Results from a Multi-Laboratory Ocean Metaproteomic Intercomparison: Effects of LC-MS Acquisition and Data Analysis Procedures

Participants of the Ocean Metaproteome Intercomparison Consortium:

Mak A. Saito\(^1\), Jaclyn K. Saunders\(^4\), Matthew R. Mcllvin\(^1\), Erin M. Bertrand\(^2\), John A. Breier\(^3\), Margaret Mars Brisbin\(^1\), Sophie M. Colston\(^4\), Jaimee R. Compton\(^4\), Tim J. Griffin\(^5\), W. Judson Hervey\(^6\), Robert L. Hetich\(^6\), Pratik D. Jagtap\(^5\), Michael Janech\(^7\), Rod Johnson\(^8\), Rick Keil\(^9\), Hugo Kleikamp\(^10\), Dagmar Leary\(^4\), Lennart Martens\(^17,18\), J. Scott P. McCain\(^2,11\), Eli Moore\(^12\), Subina Mehta\(^8\), Dawn M. Moran\(^1\), Jacqui Neibauer\(^7\), Benjamin A. Neely\(^13\), Michael V. Jakuba\(^1\), Jim Johnson\(^8\), Megan Duffy\(^7\), Gerhard J. Herndl\(^14\), Richard Giannone\(^6\), Ryan Mueller\(^15\), Brook L. Nunn\(^9\), Martin Pabst\(^9\), Samantha Peters\(^6\), Andrew Rajczewski\(^5\), Eiden Rowland\(^2\), Brian Searle\(^16\), Tim Van Den Bossche\(^17,18\), Gary J. Vora\(^4\), Jacob R. Waldbauer\(^19\), Haiyan Zheng\(^20\), Zihao Zhao\(^14\)

\(^1\)Woods Hole Oceanographic Institution, Woods Hole, MA, USA
\(^2\)Department of Biology, Dalhousie University, Halifax, NS, Canada
\(^3\)The University of Texas Rio Grande Valley, Edinburg, TX
\(^4\)Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC, USA
\(^5\)University of Minnesota at Minneapolis, Minneapolis, Minnesota, USA
\(^6\)Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
\(^7\)College of Charleston, Charleston, South Carolina, USA
\(^8\)Bermuda Institute of Ocean Sciences, Bermuda
\(^9\)University of Washington, Seattle, Washington, USA
\(^10\)Department of Biotechnology, Delft University of Technology, Netherlands
\(^11\)Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
\(^12\)United States Geological Survey, USA
\(^13\)National Institute of Standards and Technology, Charleston, South Carolina, USA
\(^14\)University of Vienna, Dept. of Functional and Evolutionary Ecology, Austria
\(^15\)Oregon State University, Corvallis, Oregon, USA
\(^16\)Ohio State University, Columbus, Ohio, USA
\(^17\)Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
\(^18\)VIB – UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
\(^19\)Department of Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
\(^20\)Rutgers University, Piscataway, New Jersey, USA

\(\dagger\)Present address: University of Georgia, Department of Marine Sciences

* Corresponding author, msaito@whoi.edu
Metaproteomics is an increasingly popular methodology that provides information regarding the metabolic functions of specific microbial taxa and has potential for contributing to ocean ecology and biogeochemical studies. A blinded multi-laboratory intercomparison was conducted to assess comparability and reproducibility of taxonomic and functional results and their sensitivity to methodological variables. Euphotic zone samples from the Bermuda Atlantic Time-Series Study in the North Atlantic Ocean collected by in situ pumps and the AUV Clio were distributed with a paired metagenome, and one-dimensional liquid chromatographic data dependent acquisition mass spectrometry analyses was stipulated. Analysis of mass spectra from seven laboratories through a common informatic pipeline identified a shared set of 1056 proteins from 1395 shared peptides constituents. Quantitative analyses showed good reproducibility: pairwise regressions of spectral counts between laboratories yielded R^2 values ranging from 0.43 to 0.83, and a Sørensen similarity analysis of the top 1,000 proteins revealed 70-80% similarity between laboratory groups. Taxonomic and functional assignments showed good coherence between technical replicates and different laboratories. An informatic intercomparison study, involving 10 laboratories using 8 software packages successfully identified thousands of peptides within the complex metaproteomic datasets, demonstrating the utility of these software tools for ocean metaproteomic research. Future efforts could examine reproducibility in deeper metaproteomes, examine accuracy in targeted absolute quantitation analyses, and develop standards for data output formats to improve data interoperability. Together, these results demonstrate the reproducibility of metaproteomic analyses and their suitability for microbial oceanography research including integration into global scale ocean surveys and ocean biogeochemical models.
1. Introduction

Microorganisms within the oceans are major contributors to global biogeochemical cycles, influencing the cycling of carbon, nitrogen, phosphorus, sulfur, iron, cobalt and other elements. ‘Omic methodologies can provide an expansive window into these communities, with genomic approaches characterizing the diversity and potential metabolisms, and transcriptomic and proteomic methods providing insights into expression and function of that potential. Of these, proteomics is increasingly being applied to natural ocean environments—when applied to complex communities with diverse taxa present, the technique is commonly referred to as metaproteomics (Wilmes and Bond, 2006). Metaproteomic samples contain an extraordinary level of complexity relative to single organism proteomes (at least 1-2 orders of magnitude) due to the simultaneous presence of many different organisms in widely varying abundances (McCain and Bertrand, 2019). In particular, ocean metaproteome samples are significantly more complex than the human proteome, the latter of which is itself considered to be a highly complex sample (Saito et al., 2019). Proteomics provides a perspective distinct from other ‘omics methods: as a direct measurement of cellular functions it can be used to examine the diversity of ecosystem biogeochemical capabilities, to determine the extent of specific nutrient stressors by measurement of transporters or regulatory systems, to determine cellular resource allocation strategies in-situ, estimate biomass contributions from specific microbial groups, and even to estimate potential enzyme activity (Bender et al., 2018; Bergauer et al., 2018; Cohen et al., 2021; Fuchsman et al., 2019; Georges et al., 2014; Hawley et al., 2014; Held et al., 2021; Leary et al., 2014; McCain et al., 2022; Mikan et al., 2020; Moore et al., 2012; Morris et al., 2010; Saito et al., 2020; Sowell et al., 2009; Williams et al., 2012). The functional perspective that proteomics allows is often complementary to metagenomic and metatranscriptomic analyses. Moreover, the measurement of microbial proteins has improved greatly in recent
years, due to the advancements in nanospray-liquid chromatography and high-resolution mass spectrometry approaches (Mueller and Pan, 2013; Ram et al., 2005; McIlvin and Saito, 2021).

