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Abstract. We develop a harmonized earthquake forecasting model for Europe based on the Epidemic-type Aftershock Se-

quence (ETAS) model to describe the spatio-temporal evolution of aftershock sequences. We propose a method modification

that integrates information from the European Seismic Hazard Model (ESHM20) about the spatial variation of background

seismicity during ETAS parameter inversion based on the expectation–maximization (EM) algorithm. Other modifications to

the basic ETAS model are explored, namely fixing the productivity term to a higher value to balance the more productive trig-5

gering by high-magnitude events with their much rarer occurrence, and replacing the b-value estimate with one relying on the

b-positive method to observe the possible effect of short-term incompleteness on model parameters. Retrospective and pseudo-

prospective tests demonstrate that ETAS-based models outperform the time-independent benchmark model as well as an ETAS

model calibrated on global data. The background-informed ETAS variant achieves the highest score in the pseudo-prospective

experiment, but the performance difference to the second-best model is not significant. Our findings highlight promising areas10

for future exploration, such as avoiding the simplification of using a single b-value for the entire region or reevaluating the

completeness of the used seismic catalogs.

1 Introduction

After the occurrence of a large-magnitude earthquake, the expected behavior of its aftershocks, and in particular the possibility

of another large event, are of interest both to the general public and governmental and private organisations, such as civil15

protection, first responders, insurance companies, etc. Operational Earthquake Forecasting (OEF; Jordan et al., 2011) was

introduced as a term for "gathering and disseminating authoritative information about the time dependence of seismic hazards

to help communities prepare for potentially destructive earthquakes". It is an evolving effort that has seen significant progress

in recent years. Several countries, including New Zealand (Christophersen et al., 2017), the United States (Field et al., 2017;

Jordan et al., 2011, 2014; van der Elst et al., 2022), and Italy (Marzocchi and Lombardi, 2009; Marzocchi et al., 2014) currently20

have systems in place that produce authoritative earthquake forecasts. Each of these systems uses different underlying models

to produce the forecasts, communicates the forecasts differently and to different user groups, and the forecasting systems are

continuously being modified and improved. There is not a unique agreed-upon best way to provide OEF, as has been shown

recently in an elicitation of expert views on this topic (Mizrahi et al., 2023a).
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However, what is clear is that to issue earthquake forecasts operationally, time-dependent models that describe both the25

spatial and temporal variability of seismicity are required. Gathering historic and recent seismicity data, combined with knowl-

edge of seismotectonic properties of a region, allows us to better understand spatial variability in earthquake occurrence in a

time-independent manner (Danciu et al., 2021; Crowley et al., 2021; Wiemer et al., 2016). In addition to the time-independent

assessment of seismicity, the temporal evolution of seismic sequences can be modelled using well-established empirical laws,

as has been done by several (governmental or non-governmental) agencies on various scales (Christophersen et al., 2017; Field30

et al., 2017; Jordan et al., 2011; Mizrahi et al., 2023b; Marzocchi and Lombardi, 2009; Nandan et al., 2021; Omi et al., 2018).

The main objective of this paper is to develop a harmonized forecasting model for Europe that represents the current state

of the art of time-dependent earthquake forecasting. The idea of a harmonized model is to take into account the differences

in data collection properties, but also physical properties of various tectonic regions, to minimize the effect of administrative

borders on the output, providing a unique set of parameters that, in a way, averages seismicity properties in the observed region,35

hopefully benefiting from a high variety of events present in such a large dataset. This model is meant to be simple and serve as

the basis for the development of future models, and is not meant to overrule other, national forecasting models where they are

available (e.g. Italy; Marzocchi et al., 2014). We aim to identify the shortcomings of a basic harmonized model and propose

modifications that would remediate them with the goal of providing reliable earthquake probabilities incorporating long-term

seismicity rates as well as short-term clustering patterns.40

The current state-of-the-art models for time-dependent earthquake forecasting are Epidemic-type aftershock sequence (ETAS)

models (Ogata, 1988). Having been introduced by Ogata in 1988, these models have been around for several decades, imple-

mented and used by many agencies and identified by experts in the study of Mizrahi et al. (2023a) as the preferred choice for

a default model to be used for earthquake forecasting. Their main strength is in explaining the aftershock triggering behavior

of earthquakes, relying on temporal and spatial decay of the number of aftershocks with spatial or temporal distance from45

the main event, the productivity law, and the Gutenberg–Richter (GR) law (Omori, 1895; Utsu, 1971; Gutenberg and Richter,

1936). In ETAS, the seismicity rate ℓ is given as the sum of the background rate µ and the aftershock rate g of all previous

events, following these laws. Specifically, we will use the formulation as in Nandan et al. (2021) and Mizrahi et al. (2021b),

ℓ(t,x,y) = µ +
∑

i:ti<t

g(mi, t− ti,x−xi,y− yi), (1)

g(mi, t− ti,x−xi,y− yi) =
e−(t−ti)/τ · k0e

a(mi−mc)

(t− ti + c)1+ω((x−xi)2 + (y− yi)2 + deγ(m−mc))1+ρ
.50

Training such a model for the Europe-wide region poses a number of challenges, as has been laid out by Zechar et al. (2016).

A main challenge lies in the compilation of a dataset containing a comprehensive record of earthquakes over a significant period

of time, especially considering the differing formats and properties used in different countries or subregions (e.g., magnitude

types and their definitions, data completeness due to network density and other reasons, location and magnitude precision,

etc.). Moreover, it is desirable to leverage high-quality data (higher precision, completeness to a lower magnitude) where it55

is available, without losing potentially valuable information about high-magnitude events in periods and regions wherein data
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collection was not as precise and complete. Data completeness is often quantitatively expressed through the completeness

magnitude (mc), which is the lowest magnitude above which all events are assumed to be observed. A catalog of all recorded

events is normally incomplete, meaning that it also contains events below mc, and as the exact mc is not known, it is important

to estimate mc and remove events below mc. Underestimating it may bias models trained on the data with higher mc than60

assumed (Seif et al., 2017), but overestimating it results in throwing away complete and potentially useful data.

Multiple methods for estimating mc have been developed and tested, mostly relying on the fact that by the Gutenberg–

Richter law, the events in a complete catalog follow an exponential distribution, their cumulative count satisfying

N(m) = 10a−bm, (2)

where N(m) denotes the number of events with a magnitude of m and above, and a and b are parameters often referred to as65

a- and b-value. Note that the natural logarithm base is also used, in which case

N(m) = N0e
−βm, N0 = 10a, β = b ln10. (3)

Although challenging, recent achievements in data collection and harmonization have enabled the creation of a Europe-wide

earthquake catalog which we aim to use as a basis for the calibration of a Europe-wide ETAS model in this study. The main

result that will be used in this study in terms of data gathering is the catalog collected for the European seismic hazard model70

(ESHM20; Danciu et al., 2021), which provides harmonized information about seismic activity on an overall European scale,

relying on expert knowledge about the differences in earthquake monitoring and physical tectonic characteristics of the region

in order to harmonize the data, and providing elicitation both on data properties (such as mc) and division into subregions

based on their seismotectonic properties. Moreover, the ability to fit ETAS models to datasets with varying mc introduced by

Mizrahi et al. (2021b) allows for ETAS models to use both the high-quality data in (more recent) time periods and sub-regions75

with low mc and potentially capture long-term trends contained in periods and areas with higher mc.

