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Abstract. The dissipation rates of the basic second-order moments are the key parameters controlling turbulence energetics 

and spectra, turbulent fluxes of momentum and heat, and playing a vital role in turbulence modelling. In this paper, we use the 

results of Direct Numerical Simulations (DNS) to evaluate dissipation rates of the basic second-order moments and revise the 

energy and flux-budget turbulence closure theory for stably stratified turbulence. We delve into the theoretical implications of 20 

this approach and substantiate our closure hypotheses through DNS data. We also show why the concept of down-gradient 

turbulent transport becomes incomplete when applied to the vertical turbulent flux of potential temperature under stable 

stratification. We reveal essential feedback between the turbulent kinetic energy, the vertical turbulent flux of buoyancy and 

the turbulent potential energy, which is responsible for maintaining shear-produced stably stratified turbulence for any 

Richardson number. 25 

1 Introduction 

Turbulence and associated turbulent transport have been studied theoretically, experimentally, observationally and numerically 

during decades [see books by Batchelor (1953); Monin and Yaglom (1971, 2013); Tennekes and Lumley (1972); Frisch (1995); 

Pope (2000); Davidson (2013); Rogachevskii (2021), and references therein], but some important questions remain. This is 

particularly true in applications to atmospheric physics and geophysics where Reynolds and Peclet numbers are extremely 30 
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large so that the governing equations are strongly nonlinear. The classical Kolmogorov’s theory (Kolmogorov 1941a,b; 1942; 

1991) has been formulated for neutrally stratified homogeneous and isotropic turbulence.  

In atmospheric boundary layers, temperature stratification causes turbulence to become anisotropic and inhomogeneous 

making some assumptions underlying Kolmogorov’s theory questionable. Numerous alternative turbulence closure theories 

[see reviews by Weng and Taylor (2003); Umlauf and Burchard (2005); Mahrt (2014)] have been formulated using the budget 35 

equations not only for turbulent kinetic energy (TKE), but also for turbulent potential energy (TPE) (see, e.g., Holloway, 1986; 

Ostrovsky and Troitskaya, 1987; Dalaudier and Sidi, 1987; Hunt et al., 1988; Canuto and Minotti, 1993; Schumann and Gerz, 

1995; Hanazaki and Hunt, 1996; Keller and van Atta, 2000; Canuto et al., 2001; Stretch et al., 2001; Cheng et al., 2002; 2002; 

Hanazaki and Hunt, 2004; Rehmann and Hwang, 2005; Umlauf, 2005). The budget equations for all three energies, TKE, TPE 

and total turbulent energy (TTE), were considered by Canuto and Minotti (1993), Elperin et al. (2002, 2006), Zilitinkevich et 40 

al. (2007), and Canuto et al. (2008). 

The energy and flux budget (EFB) turbulence closure theory which is based on the budget equations for the densities of TKE, 

TPE and turbulent fluxes of momentum and heat, has been developed for stably stratified atmospheric flows (Zilitinkevich et 

al., 2007, 2008, 2009, 2013; Kleeorin et al. 2019), for surface layers in atmospheric convective turbulence (Rogachevskii et 

al. 2022) and the core of the convective boundary layer (Rogachevskii and Kleeorin, 2024), as well as for passive scalar 45 

transport (Kleeorin et al. 2021). The EFB closure theory has shown that strong atmospheric stably stratified turbulence is 

maintained by large-scale shear (mean wind) for any stratification, and the “critical” Richardson number, considered many 

years as a threshold between the turbulent and laminar states of the flow, actually separates two turbulent regimes: the strong 

turbulence typical of atmospheric boundary layers and the weak three-dimensional turbulence typical of the free atmosphere 

and characterised by a strong decrease in the turbulent heat transfer in comparison to the momentum transfer. 50 

Some other turbulent closure models (Mauritsen et al. 2007, Canuto et al., 2008, Sukoriansky and Galperin, 2008, Li et al. 

2016) do not imply the critical Richardson number, so shear-generated turbulent mixing may persist for any stratification. In 

particular, Mauritsen et al. (2007) have developed a turbulent closure based on the budget equation for TTE (instead of TKE) 

and different observational findings to take into account the mean flow stability. They used this turbulent closure model to 

study the turbulent transfer of heat and momentum under very stable stratification. In their model, whereas the turbulent heat 55 

flux tends toward zero beyond a certain stability limit, the turbulent stress stays finite. However, the model by Mauritsen et al. 

(2007) does not use the budget equation for TPE and the vertical turbulent heat flux. 

L’vov et al. (2008) have performed detailed analyses of the budget equations for the Reynolds stresses in the turbulent 

boundary layer (relevant to the strong turbulence regime) taking explicitly into consideration the dissipative effect in the 

horizontal turbulent heat flux budget equation, in contrast to the EFB “effective-dissipation approximation” adopted in the 60 

EFB turbulent closure model. However, the theory by L’vov et al. (2008) still contains the critical gradient Richardson number 

for the existence of the shear-produced turbulence. 

Sukoriansky and Galperin (2008) apply a quasi-normal scale elimination theory that is similar to the renormalization group 

analysis. Sukoriansky and Galperin (2008) do not use the budget equations for TKE, TPE and TTE in their analysis. This 
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theory correctly describes the dependence of the turbulent Prandtl number versus the gradient Richardson number and does 65 

not imply the critical gradient Richardson number for the existence of turbulence. However, this approach does not have 

detailed Richardson number dependences of the other non-dimensional parameters, like the ratio between TPE and TTE, 

dimensionless turbulent flux of momentum or dimensionless vertical turbulent flux of potential temperature. Their background 

non-stratified shear-produced turbulence is assumed to be isotropic and homogeneous. Canuto et al. (2008) have generalised 

their original model (see Cheng et al., 2002) introducing the new parameterization for the buoyancy time scale to accommodate 70 

the existence of stably stratified shear-produced turbulence at arbitrary Richardson numbers. 

