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Abstract. The dissipation rates of the basic turbulent second-order moments are the key parameters controlling turbulence 

energetics and spectra, turbulent fluxes of momentum and heat, and playing a vital role in turbulence modelling. In this paper, 

we use the results of Direct Numerical Simulations (DNS) to evaluate dissipation rates of the basic turbulent second-order 

moments and revise the energy and flux-budget turbulence closure model theory for stably stratified turbulence. We delve into 20 

the theoretical implications of this approach and substantiate our closure hypotheses through DNS data. We also show why 

the concept of down-gradient turbulent transport becomes incomplete when applied to the vertical turbulent flux of potential 

temperature under very stable stratification. We reveal essential feedback between the turbulent kinetic energy, the vertical 

turbulent flux of buoyancy and the turbulent potential energy, which is responsible for maintaining shear-produced stably 

stratified turbulence for any Richardson numberup to extreme static stability. 25 

1 Introduction 

Turbulence and associated turbulent transport have been studied theoretically, experimentally, observationally and numerically 

during decades [see books by Batchelor (1953); Monin and Yaglom (1971, 2013); Tennekes and Lumley (1972); Frisch (1995); 

Pope (2000); Davidson (2013); Rogachevskii (2021), and references therein], but some important questions remain. This is 

particularly true in applications to atmospheric physics and geophysics where Reynolds and Peclet numbers are veryextremely 30 
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large so that the governing equations are strongly nonlinear. The classical Kolmogorov’s theory (Kolmogorov 1941a,b; 1942; 

1991) has been formulated only for neutrally stratified homogeneous and isotropic turbulence.  

In atmospheric boundary layers, temperature stratification causes turbulence to become anisotropic and inhomogeneous 

making some assumptions underlying Kolmogorov’s theory questionable. Numerous alternative turbulence closure theories 

[see reviews by Weng and Taylor (2003); Umlauf and Burchard (2005); Mahrt (2014)] have been formulated using the budget 35 

equations not only for turbulent kinetic energy (TKE), but also for turbulent potential energy (TPE) (see, e.g., Holloway, 1986; 

Ostrovsky and Troitskaya, 1987; Dalaudier and Sidi, 1987; Hunt et al., 1988; Canuto and Minotti, 1993; Schumann and Gerz, 

1995; Hanazaki and Hunt, 1996; Keller and van Atta, 2000; Canuto et al., 2001; Stretch et al., 2001; Cheng et al., 2002; 2002; 

Hanazaki and Hunt, 2004; Rehmann and Hwang, 2005; Umlauf, 2005). The budget equations for all three energies, TKE, TPE 

and total turbulent energy (TTE), were considered by Canuto and Minotti (1993), Elperin et al. (2002, 2006), Zilitinkevich et 40 

al. (2007), and Canuto et al. (2008). 

The energy and flux budget (EFB) turbulence closure theory which is based on the budget equations for the densities of TKE, 

TPE and turbulent fluxes of momentum and heat, was has been developed for stably stratified atmospheric flows (Zilitinkevich 

et al., 2007, 2008, 2009, 2013; Kleeorin et al. 2019), for surface layers in atmospheric convective turbulence (Rogachevskii et 

al. 2022) and the core of the convective boundary layer (Rogachevskii and Kleeorin, 2024), as well as for passive scalar 45 

transport (Kleeorin et al. 2021). The EFB closure theory has shown that strong atmospheric stably stratified turbulence is 

maintained by large-scale shear (mean wind) for any stratification, and the “critical” Richardson number, considered many 

years as a threshold between the turbulent and laminar states of the flow, actually separates two turbulent regimes: the strong 

turbulence typical of atmospheric boundary layers and the weak three-dimensional turbulence typical of the free atmosphere 

and characterized characterised by a strong decrease in the turbulent heat transfer in comparison to the momentum transfer. 50 

Some other turbulent closure models (Mauritsen et al. 2007, Canuto et al., 2008, Sukoriansky and Galperin, 2008, Li et al. 

2016) do not imply the critical Richardson number, so shear-generated turbulent mixing may persist for any stratification. In 

particular, Mauritsen et al. (2007) have developed a turbulent closure based on the budget equation for TTE (instead of TKE) 

and different observational findings to take into account the mean flow stability. They used this turbulent closure model to 

study the turbulent transfer of heat and momentum under very stable stratification. In their model, whereas the turbulent heat 55 

flux tends toward zero beyond a certain stability limit, the turbulent stress stays finite. However, the model by Mauritsen et al. 

(2007) does has not used the budget equation for TPE and the vertical turbulent heat flux. 

L’vov et al. (2008) have performed detailed analyses of the budget equations for the Reynolds stresses in the turbulent 

boundary layer (relevant to the strong turbulence regime) taking explicitly into consideration the dissipative effect in the 

horizontal turbulent heat flux budget equation, in contrast to the EFB “effective-dissipation approximation” adopted in the 60 

EFB turbulent closure model. However, the theory by L’vov et al. (2008) still contains the critical gradient Richardson number 

for the existence of the shear-produced turbulence. 

Sukoriansky and Galperin (2008) apply a quasi-normal scale elimination theory that is similar to the renormalization group 

analysis. Sukoriansky and Galperin (2008) do not use the budget equations for TKE, TPE and TTE in their analysis. This 
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theory correctly describes the dependence of the turbulent Prandtl number versus the gradient Richardson number and does 65 

not imply the critical gradient Richardson number for the existence of turbulence. However, this approach does not allow 

obtaininghave detailed Richardson number dependences of the other non-dimensional parameters, like the ratio between TPE 

and TTE, dimensionless turbulent flux of momentum or dimensionless vertical turbulent flux of potential temperature. Their 

background non-stratified shear-produced turbulence is assumed to be isotropic and homogeneous. Canuto et al. (2008) have 

generalizsed their previous original model (see Cheng et al., 2002) introducing the new parameterization for the buoyancy 70 

time scale to accommodate the existence of stably stratified shear-produced turbulence at arbitrary Richardson numbers. 

Li et al. (2016) have developed the co-spectral budget (CSB) closure approach which is formulated in the Fourier space and 

integrated across all turbulent scales to obtain flow variablesturbulent characteristics in physical space. The CSB models allows 

turbulence to exist at any gradient Richardson number., hHowever, the CSB model yields different (from EFB) predictions for 

the vertical anisotropy versus Richardson number compared to the EFB theory.  75 

All state-of-the-art turbulent closures follow the so-called Kolmogorov hypothesis: all dissipation time scales of turbulent 

second-order moments are assumed to be proportional to each other, which at first glance looks reasonable but, in fact, 

hypothetical for stably stratified turbulenceconditions. 

The present study aims to demonstrate the dependence of dissipation time scales of basic second-order moments on stability 

through DNS experiments. The obtained numerical results allow us to modify the EFB turbulence closure theory to account 80 

for that dependency. It is worth noting that the DNS presented here  Our Direct Numerical Simulations (DNS) results are 

limited to gradient bulk Richardson numbers (based on the wall velocity and temperature differences and channel height) up 

to Rib = 0.112 and Reynolds numbers (based on the wall velocity difference and channel height, see Sect. 3) up to Re =

120000. 

