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Abstract. We develop a harmonized earthquake forecasting model for Europe based on the Epidemic-type Aftershock Se-

quence (ETAS) model to describe the spatio-temporal evolution of seismicity. We propose a method modification that integrates

information from the European Seismic Hazard Model (ESHM20) about the spatial variation of background seismicity during

ETAS parameter inversion based on the expectation–maximization (EM) algorithm. Other modifications to the basic ETAS

model are explored, namely fixing the productivity term to a higher value to balance the more productive triggering by high-5

magnitude events with their much rarer occurrence, and replacing the b-value estimate with one relying on the b-positive method

to observe the possible effect of short-term incompleteness on model parameters. Retrospective and pseudo-prospective tests

demonstrate that ETAS-based models outperform the time-independent benchmark model as well as an ETAS model calibrated

on global data. The background-informed ETAS variants using the b-positive estimate achieve best scores overall, passing the

consistency tests and having a good score in the pseudo-prospective experiment. Out test results also highlight promising ar-10

eas for future exploration, such as avoiding the simplification of using a single b-value for the entire region, reevaluating the

completeness of the used seismic catalogs and applying more sophisticated aftershock spatial kernels.

1 Introduction

After the occurrence of a large-magnitude earthquake, the expected behavior of its aftershocks, and in particular the possibility

of another large event, are of interest both to the general public and governmental and private organisations, such as civil15

protection, first responders, insurance companies, etc. Operational Earthquake Forecasting (OEF; Jordan et al., 2011) was

introduced as a term for "gathering and disseminating authoritative information about the time dependence of seismic hazards

to help communities prepare for potentially destructive earthquakes". It is an evolving effort that has seen significant progress

in recent years. Several countries, including New Zealand (Christophersen et al., 2017), the United States (Field et al., 2017;

Jordan et al., 2011, 2014; van der Elst et al., 2022), and Italy (Marzocchi and Lombardi, 2009; Marzocchi et al., 2014) currently20

have systems in place that produce authoritative earthquake forecasts (see (Mizrahi et al., 2024) for a review of these OEF

systems and Hardebeck et al. (2024) for a review on aftershock forecasting). Each of these systems uses different underlying

models to produce the forecasts, communicates the forecasts differently (absolute or relative earthquake rates/probabilities,

maps, scenarios etc.) and to different user groups at different time intervals (continuously, daily, monthly, or only after large
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events), and the forecasting systems are continuously being modified and improved. In short, there is not a unique agreed-upon25

best way to provide OEF, as has been shown recently in an elicitation of expert views on this topic (Mizrahi et al., 2024).

However, what is clear is that to issue earthquake forecasts operationally, time-dependent models that describe both the

spatial and temporal variability of seismicity are required. Gathering historic and recent seismicity data, combined with knowl-

edge of seismotectonic properties of a region, allows us to better understand spatial variability in earthquake occurrence in a

time-independent manner (Danciu et al., 2021; Crowley et al., 2021; Wiemer et al., 2016). In addition to the time-independent30

assessment of seismicity, the temporal evolution of seismic sequences can be modelled using well-established empirical laws,

as has been done by several (governmental or non-governmental) agencies on various scales (Christophersen et al., 2017; Field

et al., 2017; Jordan et al., 2011; Mizrahi et al., 2023a; Marzocchi and Lombardi, 2009; Nandan et al., 2021; Omi et al., 2018).

The main objective of this paper is to develop a harmonized forecasting model for Europe that represents the current state

of the art of time-dependent earthquake forecasting. The idea of a harmonized model is to take into account the differences35

in data collection properties, but also physical properties of various tectonic regions, to minimize the effect of administrative

borders on the output, providing a unique set of parameters that, in a way, averages seismicity properties in the observed region,

hopefully benefiting from a high variety of events present in such a large dataset. This model is meant to be simple and serve as

the basis for the development of future models, and is not meant to overrule other, national forecasting models where they are

available (e.g. Italy; Marzocchi et al., 2014). We aim to identify the shortcomings of a basic harmonized model and propose40

modifications that would remediate them with the goal of providing reliable earthquake probabilities incorporating long-term

seismicity rates as well as short-term clustering patterns.

The current state-of-the-art models for time-dependent earthquake forecasting are Epidemic-type aftershock sequence (ETAS)

models (Ogata, 1988). In the context of ETAS, any event triggered by its predecessor is named an aftershock, which is not to be

confused with the frequent interpretation of the term aftershock meaning an event of smaller magnitude following its triggering45

event. Having been introduced by Ogata in 1988, these models have been around for several decades, implemented and used

by many agencies and identified by experts in the study of Mizrahi et al. (2024) as the preferred choice for a default model

to be used for earthquake forecasting. Their main strength is in explaining the aftershock triggering behavior of earthquakes,

relying on temporal and spatial decay of the number of aftershocks with spatial or temporal distance from the main event, the

productivity law, and the Gutenberg–Richter (GR) law (Omori, 1895; Utsu, 1971; Gutenberg and Richter, 1936). In ETAS, the50

seismicity rate ℓ is given as the sum of the background rate µ and the aftershock rate g of all previous events, following these

laws. Specifically, we will use the formulation as in Nandan et al. (2021) and Mizrahi et al. (2021b),

ℓ(t,x,y) = µ+
∑
i:ti<t

g(mi, t− ti,x−xi,y− yi), (1)

g(mi, t− ti,x−xi,y− yi) =
e−(t−ti)/τ · k0ea(mi−mc)

(t− ti + c)1+ω((x−xi)2 +(y− yi)2 + deγ(m−mc))1+ρ
.

Training such a model for the Europe-wide region poses a number of challenges, as has been laid out by Zechar et al. (2016).55

A main challenge lies in the compilation of a dataset containing a comprehensive record of earthquakes over a significant period
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of time, especially considering the differing formats and properties used in different countries or subregions (e.g., magnitude

types and their definitions, data completeness due to network density and other reasons, location and magnitude precision,

etc.). Moreover, it is desirable to leverage high-quality data (higher precision, completeness to a lower magnitude) where it

is available, without losing potentially valuable information about high-magnitude events in periods and regions wherein data60

collection was not as precise and complete. Data completeness is often quantitatively expressed through the completeness

magnitude (mc), which is the lowest magnitude above which all events are assumed to be observed. A catalog of all recorded

events is normally incomplete, meaning that it also contains events below mc, and as the exact mc is not known, it is important

to estimate mc and remove events below mc. Underestimating it may bias models trained on the data with an mc higher than

assumed (Seif et al., 2017), but overestimating it results in throwing away complete and potentially useful data.65

Multiple methods for estimating mc have been developed and tested, mostly relying on the fact that by the Gutenberg–

Richter law, the events in a complete catalog follow an exponential distribution, their cumulative count satisfying

N(m) = 10a−bm, (2)

where N(m) denotes the number of events with a magnitude of m and above, and a and b are parameters often referred to as

a- and b-value. Note that the natural logarithm base is also used, in which case70

N(m) =N0e
−βm, N0 = 10a, β = b ln10. (3)

Although challenging, recent achievements in data collection and harmonization have enabled the creation of a Europe-wide

earthquake catalog which we aim to use as a basis for the calibration of a Europe-wide ETAS model in this study. The main

result that will be used in this study in terms of data gathering is the catalog collected for the European seismic hazard model

(ESHM20; Danciu et al., 2021), which provides harmonized information about seismic activity on an overall European scale,75

relying on expert knowledge about the differences in earthquake monitoring and physical tectonic characteristics of the region

in order to harmonize the data, and providing elicitation both on data properties (such as mc) and division into subregions based

on their seismotectonic properties. Moreover, the ability to fit ETAS models to datasets with varying mc, originally developed

for time-varying mc, but also applicable for any spatial variations in completeness, introduced by Mizrahi et al. (2021b) allows

for ETAS models to use both the high-quality data in (more recent) time periods and subregions with low mc and potentially80

capture long-term trends contained in periods and areas with higher mc.

Besides a basic ETAS model, we will consider several modifications and test them both retrospectively for self-consistency

and pseudo-prospectively for comparison against one another. While the main strength of ETAS models is in modelling after-

shock behavior, it is expected that the background rate varies significantly in space over a large area such as Europe. One of our

main proposed modifications focuses on implementing the knowledge about spatial variations in background rate inferred by85

ESHM20 (Danciu et al., 2021) already during the inversion of ETAS parameters, which could affect the parameters describing

aftershock behavior as well. These spatially-varying background seismicity rates are estimated leveraging both the area sources

model and the background seismicity and active faults model from ESHM20, combined with equal weighting as proposed by

Danciu et al. (2021). Other modifications include fixing the term dictating the productivity law to the b-value of the catalog
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(Hainzl et al., 2013; van der Elst et al., 2022) to balance the more productive triggering by high-magnitude events (productivity90

law; Utsu, 1971) with their much rarer occurrence (Gutenberg–Richter magnitude distribution law; Gutenberg and Richter,

1936) as explained in Helmstetter (2003), and implementing the b-positive method (van der Elst, 2021) for the estimation of

the b-value.