Li et al. (2016) have developed the co-spectral budget (CSB) closure approach which is formulated in the Fourier space and 

integrated across all turbulent scales to obtain turbulent characteristics in physical space. The CSB model allows turbulence to 

exist at any gradient Richardson number. However, the CSB model yields different predictions for the vertical anisotropy 

versus Richardson number compared to the EFB theory. All state-of-the-art turbulent closures follow the so-called 75 

Kolmogorov hypothesis: all dissipation time scales of turbulent second-order moments are assumed to be proportional to each 

other, which at first glance looks reasonable but, in fact, hypothetical for stably stratified turbulence. 

The present study aims to demonstrate the dependence of dissipation time scales of basic second-order moments on stability 

through DNS experiments. The obtained numerical results allow us to modify the EFB turbulence closure theory to account 

for that dependency. It is worth noting that the DNS presented here are limited to bulk Richardson numbers (based on the wall 80 

velocity and temperature differences and channel height) up to Rib = 0.11 and Reynolds numbers (based on the wall velocity 

difference and channel height, see Sect. 3) up to Re = 120000. 

This paper is organised as follows. In Section 2, we formulate basic budget equations and main assumptions in the framework 

of the EFB turbulence closure theory. Section 3 describes the setup for DNS of stably stratified turbulent plane Couette flow 

to determine the vertical profiles of the dissipation time scales of turbulent second-order moments. In Section 4, we formulate 85 

the modified EFB turbulence closure theory considering the dependencies of the dissipation time scales of basic second-order 

moments on the gradient Richardson number obtained from DNS. There, we also perform validation of the modified EFB 

turbulence closure model which yields vertical profiles of the basic turbulence parameters (including the turbulent Prandtl 

number, the ratio of TPE to TKE, the normalised turbulent heat flux, etc.) using the data from the DNS. Finally, in Section 5, 

we discuss the obtained results and draw the conclusions. 90 

2 Problem setting and basic equations 

We consider plane-parallel, stably stratified dry-air flow and employ the familiar budget equations underlying turbulence-

closure theory (e.g., Kleeorin et al. 2021; Zilitinkevich et al., 2013; Kaimal and Fennigan, 1994; Canuto et al., 2008) for the 

Reynolds stress, 𝜏𝑖𝑗 = 〈𝑢𝑖𝑢𝑗〉, the turbulent flux of potential temperature, 𝐹𝑖 = 〈𝜃𝑢𝑖〉, and the intensity of potential temperature 

fluctuations, 𝐸𝜃 = 〈𝜃2〉/2: 95 

𝐷𝜏𝑖𝑗

𝐷𝑡
+

𝜕

𝜕𝑧
Φ𝑖𝑗3

(𝜏)
= −𝜏𝑖3

𝜕𝑈𝑗

𝜕𝑧
− 𝜏𝑗3

𝜕𝑈𝑖

𝜕𝑧
− [𝜀𝑖𝑗

(𝜏)
− 𝛽(𝐹𝑗𝛿𝑖3 + 𝐹𝑖𝛿𝑗3) − 𝑄𝑖𝑗],      (1) 
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𝐷𝐹𝑖

𝐷𝑡
+

𝜕

𝜕𝑧
Φ𝑖

(𝐹)
= 𝛽𝛿𝑖3〈𝜃2〉 −

1

𝜌0
〈𝜃

𝜕𝑝

𝜕𝑥𝑖
〉 − 𝜏𝑖3

𝜕Θ

𝜕𝑧
− 𝐹𝑧

𝜕𝑈𝑖

𝜕𝑧
− 𝜀𝑖

(𝐹)
,       (2) 

𝐷𝐸𝜃

𝐷𝑡
+

𝜕

𝜕𝑧
Φ(𝜃) = −𝐹𝑧

𝜕Θ

𝜕𝑧
− 𝜀𝜃 .          (3) 

Here, 𝑥1 = 𝑥 and 𝑥2 = 𝑦 are horizontal coordinates, 𝑥3 = 𝑧 is the vertical coordinate; 𝑡 is time; 𝐔 = (𝑈1, 𝑈2, 𝑈3) = (𝑈, 𝑉, 𝑊) 

is the mean flow velocity; 𝐮 = (𝑢1, 𝑢2, 𝑢3) = (𝑢, 𝑣, 𝑤) are velocity fluctuations; Θ = 𝑇(𝑃0/𝑃)1−1/𝛾  is the mean potential 100 

temperature (expressed through absolute temperature, 𝑇 , and pressure, 𝑃); 𝑇0, 𝑃0 and 𝜌0 are reference values of temperature, 

pressure and density, respectively; 𝛾 = 𝑐𝑝/𝑐𝑣 = 1.41  is the ratio of specific heats; 𝜃  and 𝑝  are fluctuations of potential 

temperature and pressure; 𝐷/𝐷𝑡 = 𝜕/𝜕𝑡 + 𝑈𝑘𝜕/𝜕𝑥𝑘  is the advective derivative; angle brackets denote averaging; 𝛽 = 𝑔/𝑇0 

is the buoyancy parameter; 𝑔 is the acceleration due to gravity; 𝛿𝑖𝑗 is the unit tensor (𝛿𝑖𝑗 = 1 for 𝑖 = 𝑗 and 𝛿𝑖𝑗 = 0 for 𝑖 ≠ 𝑗); 

Φ𝑖𝑗3
(𝜏)

, Φ𝑖
(𝐹)

 and Φ(𝜃)  are the third-order moments, which describe turbulent transport of the second-order moments under 105 

consideration: 

Φ𝑖𝑗3
(𝜏)

= 〈𝑢𝑖𝑢𝑗𝑤〉 +
1

𝜌0
(〈𝑝𝑢𝑖〉𝛿𝑗3 + 〈𝑝𝑢𝑗〉𝛿𝑖3) − 𝜈 (〈𝑢𝑖

𝜕𝑢𝑗

𝜕𝑧
〉 + 〈𝑢𝑗

𝜕𝑢𝑖

𝜕𝑧
〉),      (4) 

Φ𝑖
(𝐹)