This paper is organised as follows. In Section 2, we formulate basic budget equations and main assumptions in the framework 85 

of the EFB turbulence closure theory. Section 3 describes the setup for DNS of stably stratified turbulent plane Couette flow 

to determine the vertical profiles of the dissipation time scales of turbulent second-order moments. In Section 4, we formulate 

the modified EFB turbulence closure theory considering the dependencies of the dissipation time scales of basic second-order 

moments on the gradient Richardson number obtained from DNS. There, we also perform validation of the modified EFB 

turbulence closure model which yields vertical profiles of the basic turbulence parameters (including the turbulent Prandtl 90 

number, the ratio of TPE to TKE, the normalised turbulent heat flux, etc.) using the data from the DNS. Finally, in Section 5, 

we discuss the obtained results and draw the conclusions., but despite this constraint, we aim to disprove this proportionality 

and instead propose that the stability dependency is inherent in the ratios of dissipation time scales. 

2 Problem setting and basic equations 

We consider plane-parallel, stably stratified dry-air flow and employ the familiar budget equations underlying turbulence-95 

closure theory (e.g., Kleeorin et al. 2021; Zilitinkevich et al., 2013; Kaimal and Fennigan, 1994; Canuto et al., 2008) for the 
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Reynolds stress, 𝜏𝑖𝑗 = 〈𝑢𝑖𝑢𝑗〉, the potential temperature turbulent flux of potential temperature, 𝐹𝑖 = 〈𝜃𝑢𝑖〉, and the intensity 

of potential temperature fluctuations, 𝐸𝜃 = 〈𝜃2〉/2: 

𝐷𝜏𝑖𝑗

𝐷𝑡
+

𝜕

𝜕𝑥𝑘𝑧
Φ𝑖𝑗𝑘3

(𝜏)
= −𝜏𝑖𝑘3

𝜕𝑈𝑗

𝜕𝑥𝑘𝑧
− 𝜏𝑗3𝑘

𝜕𝑈𝑖

𝜕𝑥𝑘𝑧
− [휀𝑖𝑗

(𝜏)
− 𝛽(𝐹𝑗𝛿𝑖3 + 𝐹𝑖𝛿𝑗3) − 𝑄𝑖𝑗],     

 (1) 100 

𝐷𝐹𝑖

𝐷𝑡
+

𝜕

𝜕𝑧𝑥𝑗
Φ𝑖𝑗

(𝐹)
= 𝛽𝛿𝑖3〈𝜃2〉 −

1

𝜌0
〈𝜃

𝜕𝑝

𝜕𝑥𝑖
〉 − 𝜏𝑖3𝑗

𝜕Θ

𝜕𝑧
− 𝐹𝑧𝑗

𝜕𝑈𝑖

𝜕𝑥𝑗𝑧
− 휀𝑖

(𝐹)
,      

 (2) 

𝐷𝐸𝜃

𝐷𝑡
+

𝜕

𝜕𝑥𝑖𝑧
ΦΦ𝑖

(𝜃)
(𝜃) == −𝐹𝑧

𝜕Θ

𝜕𝑥𝑗𝑧
− 휀𝜃 .         

 (3) 

Here, 𝑥1 = 𝑥 and 𝑥2 = 𝑦 are horizontal coordinates, 𝑥3 = 𝑧 is the vertical coordinate; 𝑡 is time; 𝐔 = (𝑈1, 𝑈2, 𝑈3) = (𝑈, 𝑉, 𝑊) 105 

is the vector of mean flowwind velocity; 𝐮 = (𝑢1, 𝑢2, 𝑢3) = (𝑢, 𝑣, 𝑤)  are is the vector of velocity fluctuations; Θ =

𝑇(𝑃0/𝑃)1−1/𝛾 is the mean potential temperature (expressed through absolute temperature, 𝑇 , and pressure, 𝑃); 𝑇0, 𝑃0 and 𝜌0 

are reference values of temperature, pressure and density, respectively; 𝛾 = 𝑐𝑝/𝑐𝑣 = 1.41 is the ratio of specific heatsspecific 

heats ratio; 𝜃 and 𝑝 are fluctuations of potential temperature and pressure; 𝐷/𝐷𝑡 = 𝜕/𝜕𝑡 + 𝑈𝑘𝜕/𝜕𝑥𝑘 is the advective operator 

of full derivative; over time 𝑡; angle brackets denote averaging; 𝛽 = 𝑔/𝑇0 is the buoyancy parameter; 𝑔 is the acceleration due 110 

to gravity; 𝛿𝑖𝑗  is the unit tensor (𝛿𝑖𝑗 = 1  for 𝑖 = 𝑗  and 𝛿𝑖𝑗 = 0  for 𝑖 ≠ 𝑗 ); Φ𝑖𝑗3𝑘
(𝜏)

, Φ𝑖𝑗
(𝐹)

 and Φ(𝜃)Φ𝑖
(𝜃)

 are the third-order 

moments, which describefine turbulent transports of the second-order moments under consideration: 

Φ𝑖𝑗𝑘3
(𝜏)

= 〈𝑢𝑖𝑢𝑗𝑢𝑘𝑤〉 +
1

𝜌0
(〈𝑝𝑢𝑖〉𝛿𝑗3𝑘 + 〈𝑝𝑢𝑗〉𝛿𝑖3𝑘) − 𝜈 (〈𝑢𝑖

𝜕𝑢𝑗

𝜕𝑧𝑥𝑘
〉 + 〈𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑘𝑧
〉),     

 (4) 

Φ𝑖𝑗
(𝐹)

= 〈𝑢𝑖𝑤𝑢𝑗𝜃〉 − 𝜈 〈𝜃
𝜕𝑢𝑖

𝜕𝑧𝑥𝑗
〉 − 𝜅 〈𝑢𝑖

𝜕𝜃

𝜕𝑥𝑗𝑧
〉,         (5) 115 

Φ(𝜃)Φ𝑖
(𝜃)

=
1

2
〈𝜃2𝑢𝑖𝑤〉 −

𝜅

2

𝜕

𝜕𝑥𝑖𝑧
〈𝜃2〉;         

 (6) 

𝑄𝑖𝑗  terms representare the correlations between fluctuations of pressure and strain-rate tensor, which control the interactions 

between the Reynolds stress components: 

𝑄𝑖𝑗 =
1

𝜌0
〈𝑝 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)〉.           (7) 120 

Here, 휀𝑖𝑗
(𝜏)

, 휀𝑖
(𝐹)

 and 휀𝜃 are the dissipation rates of the second-order moments dissipation rate terms:  
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휀𝑖𝑗
(𝜏)

= 2𝜈 〈
𝜕𝑢𝑖

𝜕𝑥𝑘𝑧

𝜕𝑢𝑗

𝜕𝑧𝑥𝑘
〉,           (8) 

휀𝑖
(𝐹)

= (𝜈 + 𝜅) 〈
𝜕𝑢𝑖

𝜕𝑧𝑥𝑗

𝜕𝜃

𝜕𝑧𝑥𝑗
〉,           (9) 

휀𝜃 = 𝜅 〈(
𝜕𝜃

𝜕𝑥𝑗𝑧
)

2

〉,            (10) 

where 𝜈 is kinematic viscosity and 𝜅 is thermal conductivity. 125 

The budgets of TKE components, 𝐸𝑖 = 〈𝑢𝑖
2〉/2 (𝑖 = 1,2,3), are expressed determined by Eq. (1) for 𝑖 = 𝑗, summing them 

upwhich yields the familiar TKE budget equation: 