Besides a basic ETAS model, we will consider several modifications and test them both retrospectively for self-consistency

and pseudo-prospectively for comparison against one another. While the main strength of ETAS models is in modelling after-

shock behavior, it is expected that the background rate varies significantly in space over a large area such as Europe. One of our

main proposed modifications focuses on implementing the knowledge about spatial variations in background rate inferred by80

ESHM20 (Danciu et al., 2021) already during the inversion of ETAS parameters, which could affect the parameters describing

aftershock behavior as well. Other modifications include fixing the term dictating the productivity law to the b-value of the

catalog (Hainzl et al., 2013; van der Elst et al., 2022) to balance the more productive triggering by high-magnitude events

(productivity law; Utsu, 1971) with their much rarer occurrence (Gutenberg–Richter magnitude distribution law; Gutenberg

and Richter, 1936) as explained in Helmstetter (2003), and implementing the b-positive method (van der Elst, 2021) for the85

estimation of the b-value.

The outline of the remaining sections of this article is the following: in Sect. 2, we briefly describe the ESHM20 catalog with

both its more recent and historic parts and then describe the selection of the time frame used in this study due to computational

limitations and high heterogeneity in data quality among time periods. We introduce additional data about long-term seismicity
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given by ESHM20 that will be used as input to some model variants and the most recent catalog that will be used for model90

validation. The development of a base model and modifications thereof are described in more detail in Sect. 3, followed by a

description of the methods used for testing them (Sect. 3.3 and 3.4). Finally, our results are presented and discussed in Sect. 4,

divided into three parts, presenting the fitted parameters of the models, results of retrospective consistency tests, and results of

pseudo-prospective model comparison experiments.

2 Data95

The primary dataset used in this work is the ESHM20 catalog (Danciu et al., 2021), which contains the combined catalogs of

all agencies that record earthquakes in Europe, both recent and historical, dating back to the 11th century. Due to the variations

in both the nature of earthquake occurrence and its monitoring, the data are highly heterogeneous. For pre-instrumental times,

the records are highly incomplete, potentially missing even the high-magnitude events and the magnitudes of the events that

are in the record containing errors potentially higher than 0.5 magnitude units (Grünthal et al., 2009; Grünthal and Wahlström,100

2012). As the density and sensitivity of seismic networks generally improve over time, the magnitude and location precision

increases (Danciu et al., 2021), as well as the number of recorded events due to the ability to record lower-magnitude events

(the completeness magnitude mc decreases). However, neither the level of completeness nor this improvement over time are

spatially uniform. Between some regions, in the same period, mc difference can be up to four magnitude units. Although a

more precise magnitude resolution is available for a part of the data, the agreed-on precision is 0.2, as in Danciu et al. (2021).105

Due to computational limitations, poor quality, and strong incompleteness of early data, which make it unsuitable for the

analysis of aftershock behavior, the dataset needs to be narrowed down to contain relatively recent information while ensuring a

sufficiently long time frame that enables the capturing of longer-term triggering effects and seismicity patterns. High-magnitude

events that are present in historical parts of the catalog are crucial to better understand the frequency of rare seismic events

that are not present in more recent time periods, and they help to identify additional spatial patterns in background seismicity.110

However, these historical high-magnitude events will seldom have aftershocks recorded due to the incompleteness reflected in

mc going as high as magnitude 8. Up to the early 1980s, the highest completeness difference between regions in the same time

period is as high as three magnitude units; starting from the 1990s, this difference lowers to 1.5 units of magnitude. Hence,

we here limit the catalog to the time period starting with the year 1980, with only events after 1990 considered as potentially

triggered events (this is discussed in more detail later, in Sect. 3.2.1). The spatial distribution of the catalog containing over 20115

thousand events in this time period is shown in Fig. 1(a) (in red). While the aforementioned issues of earthquake monitoring

in earlier parts of the catalogs are fewer in the selected recent time period, the effect of neglecting to address them (such as

assuming a too low mc or too high magnitude precision) could still potentially significantly bias our later output (Seif et al.,

2017).

By definition of the completeness magnitude, all events of magnitude equal to or higher than mc are assumed to be recorded.120

The events of magnitude below mc are also present in the raw catalog, resulting in incompleteness in the data. The incom-

pleteness in this dataset below magnitude 4.6 is so evident that it is detectable already through visual inspection of Fig. 1(b–c).
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Figure 1. Dataset used for model training (1980–2015, red dots) and testing (2015–2022, green dots); in (c–d) only the training dataset

is shown. (a) Map of events detected in the study area defined in ESHM20. The dot size increases with magnitude. (b) Time evolution of

recorded events’ magnitudes. The dot size increases with magnitude. (c) Cumulative count of recorded events through time for different cutoff

magnitudes. (d) Magnitude frequency distribution plot. The distribution of m−mc(x,y, t) is shown to correct for varying completeness.

Namely, under the assumption that the observed number of events does not have a significant trend over a longer period of time,

the cumulative count of events through time would display a roughly linear increasing behavior, with rapid jumps in the count

at a point indicating only the occurrence of a productive sequence of events. The changes in the slope of this linear increase125

shown in (c) indicate the changing completeness over that time period and an increase in the rate of cumulative earthquake

count, suggesting that completeness improves over time. In (b), both incompleteness and discretisation are discernible in the

plot showing recorded magnitudes over time.

The study of Danciu et al. (2021) provides expert evaluations of the completeness magnitudes by region and time period.

Knowing these mc values allows accounting for the incompleteness of data later during model calibration as described in130

Mizrahi et al. (2021b). As mc differs between regions and time periods, the distribution of m−mc(x,y, t) is shown in Fig.

1(d) instead of a distribution of "pure" magnitudes to correct each magnitude for the corresponding incompleteness level.

