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Abstract 42 

Metaproteomics is an increasingly popular methodology that provides information regarding the 43 

metabolic functions of specific microbial taxa and has potential for contributing to ocean ecology 44 

and biogeochemical studies. A blinded multi-laboratory intercomparison was conducted to 45 

assess comparability and reproducibility of taxonomic and functional results and their sensitivity 46 

to methodological variables. Euphotic zone samples from the Bermuda Atlantic Time-Series 47 

Study in the North Atlantic Ocean collected by in situ pumps and the AUV Clio were distributed 48 

with a paired metagenome, and one-dimensional liquid chromatographic data dependent 49 

acquisition mass spectrometry analyses was stipulated. Analysis of mass spectra from seven 50 

laboratories through a common bioinformatic pipeline identified a shared set of 1056 proteins 51 

from 1395 shared peptides constituents. Quantitative analyses showed good reproducibility: 52 

pairwise regressions of spectral counts between laboratories yielded R2 values averaged 0.62 53 

+/- 0.11, and a Sørensen similarity analysis of the top 1,000 proteins revealed 70-80% similarity 54 

between laboratory groups. Taxonomic and functional assignments showed good coherence 55 

between technical replicates and different laboratories. A bioinformatic intercomparison study, 56 

involving 10 laboratories using 8 software packages successfully identified thousands of 57 

peptides within the complex metaproteomic datasets, demonstrating the utility of these software 58 

tools for ocean metaproteomic research. Lessons learned and potential improvements in 59 

methods were described. Future efforts could examine reproducibility in deeper metaproteomes, 60 

examine accuracy in targeted absolute quantitation analyses, and develop standards for data 61 

output formats to improve data interoperability. Together, these results demonstrate the 62 

reproducibility of metaproteomic analyses and their suitability for microbial oceanography 63 

research including integration into global scale ocean surveys and ocean biogeochemical 64 

models.  65 

 66 
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1. Introduction 67 

Microorganisms within the oceans are major contributors to global biogeochemical cycles, 68 

influencing the cycling of carbon, nitrogen, phosphorus, sulfur, iron, cobalt and other elements 69 

(Falkowski et al., 2008; Moran et al., 2022; Worden et al., 2015). ‘Omic methodologies can 70 

provide an expansive window into these communities, with genomic approaches characterizing 71 

the diversity and potential metabolisms, and transcriptomic and proteomic methods providing 72 

insights into expression and function of that potential. Similar to other ‘omics approaches, 73 

proteomics is increasingly being applied to natural ocean environments and the diverse 74 

microbial communities within them. When proteomics is applied to such mixed communities, it is 75 

generally referred to as metaproteomics (Wilmes and Bond, 2006). Metaproteomic samples 76 

contain an extraordinary level of complexity relative to single organism proteomes (at least 1-2 77 

orders of magnitude) due to the simultaneous presence of many different organisms in widely 78 

varying abundances (McCain and Bertrand, 2019). In particular, ocean metaproteome samples 79 

are significantly more complex than the human proteome, the latter of which is itself considered 80 

to be a highly complex sample (Saito et al., 2019). Proteomics (including metaproteomics) 81 

provides a perspective distinct from other ‘omics methods: as a direct measurement of cellular 82 

functions it can be used to examine the diversity of ecosystem biogeochemical capabilities, to 83 

determine the extent of specific nutrient stressors by measurement of transporters or regulatory 84 

systems, to determine cellular resource allocation strategies in-situ, estimate biomass 85 

contributions from specific microbial groups, and even to estimate potential enzyme activity 86 

(Bender et al., 2018; Bergauer et al., 2018; Cohen et al., 2021; Fuchsman et al., 2019; Georges 87 

et al., 2014; Hawley et al., 2014; Held et al., 2021; Leary et al., 2014; McCain et al., 2022; Mikan 88 

et al., 2020; Moore et al., 2012; Morris et al., 2010; Saito et al., 2020; Sowell et al., 2009; 89 

Williams et al., 2012). The functional perspective that metaproteomics allows is often 90 

complementary to metagenomic and metatranscriptomic analyses and can provide biological 91 
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insights that are distinct from organisms studied in the laboratory (Kleiner et al., 2019). 92 

Moreover, the measurement of microbial proteins in environmental samples has improved 93 

greatly in recent years, due to the advancements in nanospray-liquid chromatography and high-94 

resolution mass spectrometry approaches (Mueller and Pan, 2013; Ram et al., 2005; McIlvin 95 

and Saito, 2021).  96 

With increasing interest in the measurement of proteins and their biogeochemical 97 

functions within the oceans, the metaproteomic data is beginning to establish itself as a valuable 98 

research and monitoring tool. However, given rapid changes in technology and methods, as well 99 

as the overall youth of the metaproteomic field, demonstrating the reproducibility and 100 

robustness of metaproteomic measurements to microbial ecology and oceanographic 101 

communities is an important goal. This is particularly true as applications for metaproteomics 102 

expand in research and monitoring of the changing ocean environment, for example in global 103 

scale efforts such as the developing BioGeoSCAPES program (www.biogeoscapes.org; 104 

