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Report #1

The revised version is much improved. Below I have some remaining suggestings
to improve presentation and clarity. And I do have some queries and comments
about the water-level results, specifically the sensitivity of the information gain
trends with respect to what seem minor changes in the water-level, which are
very surprising and need some technical checks and some interpretation (not a
solution). The sensitivity may be reduced by using a more appropriate Poisson
baseline (see relevant comment below) or using the water-level only when quakes
do appear in zero- forecasts bins (and not in all zero-forecast bins). After that,
I can recommend publication.

We thank the reviewer for another round of helpful insights, pointing out
the dependency on this parameter in the first place, and further suggestions to
help address the water-level sensitivity in our results. We hope that our newly
revised manuscript addresses the issue more appropriately.

Figure 1: b-value estimates should include uncertainties estimates.
Fig1: The difference between b and b+ seems large, and here b+ seems to

give larger values than usual. Which delta m (ie equivalent mc) did you use
for b+? Is it possible that b+ is biased for this very particular dataset? It just
seems larger than expected.

We add the uncertainties to the revised manuscript and specifically to the
caption of Fig. 1. Both b-value estimates take into account the magnitudes’
binning of ∆m = 0.2 and apply the correction introduced in Tinti and Mula-
rgia (1987) to avoid biases. Completeness is spatially and temporally varying,
and differences m−mc(x, y, t) considered in place of pure magnitudes to bring
the mixed distribution closer to GR, and completeness of m − mc(x, y, t) (for
b-positive) is 0.2. Since the region considered in our study is very large, the key
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underlying assumption behind applying the b-positive method, namely that af-
ter an event of a certain magnitude, any event larger by a certain increment will
be detected, might not apply. However, the results obtained in our experiments
suggest that the b-positive estimator yields a more appropriate magnitude dis-
tribution than the classical estimator. This suggests that if one estimator is
biased, it might be the classical one. However, overall, one of our main con-
clusions remains that using a single b-value for a large and diverse region such
as Europe may be an oversimplification of the problem. The estimation of b-
values should be improved by reassessing the completeness estimates and using
a spatially (and maybe even temporally) varying b-values and we plan to work
on this in the future.

L203: “no substantial evidence” I think requires some references, even if it’s
your interpretation of some results that do include such updating.

We agree and change the formulation of the statement, now stating that
there is no agreed-upon technique to update models to specific sequences. We
also add relevant literature, specifically describing the different model updating
strategies of Italy, New Zealand, and the United states.

L210: clearly state here that ETAS0 contains one spatially uniform back-
ground rate.

We add the clarification to the model specification. However, we would also
like to emphasise that while the background rate is uniform during the inversion
of parameters, when producing forecasts, background events are simulated at
locations where events were observed in the training catalog, weighted by their
background probability estimated during the inversion procedure. Hence, in
the forecast that is the final output of every model, background events are not
located uniformly in space (see Fig. 5).

L276: “due to their under-representation in training data” – There are mul-
tiple papers suggesting it’s the anisotropy of the aftershocks compared to the
isotropic model (Hainzl et al., 2008; Helmstetter et al., 2005; Zhang et al.,
2020), as well as the covariance between K and alpha in the likelihood function
(Sornette and Werner, 2005 and probably others)

We thank the reviewer for this feasible explanation and add it along with
listed literature to the revised manuscript.

L308: pls cite these papers in support of the pyCSEP toolkit efforts:

• Savran et al., (2022). pyCSEP: A Python Toolkit For Earthquake Forecast
Developers. Journal of Open Source Software, 7(69), 3658,
https://doi.org/10.21105/joss.03658
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• Savran, W. H., Bayona, J. A., Iturrieta, P., Asim, K. M., Bao, H.,
Bayliss, K., ... & Werner, M. J. (2022). pyCSEP: a Python toolkit for
earthquake forecast developers. Seismological Society of America, 93(5),
2858-2870.

Or alternatively/additionally: L496: pls consider adding the JOSS citation here
to the SRL citation. The former is the peer-reviewed code base and associated
online documentation, while the latter describes the software and motivation.

We agree that these citations are highly relevant to the topic and acknowl-
edge the tremendous efforts done by CSEP community. Thus, we add these
citations in the relevant parts of the manuscript.

L383: Actually, the log score is well defined when the forecast is zero and
the observed count is zero: the likelihood is exactly 1 and the log likelihood is
zero. Secondly, the log score is still well defined, it is negative infinity, when
the forecast is zero and there are indeed events. (see comment at the end of the
review)

We amend the phrasing in the revised manuscript to avoid confusion.

L393: Could you clarify how the two year period helped set the value? Also,
which benchmark model are you referring to (Poisson – as mentioned below)?

Using the 2-year validation set, we inspected plots similar to Fig. S4 to
identify water levels for which models perform worse and then verified that it is
because either the water level is too low, penalizing its usage heavily, or too high,
causing ETAS models to score lower in bins where they forecasted events, but
still scoring lower also in bins where water level is used (newly added Fig. S5 in
response to the last comment shows this for high water levels). The benchmark
model is indeed the time-independent Poisson one (with ESHM seismicity rates
per spatial bin). We clarify the statement in the revised manuscript.