With increasing interest in the measurement of proteins and their biogeochemical functions within the oceans, the metaproteomic datatype is beginning to establish itself as a valuable research and monitoring tool. However, given rapid changes in technology and methods, as well as the overall youth of the metaproteomic field, demonstrating the reproducibility and robustness of metaproteomic measurements to microbial ecology and oceanographic communities is an important goal. This is particularly true as applications for metaproteomics expand in research and monitoring of the changing ocean environment, for example in global scale efforts such as the developing BioGeoSCAPES program (www.biogeoscapes.org; (Tagliabue, 2023)), which aims to characterize the ocean metabolism and nutrient cycles on a changing planet. As a result, there is a pressing need to assess inter-laboratory consistency, and to understand the impacts of sampling, extraction, mass spectrometry, and informatic analyses on the biological inferences that can be drawn from the data.

There have been efforts to conduct intercomparisons of metaproteomic analyses in both biomedical and environmental sample types in recent years that provide precedent for this study. A recent community best practice effort in ocean metaproteomics data-sharing also identified major challenges in ocean metaproteomics research, including sampling, extraction, sample analysis, informatics pipelines, and data sharing, and conducted a quantitative assessment of sample complexity in ocean metaproteome samples (Saito et al., 2019). A previous benchmark study, driven by the Metaproteomics Initiative (Van Den Bossche et al., 2021), was the “Critical Assessment of Metaproteome Investigation study” (CAMPI) that employed a laboratory-assembled microbiome and human fecal microbiome sample to successfully demonstrate reproducibility of results between laboratories. CAMPI found
robustness in results across datasets, while also observing variability in peptide identifications largely attributed to sample preparation. This observation was consistent with prior findings on single organism samples that determined >70% of the variability was due to sample processing, rather than chromatography and mass spectrometry (Piehowski et al., 2013). Finally, the Proteomics Informatics Group (iPRG) from the Association of Biomolecular Resources Facilities (ABRF) conducted a study examining the influence of informatics pipelines on metaproteomics analyses that found consistency among research groups in taxonomic attributions (Jagtap et al., 2023), and previous research has demonstrated the impact of database choices on final functional annotations and biological implications (Timmins-Schiffman et al., 2017).

Here we describe the results from the first ocean metaproteomic intercomparison. In this study, environmental ocean samples were collected from the euphotic zone of the North Atlantic Ocean and partitioned into subsamples and distributed to an international group of laboratories (Fig. 1). The study was designed to examine inter-laboratory consistency rather than maximal capabilities, stipulating one-dimensional chromatographic analyses from each laboratory (with optional deeper analysis). Users were invited to use their preferred extraction, analytical, and informatic procedures. The effort focused on the data dependent analysis (DDA) methods that are currently common in ocean and other environmental and biomedical metaproteomics and associated spectral abundance units of relative quantitation, which have been shown to be reproducible in metaproteomics (Kleiner et al., 2017; Pietilä et al., 2022). Blinded results were submitted, compared and discussed at a virtual community workshop in September of 2021. An additional informatic pipeline comparison study was also conducted where participants were provided metaproteomic raw data and associated metagenomic sequence database files and were encouraged to use the informatic pipeline of their choice.

2. Methods
2.1 Sample Collection and Metadata

Ocean metaproteome filter samples for the wet lab comparison (Figure 1) were collected at the Bermuda Atlantic Time-series Study (31° 40’N 64° 10’W) on expedition BATS 348 on June 16th, 2018, between 01:00 and 05:00 am local time. In situ (underwater) large volume filtration was conducted using submersible pumps to produce replicate biomass samples at a single depth in the water column for intercomparisons. All filter subsamples are matched for location, time, and depth. To collect the samples, two horizontal McLane pumps were clamped together (Figure 1c) and attached at the same depth (80 m) with two filter heads (Mini-MULVS design) on each pump and a flow meter downstream of each filter head. Each filter head contained a 142 mm diameter 0.2 µm pore-size Supor (Pall Inc.) filter with an upstream 142 mm diameter 3.0 µm pore-size Supor (Figure 1b, d). Only the 0.2 – 3.0 µm size fraction was used in this study. The pumps were set to run for 240 min at 3 L per min. Volume filtered was measured by three gauges on each pump, one downstream of each pump head, and one on the total outflow (Table S2). Individual pump head gauges summed to the total gauge for pump 1 (within 1 L; 447 L and 446.2 L), but deviated by 89 L on pump 2 (478 L and 388.9 L). Given that the total gauge is further downstream, we report the pump head gauges as being more accurate.

The pump heads were removed from the McLane pumps immediately upon retrieval, decanted of excess seawater by vacuum, placed in coolers with ice packs, and brought into a fabricated clean room environment aboard the ship. The 0.2 µm pore-size filters were cut in eight equivalent pieces and frozen at -80°C in 2 mL cryovials, creating 16 samples per pump that were co-collected temporally and in very close proximity (<1 m) to each other for a total of 32 samples used in this study (Figure 1d). The 3.0 µm pore-size filters are not included in this study but are archived for future efforts. The sample naming scheme associated with the different pumps and pump heads is described in Table S2. Note that pump 1A and 1B samples accidentally had two 3.0 µm filters superimposed above the 0.2 µm filter, and 1B had a small...
puncture in it, although neither of these seemed to affect the biomass collected, presumably the puncture occurred after sampling was completed.

Samples for the informatic component were collected by the autonomous underwater vehicle *Clio*. The vehicle and its sampling characteristics were used as previously described (Breier et al., 2020; Cohen et al., 2023). Specifically, samples Ocean-8 and Ocean-11 were also collected from the BATS station on R/V *Atlantic Explorer* expedition identifier AE1913 (also described as BATS validation track BV55 32.75834° N 65.7374° W). The samples were collected by autonomous underwater vehicle (AUV) *Clio* on June 19th 2019, dive Clio020, with samples collected at 20 m (Ocean-11) and 120 m (Ocean-8) with 66.6 L and 92.6 L filtered, respectively, used for this study. These samples were analyzed by 1D DDA analysis using extraction and mass spectrometry for laboratory 438 (Tables S5-S7). Sample metadata for both arms of this intercomparison study and corresponding repository information is provided in Table S3 and repository links are in the Data Availability Statement.