(Tagliabue, 2023)), which aims to characterize the ocean metabolism and nutrient cycles on a 105 

changing planet. As a result, there is a pressing need to assess inter-laboratory consistency, 106 

and to understand the impacts of sampling, extraction, mass spectrometry, and bioinformatic 107 

analyses on the biological inferences that can be drawn from the data. 108 

 There have been efforts to conduct intercomparisons of metaproteomic analyses in both 109 

biomedical and environmental sample types in recent years that provide precedent for this 110 

study. A recent community best practice effort in ocean metaproteomics data-sharing also 111 

identified major challenges in ocean metaproteomics research, including sampling, extraction, 112 

sample analysis, bioinformatics pipelines, and data sharing, and conducted a quantitative 113 

assessment of sample complexity in ocean metaproteome samples (Saito et al., 2019). A 114 

previous benchmark study, driven by the Metaproteomics Initiative (Van Den Bossche et al., 115 

2021), was the “Critical Assessment of Metaproteome Investigation study” (CAMPI) that 116 

http://www.biogeoscapes.org/
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employed a laboratory-assembled microbiome and human fecal microbiome sample to 117 

successfully demonstrate reproducibility of results between laboratories. CAMPI found 118 

robustness in results across datasets, while also observing variability in peptide identifications 119 

largely attributed to sample preparation. This observation was consistent with prior findings on 120 

single organism samples that determined >70% of the variability was due to sample processing, 121 

rather than chromatography and mass spectrometry (Piehowski et al., 2013). Finally, the 122 

Proteomics Informatics Group (iPRG) from the Association of Biomolecular Resources Facilities 123 

(ABRF) conducted a study examining the influence of informatics pipelines on metaproteomics 124 

analyses that found consistency among research groups in taxonomic attributions (Jagtap et al., 125 

2023), and previous research has demonstrated the impact of database choices on final 126 

functional annotations and biological implications (Timmins-Schiffman et al., 2017). 127 

Here we describe the results from the first ocean metaproteomic intercomparison. In this 128 

study, environmental ocean samples were collected from the euphotic zone of the North Atlantic 129 

Ocean and partitioned into subsamples and distributed to an international group of laboratories 130 

(Fig. 1). The study was designed to examine inter-laboratory consistency rather than maximal 131 

capabilities, stipulating one-dimensional chromatographic analyses from each laboratory (with 132 

optional deeper analysis). Users were invited to use their preferred extraction, analytical, and 133 

bioinformatic procedures. The effort focused on the data dependent analysis (DDA) methods, 134 

also known as global proteomics where the targets are unknown and hence there is a discovery 135 

element to the approach. DDA is currently common in ocean and other environmental and 136 

biomedical metaproteomics, and its spectral abundance units of relative quantitation have been 137 

shown to be reproducible in metaproteomics (Kleiner et al., 2017; Pietilä et al., 2022). Blinded 138 

results were submitted, compared and discussed at a virtual community workshop in September 139 

of 2021. An additional bioinformatic pipeline comparison study was also conducted where 140 
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participants were provided metaproteomic raw data and associated metagenomic sequence 141 

database files and were encouraged to use the bioinformatic pipeline of their choice.  142 

2. Methods 143 

2.1 Sample Collection and Metadata 144 

Ocean metaproteome filter samples for the wet lab comparison (Figure 1) were collected 145 

at the Bermuda Atlantic Time-series Study (31o 40’N 64 o 10’W) on expedition BATS 348 on 146 

June 16th, 2018, between 01:00 and 05:00 am local time. In situ (underwater) large volume 147 

filtration was conducted using submersible pumps to produce replicate biomass samples at a 148 

single depth in the water column for intercomparisons. All filter subsamples are matched for 149 

location, time, and depth. To collect the samples, two horizontal McLane pumps were clamped 150 

together (Figure 1c) and attached at the same depth (80 m) with two filter heads (Mini-MULVS 151 

design) on each pump and a flow meter downstream of each filter head. This depth was chosen 152 

to correspond to a depth with abundant chlorophyll and photosynthetic organisms. Each filter 153 

head contained a 142 mm diameter 0.2 µm pore-size Supor (Pall Inc.) filter with an upstream 154 

142 mm diameter 3.0 µm pore-size Supor (Figure 1b, d). Only the 0.2 – 3.0 µm size fraction 155 

was used in this study. The pumps were set to run for 240 min at 3 L per min. Volume filtered 156 

was measured by three gauges on each pump, one downstream of each pump head, and one 157 

on the total outflow (Table S2). Individual pump head gauges summed to the total gauge for 158 

pump 1 (within 1 L; 447 L and 446.2 L), but deviated by 89 L on pump 2 (478 L and 388.9 L). 159 