The catalog of Danciu et al. (2021) ends in 2015 and we use it in full for model training. The continuation of the catalog

is given in Lammers et al. (2023) until 2022 and this seven-year period is used here for pseudo-prospective testing. This new

part of the catalog is not identical in composition to the catalog used for training, the most prominent difference being the135

completeness magnitude of 4.6 in the overall dataset (demonstrated in Fig. 1(b)). The spatial distribution of the testing catalog

is shown in Fig. 1(a) (in green). In truly prospective testing, such differences are not only possible, but an expected occurrence,
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the effect of which is not to be disregarded, but rather leveraged to obtain more robust models. Note that in both the training

and testing catalog, due to the binning of ∆m = 0.2 mentioned above, a completeness magnitude mc means that it actually

contains events above mc− 0.5∆m = mc− 0.1.140

Furthermore, in this study, alongside earthquake catalogs, we aim to utilize the long-term seismicity rates introduced by

Danciu et al. (2021). These rates are provided for both the area sources model and the background seismicity and active faults

model. The area sources model is a classical seismogenic source model, describing seismicity as shallow crustal, volcanic,

subduction in-slab and deep, relying on recommendations by regional and national experts with modifications made to ensure

compatibility in bordering (overlapping) areas. The background seismicity and active faults model combines the smoothed145

background seismicity model obtained by estimating activity parameters (a- and b-value in the GR law) on a declustered

complete catalog and the model describing seismic productivity in the proximity of faults with a fault-dependent magnitude

threshold between them ensuring avoiding double counting seismicity. As in ESHM20, the annual seismicity rates for each

spatial and magnitude bin are obtained by combining the outputs of these two models, with equal weighting. Summing the

rates across all magnitude bins and accounting for differences in completeness magnitude and time duration yields overall150

daily background seismicity rates for the spatial bins defined in the study. By adding this extra input, we include information

from the historical periods of the ESHM catalog about large events and seismicity in areas not represented in the selected

training part of the catalog (after 1980).

3 Methods

3.1 ETAS155

Training an ETAS model on a given dataset means finding the parameters in (1) that give the best fit to the data. The inversion

of the ETAS parameters µ, k0, a, c, ω, τ , d, ρ and γ used here is based on an expectation–maximization (EM) algorithm (Veen

and Schoenberg, 2008), with the varying mc adjustment (Mizrahi et al., 2021b). Conservatively using the maximum value

of mc across the entire catalog would result in the loss of a large amount of valuable data, while assuming a completeness

magnitude lower than the true one could introduce biases to our calculations (Seif et al., 2017).160

In this modified EM algorithm by Mizrahi et al. (2021b), the difference between the overall lowest completeness magnitude,

mref, and the completeness magnitude at the location and time of a given event, mc(x,y, t), is taken into account for each event

by estimating the ratio of the unobserved and observed events (ζ), and the ratio of events triggered by unobserved and observed

events (ξ) based on the Gutenberg–Richter magnitude distribution assumption. The algorithm has been implemented in Python

by Mizrahi et al. (2023c) and can, in principle, be used to calibrate basic ETAS models on any given catalog.165

As the computation of ζ and ξ relies on the GR law to estimate the number of unobserved events, this method is dependent

on the estimated b-value of the catalog. Therefore, we test both the classical maximum likelihood method with adjusting for

binning described in Tinti and Mulargia (1987), and the b-positive method (van der Elst, 2021) which is meant to overcome

incompleteness in data, primarily the short-term aftershock incompleteness (STAI; Kagan, 2004).

6

https://doi.org/10.5194/egusphere-2023-3153
Preprint. Discussion started: 10 January 2024
c© Author(s) 2024. CC BY 4.0 License.



In an ETAS model which produces a unique set of parameters for the overall region, information and properties of specific170

faults and sequences are potentially lost, but the advantage of global models is in their training datasets containing a larger num-

ber of high-magnitude earthquakes (Bayona et al., 2023). Another approach for mitigating the averaging behavior of a global

model is to update the aftershock behavior described by ETAS with real-time data from an ongoing sequence when issuing

aftershocks forecast operationally (Omi et al., 2015; van der Elst et al., 2022). The implementation of such a sequence-specific

model updating, however, still involves a number of expert decisions, and there is no substantial evidence in favor of a unique175

updating approach that would improve the overall performance of a global model. While this is a feasible direction for future

European model development, here we focus on developing a baseline, harmonized model upon which such improvements

could be built.

3.2 Model variants

In addition to fitting an overall generic ETAS model to our dataset, in this section we propose modifications that could, in180

principle, be applied to any ETAS model. The models compared in this study are as follows.

– ETAS0: A basic ETAS model - set of parameters fitted to the ESHM20 dataset with no additional input or constraints.

The implementation relies on the EM algorithm (Veen and Schoenberg, 2008) with varying mc modification (Mizrahi

et al., 2021b).

– ETASbg: In order to be consistent with the long-term model (ESHM20; Danciu et al., 2021) and to utilize the information185

contained in the hazard model about spatially varying seismicity rates, the parameter inversion algorithm is modified to

allow for variations in the background rate.

– ETASα: Due to the observed behavior of ETAS models to underestimate the productivity of high-magnitude events, the

parameter dictating the productivity law α = a− ργ is fixed to α = β as a constraint during inversion.

– ETASbg, α: The two proposed modifications are combined.190

– ETAS0
b+, ETASbg

b+, ETASα
b+, ETASbg, α

b+: The four model variants introduced above, the only difference being in

the b-value estimation method (van der Elst, 2021).

– ETASUSGS: To add a comparison level and check for the benefits of fitting an ETAS model specific to European data, we

use the parameters from the prior models described in van der Elst et al. (2022), applied by the USGS AftershockFore-

caster software.195

– Poisson background model: We implement a time-independent model that takes the seismicity rate map provided by

ESHM20 (Danciu et al., 2021) and, for each spatial cell in this map, forecasts a number of events following the Poissonian

distribution with the corresponding rate in that cell as a mean. This is the null model against which comparisons are made

in the testing phase to check for the performance of added time-dependent information during aftershock sequences.

7

https://doi.org/10.5194/egusphere-2023-3153
Preprint. Discussion started: 10 January 2024
c© Author(s) 2024. CC BY 4.0 License.



3.2.1 ETAS0, ETAS0
b+200

These two models are trained using the general ETAS method, as introduced in Sect. 3.1, on the ESHM20 catalog filtered

as described in Sect. 2. Although the full training period includes data between 1980 and 2015, the first ten years are used

as a "burn period" - these events are interpreted as potentially triggering events, but we do not consider them as possible

aftershocks of previous earthquakes. Without this "buffer" time period, the events near the beginning of the selected time

window would all be interpreted as background events, having no preceding seismic activity acting as their potential triggering205

events. Additionally, this same auxiliary period will be used when simulating catalogs for purposes of retrospective consistency

testing, since in the simulated catalogs starting in 1990, we need both background events and aftershocks of seismicity that

occurred prior to 1990.

Having a unique set of parameters for the entire Europe provides a harmonized model that describes the aftershock behavior

in the region. For each event, the EM parameter inversion algorithm also yields the probability that it is a background or a210

triggered event. This allows us to capture the spatial variations in rates of background events despite the fact that the background

parameter µ is treated as a constant during the parameter inversion. When simulating catalogs that are later used for producing

retrospective and pseudo-prospective forecasts, we use this background rate information by drawing the events’ locations based

on the probabilities that each observed event in the training catalog is a background event.