The outline of the remaining sections of this article is the following: in Sect. 2, we briefly describe the ESHM20 catalog with

both its more recent and historic parts and then describe the selection of the time frame used in this study due to computational95

limitations and high heterogeneity in data quality among time periods. We introduce additional data about long-term seismicity

given by ESHM20 that will be used as input to some model variants and the most recent catalog that will be used for model

validation. The development of a base model and modifications thereof are described in more detail in Sect. 3, followed by a

description of the methods used for testing them (Sect. 3.3 and 3.4). Finally, our results are presented and discussed in Sect. 4,

divided into three parts, presenting the fitted parameters of the models, results of retrospective consistency tests, and results of100

pseudo-prospective model comparison experiments.

2 Data

The primary dataset used in this work is the ESHM20 catalog (Danciu et al., 2021), which contains the combined catalogs of

all agencies that record earthquakes in Europe, both recent and historical, dating back to the 11th century. Due to the variations

in both the nature of earthquake occurrence and its monitoring, the data are highly heterogeneous. For pre-instrumental times,105

the records are highly incomplete, potentially missing even the high-magnitude events and the magnitudes of the events that

are in the record containing errors potentially higher than 0.5 magnitude units (Grünthal et al., 2009; Grünthal and Wahlström,

2012). Constructing the catalog focusing on the period starting with the 20th century already involved parametrizing earth-

quakes from macroseismic data mixed with instrumentally recorded events compiled in 47 subregions and harmonizing the

magnitudes calibrated in scales such as local magnitude, body-wave magnitude, surface-wave magnitude, moment magnitude,110

and maximum intensity into one equivalent to the moment magnitude (MW). This follows the methodology of Grünthal and

Wahlström (2012), applying a hierarchical strategy which prioritizes existing MW-harmonized catalogs, followed by moment

tensor databases and local bulletins, and finally data from the International Seismological Centre (ISC) when no local data

is available. Magnitude conversions also follow Grünthal and Wahlström (2012), with updates from recent literature where

applicable.115

As the density and sensitivity of seismic networks generally improve over time, the magnitude and location precision in-

creases (Danciu et al., 2021), as well as the number of recorded events due to the ability to record lower-magnitude events

(the completeness magnitude mc decreases). However, neither the level of completeness nor this improvement over time are

spatially uniform. Between some regions, in the same period, mc difference can be up to four magnitude units. Although a

more precise magnitude resolution is available for a part of the data, assuming a higher precision when it is not available in120

parts of the catalog would produce incorrect estimates. The agreed-on precision is 0.2, as in Danciu et al. (2021), used there

also for the statistical fitting of the seismicity parameters of the source models.
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Due to computational limitations, poor quality, and strong incompleteness of early data, which make it unsuitable for the

analysis of aftershock behavior, the dataset needs to be narrowed down to contain relatively recent information while ensuring a

sufficiently long time frame that enables the capturing of longer-term triggering effects and seismicity patterns. High-magnitude125

events that are present in historical parts of the catalog are crucial to better understand the frequency of rare seismic events

that are not present in more recent time periods, and they help to identify additional spatial patterns in background seismicity.

However, these historical high-magnitude events will seldom have aftershocks recorded due to the incompleteness reflected in

mc going as high as magnitude 8. According to the completeness magnitudes for different time periods and regions assessed by

experts in ESHM20 (Danciu et al., 2021) and visualised in Fig. S1, up to the early 1980s, the highest completeness difference130

between regions in the same time period is as high as three magnitude units; starting from the 1990s, this difference lowers to

1.5 units of magnitude. Hence, we here limit the catalog to the time period starting with the year 1980, with only events after

1990 considered as potentially triggered events (this is discussed in more detail later, in Sect. 3.2.1). The spatial distribution of

the catalog containing over 20 thousand events in this time period is shown in Fig. 1(a) (in red). While the aforementioned issues

of earthquake monitoring in earlier parts of the catalogs are fewer in the selected recent time period, the effect of neglecting135

to address them (such as assuming a too low mc or too high magnitude precision) could still potentially significantly bias our

later output (Seif et al., 2017).

By definition of the completeness magnitude, all events of magnitude equal to or higher than mc are assumed to be recorded.

The events of magnitude below mc are also present in the raw catalog, resulting in incompleteness in the data. The incom-

pleteness in this dataset below magnitude 4.6 is so evident that it is detectable already through visual inspection of Fig. 1(b–c).140

Namely, under the assumption that the observed number of events does not have a significant trend over a longer period of time,

the cumulative count of events through time would display a roughly linear increasing behavior, with rapid jumps in the count

at a point indicating only the occurrence of a productive sequence of events. The changes in the slope of this linear increase

shown in (c) indicate the changing completeness over that time period and an increase in the rate of cumulative earthquake

count, suggesting that completeness improves over time. In (b), both incompleteness and discretisation are discernible in the145

plot showing recorded magnitudes over time.

As mentioned earlier, the study of Danciu et al. (2021) provides expert evaluations of the completeness magnitudes by region

and time period. Knowing these mc values allows accounting for the incompleteness of data later during model calibration as

described in Mizrahi et al. (2021b). As mc differs between regions and time periods, the distribution of m−mc(x,y, t) is shown

in Fig. 1(d) instead of a distribution of "pure" magnitudes to correct each magnitude for the corresponding incompleteness level.150

Lines representing b-values of 1.23 and 0.99 are shown, as these are the estimates we use later in calibration of ETAS models

and simulation of synthetic catalogs, the former computed as a "standard" MLE with the binning correction suggested by

Tinti and Mulargia (1987), and the latter being the b-positive (van der Elst, 2021) estimate, also with binning correction. The

standard deviation estimated by method of Shi and Bolt (1982) of the b-value estimates is 0.015 for the "traditional" and 0.036

for the b-positive method.155

The catalog of Danciu et al. (2021) ends in 2015 and we use it in full for model training. The continuation of the catalog

is given in Lammers et al. (2023) until 2022 and this seven-year period is used here for pseudo-prospective testing. This new
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Figure 1. Dataset used for model training (1980–2015, red dots) and testing (2015–2022, green dots); in (c–d) only the training dataset is

shown. (a) Map of events detected in the study area defined in ESHM20, which is outlined in white. The dot size increases with magnitude.

(b) Time evolution of recorded events’ magnitudes. The dot size increases with magnitude. (c) Cumulative count of recorded events through

time for different cutoff magnitudes. (d) Magnitude frequency distribution plot. The distribution of m−mc(x,y, t) is shown to correct for

varying completeness. The lines show the fits of b-values estimated by "standard" maximum likelihood method (b= 0.99, σ = 0.015) and

b-positive method (b= 1.23, σ = 0.036).

part of the catalog is not identical in composition to the catalog used for training, the most prominent difference being the

completeness magnitude of 4.6 in the overall dataset (demonstrated in Fig. 1(b)). The spatial distribution of the testing catalog

is shown in Fig. 1(a) (in green). In truly prospective testing, such differences both in composition methods and content of160

catalogs are not only possible, but an expected occurrence, the effect of which is not to be disregarded, but rather leveraged

to obtain more robust models. While this would not necessarily happen in a network controlled by a single agency, except

for improvements in completeness, our catalog is composed of subregions and takes tremendous efforts described earlier to

harmonize, and in near-real-time deployment would possibly need to be replaced by an alternative different in completeness

and other properties. Note that in both the training and testing catalog, due to the binning of ∆m= 0.2 mentioned above, a165

completeness magnitude mc means that it actually contains events above mc − 1
2∆m=mc − 0.1.

Furthermore, in this study, alongside earthquake catalogs, we aim to utilize the long-term seismicity rates introduced by

Danciu et al. (2021). These rates are provided for both the area sources model and the background seismicity and active faults

model. The area sources model is a classical seismogenic source model, describing seismicity as shallow crustal, volcanic,

subduction in-slab and deep, relying on recommendations by regional and national experts with modifications made to ensure170
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compatibility in bordering (overlapping) areas. The background seismicity and active faults model combines the smoothed

background seismicity model obtained by estimating activity parameters (a- and b-value in the GR law) on a declustered

complete catalog and the model describing seismic productivity in the proximity of faults with a fault-dependent magnitude

threshold between them ensuring avoiding double counting seismicity. As in ESHM20, the annual seismicity rates for each

spatial and magnitude bin are obtained by combining the outputs of these two models, with equal weighting. Summing the175

rates across all magnitude bins and accounting for differences in completeness magnitude and time duration yields overall

daily background seismicity rates for the spatial bins defined in the study. The final rates per spatial bin are visualised in

Fig. S2. Although these rates are based on declustered seismicity, which should closer correspond to the background rate in

ETAS as aftershock clustering has been removed, we want our models to invert the overall background rate freely, therefore

only using this information as input for relative spatial differences in background rate. By adding this extra input, we include180

information from the historical periods of the ESHM catalog about large events and seismicity in areas not represented in the

selected training part of the catalog (after 1980).