2.2 Metagenomic Extraction, Sequencing, and Assembly

A metagenomic (reference sequence) database was created for peptide to spectrum matching (PSMs) for the metaproteomic studies using a 1/8th sample split from the exact sample used in the intercomparison as described above. Samples were shipped on dry ice to the Naval Research Laboratory in Washington D.C. (USA), where DNA was extracted and sequenced. Preserved filters were cut into smaller pieces using a sterile blade and placed into a PowerBead tube with a mixture of zirconium beads and lysis buffer (CD1) from the Dneasy PowerSoil Pro kit (Qiagen, Hilden Germany). The bead tube with filter sample was heated at 65°C for 10 min then placed on a vortex adapter and vortexed at maximum speed for 10 min. After sample homogenization/lysis, the bead tube was centrifuged at 16 k x g for 2 min. The supernatant was transferred to a DNA LoBind tube and processed using the manufacturer’s
recommendations. The purified DNA was further concentrated by adding 10 μL 3 M NaCl and 100 μL cold 100% ethanol. The sample was incubated at -30°C for 1 hour, followed by centrifugation at 16 k x g for 10 min. The supernatant was removed and precipitated DNA was air-dried and resuspended in 10 mM Tris. DNA concentration was quantified with the Qubit dsDNA High Sensitivity assay (Thermo Fisher Scientific, Waltham, MA, USA) and DNA quality was assessed using the NanoDrop (ThermoFisher) and gel electrophoresis. Processing controls included reagent only and blank filter samples.

Sequencing libraries were created from purified sample DNA using the IonExpress Plus gDNA Fragment Library Preparation kit (Thermo Fisher) for a 200 bp library insert size. No amplification of the library was required as determined by qPCR using the Ion Library TaqMan Quantitation Kit. A starting library concentration of 100 pM was used in template generation and chip loading with the Ion 540 Kit on the Ion Chef instrument prior to single-end sequencing on the S5 benchtop sequencer.

Sequencing used a mix of Ion Torrent and Oxford Nanopore sequencing and resulting sequencing reads were assembled using SPAdes v. 3.13.1 with Python v. 3.6.8. Following metagenome assembly, contigs smaller than 500 bases were discarded. Open reading frame (ORF) calling was performed on contigs 500 bps or longer using Prodigal v. 2.6.3 (Hyatt et al., 2010) run with metagenomic settings as well as MetaGeneMark by submitting to the MetaGeneMark server (http://exon.gatech.edu/meta_gmhmmp.cgi) using GeneMark.hmm prokaryotic program v. 3.25 on August 11, 2019. ORFs called from both programs were combined and made non-redundant using in-house Python scripts that utilize BioPython v. 1.73. Non-redundant ORFs were annotated using the sequence alignment program DIAMOND (v 0.9.29) with the NCBI nr database (downloaded 12/17/2019). ORFs were also annotated with InterProScan (v 5.29) and with GhostKOALA (Kanehisa et al., 2016) (submitted to server 1/2/2020). Taxonomy
lineages were generated by using the best DIAMOND (Buchfink et al., 2015) hit and pulling lineage information from NCBI Taxonomy database using BioPython v. 1.73.

2.3 Proteomic methodologies: Extraction, instrumentation, and informatics

Some basic protocol stipulations were provided to study participants regarding analytical conditions to set a uniformity of experimental design. While users were encouraged to use the extraction method of their preference, constraints on chromatography and mass spectrometry conditions were set, limiting the number of chromatographic dimensions to one (1D), the total length of the chromatographic run, the amount of protein injected (as proteolytic digests), and a single mass spectrometry injection rather than gas phase fraction approaches (Table S4). Each laboratory group's specific approach is summarized in the supplemental methods, with extraction in Table S5, and chromatography and mass spectrometry equipment and parameters in Tables S6 and S7. While there are more sophisticated methods such as two-dimensional (2D) chromatography and gas phase fractionations that have been demonstrated to provide deeper metaproteomes (McIlvin and Saito, 2021), these often require specialized equipment and/or additional instrument time. As a result, the study constraints were provided to ensure a single simple method that all labs could utilize. Laboratories were invited to submit additional data from more complex analytical setups if they first completed the 1D analyses. Methods used for the informatics intercomparison study are also presented within the Supplemental Materials.

2.4 Compilation, analysis, and re-analysis of laboratory data submissions

Results from individual laboratories' data submissions were analyzed in two ways as shown in the flowchart of Figure 1a. First, submitted processed data reports (i.e. PSMs, taxonomic, functional annotations) were compiled and interpreted. Second, raw data files (i.e. spectra directly from instruments) from each group were put through a single informatic pipeline using SEQUEST HT/Percolator within Proteome Discoverer (Version 2.2.0.388, Thermo
Scientific) and Scaffold (Version 5.2.1, Proteome Software) to isolate variability associated with bioinformatic processing. This re-analysis (single pipeline re-analysis hereon) allowed detailed cross-comparisons of laboratory practices to assess the influence of the extraction and mass spectrometry components. Specific parameters of the latter included: parent and fragment tolerances of 10ppm and 0.02 Da, respectively, with fixed and variable modifications of +57 on C (fixed), and +16 on M and +42 on Peptide N-Terminal (variable). Peptide and protein FDRs were set to lower than 1.0% using a decoy database, with 1 minimum peptide per protein, and the resulting peptide FDR was 0.1%. The database used for PSMs was Intercal_ORFs_prodigal_metagenemark.fasta based on the metagenomic sequencing described above with 197,824 protein entries. The protein in this re-analysis was conducted within Scaffold using total spectral counts and allowing single peptides to be attributed to proteins. In addition to the total number of protein identifications, the number of protein groups identified by Scaffold was also provided. Each protein group represented proteins identified with identical peptides, collapsed into a single protein entry with the highest probability and number of spectral counts.