3.2.2 ETASbg, ETASbg
b+215

We mentioned in Sect. 3.2.1 that the probabilistic branching structure inferred during the parameter inversion stage can be used

to simulate new catalogs that will be consistent with the observed background event rates at different locations. However, a

desired property of our model would be the ability to include the knowledge about variation in the background rate already

during the parameter inversion, in order to estimate the background probabilities of events more correctly, and also to achieve

consistency of the background seismicity rates with the ones in the long-term hazard model (Danciu et al., 2021). This means220

that the time-independent seismicity rates provided by the hazard model should match the time-dependent ones when computed

over very long periods of time. For this reason, the model is adjusted to allow for the now space-varying background rate:

ℓ(t,x,y) = µ(x,y) +
∑

i:ti<t

g(mi, t− ti,x−xi,y− yi), (4)

similar to the ETAS formulation with an inhomogeneous background rate µ(x,y) suggested in Veen and Schoenberg (2008),

where µ is modelled by subdividing the spatial observation window into n cells with constant background rate µk, k = 1, . . .n.225

Here, we allow for the variation between different locations to be fixed to the levels given as input to the ETAS parameter

inversion. More precisely, during the expectation step in the calculation of the probability that one event triggered another one,

the term µ representing the background contribution is replaced with

µ(x,y) = ι ·µk, (5)
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where ι is a parameter learned in the inversion, estimated in every iteration as the total number of background events in the230

entire area, normalized per day and km2, and µk is the long-term annual seismicity rate given as an input corresponding to the

cell that contains the location (x,y). The probability that event i triggered event j estimated in the (n + 1)th iteration is then

given as

P (n+1)(i→ j) =
g(mi, tj − ti,xj −xi,yj − yi|θ(n))

ι ·µk:j∈cell k +
∑

i:ti<tj
g(mi, tj − ti,xj −xi,yj − yi|θ(n))

, (6)

where µk:j∈cell k is the long-term annual seismicity rate given as an input corresponding to the cell that contains the location235

(xj ,yj).

As ι is estimated in each iteration as the total estimated number of background events per day and km2, it represents the

overall background rate. Therefore, the information that needs to be taken from the input background level is not the absolute

background rate in the corresponding spatial cell, normalized per time and area unit, since multiplying two such values would

result in a quick convergence of this parameter to zero. Rather than that, we only take the relative relationship between these240

rates among different spatial cells by normalizing the values µk before inversion so that 1
n

∑n
k=1 µk = 1, where n is the

number of 0.1◦× 0.1◦ cells that cover the area of interest, in our case n≈ 8 · 105. For each event in the catalog, we assign the

corresponding background seismicity level within its respective bin, which is then used as µk during the inversion.

3.2.3 ETASα, ETASα
b+

In the literature, it has been observed that there is a tendency in ETAS models to underestimate the productivity of large events245

(Hainzl et al., 2013) due to their under-representation in training data. Therefore, another proposed modification of the model

is to allow the productivity term α = a− ρ · γ to be fixed to a given constant. This term emerges from our ETAS formulation

as the exponent in the relationship between the magnitude of an event and its expected number of aftershocks.

While the productivity law describes an increase in the number of aftershocks with the magnitude of the main event, the

GR law describes that there are relatively fewer large than small magnitude events. As described in Helmstetter (2003), the250

relationship between the two exponents of these exponential relationships, α and β, determines whether earthquake triggering

is driven by small or large magnitude events - and stipulating that α = β balances the influence of events of different magnitudes

in earthquake triggering.

In the ETASα model variant, we apply this fixed α during the inversion based on the EM algorithm, which naturally affects

all parameters. For this modification of the ETAS model, we set α = β, as suggested in van der Elst et al. (2022) when b < 1,255

where β is the GR parameter. When estimating the b-value with the b-positive method (van der Elst, 2021) for the ETASα
b+

model variant, we obtain b > 1. Therefore, following the recommendation by van der Elst et al. (2022), in order to prevent the

"exploding" behavior of aftershock triggering, we fix the productivity term to α = e.
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3.2.4 ETASUSGS

The prior models used by the USGS AftershockForecaster software are fitted separately for different tectonic regimes, hence,260

more than one set of parameters exists. The sequences in the European dataset originate from various tectonic regimes, there-

fore we use their "global average" set of parameters. These parameters are expressed in the standard ETAS formulation, where

the temporal decay is given as (∆t + c)−p, as opposed to the formulation in Eq. (1) used here, where the temporal decay is

described by the factor (∆t+c)−(1+ω) ·e−∆t/τ . The productivity law in the standard formulation is expressed as 10−α(mi−mc),

where mi is the magnitude of the triggering event, and in Eq. (1), it is given as k0e
a(mi−mc), but also influenced by the spatial265

kernel term
(
∆x2 + deγ(m−mc)

)−(1+ρ)
. As no spatial parameters are specified in the parameter set given in the Aftershock-

Forecaster software documentation, we use the spatial kernel inverted by ETAS0. Additionally, we use µ and the background

locations inferred by ETAS0 because the USGS models are fitted only to aftershock sequences and do not account for back-

ground seismicity. Keeping in mind the different mc, which in the USGS global average parameter set is 4.5, we translate the

parameters into our formulation as in Mizrahi et al. (2023b). Note that our version of the model is a simplification of the actual270

model employed by the USGS AftershockForecaster software and is not meant to replicate it exactly; the aim of including the

model in our study is solely to assess the usefulness of locally calibrated parameters compared to globally calibrated ones.

3.3 Consistency testing

A basic set of tests that one can do to assess the consistency of the models with past data is defined by The Collaboratory for the

Study of Earthquake Predictability (CSEP; Savran et al., 2020; Zechar et al., 2010). Passing retrospective number, magnitude,275

space, and pseudo-likelihood tests would imply that a model forecasts the occurrence of a similar number of similar magnitude

events at places where they were observed in the training data.

Based on the background event occurrence and aftershock triggering laws inferred during the inversion of ETAS parameters,

we simulate 100k synthetic catalogs for the training period (1980–2015). The simulation procedure has been implemented in

Mizrahi et al. (2023c) following the detailed description in Mizrahi et al. (2021b) and accounts for higher-order aftershocks.280

First, the background events are simulated by drawing their count from a Poisson distribution with the mean corresponding

to µ, occurrence time from a uniform distribution, and magnitude from a GR distribution (β estimated from the data). For

models with no additional background information given as input, the locations of the background events are drawn from the

locations of existing events, weighted by their probabilities of being background events. For models with informed background

introduced in Sect. 3.2.2, the same background input which is used during inversion is also used as the spatial distribution of285

simulated background events.