3 Methods

3.1 ETAS

Training an ETAS model on a given dataset means finding the parameters in Eq. (1) that give the best fit to the data. The185

inversion of the ETAS parameters µ, k0, a, c, ω, τ , d, ρ and γ used here is based on an expectation–maximization (EM)

algorithm (Veen and Schoenberg, 2008), with the varying mc adjustment (Mizrahi et al., 2021b). Conservatively using the

maximum value of mc across the entire catalog would result in the loss of a large amount of valuable data, while assuming a

completeness magnitude lower than the true one could introduce biases to our calculations (Seif et al., 2017).

In this modified EM algorithm by Mizrahi et al. (2021b), the difference between the overall lowest completeness magnitude,190

mref, and the completeness magnitude at the location and time of a given event, mc(x,y, t), is taken into account for each event

by estimating the ratio of the unobserved and observed events (ζ), and the ratio of events triggered by unobserved and observed

events (ξ) based on the Gutenberg–Richter magnitude distribution assumption. The algorithm has been implemented in Python

by Mizrahi et al. (2023b) and can, in principle, be used to calibrate basic ETAS models on any given catalog.

As the computation of ζ and ξ relies on the GR law to estimate the number of unobserved events, this method is dependent195

on the estimated b-value of the catalog. Therefore, we test both the classical maximum likelihood method and the b-positive

method (van der Elst, 2021) which is meant to overcome incompleteness in data, primarily the short-term aftershock incom-

pleteness (STAI; Kagan, 2004). In both cases, we adjust for magnitude binning as described in Tinti and Mulargia (1987),

which is especially important to avoid biases in b-value due to relatively large bins of ∆m= 0.2,

In an ETAS model which produces a unique set of parameters for the overall region, information and properties of specific200

faults and sequences are potentially lost, but the advantage of global models is in their training datasets containing a larger

number of high-magnitude earthquakes (Bayona et al., 2023). Another approach for mitigating the averaging behavior of a

global model is to update the aftershock behavior described by ETAS with real-time data from an ongoing sequence when
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issuing aftershocks forecast operationally (Omi et al., 2015; van der Elst et al., 2022). The implementation of such a sequence-

specific model updating, however, still involves a number of expert decisions, and there is no agreed-upon updating approach205

that yields the best overall performance of a global model. E.g., the OEF systems of Italy, New Zealand and the United States

all use different approaches to updating their model parameters (Mizrahi et al., 2024). In Italy, individual models are not

updated, but their weights in the model ensemble are determined based on their past performance (Marzocchi et al., 2012).

In New Zealand, ETAS parameters were fitted using data prior to 2012 (Harte, 2013) and have not been updated since. The

USGS applies sequence-specific forecasts, but applying one strategy on all sequences increases performance in some cases,210

but decreases it in others (van der Elst et al., 2022). While this is a feasible direction for future European model development,

here we focus on developing a baseline, harmonized model upon which such improvements could be built.

3.2 Model variants

In addition to fitting an overall generic ETAS model to our dataset, in this section we propose modifications that could, in

principle, be applied to any ETAS model. The models compared in this study are as follows.215

– ETAS0: A basic ETAS model - set of parameters fitted to the ESHM20 dataset with no additional input or constraints. The

implementation relies on the EM algorithm (Veen and Schoenberg, 2008) with varying mc modification (Mizrahi et al.,

2021b). The background rate is modelled by a single parameter during EM parameter inversion, but more background

events are simulated in locations where background seismicity was observed in the training catalog.

– ETASbg: In order to be consistent with the long-term model (ESHM20; Danciu et al., 2021) and to utilize the information220

contained in the hazard model about spatially varying seismicity rates, the parameter inversion algorithm is modified to

allow for variations in the background rate, keeping relative spatial information fixed.

– ETASα: Due to the observed behavior of ETAS models to underestimate the productivity of high-magnitude events, the

parameter dictating the productivity law α= a− ργ is fixed to α= β as a constraint during inversion.

– ETASbg, α: The two proposed modifications are combined.225

– ETAS0
b+, ETASbg

b+, ETASα
b+, ETASbg, α

b+: The four model variants introduced above, the only difference being in

the b-value estimation method (van der Elst, 2021).

– ETASUSGS: To add a comparison level and check for the benefits of fitting an ETAS model specific to European data, we

use the parameters from the prior models described in van der Elst et al. (2022), applied by the USGS AftershockFore-

caster software. This includes several simplifications and adjustments, namely, background seismicity and aftershock230

spatial kernel is taken from ETAS0, and the global average is considered for other parameters.

– Poisson background model: We implement a time-independent model that takes the seismicity rate map provided by

ESHM20 (Danciu et al., 2021) and, for each spatial cell in this map, forecasts a number of events following the Poissonian

distribution with the corresponding rate in that cell as a mean. This is the null model against which comparisons are made
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in the testing phase to check for the performance of added time-dependent information during aftershock sequences. The235

rate map by ESHM20 only considers data up to 2015, and contains no information from the later time period set aside

for pseudo-prospective testing.

3.2.1 ETAS0, ETAS0
b+

These two models are trained using the general ETAS method, as introduced in Sect. 3.1, on the ESHM20 catalog filtered

as described in Sect. 2. Although the full training period includes data between 1980 and 2015, the first ten years are used240

as a "burn-in period" - these events are interpreted as potentially triggering events, but we do not consider them as possible

aftershocks of previous earthquakes. Without this "buffer" time period, the events near the beginning of the selected time

window would all be interpreted as background events, having no preceding seismic activity acting as their potential triggering

events. Additionally, this same auxiliary period will be used when simulating catalogs for purposes of retrospective consistency

testing, since in the simulated catalogs starting in 1990, we need both background events and aftershocks of seismicity that245

occurred prior to 1990.

Having a unique set of parameters for the entire Europe provides a harmonized model that describes the aftershock behavior

in the region. For each event, the EM parameter inversion algorithm also yields the probability that it is a background or a

triggered event. This allows us to capture the spatial variations in rates of background events despite the fact that the back-

ground parameter µ is treated as a constant during the parameter inversion. When simulating catalogs that are later used for250

producing retrospective and pseudo-prospective forecasts, we use this background rate information by drawing the locations

of background events generated for the simulation period based on the probabilities that each observed event in the training

catalog is a background event.

3.2.2 ETASbg, ETASbg
b+

We mentioned in Sect. 3.2.1 that the probabilistic branching structure inferred during the parameter inversion stage can be used255

to simulate new catalogs that will be consistent with the observed background event rates at different locations. However, a

desired property of our model would be the ability to include the knowledge about variation in the background rate already

during the parameter inversion, in order to estimate the background probabilities of events more correctly, and also to achieve

consistency of the background seismicity rates with the ones in the long-term hazard model (Danciu et al., 2021). This means

that the time-independent seismicity rates provided by the hazard model should match the time-dependent ones when computed260

over very long periods of time. For this reason, the model is adjusted to allow for the now space-varying background rate:

ℓ(t,x,y) = µ(x,y)+
∑
i:ti<t

g(mi, t− ti,x−xi,y− yi), (4)

similar to the ETAS formulation with an inhomogeneous background rate µ(x,y) suggested in Veen and Schoenberg (2008),

where µ is modelled by subdividing the spatial observation window into n cells with constant background rate µk, k = 1, . . .n.

Here, we allow for the variation between different locations to be fixed to the levels given as input to the ETAS parameter265
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inversion. More precisely, during the expectation step in the calculation of the probability that one event triggered another one,

the term µ representing the background contribution is replaced with

µ(x,y) = ι ·µk, (5)

where ι is a parameter learned in the inversion, estimated in every iteration as the total number of background events in the

entire area, normalized per day and km2, and µk is the long-term annual seismicity rate given as an input corresponding to the270

cell that contains the location (x,y). The probability that event i triggered event j estimated in the (n+1)th iteration is then

given as

P (n+1)(i→ j) =
g(mi, tj − ti,xj −xi,yj − yi|θ(n))

ι ·µk:j∈cell k +
∑

i:ti<tj
g(mi, tj − ti,xj −xi,yj − yi|θ(n))

, (6)

where µk:j∈cell k is the long-term annual seismicity rate given as an input corresponding to the cell that contains the location

(xj ,yj).275

As ι is estimated in each iteration as the total estimated number of background events per day and km2, it represents the

overall background rate. Therefore, the information that needs to be taken from the input background level is not the absolute

background rate in the corresponding spatial cell, normalized per time and area unit, since multiplying two such values would

result in a quick convergence of this parameter to zero. Rather than that, we only take the relative relationship between these

rates among different spatial cells by normalizing the values µk before inversion so that 1
n

∑n
k=1µk = 1, where n is the280

number of 0.1◦ × 0.1◦ cells that cover the area of interest, in our case n≈ 8 · 105. For each event in the catalog, we assign the

corresponding background seismicity level within its respective bin, which is then used as µk during the inversion.