2.5 Data analysis methods

Several analyses were conducted using data from the single pipeline re-analysis. First, pairwise comparisons of protein identifications were conducted using spectral abundance reports produced in Scaffold, and loaded, analyzed and visualized in MATLAB (MathWorks Inc). Two-way (independent) linear regressions were conducted using the script linfit.m. R^2 on the seven datasets were averaged and their standard deviation calculated for shared proteins in each dataset. Second, a Sørensen similarity (Sørensen, 1948) was calculated where a matrix was generated that consisted of the unique proteins or peptides identified across all technical replicates from the various labs with the relative abundance per replicate (% contribution of each protein/peptide per technical replicate total). The Bray-Curtis dissimilarity pairwise distance
was calculated on this matrix using Python and the SciPy library (v. 1.4.1, (Virtanen et al., 2020)) and then 1 – Bray-Curtis dissimilarity was calculated across the matrix to generate the Sørensen pairwise similarity across all replicates. The resulting similarities per replicate were clustered and visualized using the clustermap function in the Seaborn library (v. 0.10.0, (Waskom, 2021)). Third, shared peptides and proteins were visualized using Upset plots, using the R package UpSetR (Conway et al., 2017) to determine the number of unique peptide sequences and annotated proteins in intersecting sets between all labs, all permutations of lab subsets, and all lab pairs.

3. Results

3.1 Experimental Design

This ocean metaproteomic intercomparison consisted of two major activities: a laboratory component, where independent labs processed identical ocean samples simultaneously collected from the North Atlantic Ocean (Fig. 1a, see Section 2.1), and a subsequent informatic component. Participating institutions and persons at those institutions are listed in Table S1, with all participants also listed as co-authors. Both arms of the study were conducted under blinded conditions, where correspondence with participants was conducted by an individual not involved in either study, and submitted results and data were anonymized prior to sharing with the consortium. The laboratory study involved two biomass-laden filter slices being sent to each participating group for protein extraction, mass spectrometry, and informatic analyses (see below). The informatic effort was independent of the laboratory effort and involved the distribution and informatic analysis of two metaproteomic raw data files generated from samples also from the North Atlantic Ocean upper water column (20m and 120m depths, see Section 2.1). These files were distributed after labs had submitted their laboratory extracted raw data files. The raw files from the informatic study were distinct from the samples used in the
laboratory intercomparison study to avoid any biases from groups that analyzed those samples previously. Submitted results from both components were anonymized and assigned three-digit lab identifiers generated randomly with laboratory and informatic results from the same lab being assigned distinct identifiers.

We report results for two study components: Part 1 (Section 3.2) involves the data generation intercomparison of distributed subsamples from the North Atlantic Ocean (Fig. 1; Section 2.1). Part 2 (Section 3.3) was an informatic intercomparison, where metaproteomic raw files were shared with participants and processed results were submitted. Both components were conducted as blinded studies, where each dataset was assigned a three digit randomly generated identifier, with those identifiers used throughout the Results and Discussion.

3.2 Mass Spectrometry Data Generation Intercomparison

Nine laboratories submitted raw and processed datasets from the analysis of the distributed Atlantic Ocean field samples (Table S1). The processed data submissions were heterogeneous in output formats, statistical approaches, and parameter definitions. Because of the challenges of comparing data derived from different types of statistical approaches used for peptide and protein identification and inference, as well as the varying output formats from various software packages, the user-generated data submissions were difficult to compile and compare, resulting in variability in the number of identifications depending on the statistical approaches and thresholds applied. These results are further discussed in the Supplemental Section (Figure S1, Table S8). Despite these challenges, an average of 7142 +/- 2074 peptides were identified across the pairwise comparisons (Figure S1c), implying a consistency of peptide identifications across participants. The variability in proteome depth reflected the combination of differing parameters employed by software and laboratory approaches.
To remove this variability associated with user-selected informatic pipelines, a single pipeline re-analysis of the submitted raw mass spectral data was conducted. Raw data files were processed together within a single informatic pipeline consisting of SEQUEST-HT, Percolator, and Scaffold software and evaluated to a false discovery rate threshold of < 1% (see Section 2.4). Two datasets were found to have had issues during extraction and analysis that affected the results in both processed and raw data (Labs 593 and 811; Table S8). Notably these two laboratories differed from the others in that they did not use SDS as a protein solubilizing detergent (Table S5). This likely resulted in inefficient extraction of the bacteria that dominated the sample biomass (e.g. picocyanobacteria and *Pelagibacter*) embedded within the membrane filter slices. Further examination showed polyethylene glycol contamination of one dataset (Lab 811) and low yield from sample processing and extraction from the other (Lab 593). As a result, those datasets were not included in the single pipeline re-analysis. The standardized pipeline included calculations of shared peptides and proteins, quantitative comparisons, and consistency of taxonomic and functional results.

The total number of peptide and protein identifications and PSMs in the single informatic pipeline analysis varied by laboratory (Table S9), with unique peptides ranging by more than a factor of 3 from 3,354 to 16,500, and with 27,346 total unique peptides identified across laboratories. This variability was likely due to different extraction, chromatographic, and mass spectrometry approaches used by each laboratory, resulting in a varying depth of metaproteomic results. Yet, as with the user-submitted results, there was considerable overlap in identifications between all datasets. An intersection analysis found the numerous shared peptides between all combinations of laboratories, with 1,395 peptides shared between all seven laboratory datasets (Figure 2a). Laboratories with deeper proteomes shared numerous peptides, for example the two laboratories with the most discovered unique peptides shared ~3000 peptides between them. They also had the largest numbers of peptides that were not found by any other labs (3617 and 2819, respectively). The fourth largest intersection size
(1395) represented the unique peptides discovered by all labs. Beyond that there were 12 different groupings of peptides that were shared among at least four laboratories. Consistent with this, 3-way Venn diagrams of labs 135, 209 and 438 had an intersection of 2398 peptides, labs 652, 729, and 774 showed 3016 peptides, and labs 127, 135, and 309 shared 2304 peptides (Figure 2d).

A similar analysis was conducted at the protein level, where the number of proteins identified for each sample based on peptide mapping to the metagenome database (see Section 2. Methods), identified 8,043 total unique proteins across all seven laboratories and 1,056 proteins shared amongst those laboratories as shown in the 7-way Venn diagram (Figure 2c). Three-way Venn diagram comparisons among labs 135, 209 and 438 had an intersection of 1,254 proteins, and labs 652, 729, and 774 shared 1,925 proteins (data not shown).