𝐷𝐸𝐾

𝐷𝑡
+

𝜕

𝜕𝑧
(

1

2
〈𝑢𝑖

2𝑤〉 +
1

𝜌0
〈𝑝𝑤〉 −

𝜈

2

𝜕〈𝑢𝑖
2〉

𝜕𝑧
) = −𝛕 ∙

𝜕𝐔

𝜕𝑧
+ 𝛽𝐹𝑧 − 휀𝐾,       (11) 

where 𝐸𝐾 = ∑ 𝐸𝑖 is TKE and 휀𝐾 = ∑ 휀𝑖𝑖
(𝜏)

/2 is the TKE dissipation rate. The sum of the terms 𝑄𝑖𝑖  (the trace of the tensor 𝑄𝑖𝑗) 

is equal to zero because of the incompressibility constraint on the flow velocity field, 𝜕𝑢𝑖/𝜕𝑥𝑖 = 0, i.e. 𝑄𝑖𝑗  only redistribute 130 

energy between TKE components.  

Likewise, 휀𝜃 is the dissipation rate of the intensity of potential temperature fluctuations, 𝐸𝜃; and 휀𝑖
(𝐹)

 are the dissipation rates 

of the three components of the turbulent flux of potential temperature, 𝐹𝑖. 

Following Kolmogorov (1941, 1942), the dissipation rates 휀𝐾  and 휀𝜃  are taken proportional to the dissipating quantities 

divided by corresponding time scales,  135 

휀𝐾 =
𝐸𝐾

𝑡𝐾
, 휀𝜃 =

𝐸𝜃

𝑡𝜃
,            (12) 

where 𝑡𝐾 is the TKE dissipation time scale and 𝑡𝜃 is the dissipation time scale of 𝐸𝜃 . Here, the formulation of the dissipation 

rates is not hypothetical: it merely expresses one unknown (dissipation rate) through another (dissipation time scale). 

In this study, we consider the EFB model theory in its simplest, algebraic form, neglecting non-steady terms in all budget 

equations and neglecting divergence of the fluxes of TKE, TPE and fluxes of Fz (determined by third-order moments). This 140 

approach is reasonable because, e.g., the characteristic times of variations of the second moments are much larger than the 

turbulent time scales for large Reynolds and Peclet numbers. We also assume that the terms related to the divergence of the 

fluxes of TKE and TPE for stably stratified turbulence are much smaller than the rates of production and dissipation in budget 

equations (3) and (11). In this case, the TKE budget equation, Eq. (11), and the budget equation for 𝐸𝜃 , Eq. (3), become 

0 = −𝜏
𝜕𝑈

𝜕𝑧
+ 𝛽𝐹𝑧 − 휀𝐾,           (13) 145 

0 = −𝐹𝑧
𝜕Θ

𝜕𝑧

𝜕𝛩

𝜕𝑧
− 휀𝜃.           

 (14) 
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The intensity of the potential temperature fluctuations 𝐸𝜃  determines TPE: 

𝐸𝑃 =
𝛽𝐸𝜃

𝜕Θ 𝜕𝑧⁄
,            (15) 

so that Eq. (14) becomes 150 

0 = −𝛽𝐹𝑧 − 휀𝑃,            (16) 

Where 휀𝑃 = 𝐸𝑃/𝑡𝜃 is the TPE dissipation time scale. 

The first term on the right-hand side (r.h.s.) of Eq. (13), −𝜏 𝜕𝑈 𝜕𝑧⁄ , is the rate of the TKE production, while the second term, 

𝛽𝐹𝑧, is the buoyancy which in stably stratified flow causes decay of TKE, i.e., it results in conversion of TKE into TPE. The 

ratio of these terms is the flux Richardson number: 155 

Ri𝑓 ≡ −
𝛽𝐹𝑧

𝜏𝜕𝑈 𝜕𝑧⁄
,            (17) 

and this dimensionless parameter characterises the effect of stratification on turbulence. 

Taking into account Eq. (17), the steady-state versions of TKE and TPE budget equations, Eqs. (13) and (14), can be rewritten 

as 

𝐸𝐾 = 𝜏
𝜕𝑈

𝜕𝑧
(1 − Ri𝑓)𝑡𝐾,           (18) 160 

𝐸𝑃 = 𝜏
𝜕𝑈

𝜕𝑧
Ri𝑓𝑡𝜃.            (19) 

Thus, the ratio of TPE to TKE is: 

𝐸𝑃

𝐸𝐾
=

Ri𝑓

1−Ri𝑓

𝑡𝜃

𝑡𝐾
.            (20) 

Zilitinkevich et al. (2013) suggested the following relation linking 𝑅𝑖𝑓 with another stratification parameter, 𝑧/𝐿: 

Ri𝑓 =
𝑘𝑧/𝐿

1+𝑘𝑅∞
−1𝑧/𝐿

,  
𝑧

𝐿
=

𝑅∞

𝑘

Ri𝑓

𝑅∞−Ri𝑓
,         (21) 165 

where 𝐿 = −𝜏3/2/𝛽𝐹𝑧 is the Obukhov length -scale, 𝑘 = 0.4 is the von Kármán constant, and 𝑅∞ = 0.2 is the maximum value 

of the flux Richardson number. 

On the r.h.s. of Eq. (20), there is an unknown ratio of two dissipation time scales, 𝑡𝜃/𝑡𝐾. The Kolmogorov hypothesis suggests 

that it is a universal constant. We do not imply this assumption, but instead investigate a possible stability dependency of 

dissipation time scales ratios and improve the EFB turbulence closure model accounting for it. To this end, we perform DNS 170 

of stably stratified turbulent plane Couette flow (see Section 3) to measure the dissipation time scales of basic second-order 

moments and validate the modified EFB turbulence closure model (see Section 4). 
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3 Methods and data used for empirical validation 

For our study, we conducted a series of direct numerical simulations of stably stratified turbulent plane Couette flow. For the 175 

purpose of our study, we performed a series of DNS of stably stratified turbulent plane Couette flow.This flow occurs between 

two parallel plates that move relative to each other, producing shear and turbulence, with the plates having different 

temperatures, thus creating stable stratification.  In Couette flow, the total (turbulent plus molecular) vertical fluxes of 

momentum and potential temperature remain constant, independent of distance from the wallsare constant (i.e., they are 

independent of the height), which, in particular, assures a very certain fixed value of the Obukhov length scale, 𝐿. Fig. 1 180 

illustrates the profiles of mean flow velocity and mean potential temperature . We recall that all our derivations are relevant to 

the well-developed turbulence regime where molecular transports are negligible compared to turbulent transports so that 

turbulent fluxes practically coincide with total fluxes. This is the case in our DNS, except for the narrow near-wall viscous-

turbulent flow-transition layers. Data from these layers, obviously irrelevant to the turbulence regime we consider, are shown 

by grey points in the figures and are ignored in fitting procedures. In further analysis, we primarily utilise 𝑧/𝐿 as a stratification 185 

parameter instead of Ri or Ri𝑓  because it offers a better dynamic range in our experiments. While Ri remains practically 

constant in each DNS run and Ri𝑓 is limited in its growth, the parameter 𝑧/𝐿 is determined by the distance from the walls, thus 

varying significantly in every DNS run. 