3.2.3 ETASα, ETASα
b+

In the literature, it has been observed that there is a tendency in ETAS models to underestimate the productivity of large events

(Hainzl et al., 2013), possibly due to anisotropy of the aftershocks compared to the isotropic model (Helmstetter et al., 2005;285

Hainzl et al., 2008; Zhang et al., 2020), covariance between the productivity parameters (Sornette and Werner, 2005), or their

under-representation in training data. Therefore, another proposed modification of the model is to allow the productivity term

α= a−ρ ·γ to be fixed to a given constant. This term emerges from our ETAS formulation as the exponent in the relationship

between the magnitude of an event and its expected number of aftershocks.

While the productivity law describes an increase in the number of aftershocks with the magnitude of the main event, the290

GR law describes that there are relatively fewer large than small magnitude events. As described in Helmstetter (2003), the

relationship between the two exponents of these exponential relationships, α and β, determines whether earthquake triggering

is driven by small or large magnitude events - and stipulating that α= β balances the influence of events of different magnitudes

in earthquake triggering.
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In the ETASα model variant, we apply this fixed α during the inversion based on the EM algorithm, which naturally affects295

all parameters. For this modification of the ETAS model, we set α= β, as suggested in van der Elst et al. (2022) when b < 1,

where β is the GR parameter. When estimating the b-value with the b-positive method (van der Elst, 2021) for the ETASα
b+

model variant, we obtain b > 1. Therefore, following the recommendation by van der Elst et al. (2022), in order to prevent

the "exploding" behavior of aftershock triggering, we fix the productivity term to α= ln(10) (equivalent to fixing a= 1 in the

base-10 formulation).300

3.2.4 ETASUSGS

The prior models used by the USGS AftershockForecaster software are fitted separately for different tectonic regimes, hence,

more than one set of parameters exists. The sequences in the European dataset originate from various tectonic regimes, therefore

we use their "global average" set of parameters. These parameters are expressed in an ETAS formulation we call "standard",

as it is more common in literature (Ogata, 1992; Omi et al., 2014; van der Elst et al., 2022), where the temporal decay305

is given as (∆t+ c)−p, as opposed to the formulation in Eq. (1) used here, where the temporal decay is described by the

factor (∆t+ c)−(1+ω) · e−∆t/τ . The productivity law in the "standard" formulation (van der Elst et al., 2022) is expressed as

10−α(mi−mc), where mi is the magnitude of the triggering event, and in Eq. (1), it is given as k0ea(mi−mc), but also influenced

by the spatial kernel term
(
∆x2 + deγ(m−mc)

)−(1+ρ)
. As no spatial parameters are specified in the parameter set given in the

AftershockForecaster software documentation, we use the spatial kernel inverted by ETAS0. Additionally, we use µ and the310

background locations inferred by ETAS0 because the USGS models are fitted only to aftershock sequences and do not account

for background seismicity. Keeping in mind the different mc, which in the USGS global average parameter set is 4.5, we

translate the parameters into our formulation as in Mizrahi et al. (2023a). Note that our version of the model is a simplification

of the actual model employed by the USGS AftershockForecaster software and is not meant to replicate it exactly; the aim

of including the model in our study is solely to assess the usefulness of locally calibrated parameters compared to globally315

calibrated ones.

3.3 Consistency testing

A basic set of tests that one can do to assess the consistency of the models with past data is defined by The Collaboratory

for the Study of Earthquake Predictability (CSEP; Zechar et al., 2010; Savran et al., 2020, 2022a, b). Passing retrospective

number, magnitude, space, and pseudo-likelihood tests would imply that a model forecasts the occurrence of a similar number320

of similar magnitude events at places where they were observed in the training data.

Based on the background event occurrence and aftershock triggering laws inferred during the inversion of ETAS parameters,

we simulate 10k synthetic catalogs for the training period (1980–2015), with the first 10 years serving as a burn-in period

introduced in Sect. 3.2.1 and the actual period simulated starting in 1990. The simulation procedure has been implemented in

Mizrahi et al. (2023b) following the detailed description in Mizrahi et al. (2021b) and accounts for higher-order aftershocks.325

First, the background events are simulated by drawing their count from a Poisson distribution with the mean corresponding to

µ, occurrence time from a uniform distribution, and magnitude from a GR distribution (β estimated from the data). For models
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with no additional background information given as input, the locations of the background events are drawn from the locations

of existing events (with a Gaussian-distributed uncertainty), weighted by their probabilities of being background events. For

models with informed background introduced in Sect. 3.2.2, the same background input which is used during inversion is also330

used as the spatial distribution of simulated background events to ensure long-term consistency with ESHM20 assessments.

Note that in both cases the total number of background events is distributed according to the ETAS inversion output, but their

locations are drawn based on background probabilities inferred by ETAS inversion in the first case, and uniformly within each

grid cell (0.1◦ lon × 0.1◦ lat) defined by ESHM20 in the latter case.

The first generation of aftershocks is simulated by generating aftershocks of all events in the "starting" generation - their335

number, location, timing and magnitude are determined by the productivity law, spatial decay, temporal decay and GR law,

respectively. Further generations of aftershocks are simulated iteratively by simulating aftershocks of all events in all previous

generations until the number of events in the new generation becomes zero. Here, the auxiliary "burn-in" period (see Sect.

3.2.1) from 1980 to 1990 of the observed catalog is used together with a set of simulated background events between 1990

and 2015 as a starting generation of events. For all models, the maximum magnitude during the simulation phase is set to340

mmax = 10.0, which, due to the binning value of ∆m= 0.2 corresponds to mmax = 10.1. Magnitudes are simulated based on

the GR law with b-value estimated with adjustment for rounded values, and binned to 0.2 to be consistent and comparable to

the observed (training) catalog.

The number test (N-test) consists of counting the number of events in each catalog to get an approximation of the distribution

of the forecasted number of events, which is then checked against the observed number of events in the true (observed) catalog.345

The quantile score of the test is computed as the probability of observing the true number of events under the assumption

that the number of events follows the distribution approximated by the simulations. This hypothesis is then rejected when the

quantile score is below 0.05 or above 0.95 (extreme 10% of the forecasted distribution).

Similarly, the magnitude test (M-test) and the space test (S-test) compare the number of observed and forecasted events

taking into account their magnitudes and locations, respectively. In the magnitude test, the distribution of deviations of each350

simulation’s magnitude distribution from a "theoretical" magnitude distribution described by the set of all events across all sim-

ulations is compared to the same deviation for the magnitude distribution in the observed catalog. This deviation is calculated as

the sum of squared logarithmic residuals between the normalized observed magnitudes and the "theoretical" magnitudes’ his-

togram. Both when estimating the b-value and here, because of differences in mc in space and time, we observe m−mc(x,y, t)

instead of pure magnitudes, as these differences should follow an exponential distribution.355

In both spatial and pseudo-likelihood (PL-) tests, the property of interest in the simulated catalogs and the observed catalog

is not their length (as in the N-test) nor a metric describing the deviation of a magnitude distribution from the theoretical one (as

in D*-statistic for the M-test), but pseudo-likelihood computed as the sum of the approximate rate density over all spatial bins.

The pseudo-likelihood test combines space-magnitude gridding to obtain an overall comparison of the consistency between

forecasted and observed catalogs. Unlike the number test, these tests are defined as one-sided, meaning that the hypothesis that360

the true magnitude or spatial distribution follows the one in simulations is only rejected when the quantile score is above 0.9

in M-test or below 0.1 in S-test and PL-test.
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In addition to performing the N-test, to compare the observed and modelled overall count of events during the training period

(1990–2015) in more detail, the same consistency check can be done for smaller subsets of this time interval. Here, we perform

this check for the cumulative count of events in increasing time intervals, all starting at the beginning of the training period, by365

comparing the observed to simulated counts of events between 1990 and every year in the training period. As in the N-test, we

consider the model to be consistent with the observation at any given point if the observed count of events at that point falls in

between the 90% confidence interval, bounds of which are estimated by the fifth and ninety-fifth percentiles of the cumulative

counts of events in the simulated catalogs.

Due to the varying completeness magnitude, each event is given a weight during the inversion of ETAS parameters correct-370

ing for the estimated number of unobserved events at the time and location of that event. The simulated catalogs contain events

above mref, the minimum mc across the entire catalog, while the observed catalog only contains the events above the corre-

sponding mc(x,y, t). To make the synthetic catalogs comparable with the observed catalog, we are cutting off the synthetic

catalogs to only contain events above the corresponding mc(x,y, t) values.

While the same tests can be performed pseudo-prospectively, meaning with test data that the model was not trained on (in our375

case, that is the data after 2015), to check for consistency with the training data, we focus on performing the tests retrospectively.

Apart from providing a sanity check and indicating potential shortcomings of a model, retrospective consistency testing enables

evaluating its performance on long-term data, which is not available in the post-training time period (in our case seven years,

versus the 35-year-long training period). These tests are performed on each model separately.

3.4 Pseudo-prospective testing380

To compare the performance of the models in terms of their forecasting power, we set up a pseudo-prospective forecasting

experiment. Each model is used to simulate 100,000 synthetic catalogs for consecutive one-day testing windows in the seven-

year-long testing period. The simulations are created similarly to the procedure described in Sect. 3.3, with the starting set

of events consisting of the full training catalog and the portion of the testing catalog up to the time window for which the

forecast is made. The aftershocks of all these events are then simulated based on the modelled aftershock behavior to create385

the first generation of aftershocks, and further generations are simulated iteratively until convergence. For each time window,

the corresponding simulations are used to find a distribution of the number of events in each spatial bin.