Optional deeper metaproteome results were submitted by three laboratories using either a long gradient of 12 hours or 2 dimensional chromatographic methods (Table S10). The number of discovered peptide and protein identifications were higher in each case, with as many as 18477 unique peptides and 7765 protein identifications from an online 2-dimensional chromatographic analysis from a 5 μg single injection.

The mapping of identified peptides to protein sequences forms the basis for protein identifications in the form of DDA bottom-up proteomics employed here. The relationship between peptides and protein identification was explored in Figure 3 and found to be correlated by two-way linear regression with R² values of 0.97 and 0.98 for total protein identifications and protein groups, respectively. This indicated that with deeper depth of analysis by some laboratories, there was no fall off in the increase in protein identifications that might be attributed to additional peptides mapping to already discovered protein sequences. In addition, the 2D and long gradient additional analyses conducted by several laboratories fell upon this line consistent with this “more peptides – more proteins” observation, implying more room for improvements in depth of metaproteomic analyses.
A quantitative analysis of spectral counts from the wet lab re-analysis showed broad coherence among the seven laboratories. Pairwise comparisons of protein spectral counts were conducted for each of the seven labs against the other six (visualized in a 7x7 matrix, with duplicate comparisons removed (e.g., A vs B and B vs A)), where each data point reflects the spectral counts for a protein shared between laboratories (Figure 4a). When a dataset was compared with itself a unity line of datapoints was observed along the diagonal axis. Two-way linear regressions were conducted on each of these pairwise comparisons. The slopes ranged from 0.33 to 5.5 (Figure S2), implying a varying dynamic range in spectral counts across laboratories, likely due to variations in instrument parameterizations selected by each laboratory. The coefficient of determination R^2 values from 0.43 to 0.73 showed coherence among results for these large metaproteomic datasets (Figure 4b). To provide a sense of coherence of each laboratory to the others, the R^2 values of a lab against the other six laboratories were averaged and the standard deviation calculated. All of these average R^2 values were higher than 0.5, which showed overall quantitative consistency despite the size and complexity of these datasets (Figure 4d).

A comparative taxonomic and functional analysis was also conducted using a single informatic pipeline (see metagenomic sequencing methods for annotation pipeline). Lowest common ancestor (LCA) analysis of peptides identified from datasets from seven laboratories showed consistent patterns of taxonomic distribution using the MetaTryp package (Figure 5a; (Saunders et al., 2020). Cyanobacteria and alphaproteobacteria were the top two taxonomic groups in all laboratory submissions, consistent with the abundant picocyanobacteria *Prochlorococcus* and the heterotrophic bacterium *Pelagibacter ubique* known to be dominant components of the Sargasso Sea ecosystem (Sowell et al., 2009; Malmstrom et al., 2010). Similarly, KEGG Orthology group (KO) analysis of those datasets also showed highly similar patterns of protein distributions across laboratories (Figure 5b). Notably the PstS phosphate transporter protein was the most abundant functional protein in all datasets, consistent with
observations of phosphorus stress in the North Atlantic oligotrophic gyre and its biosynthesis in marine cyanobacteria (Scanlan et al., 1997; Coleman and Chisholm, 2010; Ustick et al., 2021). These findings demonstrate the reproducibility in the primary functional and taxonomic conclusions from the metaproteome datasets. Finally, a Sørensen similarity analysis of the 1,000 proteins with highest spectral counts revealed 70–80% similarities between most laboratory groups in the data re-analysis (Figure 6). Similarity analyses on the full dataset (with all peptides and proteins) revealed lower similarity at the peptide level than the protein level, implying variability in peptide identification is ameliorated as it is aggregated to the protein level (Figure S3).

3.3. Informatic Data Analysis Intercomparison

Two metaproteomic raw files were provided to intercomparison participants and were searched with each laboratory’s preferred database searching informatic pipeline. The samples that generated the data for these files were collected by autonomous AUV Clio during a single dive at the Bermuda Atlantic Time-series Study Station (Breier et al., 2020), and were distinct from the samples associated with the laboratory intercomparison component. However, they were also from the North Atlantic Ocean, allowing the same metagenomic database to be used. This informatic study component was not launched until after the laboratory-based intercomparison submission deadline to avoid influencing that part of the study by sharing similar raw data. Samples were named Ocean 8 and Ocean 11 and were taken from 120 m and 20 m depths, respectively.

The informatic intercomparison involved 10 laboratories utilizing 8 different software pipelines including the PSM search engines: SEQUEST, X!Tandem, MaxQuant, MSGF+, Mascot, MSFragger, and PEAKS (Table S11). As with the user supplied laboratory results, the results were challenging to compile due to different types of data outputs, approaches used in protein inference, and statistical approaches applied within each pipeline. Unique peptide
discoveries served as a useful base unit of comparison that were less subject to these comparison challenges. The number of peptides ranged from 1724 to 6369 in Ocean 8 and 3019 to 8288 in Ocean 11 (Figure 7; Table S11). The differences in the number of peptides was likely due to parameters used in software, for example, laboratory 932 had the lowest number of peptides identified in both samples, but also used a highly stringent 99.9% probability cutoff that likely influenced this result.

4. Discussion

4.1 Assessment of Ocean Metaproteomics Reproducibility

Given the relatively recent establishment of ocean metaproteomic techniques as well as their methodological complexity, intercomparisons of methods are important in demonstrating the suitability of metaproteomic analyses in ocean ecological and biogeochemistry studies. Synthesizing the results of the laboratory and mass spectrometry blinded intercomparison study (Section 3.2) processed with a single informatic pipeline (Section 2.4), we observed consistent reproducibility with regards to three attributes of ocean metaproteomics analyses: 1) the identity of discovered peptides and proteins (Fig. 2), 2) their relative quantitation (Figs. 4 and 6), and 3) the taxonomic and functional assignments within intercompared samples (Fig 5). With over 1000 proteins identified across seven laboratories and Sørensen similarity indexes typically higher than 70–80% (Fig. 6), the results unambiguously demonstrate consistent detection and quantitation of major proteins in the sample. Together these results provide confidence that multiple laboratories can generate reproducible results describing the major proteome composition of ocean microbiome samples, and in doing so can assess the functional composition and biogeochemical significance of these complex microbial communities.

