coordinates 
Layer 

Coefficient of pressure 

coordinates 

The coefficient of 

sigma coordinates 

1 100.00  0.00  18 27131.33  0.23  

2 400.00  0.00  19 24406.11  0.32  

3 818.60  0.00  20 21326.05  0.42  

4 1378.89  0.00  21 18221.18  0.51  

5 2091.80  0.00  22 15275.15  0.59  

6 2983.64  0.00  23 12581.68  0.67  

7 4121.79  0.00  24 10181.43  0.73  

8 5579.22  0.00  25 8081.90  0.79  

9 7419.79  0.00  26 6270.87  0.83  

10 9704.83  0.00  27 4725.35  0.87  

11 12496.34  0.00  28 3417.39  0.91  

12 15855.26  0.00  29 2317.75  0.93  

13 19839.62  0.00  30 1398.09  0.96  

14 24502.73  0.00  31 632.50  0.98  

15 28177.10  0.02  32 0.00  0.99  

16 29525.28  0.06  33 0.00  1.00  

17 29016.34  0.14     
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Table A2 Initialization information of the S2S ensemble forecast system 518 

Nudging type Data Assimilation Variable Data Frequency 

Reanalysis 

nudging 

Time-Lagged Nudging 

(Hoffman and Kalnay, 

1983; Jeuken et al., 1996) 

U, V, T, Ps, zs 
a FNL (http://rda.ucar.edu/datasets/ds083.2, 

ds083.2|DOI: 10.5065/D6M043C6) 

6h 

SST   NOAA OISST (Reynolds et al., 2007) 

Forecast 

nudging 

U, V, T, Ps, zs GFS weather forecast 6h 

a Table notes: U represents zonal wind, V represents meridional wind, T represents temperature, Ps represents surface pressure, 519 

zs represents surface geopotential height, and SST represents sea surface temperature. 520 
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Table A3 Introduction to the output data of the S2S ensemble forecast system 521 

Experiment 
Ensemble 

members 
Time range Frequency 

Forecast 

time 
Variable Resolution 

Interpolation 

method 

Hindcast 4  1999-2018 Daily 65 days 25 variables 

(A detailed 

list of 

variables is 

shown in 

TableA4) 

Horizontal:1.5°

×1.5° 

Vertical:7 levels 

(1000, 925, 850, 

700, 500, 300, 

and 200hPa) 

One-order 

conservation  
Real-time 

forecast 

16  2019 
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Table A4 List the output variables in the S2S ensemble forecast system 522 

Statistical 

process 
Level(s) 

Short 

name 
Standard name Unit 

Instantaneous 

value/24h 

The variables are 

located on 10 

pressure layers 

(1000, 925, 850, 

700, 500, 300, 200, 

100, 50, 10 hPa) 

gh Geopotential height gpm 

t Temperature K 

u U-velocity m s-1 

v V-velocity m s-1 

w Vertical velocity pa s-1 

The variable is 

located on 7 

pressure layers 

(1000, 925, 850, 

700, 500, 300, 200 

hPa) 

q Specific humidity kg kg-1 

2-dimensional 

variables 

w Vertical velocity pa s-1 

sp Surface pressure Pa 

lsm Land sea mask Proportion of 

land 

orog Orography gpm 

Daily average 

value 

tcc Total cloud cover % 

skt Skin temperature K 

2t Surface air temperature K 

2d Surface air dewpoint temperature 2d 

wtmp Sea surface temperature   K 

ci Sea ice cover   proportion 

https://confluence.ecmwf.int/display/S2S/S2S+geopotential+height
https://confluence.ecmwf.int/display/S2S/S2S+Temperature
https://confluence.ecmwf.int/display/S2S/S2S+U-Velocity
https://confluence.ecmwf.int/display/S2S/S2S+V-Velocity
https://confluence.ecmwf.int/display/S2S/S2S+Vertical+Velocity
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24-hour 

accumulated 

value 

sf Snow fall water equivalent kg m-2 

ttr Time-integrated top net thermal radiation W m-2 s 

ssr Time-integrated surface net solar radiation W m-2 s 

str Time-integrated surface net thermal radiation W m-2 s 

ssrd Time-integrated surface solar radiation downwards W m-2 s 

strd Time-integrated surface thermal radiation downwards W m-2 s 

Instantaneous 

value/6h 

mx2t6 Surface air maximum temperature K 

mn2t6 Surface air minimum temperature K 

10u 10 metre u-velocity m s-1 

10v 10 metre v-velocity m s-1 

6-hour 

accumulated 

value 

tp Total precipitation kg m-2 

  523 
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 524 
Figure A1. The structure of ecFlow (ECMWF Workflow). EcFlow, developed and maintained by the ECMWF, is a client/server 525 
workflow package designed to facilitate the execution of a substantial number of programs within a controlled environment. It is 526 
used in the IAP-CAS model to accomplish the download and preprocessing of the forcing data. 527 

  



39 
 

 528 
Figure A2. MJO forecast skill of the ensemble mean of time-lagged members as a function of lag days. The values on the bars 529 
represent the ACC on day 26. 530 

  531 



40 
 

 532 
Figure A3. Evolution patterns of the composite precipitation (shading; mm day-1) and 850-hPa winds (vectors; m s-1) anomalies 533 
(exceeding 2 m/s) for day 1, day 5, day10, day15 and day 20 in (a) observed standing MJO, (b) simulated standing MJO, (c) observed 534 
Jumping MJO and (d) simulated Jumping MJO. 535 
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 536 
Figure A4. The MJO forecast skill of 12 S2S models, providing comparisons between various model versions over the years, and the 537 
latest versions of 12 models. The evaluation covers the period from 2001 to 2010, except for CMA, which spans from 2008 to 2013. 538 
The solid lines represent the skill of ensemble mean forecasts, while the dashed lines represent the skill of deterministic forecasts.  539 
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 540 
Figure A5. The ACC (a) and the RMSE (b) of ECMWF (2019 version) from individual members (gray solid line), ensemble ctrl 541 
(yellow solid line), and 10-member ensemble mean (red solid line) as a function of forecast lead days. The blue solid line denotes the 542 
ensemble spread. The dashed line in (a) has a value of 0.5, and it represents 1.414 in (b). 543 

544 
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Code availability  545 

The code of the IAP-CAS model is archived on Zenodo (https://doi.org/10.5281/zenodo.10791355). The code used to 546 

reproduce the figures in this work can be obtained from https://doi.org/10.5281/zenodo.10817813. 547 
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v/products/weather-climate-models/global-forecast (GFS weather forecast). The hindcast dataset of the IAP-CAS S2S 552 
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