The first generation of aftershocks is simulated by generating aftershocks of all events in the "starting" generation - their

number, location, timing and magnitude are determined by the productivity law, spatial decay, temporal decay and GR law,

respectively. Further generations of aftershocks are simulated iteratively by simulating aftershocks of all events in all previous

generations until the number of events in the new generation becomes zero. Here, the auxiliary "burn" period (see Sect. 3.2.1)290

from 1980 to 1990 of the true catalog is used together with a set of simulated background events between 1990 and 2015 as
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a starting generation of events. For all models, the maximum magnitude during the simulation phase is set to mmax = 10.0,

which, due to the binning value of ∆m = 0.2 corresponds to mmax = 10.1.

The number test (N-test) consists of counting the number of events in each catalog to get an approximation of the distribution

of the forecasted number of events, which is then checked against the observed number of events in the true catalog. The295

quantile score of the test is computed as the probability of observing the true number of events under the assumption that the

number of events follows the distribution approximated by the simulations. This hypothesis is then rejected when the quantile

score is below 0.05 or above 0.95 (extreme 10% of the forecasted distribution).

Similarly, the magnitude test (M-test) and the space test (S-test) compare the number of observed and forecasted events

taking into account their magnitudes and locations, respectively. In the magnitude test, the distribution of deviations of each300

simulation’s magnitude distribution from a "theoretical" magnitude distribution described by the set of all events across all

simulations is compared to the same deviation for the magnitude distribution in the true catalog. This deviation is calculated

as the sum of squared logarithmic residuals between the normalized observed magnitudes and the "theoretical" magnitudes’

histogram.

In both spatial and pseudo-likelihood tests, the property of interest in the simulated catalogs and the true catalog is not305

their length (as in the N-test) nor a metric describing the deviation of a magnitude distribution from the theoretical one (as in

D*-statistic for the M-test), but pseudo-likelihood computed as the sum of the approximate rate density over all spatial bins.

The pseudo-likelihood test combines space-magnitude gridding to obtain an overall comparison of the consistency between

forecasted and observed catalogs. Unlike the number test, these tests are defined as one-sided, meaning that the hypothesis that

the true magnitude or spatial distribution follows the one in simulations is only rejected when the quantile score is above 0.9310

in M-test or below 0.1 in S-test and PL-test.

Due to the varying completeness magnitude, each event is given a weight during the inversion of ETAS parameters correcting

for the estimated number of unobserved events at the time and location of that event. The simulated catalogs contain events

above mref, the minimum mc across the entire catalog, while the true catalog only contains the events above the corresponding

mc(x,y, t). To make the synthetic catalogs comparable with the true catalog, we are cutting off the synthetic catalogs to only315

contain events above the corresponding mc(x,y, t) values.

While the same tests can be performed pseudo-prospectively, meaning with test data that the model was not trained on (in our

case, that is the data after 2015), to check for consistency with the training data, we focus on performing the tests retrospectively.

Apart from providing a sanity check and indicating potential shortcomings of a model, retrospective consistency testing enables

evaluating its performance on long-term data, which is not available in the post-training time period (in our case seven years,320

versus the 35-year-long training period). These tests are performed on each model separately.

3.4 Pseudo-prospective testing

To compare the performance of the models in terms of their forecasting power, we set up a pseudo-prospective forecasting

experiment. Each model is used to simulate 100,000 synthetic catalogs for consecutive one-day testing windows in the seven-

year-long testing period. The simulations are created similarly to the procedure described in Sect. 3.3, with the starting set325
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of events consisting of the full training catalog and the portion of the testing catalog up to the time window for which the

forecast is made. The aftershocks of all these events are then simulated based on the modelled aftershock behavior to create

the first generation of aftershocks, and further generations are simulated iteratively until convergence. For each time window,

the corresponding simulations are used to find a distribution of the number of events in each spatial bin.

Having estimated the forecasted distribution of the number of events in each spatial bin (j = 1, . . . ,N ) for every time window330

(indexed with i), the forecast can now be compared to reality by checking the probability of the true number of events in that

space-time bin (ni,j) given by the estimated distribution. This is done for each spatial bin, and then summed over all spatial

bins resulting in the log-likelihood score of a model for a forecasting time horizon given as in Nandan et al. (2019) and Nandan

et al. (2022):

LLi
model =

N∑

j=1

ln
(
P i

model(ni,j)
)
. (7)335

Note that when the estimated probability of k events occurring in a spatial bin is zero, this log-likelihood score would not

be well defined. For this reason, after simulating the synthetic catalogs and observing the distribution of the number of events

in each spatial cell, we slightly alter this distribution by assigning a small probability (∼ 10−7) to the bins (up to a maximum

bin nmax) with a zero count, adjusting the event counts in all other bins to retain the property that the sum of probabilities of all

event counts is 1.340

Within this experiment, the spatial bins are set to 0.1◦ lon × 0.1◦ lat, the time window to 1 day, and events with magnitudes

4.6 and above are considered, which is the generally valid completeness magnitude in the testing part of the catalog. Since the

experiment is pseudo-prospective, the new part of the catalog is available and seven years of data since 2015 can be used for

validation and testing, resulting in 2558 testing windows for which each model produces 100k synthetic catalogs.

As mentioned earlier, the baseline against which all model variants are tested is the Poisson background model, for which345

generating synthetic catalogs is not needed. Within each spatial cell, the number of events is considered to follow a Poisson

distribution with mean λj = µj,ESHM, where µj,ESHM is the daily seismicity rate in the jth spatial cell given by ESHM20. The

log-likelihood in Eq. (7) becomes

LLi
ESHM20 =

N∑

j=1

ln
(
P i

ESHM20(ni,j)
)

=
N∑

j=1

ln
λ

nj

j e−λj

nj !
, for every time window i. (8)

The metric used for comparison of the models is simply the difference between their log-likelihood scores, called the in-350

formation gain (IG). For each time window, we have a value of IG of one model over another, and while the cumulative

information gain is indicative of models’ performance through time, we test whether one model outperforms another by testing

whether the mean information gain (MIG) between that pair of models is significantly positive using a paired one-sided t-test.
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4 Results and Discussion

4.1 Model fit355

As mentioned in Sect. 3, fitting an ETAS model to the data means finding a unique set of parameters describing the observed

aftershock triggering behavior. The set of inverted parameters for each of the described ETAS model variants is given in Table 1.

The parameter µ describes the overall rate of background events and it is estimated by counting the total number of background

events and normalising it per day and km2. The count of background events is obtained by summing the probabilities pBG that

are assigned to each event during the parameter inversion, weighted by the estimated ratio of unobserved and observed events360

ζ introduced in Sect. 3.1 to account for incompleteness.

As the parameters can be grouped into those describing temporal decay, spatial decay and productivity law, the curves

of each can be plotted separately as in Fig. 2. These curves represent the modelled aftershock triggering behavior and are

compared to the observed aftershock triggering behavior in the true catalog, represented by dots. However, since the true

triggering relationship between events in the true catalog is unknown, for counting aftershocks triggered by an event of a365

certain magnitude at a given temporal and spatial distance, we rely on the probabilistic triggering structure inferred during

the expectation step of the EM algorithm. Therefore, the observed aftershock triggering behavior is, in fact, dependent on the

inverted triggering parameters.