  

Figure 1: Profiles of mean flow velocity and mean potential temperature in stably stratified turbulent plane Couette flow. Light grey 

dots belong to the viscous sublayer. 190 

 

Numerical simulation of stably stratified turbulent Couette flow was performed using the unified DNS-, LES- and RANS- 

code developed at the Moscow State University (MSU) and the Institute of Numerical Mathematics (INM) of the Russian 

Academy of Science (see, Mortikov, 2016; Mortikov et al., 2019; Bhattacharjee et al., 2022; Debolskiy et al., 2023; Gladskikh 

et al., 2023, Zasko et al., 2023). The code is  designed for high-resolution simulations on modern-day HPC systems. The DNS 195 

part of the code solves the finite-difference approximation of the incompressible Navier-Stokes system of equations under the 
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Boussinesq approximation. Conservative schemes on the staggered grid (Morinishi et al., 1998; Vasilyev, 2000) of 4th-order 

accuracy are used in horizontal direction, whiles and in the vertical direction the spatial approximation is restricted to 2nd-

order accuracy with near-wall grid resolution refinement sufficient to resolve near-wall viscous region. The time step used in 

the simulations was determined by Courant–Friedrichs–Lewy (CFL) restrictions, with CFL maintained at approximately 0.1 200 

in all runs. This corresponds to a value of 𝑢∗
2Δ𝑡/𝜈 on the order of 0.01. The projection method (Brown et al., 2001) is used for 

the time-advancement of momentum equations coupled with the incompressibility condition, while the multigrid method is 

applied to solve the Poisson equation to ensure that the velocity is divergence-free at each time step. For the Couette flow 

periodic boundary conditions are used in the horizontal directions, and no-slip/no-penetration conditions are set on the channel 

walls for the velocity. The stable stratification is maintained by prescribed Dirichlet boundary conditions on the potential 205 

temperature. In all experiments, the value of molecular Prandtl number (ratio of kinematic viscosity and thermal diffusivity of 

the fluid) was fixed at 0.7 based on its typical value for air (Monin and Yaglom, 1971). The simulations were performed for a 

wide range of Reynolds numbers, ReRe, defined by the wall velocity difference, channel height and kinematic viscosity: from 

5200 40000 up to 120 000 (see Table 1). All experiments were carried out using the resources of MSU and CSC HPC centers. 

For the maximum ReRe values achieved the numerical grid consisted of more than 2 × 108 cells and the calculations used 210 

about 10 000 CPU cores. 

 

Table 1: Overview of DNS experiments and key parameters. 

DNS run name 
𝐑𝐞 

(𝑼𝑯/𝝂) 

𝐑𝐢𝐛 

(𝜷𝚯/𝑼𝟐) 
Grid size 

Domain 

(𝑯) 

𝐑𝐞𝛕 

(𝒖∗𝑯/𝝂 ) 
Viscous sublayer 

(𝒛 < 𝟓𝟎𝝂/𝝉𝟏/𝟐) 

CPU runtime 

(s) 

Averaging time 

(𝑻𝒖∗/𝑯) 

Re40Ri006 40000 0.06 388 × 260 × 260 6 × 4 × 1 639.96 34.3% 182180 38.40 

Re40Ri008 40000 0.08 388 × 260 × 260 6 × 4 × 1 525.51 43.2% 165851 31.53 

Re40Ri009 40000 0.09 388 × 260 × 260 6 × 4 × 1 439.96 56.5% 152307 26.40 

Y8Re40Ri006 40000 0.06 388 × 516 × 260 6 × 8 × 1 639.30 34.3% 316204 38.36 

Y8Re40Ri008 40000 0.08 388 × 516 × 260 6 x 8 x 1 524.21 44.2% 302063 31.45 

Re80Ri008 80000 0.08 772 × 516 × 516 6 × 4 × 1 1001.11 21.2% 891598 30.03 

Re80Ri009 80000 0.09 772 × 516 × 516 6 × 4 × 1 912.07 23.5% 946772 27.36 

Re80Ri010 80000 0.10 772 × 516 × 516 6 × 4 × 1 816.91 26.7% 936989 24.51 

Re80Ri011 80000 0.11 772 × 516 × 516 6 × 4 × 1 684.19 32.8% 961394 20.53 

Re120Ri008 120000 0.08 772 × 516 × 516 6 × 4 × 1 1328.72 21.2% 848043 26.57 

 

For each Reynolds number, we conducted a series of experiments. Beginning with neutral conditions (no imposed gradient of 215 

the mean potential temperature), we incrementally increased the bulk Richardson number, which characterises the stable 
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stratification, in each successive experiment. By gradually increasing stability in each experiment, we were able to cover a 

wide range of Ri values, extending from neutral to stably stratified states. In each run, the turbulent flow was allowed sufficient 

time to develop and reach statistical steady-state conditions, which required a spin-up period of at least 15 𝐻/𝑢∗ periods. This 

ensured that parameters such as the total momentum flux remained constant and the TKE balance was in a steady state. The 220 

fully-developed steady state was used as initial conditions for the higher Ri or Re experiment setups. Additionally, all terms in 

the second-order moments budget equations (Eqs. 1-3) were evaluated consistently using the finite-difference approximation 

used, resulting in negligible residual. This approach enabled us to comprehensively study the characteristics of shear-produced 

stably stratified turbulence, explicitly resolving all dissipation time scales of turbulent second-order moments.For a fixed value 

of Reynolds number, we considered a series of experiments: starting from neutral conditions (no imposed stability), the stable 225 

stratification was increased gradually in each subsequent experiment, eventually resulting in flow laminarization. For each 

stability condition, the turbulent flow was allowed sufficient time to develop and reach statistical steady-state conditions (e.g., 

total momentum flux is constant and TKE balance is in steady state), while all the terms in the second-order moments budget 

equations, Eqs. (1)-(3), were evaluated in a manner consistent with the finite-difference approximation resulting in negligible 

residual. This allowed us to study the features of shear-produced stably stratified turbulence up to extreme static stability 230 

explicitly resolving all dissipation times scales of turbulent second-order moments. 

 

4 Modified EFB closure model Novel formulation for the steady-state regime of turbulence 

In the steady-state, Eq. (1) for the vertical component of the turbulent flux of momentum, 𝜏, becomes 

0 = −2𝐸𝑧
𝜕𝑈

𝜕𝑧
− [휀𝜏 − 𝛽𝐹𝑥 − 𝑄13].          (22) 235 

Following Zilitinkevich et al. (2007, 2013) we define the sum of all terms in square brackets on the r.h.s. of Eq. (22) as the 

“effective dissipation”: 

휀𝜏
(𝑒𝑓𝑓)

= 휀𝜏 − 𝛽𝐹𝑥 − 𝑄13 ≡
𝜏

𝑡𝜏
.          (23) 

Thus, Eq. (22) becomes 

0 = −2𝐸𝑧
𝜕𝑈

𝜕𝑧
−

𝜏

𝑡𝜏
,           (24) 240 

yielding the well-known down-gradient formulation of the vertical turbulent flux of momentum: 

𝜏 = −𝐾𝑀
𝜕𝑈

𝜕𝑧
,  𝐾𝑀 = 2𝐴𝑧𝐸𝐾𝑡𝜏,          (25) 

where 𝐴𝑧 ≡ 𝐸𝑧/𝐸𝐾 is the vertical share of TKE (the vertical anisotropy parameter).  