Having estimated the forecasted distribution of the number of events in each spatial bin (j = 1, . . . ,N ) for every time window

(indexed with i), the forecast can now be compared to reality by checking the probability of the observed number of events

in that space-time bin (ni,j) given by the estimated distribution. This is done for each spatial bin, and then summed over all390

spatial bins resulting in the log-likelihood score of a model for a forecasting time horizon given as in Nandan et al. (2019) and

Nandan et al. (2022):

LLi
model =

N∑
j=1

ln
(
P i

model(ni,j)
)
. (7)
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Note that when the estimated probability of ni,j events occurring in a spatial bin is zero, this log-likelihood score would

not be finite. For this reason, after simulating the synthetic catalogs and observing the distribution of the number of events395

in each spatial cell, we slightly alter this distribution by taking a small probability (∼ 10−7), called the "water level", and

distribute it over the bins (up to a maximum bin nmax) with a zero count, adjusting the event counts in all other bins to retain the

property that the sum of probabilities of all event counts is 1. If this water level is too high, the originally simulated distribution

will be overwritten by one closer to uniform. Correct high-probability forecasts would thus receive a substantially lower log-

likelihood score. On the other hand, if the water level is a very low value, we penalize its usage heavily. Although the score400

should reflect the fact that the model failed to forecast the observation, a penalty larger by many orders of magnitude than all

other log-likelihood score differences would overrule the differences between models in all other observed bins.

The range of water level values that allow us to meaningfully distinguish models is chosen using the first two years of the

testing dataset as an initial validation set. For this, we visually inspected the results obtained with different water levels with the

first two years of data, using plots similar to those in Fig. S4. We then eliminated water level ranges which yielded undesirable405

behavior. For instance, for some water levels, the ETAS models score lower than the time-independent model both when events

do and do not occur. A too high water level leads to the subtraction of a too large number from the probability in non-empty

event count bins, yielding much lower scores when water level is not used, while still scoring lower than the benchmark when

water level is used, even though it is high, due to the uniform distribution of water level over remaining bins. Too low water

levels on the other hand, and the fact that the water level is distributed uniformly over all empty bins, result in an extremely410

low score when "unforecasted" event counts do occur. In our selection of the water level, we ensure that the bins that use the

water level achieve a score still orders of magnitude lower than that of the benchmark (time-independent Poissonian) model,

which assigns a non-zero probability everywhere, while not being overly penalizing when events do occur.

Within this experiment, the spatial bins are set to 0.1◦ lon × 0.1◦ lat, the time window to 1 day, and events with magnitudes

4.6 and above are considered, which is the generally valid completeness magnitude in the testing part of the catalog. Since the415

experiment is pseudo-prospective, the new part of the catalog is available and seven years of data since 2015 can be used for

validation and testing, resulting in 2558 testing windows for which each model produces 100k synthetic catalogs.

As mentioned earlier, the baseline against which all model variants are tested is the Poisson background model, for which

generating synthetic catalogs is not needed. Within each spatial cell, the number of events is considered to follow a Poisson

distribution with mean λj = µj,ESHM, where µj,ESHM is the daily seismicity rate in the jth spatial cell given by ESHM20. The420

log-likelihood in Eq. (7) becomes

LLi
ESHM20 =

N∑
j=1

ln
(
P i

ESHM20(ni,j)
)
=

N∑
j=1

ln
λ
nj

j e−λj

nj !
, for every time window i. (8)

The metric used for comparison of the models is simply the difference between their log-likelihood scores, called the in-

formation gain (IG). For each time window, we have a value of IG of one model over another, and while the cumulative

information gain is indicative of models’ performance through time, we test whether one model outperforms another by testing425

whether the mean information gain (MIG) between that pair of models is significantly positive using a paired one-sided t-test.
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4 Results and Discussion

4.1 Model fit

As mentioned in Sect. 3, fitting an ETAS model to the data means finding a unique set of parameters describing the observed

aftershock triggering behavior. The set of inverted parameters for each of the described ETAS model variants is given in Table 1.430

The parameter µ describes the overall rate of background events and it is estimated by counting the total number of background

events and normalising it per day and km2. The count of background events is obtained by summing the probabilities pBG that

are assigned to each event during the parameter inversion, weighted by the estimated ratio of unobserved and observed events

ζ introduced in Sect. 3.1 to account for incompleteness.

As the parameters can be grouped into those describing temporal decay, spatial decay and productivity law, the curves435

of each can be plotted separately as in Fig. 2. These curves represent the modelled aftershock triggering behavior and are

compared to the observed aftershock triggering behavior in the observed catalog, represented by dots. However, since the true

triggering relationship between events in the observed catalog is unknown, for counting aftershocks triggered by an event of

a certain magnitude at a given temporal and spatial distance, we rely on the probabilistic triggering structure inferred during

the expectation step of the EM algorithm. Therefore, the observed aftershock triggering behavior is, in fact, dependent on the440

inverted triggering parameters.

In Fig. 2(a), the curves show the temporal decay in aftershock behavior described in ETAS as

N(∆t) =
exp(−∆t/τ)

(∆t+ c)(1+ω)
, (9)

and the dots represent the "observed" aftershock behavior by showing counts of pairs of events (i, j) where i triggered j with

probability pij and ∆t= tj − ti, computed as
∑

j pij · ζ(j). In the top row, the different curves represent triggering laws that445

were inferred on different datasets: the European catalog used in the present study, Swiss seismicity (Mizrahi et al., 2023a),

Californian seismicity (Mizrahi et al., 2021a), and parameters used by the USGS AftershockForecaster software (spatial kernel

is taken from ETAS0 as mentioned in Sect. 3.2.4); in the bottom row, the different curves represent the laws inferred by

different ETAS variants. In a similar fashion, the spatial decay depicted in Fig. 2(b) shows the number of triggered aftershocks

at distance ∆x described in the ETAS model as450

N(∆x) = ((∆x)2 + dexp(γ(m−mc))
−(1+ρ). (10)

As there is a dependency in the spatial decay on the magnitude, there is a curve describing this law for each magnitude bin. In

Fig. 2(b), we show m= 4.0. The line in Fig. 2(c) shows the dependency of the number of triggered events on the magnitude

of the triggering event, described in ETAS formulation with the productivity law,

N(m) = k0 exp(a(m−mc)). (11)455
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Table 1. Inverted ETAS parameters for each of the eight ETAS variants described in Sect. 3. Additional parameters include the b-value,

productivity term α= a− ργ and the branching ratio η.

Model ETAS0 ETASα ETASbg ETASbg,α ETAS0
b+ ETASα

b+ ETASbg
b+ ETASbg,α

b+ ETASUSGS

log10µ
a −7.94 −8.08 −7.24 −7.22 −7.75 −7.91 −7.05 −7.04 −7.94

log10 k0 −1.63 −2.51 −1.40 −2.07 −1.63 −2.50 −1.39 −1.98 −2.63

a 1.59 3.11 1.79 3.27 1.68 3.17 2.05 3.39 2.87

log10 c −2.65 −3.01 −2.37 −2.43 −2.58 −2.90 −2.27 −2.32 −2.57

ω −0.11 −0.15 −0.04 −0.05 −0.10 −0.14 −0.02 −0.03 −0.03

log10 τ 3.66 3.9 3.44 3.78 3.67 3.91 3.46 3.80 12.26

log10 d 0.92 0.54 0.90 0.69 0.90 0.53 0.86 0.70 0.92

ρ 0.61 0.55 0.81 0.82 0.64 0.57 0.87 0.89 0.61

γ 0.92 1.52 0.88 1.20 0.94 1.51 0.96 1.22 0.92

b 0.99 0.99 0.99 0.99 1.23 1.23 1.23 1.23 1

α 1.03 2.28 1.08 2.28 1.08 2.30 1.21 2.30 2.28

η 1.00 4.46 0.75 3.03 0.83 0.97 0.60 0.65 4.04

a Spatially varying, showing the approximated average (ι in Eq. (5)).

Discussion of the model fit

Comparing multiple models trained on the European dataset based on the ETAS parameters shown in Table 1, we consistently

observe that the background term µ is higher in models that allow for background term variation during the inversion. This

is in agreement with the idea that using an informed background term µ during inversion allows models to recognize more

events in active areas as background events, while they would be interpreted as triggered events (triggered by other events460

in the same active area) without the added background information (Nandan et al., 2021). That more events are interpreted

as background events rather than aftershocks also manifests in the fact that informed-background model variants have lower

overall productivity. This is seen in the branching ratio η, which reflects the average number of aftershocks per triggering event,

being lower for the background-informed models when compared to their constant-background counterparts. Furthermore, the

lines in Fig. 2(c), second row are almost parallel in between informed and non-informed background versions of the same465

model variants, but the line describing the informed background variant is always below the line for the corresponding model

with no informed background.