= 〈𝑢𝑖𝑤𝜃〉 − 𝜈 〈𝜃
𝜕𝑢𝑖

𝜕𝑧
〉 − 𝜅 〈𝑢𝑖

𝜕𝜃

𝜕𝑧
〉,         (5) 

Φ(𝜃) =
1

2
〈𝜃2𝑤〉 −

𝜅

2

𝜕

𝜕𝑧
〈𝜃2〉;          (6) 

𝑄𝑖𝑗  are the correlations between fluctuations of pressure and strain-rate tensor, which control the interactions between the 110 

Reynolds stress components: 

𝑄𝑖𝑗 =
1

𝜌0
〈𝑝 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)〉.           (7) 

Here, 𝜀𝑖𝑗
(𝜏)

, 𝜀𝑖
(𝐹)

 and 𝜀𝜃 are the dissipation rates of the second-order moments: 

𝜀𝑖𝑗
(𝜏)

= 2𝜈 〈
𝜕𝑢𝑖

𝜕𝑧

𝜕𝑢𝑗

𝜕𝑧
〉,           (8) 

𝜀𝑖
(𝐹)

= (𝜈 + 𝜅) 〈
𝜕𝑢𝑖

𝜕𝑧

𝜕𝜃

𝜕𝑧
〉,           (9) 115 

𝜀𝜃 = 𝜅 〈(
𝜕𝜃

𝜕𝑧
)

2
〉,            (10) 

where 𝜈 is kinematic viscosity and 𝜅 is thermal conductivity. 

The budgets of TKE components, 𝐸𝑖 = 〈𝑢𝑖
2〉/2 (𝑖 = 1,2,3), are determined by Eq. (1) for 𝑖 = 𝑗, which yields the familiar TKE 

budget equation: 
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𝐷𝐸𝐾

𝐷𝑡
+

𝜕

𝜕𝑧
(

1

2
〈𝑢𝑖

2𝑤〉 +
1

𝜌0
〈𝑝𝑤〉 −

𝜈

2

𝜕〈𝑢𝑖
2〉

𝜕𝑧
) = −𝛕 ∙

𝜕𝐔

𝜕𝑧
+ 𝛽𝐹𝑧 − 𝜀𝐾,       (11) 120 

where 𝐸𝐾 = ∑ 𝐸𝑖 is TKE and 𝜀𝐾 = ∑ 𝜀𝑖𝑖
(𝜏)

/2 is the TKE dissipation rate. The sum of the terms 𝑄𝑖𝑖  (the trace of the tensor 𝑄𝑖𝑗) 

is equal to zero because of the incompressibility constraint on the flow velocity field, 𝜕𝑢𝑖/𝜕𝑥𝑖 = 0, i.e. 𝑄𝑖𝑗  only redistribute 

energy between TKE components.  

Likewise, 𝜀𝜃 is the dissipation rate of the intensity of potential temperature fluctuations, 𝐸𝜃; and 𝜀𝑖
(𝐹)

 are the dissipation rates 

of the three components of the turbulent flux of potential temperature, 𝐹𝑖. 125 

Following Kolmogorov (1941, 1942), the dissipation rates 𝜀𝐾  and 𝜀𝜃  are taken proportional to the dissipating quantities 

divided by corresponding time scales,  

𝜀𝐾 =
𝐸𝐾

𝑡𝐾
, 𝜀𝜃 =

𝐸𝜃

𝑡𝜃
,            (12) 

where 𝑡𝐾 is the TKE dissipation time scale and 𝑡𝜃 is the dissipation time scale of 𝐸𝜃 . Here, the formulation of the dissipation 

rates is not hypothetical: it merely expresses one unknown (dissipation rate) through another (dissipation time scale). 130 

In this study, we consider the EFB theory in its simplest, algebraic form, neglecting non-steady terms in all budget equations 

and neglecting divergence of the fluxes of TKE, TPE and fluxes of Fz (determined by third-order moments). This approach is 

reasonable because, e.g., the characteristic times of variations of the second moments are much larger than the turbulent time 

scales for large Reynolds and Peclet numbers. We also assume that the terms related to the divergence of the fluxes of TKE 

and TPE for stably stratified turbulence are much smaller than the rates of production and dissipation in budget equations (3) 135 

and (11). In this case, the TKE budget equation, Eq. (11), and the budget equation for 𝐸𝜃 , Eq. (3), become 

0 = −𝜏
𝜕𝑈

𝜕𝑧
+ 𝛽𝐹𝑧 − 𝜀𝐾,           (13) 

0 = −𝐹𝑧
𝜕Θ

𝜕𝑧
− 𝜀𝜃.            (14) 

The intensity of the potential temperature fluctuations 𝐸𝜃  determines TPE: 

𝐸𝑃 =
𝛽𝐸𝜃

𝜕Θ 𝜕𝑧⁄
,            (15) 140 

so that Eq. (14) becomes 

0 = −𝛽𝐹𝑧 − 𝜀𝑃,            (16) 

Where 𝜀𝑃 = 𝐸𝑃/𝑡𝜃 is the TPE dissipation time. 

The first term on the right-hand side (r.h.s.) of Eq. (13), −𝜏 𝜕𝑈 𝜕𝑧⁄ , is the rate of the TKE production, while the second term, 

𝛽𝐹𝑧, is the buoyancy which in stably stratified flow causes decay of TKE, i.e., it results in conversion of TKE into TPE. The 145 

ratio of these terms is the flux Richardson number: 



6 

 

Ri𝑓 ≡ −
𝛽𝐹𝑧

𝜏𝜕𝑈 𝜕𝑧⁄
,            (17) 

and this dimensionless parameter characterises the effect of stratification on turbulence. 