4.2 Metrics in metaproteomics: Core versus rare “long tail” proteins
While abundant proteins were consistently detected across seven laboratories’ submissions, there was substantial variability in the less abundant proteins (Fig. 2). This simultaneous consistency in abundant proteins and diversity in rare proteins (and their respective peptide constituents) was likely a result of several factors in the study design and execution. First, the intercomparison experimental design stipulated 1D chromatography in order to provide straightforward comparisons that all laboratories could accomplish. This contributed to study consistency, but also resulted in lesser proteome depth compared to more elaborate methods such as 2D chromatography and gas phase fractionation commonly in use. Second, the sample complexity of ocean metaproteomes has been shown to be enormous, with a far greater number of low abundance peptides present than HeLa human cell lines (Saito et al., 2019). The combined effect of these factors meant that, while laboratories were able to detect abundant proteins consistently, there was considerable stochasticity associated with the detection of less abundant peptides resulting in a long tail of discovered lower abundance proteins. This is evident in Figure 8, where most of the 1063 proteins across seven laboratories in the re-analysis were in the upper half of proteins when ranked by abundance.

Mass spectrometer settings such as dynamic exclusion, chromatography conditions, and variation in sample preparation methods all likely contributed to this stochastic variability in rare peptide detection among laboratories. Moreover, while all participating laboratories used Thermo orbitrap mass spectrometers, there were seven variants of instrument model, including some with Tribrid multiple detector capability (Table S6). While testing other mass spectrometry platforms is of interest, this trend of community orbitrap usage in this study is consistent with the broader proteomics community, where currently 9 of the top 10 instruments used in ProteomeXchange consortium repository data submissions utilize orbitraps as of the manuscript submission date (Deutsch et al., 2019). When conducting analysis of environmental samples, choices can be made about instrument setup and parameters based on the scientific objectives.
for example if maximal proteome depth or robust quantitation while using a discovery approach is desired. Future intercalibration efforts enlisting more sensitive metaproteomic methods such as 2D-chromatography (McIlvin and Saito, 2021), more sensitive instruments (Stewart et al., 2023), and other emerging methods can greatly improve detection and quantitation of rarer proteins in metaproteomes, allowing exploration of the depths of state-of-the-art capabilities rather than our present emphasis on interlaboratory consistency. Moreover, the development and adoption of best practices in sample collection, extraction, chromatographic separation, mass spectrometry analyses, and informatic approaches will contribute to interlaboratory consistency.

Despite the inter-laboratory variability in the detected sets of rarer peptides and proteins, we interpret these to be largely robust identifications. The stringent 0.1% peptide-level FDR threshold we use here is determined by scoring decoys: reverse sequenced peptides that are not in our samples. Peptide assignments to these decoys model the score distribution of all incorrect peptide-spectrum matches (PSMs) in our study such that FDRs can be estimated in an unbiased way for each laboratory. However, these estimates are complicated by subtle sequence diversity within a population’s proteome, which is typically not considered by proteomics software designed to analyze single species (Schiebenhoefer et al., 2019). This diversity within metaproteomic samples results in the presence of highly similar peptides with nearly identical precursor masses that produce many of the same b- and y-ions, and this similarity is not well modeled by decoy peptides. The influence of microdiversity on metaproteomics FDR estimation using strain-specific proteogenomic databases is an important area of future exploration (Wilmes et al., 2008).

4.3 Informatics Intercomparison Assessment
The discovery of peptide constituents of proteins within a complex ocean metaproteomic matrix was successful across all software packages tested (Figure 7), where the metric for success is a comparable number of peptide identifications. This is a notable finding due to the highly complex mass spectra, large number of chimeric peaks present (Saito et al., 2019), and large database sizes involved in ocean metaproteomes. To our knowledge, some of these software packages had not yet been applied to ocean metaproteomes. There was also variability associated with the stringency of statistical parameters employed, which points to the challenges in assembling datasets from multiple laboratories with different depth of proteome identifications.

Despite the success of this intercomparison component across software packages, there is likely considerable room for improvement in the future. As mentioned previously, ocean samples are highly complex and there are likely additional peptides that remain unidentified using current technology, due to low intensity peaks and co-elution with other peptides resulting in the chimeric spectra. Significant improvements in depth of analysis can be achieved through increased chromatographic sample separation and optimized (or alternative) mass spectrometry data acquisition strategies. Yet there is room for informatic improvements as well: most DDA database searching algorithms are unable to identify multiple peptides within a single fragmentation spectrum. Moreover, when in DDA collection mode mass spectrometry software typically does not isolate and fragment peptides that cannot be assigned a charge state, which is a common occurrence for the low abundance peaks within ocean samples. As a result, there is considerable room for improvements in informatic pipelines to discover additional peptides. Although the application of data independent approaches (DIA) to oceanographic metaproteomics analysis is currently limited (Morris et al., 2010), the systematic nature of ion selection and fragmentation allows for a greater number of low abundant peptides to be quantified. By avoiding the need to select precursor ions for fragmentation, DIA methods have
the promise to identify some of these rarer peptides, assuming enough ions can be isolated to produce robust MS2 spectra, as the wider isolation windows often used in DIA will dilute precursor ions within ion traps.