Substituting Eq. (25) into Eq. (18), we obtain 
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(
𝜏

𝐸𝐾
)

2

=
2𝐴𝑧

1−Ri𝑓

𝑡𝜏

𝑡𝐾
.            (26) 245 

In Eq. (26) all the variables are exactly resolved numerically in DNS making a detailed investigation on 𝑡𝜏/𝑡𝐾 possible. Fig.ure 

21 demonstrates that the dissipation time scale ratio 𝑡𝜏/𝑡𝐾 isto be a function of the stratification parameter 𝑧/𝐿 rather than a 

constant. We propose to approximate this function with a ratio of two first-order polynomials: 

𝑡𝜏

𝑡𝐾
=

𝐶1
𝜏𝐾𝑧/𝐿+𝐶2

𝜏𝐾

𝑧/𝐿+𝐶3
𝜏𝐾 .            (27) 

Here, the dimensionless empirical constants are obtained from the best fit of Eq. (27) to DNS bin-averaged data: 𝐶1
𝜏𝐾 = 0.08, 250 

𝐶2
𝜏𝐾 = 0.4, 𝐶3

𝜏𝐾 = 2. The fitting is done using a the rational regression model of Curve Fitting Toolbox version: 3.5.13 

(R2021a). The ratio of two first-order polynomials is chosen as a simpler fitting function that could provide monotonicity, 

reasonable smoothness, and clear asymptotes The only three adjustable parameters of this approximation correspond to the 

function value at 𝑧/𝐿 = 0, the 𝑧/𝐿 → ∞ limit, and the transition between them. 

 255 
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Figure 12: The ratio of the effective dissipation time scale of 𝝉 and the dissipation time scale of TKE, 𝒕𝝉/𝒕𝑲, versus 𝒛/𝑳. TheEmpirical 

data used for the calibration are obtained in DNS experiments employing the MSU/INM unified code (red dots). Only every 6th data 

point is presented to increase visibility. For the full dataset, please see Kadantsev and Mortikov, 2024. The near-surface layer 260 
essentially affected by molecular viscosity (Dark grey dots belong to the viscous sub-layer (very narrow near-surface layer essentially 

affected by molecular viscosity): 𝟎 < 𝒛 < 𝟓𝟎𝝂/𝝉𝟏/𝟐) is excluded from the analysis. This sub-layer is represented by the light grey 

dotted lines.. The black solid line shows Eq. (27) with empirical constants 𝑪𝟏
𝝉𝑲 = 𝟎. 𝟎𝟖, 𝑪𝟐

𝝉𝑲 = 𝟎. 𝟒 and 𝑪𝟑
𝝉𝑲 = 𝟐, obtained from the 

best fit of Eq. (27) to DNS data in the turbulent layer: 𝒛 > 𝟓𝟎𝝂/𝝉𝟏/𝟐 . 

Proceeding to the vertical flux of potential temperature, 𝐹𝑧, we derive its steady-state budget equation from Eq. (2): 265 

𝜕

𝜕𝑧
Φ𝑧33

(𝐹)
= 𝛽〈𝜃2〉 −

1

𝜌0
〈𝜃

𝜕𝑝

𝜕𝑧
〉 − 2𝐸𝑧

𝜕Θ

𝜕𝑧
− 휀𝐹.         (28) 

DNS modelling has shown that ed 
𝜕

𝜕𝑧
Φ𝑧33

(𝐹)
 term to be of the same order of magnitude as 휀𝐹, and it is of the same sign, so we 

introduce the ‘effective dissipation rate’ 휀𝐹
(𝑒𝑓𝑓)

: 

휀𝐹
(𝑒𝑓𝑓)

= 휀𝐹 +
𝜕

𝜕𝑧
Φ3𝑧3

(𝐹)
≡

𝐹𝑧

𝑡𝐹
.          (29) 
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Consequently, Eq. (28) reduces to 270 

0 = 𝛽〈𝜃2〉 −
1

𝜌0
〈𝜃

𝜕𝑝

𝜕𝑧
〉 − 2𝐸𝑧

𝜕Θ

𝜕𝑧
−

𝐹𝑧

𝑡𝐹
.         (30) 

Traditionally, the pressure term was either assumed to be negligible or declared to be proportional to 𝛽〈𝜃2〉  term (see 

Zilitinkevich et al. 2007; 2013). However,. Unfortunately, our DNS data have proved shown that it is to be neither negligible 

nor proportional to any other term in the budget equation, Eq. (30). Instead, we found it is to be well approximated by a linear 

combination of the production and transport terms of Eq. (30) (see Fig. 23): 275 

1

𝜌0
〈𝜃

𝜕𝑝

𝜕𝑧
〉 = 𝐶𝜃𝛽〈𝜃2〉 + 𝐶∇2𝐸𝑧

𝜕Θ

𝜕𝑧
.          (31) 

The dimensionless constants 𝐶𝜃 = 0.7682 and 𝐶∇ = −0.780 are obtained from the best fit of Eq. (31) to DNS data. 
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Figure 23: Comparison of two terms, 𝜷〈𝜽𝟐〉/
𝟏

𝝆𝟎
〈𝜽

𝝏𝒑

𝝏𝒛
〉 and 𝟐𝑬𝒛

𝝏𝚯

𝝏𝒛
/

𝟏

𝝆𝟎
〈𝜽

𝝏𝒑

𝝏𝒛
〉, after the same DNS for stably stratified Couette flow 280 

(red dots). The black solid line represents the linear dependency of the latter on the former, The black solid line corresponds to the 

linearwhich turns into  combination Eq. (31) after multiplication by 
𝟏

𝝆𝟎
〈𝜽

𝝏𝒑

𝝏𝒛
〉 and simple recombination. The fitting coefficients are 

with 𝑪𝜽 = 𝟎. 𝟕𝟔𝟖𝟐 and 𝑪𝛁 = −𝟎. 𝟕𝟖𝟎. 

Substituting Eq. (31) into Eq. (30), we rewrite the budget equation as 

0 = (1 − 𝐶𝜃)𝛽〈𝜃2〉 − (1 + 𝐶∇)2𝐸𝑧
𝜕Θ

𝜕𝑧
−

𝐹𝑧

𝑡𝐹
.         (32) 285 

Substituting Eq. (15) for 〈𝜃2〉 into Eq. (32) allows expressing 𝐹𝑧 throught familiar temperature-gradient expression: 

𝐹𝑧 = −𝐾𝐻
𝜕Θ

𝜕𝑧

𝜕𝜃

𝜕𝑧
,  𝐾𝐻 = [(1 + 𝐶∇) − (1 − 𝐶𝜃)

𝐸𝑃

𝐴𝑧𝐸𝐾

𝐸𝑃

𝐸𝐾

1

𝐴𝑧
] 2𝐴𝑧𝐸𝐾𝑡𝐹.      