Taking into account Eq. (17), the steady-state versions of TKE and TPE budget equations, Eqs. (13) and (14), can be rewritten 

as 150 

𝐸𝐾 = 𝜏
𝜕𝑈

𝜕𝑧
(1 − Ri𝑓)𝑡𝐾,           (18) 

𝐸𝑃 = 𝜏
𝜕𝑈

𝜕𝑧
Ri𝑓𝑡𝜃.            (19) 

Thus, the ratio of TPE to TKE is: 

𝐸𝑃

𝐸𝐾
=

Ri𝑓

1−Ri𝑓

𝑡𝜃

𝑡𝐾
.            (20) 

Zilitinkevich et al. (2013) suggested the following relation linking 𝑅𝑖𝑓 with another stratification parameter, 𝑧/𝐿: 155 

Ri𝑓 =
𝑘𝑧/𝐿

1+𝑘𝑅∞
−1𝑧/𝐿

,  
𝑧

𝐿
=

𝑅∞

𝑘

Ri𝑓

𝑅∞−Ri𝑓
,         (21) 

where 𝐿 = −𝜏3/2/𝛽𝐹𝑧 is the Obukhov length scale, 𝑘 = 0.4 is the von Kármán constant, and 𝑅∞ = 0.2 is the maximum value 

of the flux Richardson number. 

On the r.h.s. of Eq. (20), there is an unknown ratio of two dissipation time scales, 𝑡𝜃/𝑡𝐾. The Kolmogorov hypothesis suggests 

that it is a universal constant. We do not imply this assumption, but instead investigate a possible stability dependency of 160 

dissipation time scales ratios and improve the EFB turbulence closure model accounting for it. To this end, we perform DNS 

of stably stratified turbulent plane Couette flow (see Section 3) to measure the dissipation time scales of basic second-order 

moments and validate the modified EFB turbulence closure model (see Section 4). 

3 Methods 

For our study, we conducted a series of direct numerical simulations of stably stratified turbulent plane Couette flow. This 165 

flow occurs between two parallel plates that move relative to each other, producing shear and turbulence, with the plates having 

different temperatures, thus creating stable stratification. In Couette flow, the total (turbulent plus molecular) vertical fluxes 

of momentum and potential temperature remain constant, independent of distance from the walls, which, in particular, assures 

a very certain fixed value of the Obukhov length scale. Fig. 1 illustrates the profiles of mean flow velocity and mean potential 

temperature. We recall that all our derivations are relevant to the well-developed turbulence regime where molecular transports 170 

are negligible compared to turbulent transports so that turbulent fluxes practically coincide with total fluxes. This is the case 

in our DNS, except for the narrow near-wall viscous-turbulent flow-transition layers. Data from these layers, obviously 

irrelevant to the turbulence regime we consider, are shown by grey points in the figures and are ignored in fitting procedures. 
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In further analysis, we primarily utilise 𝑧/𝐿 as a stratification parameter instead of Ri or Ri𝑓 because it offers a better dynamic 

range in our experiments. While Ri remains practically constant in each DNS run and Ri𝑓 is limited in its growth, the parameter 175 

𝑧/𝐿 is determined by the distance from the walls, thus varying significantly in every DNS run. 

  

Figure 1: Profiles of mean flow velocity and mean potential temperature in stably stratified turbulent plane Couette flow. Light grey 

dots belong to the viscous sublayer. 

 

Numerical simulation of stably stratified turbulent Couette flow was performed using the unified DNS-, LES- and RANS- 180 

code developed at the Moscow State University (MSU) and the Institute of Numerical Mathematics (INM) of the Russian 

Academy of Science (see, Mortikov, 2016; Mortikov et al., 2019; Bhattacharjee et al., 2022; Debolskiy et al., 2023; Gladskikh 

et al., 2023, Zasko et al., 2023). The code is designed for high-resolution simulations on modern-day HPC systems. The DNS 

part of the code solves the finite-difference approximation of the incompressible Navier-Stokes system of equations under the 

Boussinesq approximation. Conservative schemes on the staggered grid (Morinishi et al., 1998; Vasilyev, 2000) of 4th-order 185 

accuracy are used in horizontal direction, while in the vertical direction the spatial approximation is restricted to 2nd-order 

accuracy with near-wall grid resolution refinement sufficient to resolve near-wall viscous region. The time step used in the 

simulations was determined by Courant–Friedrichs–Lewy (CFL) restrictions, with CFL maintained at approximately 0.1 in all 

runs. This corresponds to a value of 𝑢∗
2Δ𝑡/𝜈 on the order of 0.01. The projection method (Brown et al., 2001) is used for the 

time-advancement of momentum equations coupled with the incompressibility condition, while the multigrid method is applied 190 

to solve the Poisson equation to ensure that the velocity is divergence-free at each time step. For the Couette flow periodic 

boundary conditions are used in the horizontal directions, and no-slip/no-penetration conditions are set on the channel walls 

for the velocity. The stable stratification is maintained by prescribed Dirichlet boundary conditions on the potential 

temperature. In all experiments, the value of molecular Prandtl number (ratio of kinematic viscosity and thermal diffusivity of 

the fluid) was fixed at 0.7 based on its typical value for air (Monin and Yaglom, 1971). The simulations were performed for a 195 

wide range of Reynolds numbers, Re, defined by the wall velocity difference, channel height and kinematic viscosity: from 
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40000 up to 120 000 (see Table 1). All experiments were carried out using the resources of MSU and CSC HPC centers. For 

the maximum Re values achieved the numerical grid consisted of more than 2 × 108 cells and the calculations used about 10 

000 CPU cores. 

 200 

Table 1: Overview of DNS experiments and key parameters. 