4.4 Future Efforts in Ocean Metaproteomic Intercomparisons and Intercalibrations

As the first interlaboratory ocean metaproteomics study, we chose to describe this study as an intercomparison rather than an intercalibration and it served as a vehicle with which to assess the extent of reproducibility. Future intercalibration efforts could aim to further assess and improve upon the level of accuracy, reproducibility, and standardization of ocean metaproteome measurements. As mentioned above, development of best practices associated with sample collection, extraction, and analysis would be valuable, while also encouraging methodological improvements and backward compatibility through the use of reference samples. Alternative modes of data collection could also be tested in future interlaboratory comparisons, including parallel reaction monitoring mode (PRM), multiple reaction monitoring mode (MRM), quantification using isotopic labeling or tagging, and DIA methods. PRM and MRM methods allow sensitive targeted measurements of absolute quantities of peptides (e.g. copies per liter of seawater in the ocean context). As many ‘omics methodologies applied in environmental settings operate in relative abundance modes, adding the ability to measure absolute quantities would be particularly valuable for comparisons of environments across space and time. Targeted metaproteomic methods have been deployed in marine studies using stable isotope labeled peptides for calibration, achieving femtomoles per liter of seawater estimates of transporters, regulatory proteins, and enzymes (Saito et al., 2020; Bertrand et al., 2013; Saito et al., 2014, 2015; Joy-Warren et al., 2022; Wu et al., 2019). These methods are not yet widely adopted, but with growing interest could be deployed to other laboratories and incorporated into future iterations of intercomparison and intercalibration studies. DIA also has great potential in ocean metaproteome studies and is increasingly being deployed in laboratory
and field studies of marine systems. Similar to this DDA intercomparison, the methodological
and informatic challenges of DIA could be explored during intercomparisons of analyses of
ocean samples. Finally, as mentioned above, all participants of this study used orbitrap mass
spectrometers for DDA submissions, but new instrumentation such as trapped ion mobility
spectrometry time of flight mass spectrometers (timsTOF) may be applied to ocean
metaproteome analyses and would be important to intercompare with orbitrap platforms.

As noted above, there were also challenges in collating and comparing data outputs
from various software, as well as variation in how those programs conducted protein inference.
For example, peptide-level data from different research groups were reported as either
unmodified peptide sequences or as various peptide analytes (where modifications and charges
states were included with the peptide sequence), making compilation of peptide reports difficult.
Similarly, at the protein level reported proteins could be counted either before or after protein
grouping, e.g. applying Occam’s-razor logic to peptide groupings into proteins – the former
reflecting the set of all proteins in the database that could be in the sample, the latter the
minimum set required to explain the peptide data. Such issues will also contribute to challenges
in integration and assembly of data from different laboratories for large ocean datasets. While
best practices for metadata and data types have been described by the community (Saito et al.,
2019), there continues to be a need for standardization of data output formats for
metaproteomic results, similar to the metadata standard recently put forward in the human
proteome field (Dai et al., 2021).

4.5 Metaproteomics in Global Ocean Surveys

Understanding how the oceans are responding to the rapid changes driven by human
alteration of ecosystems is a high priority. Ocean and environmental sciences have a long
history of chemical measurements that are critical to assessing ecosystems and climatic
change. Such measurements have been straightforward for discrete measurements, such as
temperature, pH, chlorophyll, phosphate, dissolved iron and numerous other variables. When
collected over large spatial (ocean basin) or temporal (seasonal or decadal spans) scales, these
datasets have been powerful in identifying major (both cyclical and secular) changes. ‘Oomics’
measurements represent a more complex data type where each discrete sample can generate
thousands (if not more) of units of information. This study demonstrates the power and potential
for collaborative metaproteomics studies to identify key functional molecules and relate them to
their taxonomic microbial sources within the microbiome from multiple lab groups. Moreover,
multi-lab metaproteomics results in vastly enhanced identification of low abundance proteins
that are not identified by all research groups. Such low abundance proteins can be more likely
to change in abundance with changing environmental conditions and nutrient limitations,
resulting in a more nuanced and richer investigation of marine microbial ecology and
biogeochemistry with collaborative metaproteomics research. The implementation of such
voluminous data is beginning to be applied on larger scales and holds great promise in
improving not only our understanding of the functioning of the current system, but also the way
we assess how environments are changing with continued human perturbations.

Intercomparison and intercalibration are critical activities to undertake in order to allow
comparison of ‘omics results across time and space dimensions. With major programs
underway and being envisioned such as the BioGEOTRACES, AtlantECO, Bio-GO-SHIP, and
BioGeoSCAPES efforts, the imperative for such intercalibration has grown and the need for best
practices is urgent. This Ocean Metaproteomic Intercomparison study is a valuable step in
assessing metaproteomic capabilities across a number of international laboratories,
demonstrating a clear consistency in measurement capability, while also pointing to the
potential for continued community development of metaproteomic capacity and technology.
Author Contributions: MAS and MRM obtained OCB workshop support and drafted the experimental design with feedback from BN, MJ, and DL acting as the Advisory Committee. SC, JH, DL, GJV, and JKS conducted the metagenomic analyses and assembly. JKS, MAS, MMB, MRM, and RM conducted data analysis and visualization. MRM, MAS, JAB, MVJ, and RJ conducted sample collection and/or AUV Clio operations. MAS, JKS, MRM, EMB, SC, JRC, TG, JH, RLH, PJ, MJ, RK, DL, JSPM, EM, SM, DMM, JN, BN, JJ, MD, GJH, RG, RM, BLN, MP, SP, AR, ER, BS, TVDB, JRW, HZ, and ZZ contributed mass spectrometry data and/or informatics data for the intercomparison. JKS anonymized data submissions and conducted follow-up correspondence about methods. The manuscript was drafted by MAS and all authors contributed to the writing and editing.

Data and Code Availability: The raw files for this project summarized in Table S3 are available at ProteomeXchange and PRIDE repository with the dataset identifier PXD043218 and 10.6019/PXD043218. Access for reviewers is available using the username: reviewer_pxd043218@ebi.ac.uk and password: uSxVkRza, and reviewer_pxd044234@ebi.ac.uk and password: Evvgced0 Co-located information about these datasets are available at the Biological and Chemical Data Management Office under project 765945 (https://www.bco-dmo.org/project/765945) and at the BATS page (https://www.bco-dmo.org/project/2124). The metagenomic reads are listed under Bioproject Accession: PRJNA932835; SRA submission: SUB12819843, available at link: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA932835. The code for for upset visualization is available at: https://maggimars.github.io/protein/PeptideUpSetR.html.

Competing Interests - The authors declare no competing financial interests.
Supplemental Materials - Methods for the informatic intercomparison study are available in the Supplemental Methods. Supplemental Informational is available as Tables S1-S11, and Figures S1-S3.