 (33) 

Then sSubstituting Eq. (33) into Eq. (14), gives 
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𝐹𝑧
2

𝐸𝜃𝐸𝐾
= 2 [(1 + 𝐶∇)𝐴𝑧 − (1 − 𝐶𝜃)

𝐸𝑃

𝐸𝐾
]

𝑡𝐹

𝑡𝜃
.         (34) 290 

Next, the turbulent Prandtl number, defined as Pr 𝑇 = 𝐾𝑀/𝐾𝐻 , is given by 

Pr 𝑇 =
𝑡𝜏

𝑡𝐹
/ [(1 + 𝐶∇) − (1 − 𝐶𝜃)

𝐸𝑃

𝐴𝑧𝐸𝐾
].         (35) 

Eqs. (34) and (35) provide us with two constrains on the function in the square brackets. First, the left-hand side of Eq. (34) is 

non-negative by definition, implying the same requirement for the right-hand side of the equation. Second, the turbulent Prandtl 

number grows with increase of the gradient Richardson number, Pr 𝑇|(𝑧/𝐿→∞) → 𝑅𝑖/𝑅∞, requiring the function in the square 295 

brackets to approach zero under extreme stratification. This leads us to the next approximation (see Fig. 4): 

1−𝐶𝜃

1+𝐶∇

𝐸𝑃

𝐴𝑧𝐸𝐾
= 1 − e−𝐶𝑃𝑟𝑧/𝐿.           (36) 

This function monotonically decreases from 1  to 0  as 0 < 𝑧/𝐿 < ∞ , satisfying our requirements with 𝐶𝑃𝑟 = 0.65 . The 

observed spread of data points might be explained by the simulation time being insufficient to reach a fully statistical steady 

state for this specific ratio. Although the fully developed steady state was achieved (verified using the standard criterion of 300 

stabilized TKE, which showed no significant fluctuations over time), the parameters involving ratios of temperature 

fluctuations 𝜃 might require additional time to stabilize. We believe that increasing the experiment time would decrease the 

spread, but we leave the validation of this hypothesis for future studies. 
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Figure 4: The ratio of two terms from the square brackets of Eq. (34) versus 𝒛/𝑳. Same data as in Fig. 2. The black solid line shows 305 
Eq. (36) with empirical constant 𝑪𝑷𝒓 = 𝟎. 𝟔𝟓, obtained from the best fit of Eq. (34) to DNS data in the turbulent layer: 𝒛 > 𝟓𝟎𝝂/𝝉𝟏/𝟐 . 

It leads us to a similar approximation of 𝑡𝜏/𝑡𝐹 (see Fig. 5): 

𝑡𝜏

𝑡𝐹
= Pr 𝑇(1 + 𝐶∇) [1 −

1−𝐶𝜃

1+𝐶∇

𝐸𝑃

𝐴𝑧𝐸𝐾
] = 𝐶1

𝜏𝐹e−𝐶2
𝜏𝐹𝑧/𝐿.        (37) 
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Figure 5: The ratio of the effective dissipation time scales of 𝝉 and 𝑭𝒛, 𝒕𝝉/𝒕𝑭, versus 𝒛/𝑳. Same data as in Fig. 2. The black solid line 310 
shows Eq. (37) with empirical constants 𝑪𝟏

𝝉𝑭 = 𝟎. 𝟏𝟕 and 𝑪𝟐
𝝉𝑭 = 𝟎. 𝟔𝟐, obtained from the best fit of Eq. (37) to DNS data in the 

turbulent layer: 𝒛 > 𝟓𝟎𝝂/𝝉𝟏/𝟐 . 

Now, to complete the closure, we need to determine one more dimensionless ratio, 𝑡𝜃/𝑡𝐾. It is explicitly required for the ratio 

of turbulent energies, 𝐸𝑃/𝐸𝐾 , and consequently for 𝐴𝑧 through Eqs. (20) and (36). We approximate it once again with the ratio 

of two first-order polynomials: 315 

𝑡𝜃

𝑡𝐾
=

𝐶1
𝜃𝐾𝑧/𝐿+𝐶2

𝜃𝐾

𝑧/𝐿+𝐶3
𝜃𝐾 .            (38) 
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Figure 6: The ratio of the dissipation time scale of 〈𝜽𝟐〉 and the dissipation time scale of TKE, 𝒕𝜽/𝒕𝑲, versus 𝒛/𝑳. Same data as in 

Fig. 2. The black solid line shows Eq. (38) with empirical constants 𝑪𝟏
𝜽𝑲 = 𝟒𝟎, 𝑪𝟏

𝜽𝑲 = 𝟒𝟖𝟎 and 𝑪𝟏
𝜽𝑲 = 𝟗𝟎𝟎, obtained from the best 

fit of Eq. (38) to DNS data in the turbulent layer: 𝒛 > 𝟓𝟎𝝂/𝝉𝟏/𝟐 . 320 

Similarly to 𝑡𝜏/𝑡𝐾 approximation (27), we approximate 𝑡𝐹/𝑡𝜃 as a universal function of 𝑧/𝐿 (see Fig. 3): 

𝑡𝐹

𝑡𝜃
=

𝐶1
𝐹𝜃𝑧/𝐿+𝐶2

𝐹𝜃

𝑧/𝐿+𝐶3
𝐹𝜃 .            (35) 

Here, the dimensionless empirical constants are obtained from the best fit of Eq. (35) to DNS data just like before: 𝐶1
𝐹𝜃 =

0.015, 𝐶2
𝐹𝜃 = 0.7, 𝐶3

𝐹𝜃 = 2.7. 

 325 
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Figure 3: The ratio of the effective dissipation time scale of 𝑭𝒛 andeffective dissipation time scale of 𝑭𝒛 

The turbulent Prandtl number, defined as Pr 𝑇 = 𝐾𝑀/𝐾𝐻 , is given by 

Pr 𝑇 =
𝑡𝜏

𝑡𝐹
/ [(1 + 𝐶∇) − (1 − 𝐶𝜃)

𝐸𝑃

𝐴𝑧𝐸𝐾
].         (36) 

As shown, e.g., by Zilitinkevich et al. (2013), Pr 𝑇|(𝑧/𝐿=0) = 0.8 and Pr 𝑇|(𝑧/𝐿→∞) → 𝑅𝑖/𝑅∞. 330 

It leads to the following equations: 

𝑡𝜏

𝑡𝐹
|

(𝑧/𝐿=0)
= (1 + 𝐶∇)Pr 𝑇|(𝑧/𝐿=0) ≈ 1.4.         (37) 

[(1 + 𝐶∇) − (1 − 𝐶𝜃) (
𝐸𝑃

𝐴𝑧𝐸𝐾
)|

(𝑧/𝐿→∞)
] = 0.         (38) 

To proceed further, it is important to point out that we currently lack any additional information or constraints regarding the 

energetics of 𝑧/𝐿 → ∞ asymptotic regime. Therefore, to close our system of equations, we have to make certain assumptions. 335 
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Based on the DNS data available, we assume that the vertical share of TKE, 𝐴𝑍, either remains constant or undergoes minimal 

changes as the stratification increases (see Fig. 4). The available data suggest an average value of 𝐴𝑍 = 0.17. Consequently, 

the asymptotic value of the TPE to TKE ratio would be (
𝐸𝑃

𝐸𝐾
)|

(𝑧/𝐿→∞)
≈ 1.26, corresponding to extremely strong stratification. 

If future modelling results or natural observations reliably indicate a different value for this asymptote, it would imply that 

assuming a constant 𝐴𝑍  is an oversimplified approximation. In such a case, a parameterization for 𝐴𝑍  would need to be 340 

introduced. However, since we currently lack evidence to support any alternative scenarios, we have chosen the simplest option 

available. 