DNS run name 
𝐑𝐞 

(𝑼𝑯/𝝂) 

𝐑𝐢𝐛 

(𝜷𝚯/𝑼𝟐) 
Grid size 

Domain 

(𝑯) 

𝐑𝐞𝛕 

(𝒖∗𝑯/𝝂 ) 
Viscous sublayer 

(𝒛 < 𝟓𝟎𝝂/𝝉𝟏/𝟐) 

CPU runtime 

(s) 

Averaging time 

(𝑻𝒖∗/𝑯) 

Re40Ri006 40000 0.06 388 × 260 × 260 6 × 4 × 1 639.96 34.3% 182180 38.40 

Re40Ri008 40000 0.08 388 × 260 × 260 6 × 4 × 1 525.51 43.2% 165851 31.53 

Re40Ri009 40000 0.09 388 × 260 × 260 6 × 4 × 1 439.96 56.5% 152307 26.40 

Y8Re40Ri006 40000 0.06 388 × 516 × 260 6 × 8 × 1 639.30 34.3% 316204 38.36 

Y8Re40Ri008 40000 0.08 388 × 516 × 260 6 x 8 x 1 524.21 44.2% 302063 31.45 

Re80Ri008 80000 0.08 772 × 516 × 516 6 × 4 × 1 1001.11 21.2% 891598 30.03 

Re80Ri009 80000 0.09 772 × 516 × 516 6 × 4 × 1 912.07 23.5% 946772 27.36 

Re80Ri010 80000 0.10 772 × 516 × 516 6 × 4 × 1 816.91 26.7% 936989 24.51 

Re80Ri011 80000 0.11 772 × 516 × 516 6 × 4 × 1 684.19 32.8% 961394 20.53 

Re120Ri008 120000 0.08 772 × 516 × 516 6 × 4 × 1 1328.72 21.2% 848043 26.57 

 

For each Reynolds number, we conducted a series of experiments. Beginning with neutral conditions (no imposed gradient of 

the mean potential temperature), we incrementally increased the bulk Richardson number, which characterises the stable 

stratification, in each successive experiment. By gradually increasing stability in each experiment, we were able to cover a 205 

wide range of Ri values, extending from neutral to stably stratified states. In each run, the turbulent flow was allowed sufficient 

time to develop and reach statistical steady-state conditions, which required a spin-up period of at least 15 𝐻/𝑢∗ periods. This 

ensured that parameters such as the total momentum flux remained constant and the TKE balance was in a steady state. The 

fully-developed steady state was used as initial conditions for the higher Ri or Re experiment setups. Additionally, all terms in 

the second-order moments budget equations (Eqs. 1-3) were evaluated consistently using the finite-difference approximation 210 

used, resulting in negligible residual. This approach enabled us to comprehensively study the characteristics of shear-produced 

stably stratified turbulence, explicitly resolving all dissipation time scales of turbulent second-order moments. 

4 Modified EFB closure model for the steady-state regime of turbulence 

In the steady-state, Eq. (1) for the vertical component of the turbulent flux of momentum, 𝜏, becomes 
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0 = −2𝐸𝑧
𝜕𝑈

𝜕𝑧
− [𝜀𝜏 − 𝛽𝐹𝑥 − 𝑄13].          (22) 215 

Following Zilitinkevich et al. (2007, 2013) we define the sum of all terms in square brackets on the r.h.s. of Eq. (22) as the 

“effective dissipation”: 

𝜀𝜏
(𝑒𝑓𝑓)

= 𝜀𝜏 − 𝛽𝐹𝑥 − 𝑄13 ≡
𝜏

𝑡𝜏
.          (23) 

Thus, Eq. (22) becomes 

0 = −2𝐸𝑧
𝜕𝑈

𝜕𝑧
−

𝜏

𝑡𝜏
,           (24) 220 

yielding the well-known down-gradient formulation of the vertical turbulent flux of momentum: 

𝜏 = −𝐾𝑀
𝜕𝑈

𝜕𝑧
,  𝐾𝑀 = 2𝐴𝑧𝐸𝐾𝑡𝜏,          (25) 

where 𝐴𝑧 ≡ 𝐸𝑧/𝐸𝐾 is the vertical share of TKE (the vertical anisotropy parameter). Substituting Eq. (25) into Eq. (18), we 

obtain 

(
𝜏

𝐸𝐾
)

2

=
2𝐴𝑧

1−Ri𝑓

𝑡𝜏

𝑡𝐾
.            (26) 225 

In Eq. (26) all the variables are exactly resolved numerically in DNS making a detailed investigation on 𝑡𝜏/𝑡𝐾 possible. Fig. 2 

demonstrates that the dissipation time scale ratio 𝑡𝜏/𝑡𝐾 is a function of the stratification parameter 𝑧/𝐿 rather than a constant. 

We propose to approximate this function with a ratio of two first-order polynomials: 

𝑡𝜏

𝑡𝐾
=

𝐶1
𝜏𝐾𝑧/𝐿+𝐶2

𝜏𝐾

𝑧/𝐿+𝐶3
𝜏𝐾 .            (27) 

Here, the dimensionless empirical constants are obtained from the best fit of Eq. (27) to DNS bin-averaged data: 𝐶1
𝜏𝐾 = 0.08, 230 

𝐶2
𝜏𝐾 = 0.4, 𝐶3

𝜏𝐾 = 2. The fitting is done using the rational regression model of Curve Fitting Toolbox version: 3.5.13 (R2021a). 

The ratio of two first-order polynomials is chosen as a simpler fitting function that could provide monotonicity, reasonable 

smoothness, and clear asymptotes The only three adjustable parameters of this approximation correspond to the function value 

at 𝑧/𝐿 = 0, the 𝑧/𝐿 → ∞ limit, and the transition between them. 
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 235 

Figure 2: The ratio of the effective dissipation time scale of 𝝉 and the dissipation time scale of TKE, 𝒕𝝉/𝒕𝑲, versus 𝒛/𝑳. The data used 

for the calibration are obtained in DNS experiments employing the MSU/INM unified code. Only every 6th data point is presented 

to increase visibility. For the full dataset, please see Kadantsev and Mortikov, 2024. The near-surface layer essentially affected by 

molecular viscosity (𝟎 < 𝒛 < 𝟓𝟎𝝂/𝝉𝟏/𝟐) is excluded from the analysis. This sub-layer is represented by the light grey dotted lines. 

The black solid line shows Eq. (27) with empirical constants 𝑪𝟏
𝝉𝑲 = 𝟎. 𝟎𝟖, 𝑪𝟐

𝝉𝑲 = 𝟎. 𝟒 and 𝑪𝟑
𝝉𝑲 = 𝟐, obtained from the best fit of Eq. 240 

(27) to DNS data in the turbulent layer: 𝒛 > 𝟓𝟎𝝂/𝝉𝟏/𝟐 . 