Acknowledgements - This manuscript is a product of the sustained efforts of a small group activity supported by the Ocean Carbon & Biogeochemistry (OCB) Project Office (NSF OCE-1850983 and NASA NNX17AB17G), based on a proposal written by M.A.S. and M.R.M. The research expedition where samples were collected was supported by the NSF Biological Oceanography and Chemical Oceanography. We also thank the R/V Atlantic Explorer and the Bermuda Atlantic Time-series Study team for assistance at sea. AUV Clio sample collection was supported by NSF OCE 1658030 and 1924554. Analyses by participating laboratories acknowledge support from: NSERC Discovery Grant RGPIN-2015-05009 and Simons Foundation Grant 504183 to E.M.B, the Austrian Science Fund (FWF) DEPOCA (project number AP3558721) to G.J.H., Simons Foundation grant 402971 to J.R.W., National Institute of Health 1R21ES034337-01 to B.L.N., the Norwegian Centennial Chair Program at the University of Minnesota for funding to PDJ, SM, and TJG, NIH R01 GM135709, NSF OCE-1924554, OCE-2019589 and Simons Foundation Grant 1038971 to M.A.S. Identification of certain commercial equipment, instruments, software, or materials does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products identified are necessarily the best available for the purpose. We thank Magnus Palmblad, John Kucklick, and an anonymous reviewer for comments on the manuscript.
References

Sørensen, T.: A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish common., Kongelige Danske Videnskabernes Selskab, 5, 1–34, 1948.

Figure Captions

Figure 1. Ocean metaproteomics intercomparison experimental design and sample collection. a) The laboratory component (left) consisted of collection of field samples, 1-dimensional (1D) chromatographic separation followed by data dependent analysis (DDA) uniformly employing orbitrap mass spectrometers analyses by participating laboratories and submission of raw and processed data. The informatic (right) component consisted of distribution of two 1D-DDA files, peptide-to-spectrum matching (PSMs), and submission and compilation of results. b) Size-fractionated sample collection on 3.0 \(\mu \)m pore-size filter followed by a 0.2 \(\mu \)m pore-size Supor filter, and the 0.2–3.0 \(\mu \)m size fraction was used for the intercomparison study. c) Two horizontal in-situ McLane pumps were bracketed together with two Mini-MULVS filter head units each and deployment on synthetic line. d) The four 142 mm filters were sliced into eighths (inset) and two slices were distributed to each participating laboratory.

Figure 2. Shared peptides and proteins between laboratory groups using laboratory submissions processed through a single informatics re-analysis pipeline. a) Total number of discovered unique peptides varied by more than three-fold among seven laboratory groups (horizontal bars) due to varying extraction and analytical schemes (FDR 0.1%). The number of intersections between datasets across all seven datasets was 1395 (fourth blue bar from left), and various sets of intersections of peptides were observed amongst the data. b) Total number of discovered proteins (FDR < 1%) varied more than four-fold from 1586 to 6221 among labs (horizontal bars). Intersections between datasets across all seven laboratories was 1056, with various sets of intersections of proteins observed, similar to the peptides. c) 7-way Venn diagrams of shared unique peptides between laboratories showed 1056 shared peptides between the 7 laboratories. d) 3-way Venn diagrams showed 2398, 2304, and 3016 shared unique peptides between laboratories.
Figure 3. Comparison of unique peptides and discovered proteins. Comparison as total protein identifications and protein groups from the single pipeline re-analysis based on submissions from 9 laboratories. Increasing sample depth is linear with mapping to proteins, \(R^2 \) of 0.97 and 0.98 for total protein IDs and protein groups, respectively, with slopes of 0.37 and 33) implying that additional peptide discovery leads to proportionally more protein discovery, and that protein discovery has not yet begun to saturate with more peptides mapping to each protein. Because simple 1D analyses were stipulated in the intercomparison experimental design, peptide and protein discovery was correspondingly limited in depth.

Figure 4. Quantitative comparison of intercomparison results. a) Pairwise comparisons of quantitative abundance across six laboratories in units of spectral counts (comparisons with itself show unison diagonals). b) \(R^2 \) values from pairwise linear regressions. d) Total proteins identified in each laboratory. d) Average of each laboratory’s \(R^2 \) values from pairwise regression with the other six laboratories (error bars are standard deviation). In all cases average \(R^2 \) values are higher than 0.5.

Figure 5. Taxonomic and functional analysis of metaproteomic intercomparison. a) Percent spectral counts by taxonomy was similar across laboratories and technical replicates within laboratories. The sample was dominated by cyanobacteria and alphaproteobacteria, corresponding primarily to *Prochlorococcus* and *Pelagibacter*, respectively. b) Percent spectral counts per Kegg Ontology group showed the functional diversity of the sample.

Figure 6. Quantitative Sørensen similarity analysis. Analysis of top 1000 proteins (~75% of all proteins) showed 70–80% similarity between most laboratory groups. Technical triplicates for each laboratory group are shown.
Figure 7. Intercomparison of informatic pipelines among laboratories. Unique peptide identifications for sample Ocean 8 from 120m depth (a) and Ocean 11 from 20m depth (b), both from the North Atlantic Ocean (Table S3), using a variety of pipelines and PSM algorithms.

Figure 8. Variability in discovered proteins between laboratories occurs in lower abundance proteins. Top 7 panels: Abundance of proteins as percentage of total protein spectral counts within each laboratory (y-axis is percentage), with proteins on the x-axis shown by ranked abundance as the sum of spectral counts across all laboratories. Almost all proteins fall below 1% of spectral counts within the sample, and deeper proteomes have lower percentages due to sharing of percent spectral counts across more discovered proteins. Bottom panel: Shared proteins were found early within the long-tail of discovered proteins: the 1056 proteins shared between all laboratory groups are almost all found to the left side indicating their higher abundance in all seven datasets. Scale is binary in the seventh panel indicating presence in 7 labs or not.
Figure 1.
Figure 2.
Figure 3

A graph showing the relationship between discovered proteins and unique peptides.
Figure 4.
Figure 5.

a) % of Spectral Counts per LCA Class

b) % of Spectral Counts per Combo KO

https://doi.org/10.5194/egusphere-2023-3148
Preprint. Discussion started: 16 January 2024
© Author(s) 2024. CC BY 4.0 License.
Figure 7.
Figure 8.

% of total protein spectral counts

![Graph showing protein spectral counts for different labs](https://doi.org/10.5194/egusphere-2023-3148)

Preprint. Discussion started: 16 January 2024
© Author(s) 2024. CC BY 4.0 License.