In Fig. 2(a), the curves show the temporal decay in aftershock behavior described in ETAS as

N(∆t) =
exp(−∆t/τ)
(∆t + c)(1+ω)

, (9)370

and the dots represent the "observed" aftershock behavior by showing counts of pairs of events (i, j) where i triggered j with

probability pij and ∆t = tj − ti, computed as
∑

j pij · ζ(j). In the top row, the different curves represent triggering laws that

were inferred on different datasets: the European catalog used in the present study, Swiss seismicity (Mizrahi et al., 2023b),

Californian seismicity (Mizrahi et al., 2021a), and parameters used by the USGS AftershockForecaster software (spatial kernel

is taken from ETAS0 as mentioned in 3.2.4); in the bottom row, the different curves represent the laws inferred by different375

ETAS variants. In a similar fashion, the spatial decay depicted in Fig. 2(b) shows the number of triggered aftershocks at distance

∆x described in the ETAS model as

N(∆x) = ((∆x)2 + dexp(γ(m−mc))−(1+ρ). (10)

As there is a dependency in the spatial decay on the magnitude, there is a curve describing this law for each magnitude bin. In

Fig. 2(b), we show m = 4.0. The line in Fig. 2(c) shows the dependency of the number of triggered events on the magnitude380

of the triggering event, described in ETAS formulation with the productivity law,

N(m) = k0 exp(a(m−mc)). (11)
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Table 1. Inverted ETAS parameters for each of the eight ETAS variants described in Sect. 3. Additional parameters include the b-value,

productivity term α = a− ργ and the branching ratio η.

Model ETAS0 ETASα ETASbg ETASα, bg ETAS0
b+ ETASα

b+ ETASbg
b+ ETASα, bg

b+ ETASUSGS

log10 µ −7.94 −8.08 −7.24a −7.22a −7.75 −7.98 −7.05a −7.01a −7.94

log10 k0 −1.63 −2.51 −1.40 −2.07 −1.63 −2.96 −1.39 −2.34 −2.63

a 1.59 3.11 1.79 3.27 1.68 3.70 2.05 3.93 2.87

log10 c −2.65 −3.01 −2.37 −2.43 −2.58 −3.22 −2.27 −2.39 −2.57

ω −0.11 −0.15 −0.04 −0.05 −0.10 −0.18 −0.02 −0.04 −0.03

log10 τ 3.66 3.9 3.44 3.78 3.67 3.98 3.46 3.89 12.26

log10 d 0.92 0.54 0.90 0.69 0.90 0.30 0.86 0.60 0.92

ρ 0.61 0.55 0.81 0.82 0.64 0.54 0.87 0.90 0.61

γ 0.92 1.52 0.88 1.20 0.94 1.81 0.96 1.35 0.92

b 0.99 0.99 0.99 0.99 1.23 1.23 1.23 1.23 1

α 1.03 2.28 1.08 2.28 1.08 2.72 1.21 2.72 2.28

η 1.00 4.46 0.75 3.03 0.83 1.78 0.60 1.12 4.04

a Spatially varying, showing the approximated average (ι in Eq. (5)).

Discussion of the model fit

Comparing multiple models trained on the European dataset based on the ETAS parameters shown in Table 1, we consistently

observe that the background term µ is higher in models that allow for background term variation during the inversion. This385

is in agreement with the idea that using an informed background term µ during inversion allows models to recognize more

events in active areas as background events, while they would be interpreted as triggered events (triggered by other events

in the same active area) without the added background information. That more events are interpreted as background events

rather than aftershocks also manifests in the fact that informed-background model variants have lower overall productivity.

This is seen in the branching ratio η, which reflects the average number of aftershocks per triggering event, being lower for the390

background-informed models when compared to their constant-background counterparts. Furthermore, the lines in Fig. 2(c),

second row are almost parallel in between informed and non-informed background versions of the same model variants, but

the line describing the informed background variant is always below the line for the corresponding model with no informed

background.

While the background-informed model variants have overall lower productivity than their equivalents with no background395

information used during the inversion, another, more obvious, difference in the productivity law is seen between the corre-

sponding models with and without fixed α term. Fixing this parameter to the GR β value directly affects the productivity

law plot as the slope of the lines is exactly α, resulting in a steeper slope which indicates relatively higher productivity as-

signed to high-magnitude triggering events compared to low-magnitude triggering events. Fixing α also drastically increases
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Figure 2. Plots of the model fit. In the first row, triggering laws inferred with model ETAS0 are shown, including lines representing models

for other areas for comparison. In the second row, modifications introduced in Sect. 3.2 are compared. (a) Temporal decay. (b) Spatial decay.

Due to the dependency of the spatial decay law on the magnitude of the triggering event, there is a curve describing this law for every

magnitude, here m = 4.0. (c) Productivity law.

the branching ratio η. In non-informed background model variants, this increase in productivity is counterbalanced with a lower400

background rate. Interestingly, the informed background model variants show increased productivity and increased background

rate when α is fixed.

Furthermore, model variants relying on the b-positive estimate of the b-value consistently display a higher background

seismicity level and lower overall productivity, but higher productivity term α than their counterparts using the traditional

b-value estimator. All these differences must be due to what the model infers about unobserved events below mc(x,y, t) from405

the observed ones by applying the GR law. A higher b-value leads to a larger number of expected unobserved aftershocks of

observed events. Thus, when mc(x,y, t) > mref, the observed large-magnitude events’ productivity is inflated, while smaller-

magnitude events’ productivity is not (or less) inflated, explaining the larger α for b-positive variants. The higher background

rate and lower branching ratio of b-positive variants suggest that the parts of the catalog that are less complete, hence more

inflated when the b-value is high, exhibit this behavior. To decide whether this is caused by differently behaving seismicity in410

certain areas or time periods, or whether this indicates that seismicity behaves differently for larger magnitude events compared

to smaller ones, further research is required.
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Apart from differences among models in interpreting events as background or triggered, a trend in some of the other param-

eters can also be observed. In the spatial distribution of aftershocks, models with fixed productivity tend to have higher γ, but

lower d values, interpreting more of the events at smaller distances as aftershocks of low-magnitude events and more of events415

further away as aftershocks of large-magnitude events. For the temporal distribution of aftershocks, the higher ω in background-

informed models implies a slower decay of the number of aftershocks, whereas the fixed productivity variants have lower ω

values, resulting in a faster decay. However, τ is larger for fixed productivity variants and lower for background-informed

variants, meaning that the tapering of the distribution will occur later in the former case and sooner in the latter.