L498: true → observed

Corrected here and in a number of other places in the manuscript.

L504: for clarity state why you exclude ETASα and ETASbg,α here (as you
do in the caption of Fig 4).

We address this point in the revised manuscript.

Figure 5: Are the white cells in these figures those where no events were
simulated? What are the units on the colour scale (expected events per year)?
Do these figures suggest a water level based on the background?
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The events are counted in total during the entire 25-year training period. In
the white cells, indeed no events have been simulated. We extend the caption
of said figure to include this information. No water level is used to create these
figures. They could, however, be used to create a background-based water level.

Figure 6: I’m quite surprised by these results. Why isn’t there a stronger step
change at the time of larger quakes, e.g. the M7 in late 2020? It’s so evident
in late 2018 for a smaller mainshock, but the other large quakes don’t seem to
generate much information gain for the ETAS models. It’s curious – perhaps
few aftershocks above the completeness? Please provide a short interpretation.

We add a short analysis in the revised manuscript. Smaller number of af-
tershocks above mc seems to be a plausible explanation, as well as the fact
that forecasts are issued at midnight. If an event occurs relatively shortly after
midnight, the most productive period is not part of the next testing day.

Is the Poisson model uniform or spatially variable? Is the Poisson rate
the average rate over the pseudo-prospective period (which would give it more
information than the ETAS models got) or over the retrospective training period
(which seems fairer, and one I’d recommend)? Please clarify in the text.

In addition, I wonder whether you want to exclude the models you’ve dis-
counted based on the retrospective tests in Figure 6? You show that some of
these excluded models have the highest information gains, but then discount
them based on retrospective tests. Is it still useful to show them? In any case -
make sure these two sections are very consistent with each other.

The Poisson model is spatially variable, with the rate in each cell being
the long-term seismicity rate (normalised from annual to daily) from ESHM20,
which includes no information from the pseudo-prospective experiment period,
but includes seismicity up to 2015, and additional information such as physical
tectonic properties and historic seismicity information. We clarify this better in
the revised manuscript in Section 3.2.

Regarding the discounted models, we amend the discussions to be more
consistent, but would prefer to keep all models in Figure 6. Better performance
of models that fail retrospective tests is still valuable information, allowing
comparison between (a) and (b) parts of Figure 6, and our conclusion is that
we prefer models used for OEF pass the consistency tests, not that models that
fail them should not be disregarded altogether (and it should be investigated
further why some are better with shorter time windows or smaller spatial cells).

L628: The water level only needs to be invoked when you have observed
quakes but the forecast is zero. If there are zero quakes, the forecast is technically
correct and should give probability 1, i.e. log score zero, ie there is no log score
penality (a perfect prediction). So the water level should only be applied where
you do see events but the forecast is zero. Is this how you’ve implemented it?
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Figure S4 is quite surprising! Slight changes in water level generate substan-
tial changes in overall trends, and even rankings are affected. And the trends (ie
overall positive or negative against Poisson) seem to change randomly even for
small changes in water level, which is surprising if the baseline stays the same.
Did you maintain the simulated forecasts between these plots and only changed
the water-level or could there be an effect due to different simulated forecasts
here too? To isolate the water-level effect, I think you should keep the simulated
forecasts the same, to make it’s not differences in stochastic simulations that
generate these differences.

More importantly, how do you explain that models perform worse than Pois-
son in panel top-left when the water level is relatively high (but still less than
Poisson?), but then better when the water-level is halved (second panel on the
left), then worse again when divided by another 100? It’d be good to label the
panels for this discussion.

My recommendation is to check the technical details above (fix simulations
between different water-levels; only use it when there are quakes; explain the
reversal of trends if it persists). It’s interesting to point out this sensitivity,
because it helps the community develop better methods (hopefully). You don’t
need to solve it here.

The simulated dataset is kept fixed already, only the procedure producing
the forecasts based on those simulations is adapted to each water level. In the
revised manuscript, we specify this information, and add the plot analog to S4
in supplementary materials for when water level is invoked only when needed.
The comparison allows for further conclusions in this section answering some
of the important questions raised here. In the main plot, we still opt for the
version where water level is always distributed over all bins. Namely, our goal
is to produce forecasts near real-time and test them truly prospectively; in that
case, we cannot know if water level will be needed and distribute it accordingly
and therefore, we believe that the current experiment setting better reflects the
conditions of truly prospective testing.

Report #2

The authors did a good job in addressing satisfactorily my main comments. I am
not still sure to agree with some statements reported in this paper, and with some
modeling choices. But, overall, I do think that, in this form, the manuscript can
stimulate further research and additional thoughts on this important problem.

We thank the reviewer for the positive feedback and constructive suggestions
in the first round of reviews. The efforts described in the paper are an ongoing
project and we hope to address some of the worries in our future work.
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