The available data suggest an average value of 𝐴𝑍 = 0.17. Consequently, the asymptotic value of the TPE to TKE ratio would 

be (
𝐸𝑃

𝐸𝐾
)|

(𝑧/𝐿→∞)
≈ 1.26, corresponding to extremely strong stratification. 

 345 

Figure 4: The vertical share of TKE 𝑨𝒁, versus stratification parameter 𝒛/𝑳. Empirical data are from the same sources as in 

Fig. 1. The black solid line corresponds to 𝑨𝒁 = 𝟎. 𝟏𝟕, which is an average value of 𝑨𝒁 in the turbulent layer, 𝒛 > 𝟓𝟎𝝂/𝝉𝟏/𝟐 . 
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Now we may revisit the ratio between the dissipation time scale of TKE, 𝑡𝐾 and dissipation time scale of 〈𝜃2〉, 𝑡𝜃: 

𝑡𝐾

𝑡𝜃
=

𝑡𝜏

𝑡𝐹

𝑡𝐹

𝑡𝜃
/

𝑡𝜏

𝑡𝐾
,            (39) 

where 𝑡𝜏/𝑡𝐾 and 𝑡𝐹/𝑡𝜃 are defined by Eqs. (27) and (35). 350 

We approximate 𝑡𝐾/𝑡𝜃 with a ratio of two first-order polynomials as before, 

𝑡𝐾

𝑡𝜃
=

𝐶1
𝐾𝜃𝑧/𝐿+𝐶2

𝐾𝜃𝐶3
𝐾𝜃

𝑧/𝐿+𝐶3
𝐾𝜃 .           (40) 

Here we have only one unknown dimensionless empirical constant, 𝐶3
𝐾𝜃, since we know that 𝐶1

𝐾𝜃 = (𝑡𝐾/𝑡𝜃)|(𝑧/𝐿→∞) ≈ 0.2 

and 𝐶2
𝐾𝜃 = (𝑡𝐾/𝑡𝜃)|(𝑧/𝐿=0) ≈ 1.85 from Eqs. (37) and (38). The best fit to DNS data gives 𝐶3

𝐾𝜃 = 11 (see Fig. 5). 

 355 

Figure 5: The ratio of TKE and 〈𝜽𝟐〉 dissipation time scales, 𝒕𝑲/𝒕𝜽, versus 𝒛/𝑳. Empirical data are from the same sources as in Fig. 

1. The black solid line shows Eq. (40) with empirical constant 𝑪𝟑
𝑲𝜽 = 𝟏𝟏 obtained from the best fit of Eq. (40) to DNS data in the 

turbulent layer: 𝒛 > 𝟓𝟎𝝂/𝝉𝟏/𝟐 . 



23 

 

With the inclusion of EqEq. (4038), our turbulence closure is now complete, allowing us to proceed with the validation 

verification process using independent energetic quantities not utilized in the fitting proceduresdimensionless ratios and DNS 360 

results.  Fig.ure 6 7 provides empirical evidence supporting the stability dependencies given by Eqs. (27) and (3520, 26, 27, 

34-38). Table 2 summarises the proposed approximations and provides a summary of the resulting turbulent closure. 

(a) 

 

 

 

 

 

 

(b) 

(c) 

 

 

 

 

 

 

(d) 
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Figure 67: Validating the closure with quantities not utilized in the fitting proceduresResulting energetic dimensionless ratios. Panel 

(a) shows the TPE to TKE ratio, 𝑬𝑷/𝑬𝑲, versus 𝒛/𝑳;. The black solid line (Eq. 20) shows a good agreement with the DNS data in the 365 
turbulent layer: 𝒛 > 𝟓𝟎𝝂/𝝉𝟏/𝟐 . panel (b) shows the vertical share of TKE, 𝑨𝒛; panel (c) demonstrates the ratio of dissipation time 

scales of 〈𝜽𝟐〉 and 𝑭𝒛; Panel (b) shows the squared dimensionless turbulent flux of momentum, (𝝉/𝑬𝑲)𝟐, versus 𝒛/𝑳. The black solid 
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line (Eq. 26) fits the DNS data in the turbulent layer: 𝒛 > 𝟓𝟎𝝂/𝝉𝟏/𝟐 very well. Panel (c) shows the squared dimensionless turbulent 

flux of potential temperature, 𝑭𝒛
𝟐/𝑬𝜽𝑬𝑲, versus 𝒛/𝑳. The black solid line (Eq. 34) shows an agreement with the DNS data in the 

turbulent layer: 𝒛 > 𝟓𝟎𝝂/𝝉𝟏/𝟐 . Ppanel (d) shows the turbulent Prandtl number, 𝐏𝐫 𝑻, versus 𝒛/𝑳. The black solid line (Eq. 36) shows 370 
a good agreement with the DNS data in the turbulent layer: 𝒛 > 𝟓𝟎𝝂/𝝉𝟏/𝟐 .; panel (e) shows the squared dimensionless turbulent 

flux of momentum, (𝝉/𝑬𝑲)𝟐; and panel (f) shows the squared dimensionless turbulent flux of potential temperature, 𝑭𝒛
𝟐/𝑬𝜽𝑬𝑲. All 

quantities are plotted against 𝒛/𝑳. The black solid lines correspond to theoretical predictions demonstrating acceptable-to-great 

agreement with the DNS data in the turbulent layer: 𝒛 > 𝟓𝟎𝝂/𝝉𝟏/𝟐 . Empirical data are from the same sources as in Fig. 12. No 

fitting has been performed for this figure.There has been no fitting here. 375 

 

For practical reasons, most operational numerical weather prediction and climate models parameterize these dimensionless 

ratios as functions of the gradient Richardson number rather than 𝑧/𝐿. This preference arises from the fact that the gradient 

Richardson number is defined solely by mean quantities only, e.g.,namely  square of buoyancy and shear 

productionsfrequencies, which in practice imposes fewerlesser computational restrictions on the model's time step. Since Ri =380 

Pr 𝑇 Ri𝑓 and both Pr 𝑇 and Ri𝑓 are defined asknown functions of 𝑧/𝐿 by Eqs. (35) and (21), respectively, we can derive an 

expression for the gradient Richardson number, Ri as the is also a known function of 𝑧/𝐿, shown in Fig. 8. Unfortunately, 

solving this dependency explicitly every time step at every grid point might be computationally expensive (it is a polynomial 

equation of the 5th degree), so we propose to use yet another approximation. Zilitinkevich et al. (2013) demonstrated that in 

near-neutral stratification Pr 𝑇 can be treated as constant, meaning that Ri𝑓~Ri, while in the strong-turbulence regime Ri𝑓 is 385 

limited by its maximum value of 0.2. We propose to link these regimes through the following interpolation: 

RiRi𝑓 = Ri𝑓
𝐶1

𝜏𝐹

1+𝐶∇
e−(𝐶𝑃𝑟−𝐶2

𝜏𝐹)𝑧/𝐿 (
1

(𝑎Ri)𝑛 +
1

(𝑅∞)𝑛)
−1/𝑛

.,        

  (4139) 

where 𝑎  and 𝑛  are fitting constants. Fig. 7 shows the best fit with 𝑎 = 1.2  and 𝑛 = 5.5 . The relative error for this 

approximation does not exceed 5% and allows to considerably cut down the computational expenses. 390 
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Figure 78: Resulting approximation of the gradient Richardson number,Proposed 𝐑𝐢𝒇 vs 𝐑𝐢, after  approximation, Eq. (3941)., 

compared to the exact solution (panel a) and relative error of this approximation as a function of gradient Richardson number, 𝐑𝐢 395 
(panel b). The black solid line corresponds to theoretical derivation, that shows good agreement with the DNS data in the turbulent 

layer: 𝒛 > 𝟓𝟎𝝂/𝝉𝟏/𝟐 . Empirical data are from the same sources as in Fig. 2. No fitting has been performed for this figure. 
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Table 2: Proposed approximations and resulting revised turbulent parameters of EFB closure. 