Proceeding to the vertical flux of potential temperature, 𝐹𝑧, we derive its steady-state budget equation from Eq. (2): 

𝜕

𝜕𝑧
Φ𝑧

(𝐹)
= 𝛽〈𝜃2〉 −

1

𝜌0
〈𝜃

𝜕𝑝

𝜕𝑧
〉 − 2𝐸𝑧

𝜕Θ

𝜕𝑧
− 𝜀𝐹.         (28) 

DNS modelling has shown that 
𝜕

𝜕𝑧
Φ𝑧

(𝐹)
 term to be of the same order of magnitude as 𝜀𝐹, and it is of the same sign, so we 

introduce the ‘effective dissipation rate’ 𝜀𝐹
(𝑒𝑓𝑓)

: 245 

𝜀𝐹
(𝑒𝑓𝑓)

= 𝜀𝐹 +
𝜕

𝜕𝑧
Φ𝑧

(𝐹)
≡

𝐹𝑧

𝑡𝐹
.          (29) 

Consequently, Eq. (28) reduces to 
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0 = 𝛽〈𝜃2〉 −
1

𝜌0
〈𝜃

𝜕𝑝

𝜕𝑧
〉 − 2𝐸𝑧

𝜕Θ

𝜕𝑧
−

𝐹𝑧

𝑡𝐹
.         (30) 

Traditionally, the pressure term was either assumed to be negligible or declared to be proportional to 𝛽〈𝜃2〉  term (see 

Zilitinkevich et al. 2007; 2013). However, our DNS data have shown that it is neither negligible nor proportional to any other 250 

term in the budget equation, Eq. (30). Instead, we found it is well approximated by a linear combination of the production and 

transport terms of Eq. (30) (see Fig. 3): 

1

𝜌0
〈𝜃

𝜕𝑝

𝜕𝑧
〉 = 𝐶𝜃𝛽〈𝜃2〉 + 𝐶∇2𝐸𝑧

𝜕Θ

𝜕𝑧
.          (31) 

The dimensionless constants 𝐶𝜃 = 0.82 and 𝐶∇ = −0.80 are obtained from the best fit of Eq. (31) to DNS data. 

 255 

Figure 3: Comparison of two terms, 𝜷〈𝜽𝟐〉/
𝟏

𝝆𝟎
〈𝜽

𝝏𝒑

𝝏𝒛
〉 and 𝟐𝑬𝒛

𝝏𝚯

𝝏𝒛
/

𝟏

𝝆𝟎
〈𝜽

𝝏𝒑

𝝏𝒛
〉, after the same DNS for stably stratified Couette flow. The 

black solid line represents the linear dependency of the latter on the former, which turns into Eq. (31) after multiplication by 
𝟏

𝝆𝟎
〈𝜽

𝝏𝒑

𝝏𝒛
〉 

and simple recombination. The fitting coefficients are 𝑪𝜽 = 𝟎. 𝟖𝟐 and 𝑪𝛁 = −𝟎. 𝟖𝟎. 

Substituting Eq. (31) into Eq. (30), we rewrite the budget equation as 



12 

 

0 = (1 − 𝐶𝜃)𝛽〈𝜃2〉 − (1 + 𝐶∇)2𝐸𝑧
𝜕Θ

𝜕𝑧
−

𝐹𝑧

𝑡𝐹
.         (32) 260 

Substituting Eq. (15) for 〈𝜃2〉 into Eq. (32) allows expressing 𝐹𝑧 through familiar temperature-gradient expression: 

𝐹𝑧 = −𝐾𝐻
𝜕Θ

𝜕𝑧
,  𝐾𝐻 = [(1 + 𝐶∇) − (1 − 𝐶𝜃)

𝐸𝑃

𝐴𝑧𝐸𝐾
] 2𝐴𝑧𝐸𝐾𝑡𝐹.       (33) 

Substituting Eq. (33) into Eq. (14), gives 

𝐹𝑧
2

𝐸𝜃𝐸𝐾
= 2 [(1 + 𝐶∇)𝐴𝑧 − (1 − 𝐶𝜃)

𝐸𝑃

𝐸𝐾
]

𝑡𝐹

𝑡𝜃
.         (34) 

Next, the turbulent Prandtl number, defined as Pr 𝑇 = 𝐾𝑀/𝐾𝐻 , is given by 265 

Pr 𝑇 =
𝑡𝜏

𝑡𝐹
/ [(1 + 𝐶∇) − (1 − 𝐶𝜃)

𝐸𝑃

𝐴𝑧𝐸𝐾
].         (35) 

Eqs. (34) and (35) provide us with two constrains on the function in the square brackets. First, the left-hand side of Eq. (34) is 

non-negative by definition, implying the same requirement for the right-hand side of the equation. Second, the turbulent Prandtl 

number grows with increase of the gradient Richardson number, Pr 𝑇|(𝑧/𝐿→∞) → 𝑅𝑖/𝑅∞, requiring the function in the square 

brackets to approach zero under extreme stratification. This leads us to the next approximation (see Fig. 4): 270 

1−𝐶𝜃

1+𝐶∇

𝐸𝑃

𝐴𝑧𝐸𝐾
= 1 − e−𝐶𝑃𝑟𝑧/𝐿.           (36) 

This function monotonically decreases from 1  to 0  as 0 < 𝑧/𝐿 < ∞ , satisfying our requirements with 𝐶𝑃𝑟 = 0.65 . The 

observed spread of data points might be explained by the simulation time being insufficient to reach a fully statistical steady 

state for this specific ratio. Although the fully developed steady state was achieved (verified using the standard criterion of 

stabilized TKE, which showed no significant fluctuations over time), the parameters involving ratios of temperature 275 

fluctuations 𝜃 might require additional time to stabilize. We believe that increasing the experiment time would decrease the 

spread, but we leave the validation of this hypothesis for future studies. 
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Figure 4: The ratio of two terms from the square brackets of Eq. (34) versus 𝒛/𝑳. Same data as in Fig. 2. The black solid line shows 