When comparing the laws described by ETAS models’ parameters, we observe differences not only among model variants420

introduced in our study but also among models calibrated on distinct datasets. While the time kernels appear quite similar

across models for different regions, including multiple "European" models, a notable disparity arises in the spatial kernel when

comparing the European models to those trained for Switzerland (Mizrahi et al., 2023b) or California (Mizrahi et al., 2021a),

as can be seen in Fig. 2(b), first row. Specifically, we note a lower frequency of observed aftershocks at shorter distances

from the triggering event, with a subsequent decay starting at slightly greater distances. Since we observe this difference when425

comparing to models calibrated on other datasets, but not when comparing multiple European models, one possible explanation

for this observation could be differences in location determination of events, due to lower location precision and possible short-

term incompleteness (close in time and space to triggering events) in some areas in this highly heterogeneous catalog. This

idea is supported by the fact that the difference between spatial kernels diminishes with an increase in the magnitude of the

triggering event.430

Additionally, the comparison between the ETAS variants fitted to the European dataset and the adjusted ETAS parameters

used by the USGS AftershockForecaster software reveals that the productivity law is more similar to those inferred by ETAS

variants with fixed α, which is expected given that α is fixed to 1 (log-base 10, in our formulation this corresponds to α = e) in

all sets of parameters used by USGS models. Another difference is in the temporal kernel, which in the case of ETASUSGS does

not have a tapered exponential form. This results in relatively more aftershocks forecasted in periods long after the triggering435

event; in Table 1, all models have a τ value between 103 and 104, whereas in ETASUSGS, it is set to 1012, corresponding to a

period of 5 billion years (effectively, this means there is no taper).

4.2 Results of consistency tests

To visualize the output of CSEP consistency tests, the PyCSEP implementation Savran et al. (2022) provides the option to

display the modelled behavior of the events as a histogram created based on the set of a large number of synthetic catalogs440

given as the output of a model (catalog-based forecast), and compare it to the true value in the observed catalog represented by

a dashed vertical line.

In our case, the distribution of the number of events is approximated by counting the lengths of all simulated catalogs and

the vertical line is the size of the catalog which was used in training for the inversion of ETAS parameters. Figure 3(a) shows

the visualization of the N-test for ETAS0, the histogram describing the model’s distribution of the number of events, whereas445

the vertical line represents the number of events in the true catalog.
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Figure 3. (a) The number test (N-test) for ETAS0: histogram represents the modelled distribution of the number of events approximated by

the counts of events in 10k simulated catalogs with completeness levels as in the training catalog. (b) The table contains the quantile score of

models introduced in Sect. 3 for each of the consistency tests.

The quantile scores for all tests and all model variants that do not fix α are shown in Fig. 3(b) and represent the position

of the dashed line showing the observed property with regards to its forecasted value shown by the histogram (see Fig. 3(a)).

Quantile scores between 0.05 and 0.95 indicate that the N-test is passed, while values below 0.05 or above 0.95 indicate that a

model has failed the test. In case of S-test and PL-test, the tests are one-sided, therefore, the models with quantile scores above450

0.1 pass the tests. M-test is also one-sided, but defined so that the models with quantile scores below 0.9 pass the test.

Discussion of the consistency test results

Due to the large branching ratio η > 1 in all ETAS variants with fixed productivity term α, the number of events quickly

explodes when simulating over a long-term period, as, on average, every event in the synthetic catalog will produce more than

one aftershock in each generation of the simulation process. Therefore, the procedure does not converge and we consider the455

models ETASα, ETASα
b+, ETASbg, α and ETASbg, α

b+ to be failing the retrospective consistency tests. This suggests that our

approach of fixing the productivity parameter α during the inversion process is not suited to produce models that are consistent

with reality in the long term. To avoid an underestimation of the productivity of large events without overestimating the overall

productivity, differently parameterized productivity laws could be considered in the future. For instance, the logarithm of the

aftershock productivity might be better described as increasing quadratically rather than linearly with the magnitude of the460

triggering event. Furthermore, a branching ratio larger than one might be present during an ongoing sequence, but is not

sustainable over a longer term. Thus, considering sequence-specific parameters or distinct productivity for mainshocks and
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non-mainshocks, as done in the ETAS model employed by the USGS (van der Elst et al., 2022), would be promising aspects

to explore in the future. In ETASUSGS, a high branching ratio is also observed that could result in such exploding behavior

during synthetic catalogs’ simulation. However, due to the untapered temporal kernel that forecasts a relatively higher, when465

compared to the tapered ones, number of aftershocks in periods even after τ ≈ 103 days, many of the simulated aftershocks

will be assigned a timing outside of our period of interest, effectively resulting in a much smaller branching ratio. This effect

is so significant that these simulations do not only converge, but significantly underestimate the number of events.

In synthetic catalogs simulated based on the model ETAS0, around 30% of the simulations have a higher event count than

the observed value, and therefore the N-test is passed. However, the distance between the true observed magnitude distribution470

from the theoretical distribution estimated jointly from all the simulations is significantly higher than the distance between the

observed magnitude distribution in each simulation and the theoretical distribution. The disagreement between the modeled

and true magnitude distribution could be the result of either the true distribution not following a GR law with a single b-value,

but rather a mixed distribution with b-values varying in time and/or space, or a bias caused by incompleteness potentially still

present in the catalog. The quantile of the observed likelihood computed in spatial and pseudo-likelihood consistency tests475

is in the upper tail of the distribution of likelihoods of the synthetic catalogs. This indicates that the forecasts are describing

the observed data ’suspiciously well’, hence the result does not imply failure but requires further testing (Schorlemmer et al.,

2007).

The magnitude distribution seems somewhat better in the ETAS variant that relies on the b-positive method for b-value

estimation, ETAS0
b+, which passes both the M-test and S-test - however, due to a significant underestimation of the event480

count, ETAS0
b+ fails the N-test. On the other hand, ETASbg

b+, which uses the same seismicity rate map for placing the

simulated background events and the same b-value estimate, fails the M-test. This is most likely due to a known issue of the

test being dependent on the event count in simulated catalogs, which is somewhat, although not significantly, overestimated by

ETASbg
b+, and is significantly overestimated by ETASbg. This flaw of the considered tests is further highlighted in the fact that

ETASUSGS, in contrast to ETAS0, passes the M-test and S-test, despite the two models using identical spatial distribution of485

background events and aftershocks, and very similar b-values of 1 and 0.99. These findings suggest that the results of the M-,

S-, and PL-tests should be interpreted with caution, and models should not be hastily rejected based solely on their performance

in these specific tests.

Overall, we can conclude that ETAS models with fixed α clearly fail the long-term consistency tests. Among the remaining

models, ETAS0 and ETASbg
b+ pass the N-test, which is often considered the most crucial of consistency tests. Thus, we can490

consider these two variants as adequate choices for a first harmonized ETAS model for Europe. The other consistency tests

provide additional information about the potential limitations of these models, which shall be addressed in future efforts to

improve the models.