Variable Approximation / theoretical derivation Empirical constants 𝐑𝟐 RMSE Equation number 

𝑡𝜏

𝑡𝐾

 
𝐶1

𝜏𝐾𝑧/𝐿 + 𝐶2
𝜏𝐾

𝑧/𝐿 + 𝐶3
𝜏𝐾  𝐶1

𝜏𝐾 = 0.08, 𝐶2
𝜏𝐾 = 0.4, 𝐶3

𝜏𝐾 = 2 0.97 0.0021 (27) 

1

𝜌0

〈𝜃
𝜕𝑝

𝜕𝑧
〉 𝐶𝜃𝛽〈𝜃2〉 + 𝐶∇2𝐸𝑧

𝜕Θ

𝜕𝑧
 𝐶𝜃 = 0.82, 𝐶∇ = −0.80 0.999 3.92 (31) 

1 − 𝐶𝜃

1 + 𝐶∇

𝐸𝑃

𝐴𝑧𝐸𝐾

 1 − e−𝐶𝑃𝑟𝑧/𝐿 𝐶𝑃𝑟 = 0.65 0.73 0.074 (36) 

𝑡𝜏

𝑡𝐹

 𝐶1
𝜏𝐹e−𝐶2

𝜏𝐹𝑧/𝐿 𝐶1
𝜏𝐹 = 0.17, 𝐶2

𝜏𝐹 = 0.62 0.998 0.001 (37) 

𝑡𝜃

𝑡𝐾

 
𝐶1

𝜃𝐾𝑧/𝐿 + 𝐶2
𝜃𝐾

𝑧/𝐿 + 𝐶3
𝜃𝐾

 𝐶1
𝜃𝐾 = 40, 𝐶2

𝜃𝐾 = 480, 𝐶3
𝜃𝐾 = 900 0.79 0.021 (38) 

𝐸𝑃

𝐸𝐾

 
Ri𝑓

1 − Ri𝑓

𝑡𝜃

𝑡𝐾

 no additional fitting 0.90 0.006 (20) 

𝐴𝑧 
1 − 𝐶𝜃

1 + 𝐶∇

𝐸𝑃

𝐸𝐾

1

1 − e−𝐶𝑃𝑟𝑧/𝐿
 no additional fitting 0.17 0.024 derived form (36) 

𝑡𝜃

𝑡𝐹

 
𝑡𝜏

𝑡𝐹

𝑡𝜃

𝑡𝐾

/
𝑡𝜏

𝑡𝐾

 no additional fitting 0.89 0.27 derived from (27, 37, 38) 

Pr 𝑇 

𝑡𝜏

𝑡𝐹

1

(1 + 𝐶∇) − (1 − 𝐶𝜃)
𝐸𝑃

𝐴𝑧𝐸𝐾

 
no additional fitting 0.76 0.017 (35) 

(
𝜏

𝐸𝐾

)
2

 
2𝐴𝑧

1 − Ri𝑓

𝑡𝜏

𝑡𝐾

 no additional fitting 0.61 0.008 (26) 

𝐹𝑧
2

𝐸𝜃𝐸𝐾

 2 [(1 + 𝐶∇)𝐴𝑧 − (1 − 𝐶𝜃)
𝐸𝑃

𝐸𝐾

]
𝑡𝐹

𝑡𝜃

 no additional fitting 0.77 0.014 (34) 

Ri Ri𝑓
𝐶1

𝜏𝐹

1 + 𝐶∇

e−(𝐶𝑃𝑟−𝐶2
𝜏𝐹)𝑧/𝐿 no additional fitting 0.90 0.005 (39) 

 

5 Concluding remarks 400 

For many years, our understanding of dissipation rates for turbulent second-order moments has been hindered by a lack of 

direct observations in fully controlled conditions, particularly in very a strongly stable stratification. To address this limitation, 
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we conducted topical DNS experiments (Direct Numerical Simulation) of stably stratified Couette flows. The main finding of 

this study is This allowed us to show that the ratios of the dissipation time scales of the basic second-order moments depend 

on the temperature stratification static stability (e.g., characteriszed by the gradient Richardson number), contrary to the 405 

traditional assumption of them being proportional to one mastera single universal dissipation time scale. 

This finding laid the foundation for empirically approximating these ratios with simple universal functions of stability 

parameters, valid for a wide range of stratifications. Consequently, this allowed us to refine the EFB turbulent closure by 

accounting for dissipation time scales that are intrinsic to the basic second-order moments. Subsequently, we proposed the 

empirical approximations for these, which serve as simple universal functions of stability parameters across a range of 410 

stratifications from neutral to extremely stable conditions. This allowed us to correct the EFB turbulent closure accounting for 

dissipation time scales shown to be inherent to the basic second-order moments. This approach follows the methodology 

initially introduced by Zilitinkevich et al. (2007, 2013, 2019). As a result, the revised formulations for eddy viscosity and eddy 

conductivity reveal greater physical consistency in strongly stratified conditions, thereby enhancing the representation of 

turbulence in numerical weather prediction and climate modelling. 415 

We have also observed that the dimensionless parameters involving 𝜃 fluctuations demonstrate a wider spread of values within 

and across the DNS experiments, making it more challenging to approximate them with stability functions. This suggests that 

the stabilisation time for these parameters may be significantly longer than for TKE components. 

It is important to note that our DNS experiments were limited to gradient Richardson numbers up to Ri = 0.127. Any data 

reliably indicating different asymptotic values of the time scale dimensionless ratios or demonstrating their different 420 

dependency on the temperature stratification static stability would pose the need for readjusting the proposed parameterization. 

We deliberately avoided discussing intermittency issues: for that one needs to determine higher-order two-point (or multi-

point) moments. Intermittency is important for small-scale effects, and intermittency implies that higher-order moments of 

velocity and temperature fields have non-Gaussian statistics. In this study we focused on larger scales determining one-point 

second-order correlation functions barely touching one-point third-order correlation functions only when it is necessary. 425 

However, addressing this topic would be crucial for advancing numerical simulations towards higher stratifications and 

warrants detailed investigation. 

With these considerations in mindMoving forward, we believe the most challenging step will be to explicitly explore the 

transitional region between traditional weakly-stratified turbulence and extremely stable stratification, where the behaviour of 

the turbulent Prandtl number shifts from nearly constant to a linear function one with respect to the gradient Richardson 430 

number. Investigating this phenomenon would require unprecedented computational resources for DNS or specialiszed in-situ 

or laboratory experiments. 
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author upon reasonable request. 
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