While the background-informed model variants have overall lower productivity than their equivalents with no background

information used during the inversion, another, more obvious, difference in the productivity law is seen between the corre-

sponding models with and without fixed α term. Fixing this parameter to the GR β value directly affects the productivity470

law plot as the slope of the lines is exactly α, resulting in a steeper slope which indicates relatively higher productivity as-

signed to high-magnitude triggering events compared to low-magnitude triggering events. Fixing α also drastically increases
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Figure 2. Plots of the model fit. In the first row, triggering laws inferred with model ETAS0 are shown, including lines representing models

for other areas for comparison. In the second row, modifications introduced in Sect. 3.2 are compared. (a) Temporal decay. (b) Spatial decay.

Due to the dependency of the spatial decay law on the magnitude of the triggering event, there is a curve describing this law for every

magnitude, here m= 4.0. (c) Productivity law.

the branching ratio η. In non-informed background model variants, this increase in productivity is counterbalanced with a lower

background rate. Interestingly, the informed background model variant with the "standard" b-value estimate shows increased

productivity and increased background rate when α is fixed. Unlike for ETASα and ETASbg,α, in models with fixed α and475

b-positive estimate of the b-value, the branching ratio remains lower than 1 due to α being fixed to ln(10) instead of β (van der

Elst et al., 2022), since b > 1.

Furthermore, model variants relying on the b-positive estimate of the b-value consistently display a higher background

seismicity level and lower overall productivity, but higher productivity term α than their counterparts using the traditional

b-value estimator. All these differences must be due to what the model infers about unobserved events below mc(x,y, t) from480

the observed ones by applying the GR law. A higher b-value leads to a larger number of expected unobserved aftershocks of

observed events. Thus, when mc(x,y, t)>mref, the observed large-magnitude events’ productivity is inflated, while smaller-

magnitude events’ productivity is not (or less) inflated, explaining the larger α for b-positive variants. The higher background

rate and lower branching ratio of b-positive variants suggest that the parts of the catalog that are less complete, hence more

inflated when the b-value is high, exhibit this behavior. To decide whether this is caused by differently behaving seismicity in485
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certain areas or time periods, or whether this indicates that seismicity behaves differently for larger magnitude events compared

to smaller ones, further research is required.

Apart from differences among models in interpreting events as background or triggered, a trend in some of the other pa-

rameters can also be observed. In the spatial distribution of aftershocks, models with fixed productivity tend to have higher

γ, but lower d values, interpreting more of the events at smaller distances as aftershocks of low-magnitude events and more490

of events further away as aftershocks of large-magnitude events. For the temporal distribution of aftershocks, the higher ω in

background-informed models implies a slower decay of the number of aftershocks, whereas the fixed productivity variants

have lower ω values, resulting in a faster decay. However, τ is larger for fixed productivity variants and lower for background-

informed variants, meaning that the tapering of the distribution will occur later in the former case (after about 103.66 days,

which corresponds to approximately 12.5 years) and sooner in the latter (103.44 days or around 7.5 years).495

When comparing the laws described by ETAS models’ parameters, we observe differences not only among model variants

introduced in our study but also among models calibrated on distinct datasets. While the time kernels appear quite similar

across models for different regions, including multiple "European" models, a notable disparity arises in the spatial kernel when

comparing the European models to those trained for Switzerland (Mizrahi et al., 2023a) or California (Mizrahi et al., 2021a),

as can be seen in Fig. 2(b), first row. Specifically, we note a lower frequency of observed aftershocks at shorter distances500

from the triggering event, with a subsequent decay starting at slightly greater distances. Since we observe this difference when

comparing to models calibrated on other datasets, but not when comparing multiple European models, one possible explanation

for this observation could be differences in location determination of events, due to lower location precision and possible short-

term incompleteness (close in time and space to triggering events) in some areas in this highly heterogeneous catalog. This

idea is supported by the fact that the difference between spatial kernels diminishes with an increase in the magnitude of the505

triggering event.

Additionally, the comparison between the ETAS variants fitted to the European dataset and the adjusted ETAS parameters

used by the USGS AftershockForecaster software reveals that the productivity law is more similar to those inferred by ETAS

variants with fixed α, which is expected given that α is fixed to 1 (log-base 10, in our formulation this corresponds to α=

ln10) in all sets of parameters used by USGS models. Another difference is in the temporal kernel, which in the case of510

ETASUSGS does not have a tapered exponential form. This results in relatively more aftershocks forecasted in periods long

after the triggering event; in Table 1, all models have a τ value between 103 and 104, whereas in ETASUSGS, it is set to 1012,

corresponding to a period of 5 billion years (effectively, this means there is no taper).

4.2 Results of consistency tests

To visualize the output of CSEP consistency tests, the PyCSEP implementation Savran et al. (2022a, b) provides the option to515

display the modelled behavior of the events as a histogram created based on the set of a large number of synthetic catalogs given

as the output of a model (catalog-based forecast), and compare it to the observed value in the observed catalog represented by

a dashed vertical line.
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Figure 3. (a) The number test (N-test) for ETAS0: histogram represents the modelled distribution of the number of events in the training

period approximated by the counts of events in 10k simulated catalogs with completeness levels as in the training catalog. Dashed vertical

line indicates the event count observed in the training catalog. (b) Table containing the quantile score of the models introduced in Sect. 3

for each of the consistency tests. Red color indicates failure (extreme 10% quantiles) - for two-sided tests (N-test), these are the lowest and

highest 5% quantile scores, for one-sided tests it is either scores above 0.9 (highest 10%; M-test) or below (lowest 10%; S-test, PL-test).

Blue color indicates that the model passes the test, cells that are grey are ones where the test is not failed, but due to the extreme quantile

should be further investigated.

In our case, the distribution of the number of events is approximated by counting the lengths of all simulated catalogs and

the vertical line is the size of the catalog which was used in training for the inversion of ETAS parameters. Fig. 3(a) shows the520

visualization of the N-test for ETAS0, the histogram describing the model’s distribution of the number of events, whereas the

vertical line represents the number of events in the observed catalog.

The quantile scores for all tests and all model variants except for ETASα and ETASα, bg, the retrospective simulations of

which are not converging, are shown in Fig. 3(b) and represent the position of the dashed line showing the observed property

with regards to its forecasted value shown by the histogram (see Fig. 3(a)). Quantile scores between 0.05 and 0.95 indicate525

that the N-test is passed, while values below 0.05 or above 0.95 indicate that a model has failed the test. In case of S-test and

PL-test, the tests are one-sided, therefore, the models with quantile scores above 0.1 pass the tests. M-test is also one-sided,

but defined so that the models with quantile scores below 0.9 pass the test.

In Fig. 4, forecasted and observed cumulative counts through time are compared for all ETAS models inverted on the

European dataset that produced converging retrospective simulations. At points in time where the true (observed) event count530

is within the blue shaded area, we consider the forecast to be consistent with the observation. The comparison between the

observed count curve and the shaded area at the rightmost time point in every subplot corresponds with the N-test, the result

of which is shown in Fig. 3.
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Figure 4. Cumulative count of events (median with 90% confidence interval) simulated by each "European" model, compared to the obser-

vation. ETASα and ETASbg, α which fail to produce converging retrospective simulations, are excluded. ETASUSGS is shown in Fig. S3.

Apart from the event count analysis in time shown in Fig. 4, the spatial distribution of the retrospective forecasts is visualised

in Fig. 5 for models ETAS0 and ETASbg (upper row), and compared with the observed spatial distribution of the events in the535

training catalog during the same period (lower row). The color of each spatial cell on the maps corresponds to the mean number

of events in that cell over 100k simulations. The number of events is counted during the full 25-year-long training period, and

only events above mc(x,y, t) are considered.

Discussion of the consistency test results

Due to the large branching ratio η > 1 in ETAS variants with productivity term α fixed to β, the number of events quickly540

explodes when simulating over a long-term period, as, on average, every event in the synthetic catalog will produce more than

one aftershock in each generation of the simulation process. Therefore, the procedure does not converge and we consider the

models ETASα and ETASbg,α to be failing the retrospective consistency tests. This suggests that our approach of fixing the

productivity parameter α to β during the inversion process is not suited to produce models that are consistent with reality in the

long term, unless b > 1 (β > ln(10)), in which case we fix α to ln(10)< β, keeping the branching ratio below 1 even though545
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Figure 5. Comparison of the spatial distribution of events retrospectively forecasted by ETAS0 (left) and ETASbg (right) for the training

period (1980–2015), color indicates the number of events in every spatial bin above the corresponding mc(x,y, t) for the duration of the

entire 25-year period. In the bottom row, observed events are added to both maps. Note that events above mc(x,y, t) are shown both for the

forecasts and observations. White areas indicate no simulated events, most outside the region of interest, but also in some spatial bins within

the region with zero events in 10k simulations.