Eq. (36) with empirical constant 𝑪𝑷𝒓 = 𝟎. 𝟔𝟓, obtained from the best fit of Eq. (34) to DNS data in the turbulent layer: 𝒛 > 𝟓𝟎𝝂/𝝉𝟏/𝟐 . 280 

It leads us to a similar approximation of 𝑡𝜏/𝑡𝐹 (see Fig. 5): 

𝑡𝜏

𝑡𝐹
= Pr 𝑇(1 + 𝐶∇) [1 −

1−𝐶𝜃

1+𝐶∇

𝐸𝑃

𝐴𝑧𝐸𝐾
] = 𝐶1

𝜏𝐹e−𝐶2
𝜏𝐹𝑧/𝐿.        (37) 
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Figure 5: The ratio of the effective dissipation time scales of 𝝉 and 𝑭𝒛, 𝒕𝝉/𝒕𝑭, versus 𝒛/𝑳. Same data as in Fig. 2. The black solid line 

shows Eq. (37) with empirical constants 𝑪𝟏
𝝉𝑭 = 𝟎. 𝟏𝟕 and 𝑪𝟐

𝝉𝑭 = 𝟎. 𝟔𝟐, obtained from the best fit of Eq. (37) to DNS data in the 285 
turbulent layer: 𝒛 > 𝟓𝟎𝝂/𝝉𝟏/𝟐 . 

Now, to complete the closure, we need to determine one more dimensionless ratio, 𝑡𝜃/𝑡𝐾. It is explicitly required for the ratio 

of turbulent energies, 𝐸𝑃/𝐸𝐾 , and consequently for 𝐴𝑧 through Eqs. (20) and (36). We approximate it once again with the ratio 

of two first-order polynomials: 

𝑡𝜃

𝑡𝐾
=

𝐶1
𝜃𝐾𝑧/𝐿+𝐶2

𝜃𝐾

𝑧/𝐿+𝐶3
𝜃𝐾 .            (38) 290 
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Figure 6: The ratio of the dissipation time scale of 〈𝜽𝟐〉 and the dissipation time scale of TKE, 𝒕𝜽/𝒕𝑲, versus 𝒛/𝑳. Same data as in 

Fig. 2. The black solid line shows Eq. (38) with empirical constants 𝑪𝟏
𝜽𝑲 = 𝟒𝟎, 𝑪𝟏

𝜽𝑲 = 𝟒𝟖𝟎 and 𝑪𝟏
𝜽𝑲 = 𝟗𝟎𝟎, obtained from the best 

fit of Eq. (38) to DNS data in the turbulent layer: 𝒛 > 𝟓𝟎𝝂/𝝉𝟏/𝟐 . 

With Eq. (38), our turbulence closure is now complete, allowing us to proceed with the verification process using quantities 295 

not utilized in the fitting procedures. Fig. 7 provides empirical evidence supporting the stability dependencies given by Eqs. 

(20, 26, 27, 34-38). Table 2 summarises the proposed approximations and provides a summary of the resulting turbulent 

closure. 
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Figure 7: Validating the closure with quantities not utilized in the fitting procedures. Panel (a) shows the TPE to TKE ratio, 𝑬𝑷/𝑬𝑲; 300 
panel (b) shows the vertical share of TKE, 𝑨𝒛; panel (c) demonstrates the ratio of dissipation time scales of 〈𝜽𝟐〉 and 𝑭𝒛; panel (d) 

shows the turbulent Prandtl number, 𝐏𝐫𝑻; panel (e) shows the squared dimensionless turbulent flux of momentum, (𝝉/𝑬𝑲)𝟐; and 

panel (f) shows the squared dimensionless turbulent flux of potential temperature, 𝑭𝒛
𝟐/𝑬𝜽𝑬𝑲. All quantities are plotted against 𝒛/𝑳. 
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The black solid lines correspond to theoretical predictions demonstrating acceptable-to-great agreement with the DNS data in the 

turbulent layer: 𝒛 > 𝟓𝟎𝝂/𝝉𝟏/𝟐 . Empirical data are from the same sources as in Fig. 2. No fitting has been performed for this figure. 305 

For practical reasons, most operational numerical weather prediction and climate models parameterize these dimensionless 

ratios as functions of the gradient Richardson number rather than 𝑧/𝐿. This preference arises from the fact that the gradient 

Richardson number is defined solely by mean quantities, namely buoyancy and shear productions, which in practice imposes 

fewer computational restrictions on the model's time step. Since Ri = Pr 𝑇 Ri𝑓 and both Pr 𝑇 and Ri𝑓 are defined as functions 

of 𝑧/𝐿 by Eqs. (35) and (21), respectively, we can derive an expression for the gradient Richardson number Ri as the function 310 

of 𝑧/𝐿, shown in Fig. 8: 

Ri = Ri𝑓
𝐶1

𝜏𝐹

1+𝐶∇
e−(𝐶𝑃𝑟−𝐶2

𝜏𝐹)𝑧/𝐿.          (39) 

 

Figure 8: Resulting approximation of the gradient Richardson number, 𝐑𝐢, after Eq. (39). compared to the exact solution (panel a) 

and relative error of this approximation as a function of gradient Richardson number, 𝐑𝐢 (panel b). The black solid line corresponds 315 
to theoretical derivation, that shows good agreement with the DNS data in the turbulent layer: 𝒛 > 𝟓𝟎𝝂/𝝉𝟏/𝟐 . Empirical data are 

from the same sources as in Fig. 2. No fitting has been performed for this figure. 
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Table 2: Proposed approximations and resulting revised turbulent parameters of EFB closure. 