4.3 Results of pseudo-prospective tests

To compare the pseudo-prospective performance of one-day forecasts issued by the models, we visualize their cumulative495

information gain in Fig. 4(a). As introduced in Sect. 3.4, the log-likelihood score of a model is the logarithm of likelihoods
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summed over space, and therefore always negative. The information gain is the difference between the log-likelihood scores of

two models and is positive when the first model assigned a higher probability to the actual occurrence than the second model.

The reference log-likelihood score to which we compare others in Fig. 4(a) is the one of the Poissonian time-independent base

model. To determine whether one of the models is significantly outperforming another one, we apply the paired one-sided500

t-test to the information gain values of the individual forecasting periods. In this way, we decide for each model pair whether

the mean information gain (MIG) between the two models over all testing periods (shown in Fig. 4(b)) can be considered

significantly positive or negative (significance shown in Fig. 4(c)).

The most prominent observation is the positive mean information gain of all ETAS models when compared to the time-

independent Poissonian model with ESHM20-informed background. All models except ETASbg, α and ETASUSGS achieve a505

significance level below 0.05. The three best performing models are ETAS0, ETASbg and ETAS0
b+, which all significantly

outperform all variants with fixed productivity term, and also show positive mean information gain to ETASbg
b+, without this

result being significant according to the t-test.

To analyze the performance of the models more thoroughly, we observe the spatial component of their log-likelihood scores

by visualizing the total information gain over time for each spatial cell separately. The maps in Fig. 5(a–b) show the information510

gain between ETAS0 and the time-independent model and between ETASbg and ETAS0, respectively. The spatial cells are

joined into larger ones for better readability of the map. The more active areas show more pronounced total IG values, while

no distinct spatial trends can be observed.

Discussion of the pseudo-prospective test results

That ETAS models outperform the time-independent model in one-day forecasting experiments is a result that could be ex-515

pected, since the core strength of ETAS models is to model the short-term clustering behavior of earthquakes. The poor

performance of the model variants with fixed productivity when compared to other ETAS variants could be explained by their

tendency to overestimate the number of events, observed already during retrospective testing, when simulating over a longer

period resulted in non-converging numbers of events. That the remaining model variants do not significantly outperform each

other suggests that they can all be considered adequate choices for short-term earthquake forecasting. This is further supported520

by the result that no spatial trend in model performance can be identified, and thus the models do not seem to be overfitting

certain particular subregions.

5 Conclusions

In this paper, we calibrated and evaluated multiple variants of ETAS models to the highly heterogeneous dataset which sum-

marizes the recorded seismicity in Europe over the 35-year-long period between 1980 and 2015. The main result of seven525

years of pseudo-prospective one-day forecasting experiments is that ETAS-based models provide a significant information

gain when compared to the time-independent benchmark model that underlies the ESHM 2020 hazard model. Additionally,

the best-performing ETAS-based models inverted on the European dataset outperform the time-dependent ETAS model using
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Figure 4. (a) Cumulative information gain through time, for consecutive non-overlapping 1-day windows over 7 years in the validation

catalog. All models mentioned in Sect. 3 are compared to the Poissonian time-independent model, which acts as the null model. (b) Matrix

of mean information gain of each model compared to all other models. Information gain in position (i, j) compares the score of the model in

column j to the model in row i. (c) Matrix of p-values from paired one sided t-tests for each pair of models.
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Figure 5. Total information gain per 1◦ lon× 1◦ lat spatial cell. Models compared: (a) ETAS0 and time-independent Poissonian model. (b)

ETASbg and ETAS0.

globally calibrated parameters. Besides a basic ETAS variant, we propose several modifications that, during model calibration,

allow the use of additional spatial information or fixing the productivity term of the model formulation. We found that fixing530

the productivity term to a higher value, which is suggested in the literature to overcome the underestimation of productivity of

high-magnitude events, results in a highly overestimated branching behavior of events and an overall poor performance of a

model that applies it. In future studies, other techniques to address the underestimation of the productivity of large events should

be further explored. For ETAS variants that leverage information about the spatially varying background rate already during

the inversion, we found that the inferred parameters differ from those inferred using the basic approach, resulting in more535

events being interpreted as background events, and fewer as aftershocks. The background-informed ETAS variant achieves the

highest mean information gain against the time-independent benchmark, though the performance difference to the second-best

model is not significant. However, its background component contains additional information about long-term seismicity pat-

terns, seismotectonic properties of the area, and seismicity in areas not represented in either the training or testing parts of the
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catalog. For this reason, what could be the main strength of this method is hidden by the very limited size and time period of540

available testing data.

Retrospective long-term consistency tests provide an additional characterization of the strengths and weaknesses of each

model variant, highlighting that two of the proposed model variants adequately capture the number of events over longer time

periods. The magnitude consistency tests conducted for models using both the traditional maximum likelihood estimator of the

b-value as well as the b-positive estimator highlight potential areas of improvement of the proposed models. The simplification545

of using a single b-value to describe the magnitude distribution of all of Europe, as well as the assessment of the space-time

variation of the catalog completeness provided through ESHM, may need to be revisited. Aside from the potential improve-

ments of the issued forecasts by revisiting the completeness assessment, b-value variations, and strategies for sequence-specific

model updating, our proposed models could be improved by adding further complexity, such as considering an anisotropic

spatial kernel of aftershock behavior.550

In the process of real-time dissemination of earthquake forecasts, developing the model behind it is only the first step.

The forecasts produced as the output of the introduced models are yet to be tested in a truly prospective manner. Recent

CSEP efforts to establish a standardized open experiment format and the corresponding software support in performing such

tests have resulted in the formation of the Floating Experiment, providing a suitable environment for future evaluation of the

properties of proposed models.555

Another challenge in delivering earthquake forecasts operationally is the fashion of doing so: visualisation and communica-

tion of models’ outputs are a topic of ongoing discussion among seismologists and communication experts (Field et al., 2016;

Becker et al., 2018; Savadori et al., 2022). Both the layout and content of the final products depend on the use case in terms of

the areas for which they are developed and the end users they serve, ranging from the wider public to civil protection services

to insurance companies. The main authority to communicate earthquake forecasts and act on them remains on local agencies560

and experts with knowledge specific to their area of interest. The role of the pan-European models presented here is to provide

a harmonized "global" alternative less limited by administrative borders and information in areas where it would otherwise not

be available.

Code and data availability. The training catalog with completeness assessments per tectozone and rate maps used as input here were pro-

duced by ESHM20 Danciu et al. (2021) and are accessible here. The continuation of the catalog used for testing is available here (Lammers565

et al., 2023). The ETAS inversion and simulation code used to train the models and generate the forecasts was developed for Mizrahi et al.

(2021b), and is available at the Zenodo repository at https://doi.org/10.5281/zenodo.7584575 (Mizrahi et al., 2023c).
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