α is fixed to a higher value than the one inverted without constraint. Still, with models ETASα
b+ and ETASbg,α

b+, while

the median number of events simulated is similar as with ETASα and ETASbg,α respectively, some simulations contain more

explosive sequences, resulting in a higher uncertainty in the modelled number of events (Fig. 4, second and third columns).

To avoid an underestimation of the productivity of large events without overestimating the overall productivity, differently

parameterized productivity laws could be considered in the future. For instance, the logarithm of the aftershock productivity550

might be better described as increasing quadratically rather than linearly with the magnitude of the triggering event.

Furthermore, a branching ratio larger than one might be present during an ongoing sequence, but is not sustainable over a

longer term. Thus, considering sequence-specific parameters or distinct productivity for mainshocks and non-mainshocks, as

done in the ETAS model employed by the USGS (van der Elst et al., 2022), would be promising aspects to explore in the future.
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In ETASUSGS, a high branching ratio is also observed that could result in such exploding behavior during synthetic catalogs’555

simulation. However, due to the untapered temporal kernel that forecasts a relatively higher, when compared to the tapered

ones, number of aftershocks in periods even after τ ≈ 103 days, many of the simulated aftershocks will be assigned a timing

outside of our period of interest, effectively resulting in a much smaller branching ratio. This effect is so significant that these

simulations do not only converge, but significantly underestimate the number of events. Mancini and Marzocchi (2023) also

successfully fit an ETAS model with the productivity term fixed to β, but with no taper in the temporal kernel, resulting in a560

lower effective branching ratio than the one present in ETASα and ETASbg, α.

In synthetic catalogs simulated based on the model ETAS0, around 30% of the simulations have a higher event count than

the observed value, and therefore the N-test is passed. However, the distance between the true observed magnitude distribution

from the theoretical distribution estimated jointly from all the simulations is significantly higher than the distance between the

observed magnitude distribution in each simulation and the theoretical distribution. The disagreement between the modelled565

and true magnitude distribution could be the result of either the true distribution not following a GR law with a single b-value,

but rather a mixed distribution with b-values varying in space and/or time, or a bias caused by incompleteness potentially still

present in the catalog. The same inconsistency in magnitude distributions can be observed in ETASbg, which applies the same

b-value of around 0.99, but also fails the number test by significantly overestimating the event count mostly due to the relatively

low uncertainty.570

The magnitude distribution seems better in the ETAS variants that rely on the b-positive method for b-value estimation,

which all pass the M-test. This is consistent with a visual estimation that b-positive (b= 1.23 in Fig. 1(d)) estimate fits the

data better. However, due to a significant underestimation of the event count, ETAS0
b+ fails the N-test, and ETASα

b+ is on

the significance threshold between passing and failing. On the other hand, ETASbg
b+ and ETASbg, α

b+ pass all the consistency

tests, but with a much higher quantile in the M-test, implying a greater distance between the observed and forecasted magnitude575

distributions while using the same b-value estimate as ETAS0
b+ and ETASα

b+. This is most likely due to the dependence of

the test on the event count in simulated catalogs which is, as mentioned earlier, underestimated by ETAS0
b+ and ETASα

b+.

This correlation between the N- and M- test is being analyzed in more detail and avoided by modifying the M-test in Serafini

et al. (2024), and is here further highlighted in the fact that ETASUSGS, in contrast to ETAS0 and ETASbg, passes the M-test,

despite all models using very similar b-values of 1 and 0.99. Similar correlation is also present in the S-test, evidenced by580

the fact that ETASUSGS and ETAS0, which use identical spatial distribution of background events and aftershocks, achieve

significantly different scores. Except for models that significantly underestimate the event count (ETASUSGS and ETAS0
b+)

and therefore do not have reliable S-test scores, the quantile of the observed likelihood computed in spatial consistency tests

is in the upper tail of the distribution of likelihoods of the synthetic catalogs. This indicates that the forecasts are describing

the observed data ’suspiciously well’, which does not necessarily imply failure of the test but suggests that the model requires585

further testing (Schorlemmer et al., 2007) due to being too smooth, i.e. the events occur too close to likelihood peaks without

the expected scatter. Similar behavior is observed in pseudo-likelihood consistency tests as well. These findings suggest that

the results of the M-, S-, and PL-tests should be interpreted with caution, and models should not be hastily rejected or accepted

based solely on their performance in these specific tests when their N-test is failed.
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Further insight into the modelled and observed event count consistency is provided by their cumulative comparison through590

time shown in Fig. 4. In general, event counts begin to be more consistent starting with the year 2005, which coincides with

the latest change of completeness magnitude in some of the regions (see Fig. S1). In more recent periods, when the differences

in completeness levels between regions in the catalog is smaller, all models display consistency corresponding to their final

N-test result: ETAS0, ETASbg
b+ and ETASbg,α

b+ forecast the event count consistent with the observation, ETAS0
b+ heavily

underestimates the event count, and ETASα
b+ is on the significance threshold of underestimating it, with the median forecasted595

count being as low as for ETAS0
b+. ETASbg is the only model overestimating the event count, and it does so in every time

period starting from 2005, but also demonstrates a lower uncertainty range.

Overall, we can conclude that ETAS models with fixed α not using the b-positive method to estimate the b-value clearly fail

the long-term consistency tests. Among the remaining models, all models but ETAS0
b+ and ETASbg pass the N-test, which

is often considered the most crucial of consistency tests. ETASbg, along with ETAS0 which use the same b-value, fail the600

magnitude test, while the models which use the b-positive estimator pass it. The S-test scores do not provide a conclusive

comparison between models, but a visual inspection of retrospective forecasts they produce shown in Fig. 5 suggests that

background-informed models are less prone to overfitting the spatial distribution to existing events in the training catalog.

The spatial distribution of ETAS0 replicates the existing catalog because background events are simulated at a higher rate

in areas where a higher background probability was inverted during fitting of ETAS parameters. Thus, we can consider only605

variants applying the b-positive estimate and using ESHM20 background seismicity levels as adequate choices for a first

harmonized ETAS model for Europe. The other consistency tests provide additional information about the potential limitations

of these models, which shall be addressed in future efforts to improve the models, most important of which is the potentially

oversimplified magnitude distribution applying a single b-value.

4.3 Results of pseudo-prospective tests610

To compare the pseudo-prospective performance of one-day forecasts issued by the models, we visualize their cumulative

information gain in Fig. 6(a). As introduced in Sect. 3.4, the log-likelihood score of a model is the logarithm of likelihoods

summed over space, and therefore always negative. The information gain is the difference between the log-likelihood scores of

two models and is positive when the first model assigned a higher probability to the actual occurrence than the second model.

The reference log-likelihood score to which we compare others in Fig. 6(a) is the one of the Poissonian time-independent base615

model. To determine whether one of the models is significantly outperforming another one, we apply the paired one-sided

t-test to the information gain values of the individual forecasting periods. In this way, we decide for each model pair whether

the mean information gain (MIG) between the two models over all testing periods can be considered significantly positive

(Fig. 6(d), color indicates the MIG and significance in outperformance is indicated by a dot, similarly to the way pairwise

information gain is shown in Iturrieta et al. (2024)). The information gain is also shown when computed over the entire region620

of interest as just one spatial bin in Fig. 6(b) with the significance matrix shown in (e).

The most prominent observation is the positive mean information gain of all ETAS models when compared to the time-

independent Poissonian model with ESHM20-informed background, p-values below 0.05 showing that for all models ex-
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Figure 6. (a-b) Cumulative information gain through time, for consecutive non-overlapping 1-day windows over 7 years in the testing catalog.

All models are compared to the Poissonian time-independent model, which acts as the null model. In (a), spatial binning of 0.1◦ lat×0.1◦lon

is applied, no binning in (b). (c) Seismicity in the testing catalog, magnitudes through time. (d-e) Matrix of mean information gain of each

model compared to all other models. Information gain in position (i, j) compares the score of the model in column j to the model in row i.

Significant outperformance determined by paired one sided t-tests for each pair of models is indicated by a dot.
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cept ETASbg, α and ETASUSGS this positive score is significant. The three best performing models are ETAS0, ETASbg
b+ and

ETAS0
b+, which all significantly outperform all variants with fixed productivity term and ETASbg, this result being almost625

always significant, or near the critical p-value according to the t-test. Another major result is that all ETAS-based models sig-

nificantly outperform the time-independent model when no spatial binning is used, with variants fixing the productivity term α

achieving the best score.

To analyze the performance of the models more thoroughly, we observe the spatial component of their log-likelihood scores

by visualizing the total information gain over time for each spatial cell separately. The maps in Fig. 7(a–b) show the information630

gain between ETAS0 and the time-independent model and between ETASbg,α
b+ and ETAS0, respectively. The spatial cells are

joined into larger ones for better readability of the map. The more active areas show more pronounced total IG values, while

no distinct spatial trends can be observed.