Variable Approximation / theoretical derivation Empirical constants 𝐑𝟐 RMSE Equation number 

𝑡𝜏

𝑡𝐾

 
𝐶1

𝜏𝐾𝑧/𝐿 + 𝐶2
𝜏𝐾

𝑧/𝐿 + 𝐶3
𝜏𝐾  𝐶1

𝜏𝐾 = 0.08, 𝐶2
𝜏𝐾 = 0.4, 𝐶3

𝜏𝐾 = 2 0.97 0.0021 (27) 

1

𝜌0

〈𝜃
𝜕𝑝

𝜕𝑧
〉 𝐶𝜃𝛽〈𝜃2〉 + 𝐶∇2𝐸𝑧

𝜕Θ

𝜕𝑧
 𝐶𝜃 = 0.82, 𝐶∇ = −0.80 0.999 3.92 (31) 

1 − 𝐶𝜃

1 + 𝐶∇

𝐸𝑃

𝐴𝑧𝐸𝐾

 1 − e−𝐶𝑃𝑟𝑧/𝐿 𝐶𝑃𝑟 = 0.65 0.73 0.074 (36) 

𝑡𝜏

𝑡𝐹

 𝐶1
𝜏𝐹e−𝐶2

𝜏𝐹𝑧/𝐿 𝐶1
𝜏𝐹 = 0.17, 𝐶2

𝜏𝐹 = 0.62 0.998 0.001 (37) 

𝑡𝜃

𝑡𝐾

 
𝐶1

𝜃𝐾𝑧/𝐿 + 𝐶2
𝜃𝐾

𝑧/𝐿 + 𝐶3
𝜃𝐾

 𝐶1
𝜃𝐾 = 40, 𝐶2

𝜃𝐾 = 480, 𝐶3
𝜃𝐾 = 900 0.79 0.021 (38) 

𝐸𝑃

𝐸𝐾

 
Ri𝑓

1 − Ri𝑓

𝑡𝜃

𝑡𝐾

 no additional fitting 0.90 0.006 (20) 

𝐴𝑧 
1 − 𝐶𝜃

1 + 𝐶∇

𝐸𝑃

𝐸𝐾

1

1 − e−𝐶𝑃𝑟𝑧/𝐿
 no additional fitting 0.17 0.024 derived form (36) 

𝑡𝜃

𝑡𝐹

 
𝑡𝜏

𝑡𝐹

𝑡𝜃

𝑡𝐾

/
𝑡𝜏

𝑡𝐾

 no additional fitting 0.89 0.27 derived from (27, 37, 38) 

Pr 𝑇 

𝑡𝜏

𝑡𝐹

1

(1 + 𝐶∇) − (1 − 𝐶𝜃)
𝐸𝑃

𝐴𝑧𝐸𝐾

 
no additional fitting 0.76 0.017 (35) 

(
𝜏

𝐸𝐾

)
2

 
2𝐴𝑧

1 − Ri𝑓

𝑡𝜏

𝑡𝐾

 no additional fitting 0.61 0.008 (26) 

𝐹𝑧
2

𝐸𝜃𝐸𝐾

 2 [(1 + 𝐶∇)𝐴𝑧 − (1 − 𝐶𝜃)
𝐸𝑃

𝐸𝐾

]
𝑡𝐹

𝑡𝜃

 no additional fitting 0.77 0.014 (34) 

Ri Ri𝑓
𝐶1

𝜏𝐹

1 + 𝐶∇

e−(𝐶𝑃𝑟−𝐶2
𝜏𝐹)𝑧/𝐿 no additional fitting 0.90 0.005 (39) 

 

5 Concluding remarks 320 

For many years, our understanding of dissipation rates for turbulent second-order moments has been hindered by a lack of 

direct observations in fully controlled conditions, particularly in a strongly stable stratification. To address this limitation, we 
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conducted topical DNS experiments of stably stratified Couette flows. The main finding of this study is that the ratios of the 

dissipation time scales of the basic second-order moments depend on the temperature stratification (e.g., characterised by the 

gradient Richardson number), contrary to the traditional assumption of them being proportional to a single universal dissipation 325 

time scale. 

This finding laid the foundation for empirically approximating these ratios with simple universal functions of stability 

parameters, valid for a wide range of stratifications. Consequently, this allowed us to refine the EFB turbulent closure by 

accounting for dissipation time scales that are intrinsic to the basic second-order moments. As a result, the revised formulations 

for eddy viscosity and eddy conductivity reveal greater physical consistency in stratified conditions, thereby enhancing the 330 

representation of turbulence in numerical weather prediction and climate modelling. 

We have also observed that the dimensionless parameters involving 𝜃 fluctuations demonstrate a wider spread of values within 

and across the DNS experiments, making it more challenging to approximate them with stability functions. This suggests that 

the stabilisation time for these parameters may be significantly longer than for TKE components. 

It is important to note that our DNS experiments were limited to gradient Richardson numbers up to Ri = 0.17. Any data 335 

reliably indicating different asymptotic values of the time scale dimensionless ratios or demonstrating their different 

dependency on the temperature stratification would pose the need for readjusting the proposed parameterization. 

We deliberately avoided discussing intermittency issues: for that one needs to determine higher-order two-point (or multi-

point) moments. Intermittency is important for small-scale effects, and intermittency implies that higher-order moments of 

velocity and temperature fields have non-Gaussian statistics. In this study we focused on larger scales determining one-point 340 

second-order correlation functions barely touching one-point third-order correlation functions only when it is necessary. 

However, addressing this topic would be crucial for advancing numerical simulations towards higher stratifications and 

warrants detailed investigation. 

With these considerations in mind, we believe the most challenging step will be to explicitly explore the transitional region 

between traditional weakly-stratified turbulence and extremely stable stratification, where the behaviour of the turbulent 345 

Prandtl number shifts from nearly constant to a linear function with respect to the gradient Richardson number. Investigating 

this phenomenon would require unprecedented computational resources for DNS or specialised in-situ or laboratory 

experiments. 

Code and data availability 

The DNS code is available by GitLab at http://tesla.parallel.ru. The datasets generated and analysed during the current study 350 

are available at https://doi.org/10.23728/b2share.7a1d875b872748c7bf566ece352c0a10. 
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