Discussion of the pseudo-prospective test results

That ETAS models outperform the time-independent model in one-day forecasting experiments is a result that highlights the635

core strength of ETAS models, which is to model the short-term clustering behavior of earthquakes. These models show a

substantial improvement in predictive skill over the time-independent model, and this predictive skill shows up during periods

of clustering (as can be seen when comparing Fig. 6(a) and (c)). The highest jump in information gain is observed in late 2018,

coinciding with the occurrence of a 6.8 earthquake in Ionian Sea late at night, followed by 14 events on the next day, and over

30 within the week. In contrast, a larger event of magnitude 7.0 in Aegean Sea in late 2020 is not coupled with such a jump,640

possibly as it was followed by only 10 observed events during the first week, four of which occurred on the day of the main

event which happened in the middle of the day, and do not "participate" in the evaluating the models as forecasts are produced

in a 1-day window, with a cutoff at midnight.

ETAS0 and ETAS0
b+ have highest MIG values, followed by ETASbg and the three remaining b+ variants, while lowest

scores by time-dependent models fitted on the European data are achieved by ETASα and ETASbg, α. The two variants also645

failed the retrospective tests due to explosive behavior, but in short-term score relatively worse only in the spatially sensitive

testing, indicating that the anisotropy is the main issue here, as discussed below. Due to observations made in the analysis of

retrospective tests, preference should be given to models applying the ESHM20-informed-background rate map, and models

using the b-positive estimate. Both ETASbg
b+ and ETASbg,α

b+ satisfy these constraints, while also scoring well in the pseudo-

prospective experiment, suggesting that they can be considered adequate choices for short-term earthquake forecasting. This is650

further supported by the result that no spatial trend in model performance can be identified, and thus the models do not seem to

be overfitting certain particular subregions. ETASbg,α
b+ also has the highest MIG score in the pseudo-prospective experiment

with no spatial binning, making it a potential winner model, provided its spatial component is further analyzed and improved,

with accordance to conclusions following below.

As mentioned in Sect. 3.4, in order to compute a log-likelihood score of a model for a day and spatial bin where none655

of its simulations placed events, a "water-level" probability is distributed evenly over such bins. The information gain plot

corresponding to the one shown in Fig. 6(a) for different water levels is given in Fig. S4. Our sensitivity analysis shows that the
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Figure 7. Total information gain per 1◦ lon× 1◦ lat spatial cell. Models compared: (a) ETAS0 and time-independent Poissonian model. (b)

ETASbg,α
b+ and ETAS0.

selection of this parameter influences the significance of the performance difference between the time-dependent models and

the time-independent benchmark (which never uses the water level), but the order between ETAS variants is barely affected.

While this dependency on a subjective choice is an undesired effect, the ability of a model to outperform the time-independent660

model for a range of water levels is not an artifact of the parameter, because it was ensured that the information gain between

any ETAS variant and the time-independent model is negative whenever the water level is used.

Furthermore, in Fig. S5 we show the same information as in Fig. S4, but only applying the water level when probability

assigned by a model to the observed number of events is zero. While this is infeasible in a truly prospective setting as it is

unknown whether or not water level will be needed, it confirms that for higher water levels, models lose score in number bins665

(most often 0) where simulations place a non-zero probability, but it is reduced to take the water level to distribute over other

bins. However, the trend that still persists whether or not we only apply water level when necessary, is that if the penalty is
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too high for none of the simulations producing the observed number of events, the time-dependent models overall lose score

compared to the time-dependent benchmark.

To replace the water level with an actual model output, one should perform a larger number of simulations, posing a signif-670

icant computational challenge. Other possibilities could be investigated in the future, with a promising strategy of replacing

simulations recently proposed by Mizrahi and Jozinović (2024). Another way to avoid using the water level is to observe spatial

bins large enough to contain a meaningful forecast even in the 1-day window we are observing, to the expense of evaluating

the spatial distribution at a high resolution. An extreme example is shown in Fig. 6(b), where the information gain is computed

solely based on the event count, treating entire Europe as a single spatial bin. Since there is no spatial binning, water level is675

seldom used, and the information gain to the time-independent benchmark is more significantly positive than before.

However, in this case, the order of ETAS models is highly affected, with variants applying a higher α achieving best scores,

suggesting that they are forecasting the number of events better, but placing them wrongly and thus being outperformed in

the space-sensitive testing. Since the spatial distribution of background events does not differ between the two model groups

(inverted α versus fixed higher α), the performance difference must arise from the location of aftershocks.The use of isotropic680

kernels for the spatial distribution of aftershocks may lead variants with fixed α to place a higher number of aftershocks in

circles with larger radius, in most of which nothing is observed. In the future, more complex models should be explored that

place aftershocks in a more elliptical shape instead of a circular one, or along known fault planes.

5 Conclusions

In this paper, we calibrated and evaluated multiple variants of ETAS models to the highly heterogeneous dataset which sum-685

marizes the recorded seismicity in Europe over the 35-year-long period between 1980 and 2015. The main result of seven

years of pseudo-prospective one-day forecasting experiments is that ETAS-based models provide a significant information

gain when compared to the time-independent benchmark model that underlies the ESHM 2020 hazard model. Additionally,

the best-performing ETAS-based models inverted on the European dataset outperform the time-dependent ETAS model using

globally calibrated parameters. Besides a basic ETAS variant, we propose several modifications that, during model calibration,690

allow the use of additional spatial information or fixing the productivity term of the model formulation. We found that fixing

the productivity term to a higher value, which is suggested in the literature to overcome the underestimation of productivity of

high-magnitude events, can result in a highly overestimated branching behavior of events when the b-value is relatively low.

However, for short-term forecasts compared solely on the event count, these models achieve the best performance. Therefore,

in future studies, other techniques to address the estimation of the aftershock productivity of large events should be further ex-695

plored, such as accounting for known relationships between tectonic setting and aftershock productivity (Dascher-Cousineau

et al., 2020; Page et al., 2016; Davis and Frohlich, 1991; Marsan and Helmstetter, 2017), fitting and applying sequence-specific

aftershock productivity parameters (as in van der Elst et al. (2022)), or combining it with more precise aftershock spatial

distribution modelling (Field et al., 2017; Reverso et al., 2018). For ETAS variants that leverage information about the spa-

tially varying background rate already during the inversion, we found that the inferred parameters differ from those inferred700
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using the basic approach, resulting in more events being interpreted as background events, and fewer as aftershocks. The

background-informed ETAS variants do not outperform their counterparts with non-informed background rates in pseudo-

prospective testing, but in retrospective testing demonstrate better behavior in visual inspection of the spatial distribution of

events, and achieve best scores if combined with the b-positive estimate of the b-value. The background component contains

additional information about long-term seismicity patterns, seismotectonic properties of the area, and seismicity in areas not705

represented in either the training or testing parts of the catalog. For this reason, what could be the main strength of this method

is hidden by the very limited size and time period of available testing data.

Retrospective long-term consistency tests provide an additional characterization of the strengths and weaknesses of each

model variant, highlighting that some of the proposed model variants adequately capture the number of events over longer

time periods. The magnitude consistency tests conducted for models using both the traditional maximum likelihood estimator710

of the b-value as well as the b-positive estimator favor the latter approach, but highlight potential areas of improvement of the

proposed models. The simplification of using a single b-value to describe the magnitude distribution of all of Europe, as well

as the assessment of the space-time variation of the catalog completeness provided through ESHM, may need to be revisited.

Aside from the potential improvements of the issued forecasts by revisiting the completeness assessment, b-value variations,

and strategies for sequence-specific model updating, our proposed models could be improved by adding further complexity,715

such as considering an anisotropic spatial kernel of aftershock behavior and utilizing information such as earthquake focal

mechanisms or finite fault rupture models (Böse et al., 2023).

In the process of real-time dissemination of earthquake forecasts, developing the underlying model is only the first step. The

forecasts produced as the output of the introduced models are yet to be tested in a truly prospective manner. Recent CSEP

efforts to establish a standardized open experiment format and the corresponding software support in performing such tests720

have resulted in the formation of the Floating Experiments (Iturrieta et al., 2023), providing a suitable environment for future

evaluation of the properties of proposed models.

Another challenge in delivering earthquake forecasts operationally is the fashion of doing so: visualisation and communica-

tion of models’ outputs are a topic of ongoing discussion among seismologists and communication experts (Field et al., 2016;

Becker et al., 2018; Savadori et al., 2022; Schneider et al., 2023). Both the layout and content of the final products depend on725

the use case in terms of the areas for which they are developed and the end users they serve, ranging from the wider public

to civil protection services to insurance companies. The main authority to communicate earthquake forecasts and act on them

remains on local agencies and experts with knowledge specific to their area of interest. The role of the pan-European models

presented here is to provide a harmonized "global" alternative less limited by administrative borders and information in areas

where it would otherwise not be available.730

Code and data availability. The training catalog with completeness assessments per tectozone and rate maps used as input here were pro-

duced by ESHM20 Danciu et al. (2021) and are accessible here. The continuation of the catalog used for testing is available here (Lammers
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et al., 2023). The ETAS inversion and simulation code used to train the models and generate the forecasts was developed for Mizrahi et al.

(2021b), and is available at the Zenodo repository at https://doi.org/10.5281/zenodo.7584575 (Mizrahi et al., 2023b).
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