Given that the total gauge is further downstream, we report the pump head gauges as being 160 

more accurate. 161 

The pump heads were removed from the McLane pumps immediately upon retrieval, 162 

decanted of excess seawater by vacuum, placed in coolers with ice packs, and brought into a 163 

fabricated clean room environment aboard the ship. The 0.2 µm pore-size filters were cut in 164 
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eight equivalent pieces and frozen at -80°C in 2 mL cryovials, creating 16 samples per pump 165 

that were co-collected temporally and in very close proximity (<1 m) to each other for a total of 166 

32 samples used in this study (Figure 1d). The 3.0 µm pore-size filters are not included in this 167 

study but are archived for future efforts. The sample naming scheme associated with the 168 

different pumps and pump heads is described in Table S2. Note that pump 1A and 1B samples 169 

accidentally had two 3.0 µm filters superimposed above the 0.2 µm filter, and 1B had a small 170 

puncture in it, although neither of these seemed to affect the biomass collected, presumably the 171 

puncture occurred after sampling was completed. 172 

Samples for the bioinformatic component were collected by the autonomous underwater 173 

vehicle Clio. The vehicle and its sampling characteristics were used as previously described 174 

(Breier et al., 2020; Cohen et al., 2023). Specifically, samples  Ocean-8 and Ocean-11 were 175 

also collected from the BATS station on R/V Atlantic Explorer expedition identifier AE1913 (also 176 

described as BATS validation track BV55 32.75834o N 65.7374o W). The samples were 177 

collected by autonomous underwater vehicle (AUV) Clio on June 19th 2019, dive Clio020, with 178 

samples collected at 20 m (Ocean-11) and 120 m (Ocean-8) with 66.6 L and 92.6 L filtered, 179 

respectively, used for this study. These depths were chosen to reflect the near surface (high-180 

light) and deep chlorophyll maximum (low-light) communities present in the stratified summer 181 

conditions. These samples were analyzed by 1D DDA analysis using extraction and mass 182 

spectrometry for laboratory 438 within their laboratory (Tables S5-S7). Sample metadata for 183 

both arms of this intercomparison study and corresponding repository information is provided in 184 

Table S3 and repository links are in the Data Availability Statement.   185 

2.2 Metagenomic Extraction, Sequencing, and Assembly 186 

A metagenomic (reference sequence) database was created for peptide to spectrum 187 

matching  (PSMs) for the metaproteomic studies using a 1/8th sample split from the exact 188 
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sample used in the intercomparison as described above. Samples were shipped on dry ice to 189 

the Naval Research Laboratory in Washington D.C. (USA), where DNA was extracted and 190 

sequenced. Preserved filters were cut into smaller pieces using a sterile blade and placed into a 191 

PowerBead tube with a mixture of zirconium beads and lysis buffer (CD1) from the Dneasy 192 

PowerSoil Pro kit (Qiagen, Hilden Germany). The bead tube with filter sample was heated at 193 

65°C for 10 min then placed on a vortex adapter and vortexed at maximum speed for 10 min. 194 

After sample homogenization/lysis, the bead tube was centrifuged at 16 k x g for 2 min. The 195 

supernatant was transferred to a DNA LoBind tube and processed using the manufacturer’s 196 

recommendations. The purified DNA was further concentrated by adding 10 μL3 M NaCl and 197 

100 μL cold 100% ethanol. The sample was incubated at -30°C for 1 hour, followed by 198 

centrifugation at 16 k x g for 10 min. The supernatant was removed and precipitated DNA was 199 

air-dried and resuspended in 10 mM Tris. DNA concentration was quantified with the Qubit 200 

dsDNA High Sensitivity assay (Thermo Fisher Scientific, Waltham, MA, USA) and DNA quality 201 

was assessed using the NanoDrop (ThermoFisher) and gel electrophoresis. Processing controls 202 

included reagent only and blank filter samples.  203 

Sequencing libraries were created from purified sample DNA using the IonExpress Plus 204 

gDNA Fragment Library Preparation kit (Thermo Fisher) for a 200 bp library insert size. No 205 

amplification of the library was required as determined by qPCR using the Ion Library TaqMan 206 

Quantitation Kit. A starting library concentration of 100 pM was used in template generation and 207 

chip loading with the Ion 540 Kit on the Ion Chef instrument prior to single-end sequencing on 208 

the S5 benchtop sequencer. 209 

Sequencing used a mix of Ion Torrent and Oxford Nanopore sequencing and resulting 210 

sequencing reads were assembled using SPAdes v. 3.13.1 with Python v. 3.6.8. Following 211 

metagenome assembly, contigs smaller than 500 bases were discarded. Open reading frame 212 

(ORF) calling was performed on contigs 500 bps or longer using Prodigal v. 2.6.3 (Hyatt et al., 213 
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2010) run with metagenomic settings as well as MetaGeneMark by submitting to the 214 

MetaGeneMark server (http://exon.gatech.edu/meta_gmhmmp.cgi) using GeneMark.hmm 215 

prokaryotic program v. 3.25 on August 11, 2019. ORFs called from both programs were 216 

combined and made non-redundant using in-house Python scripts that utilize BioPython v. 1.73. 217 

Non-redundant ORFs were annotated using the sequence alignment program DIAMOND (v 0.9.29) 218 

with the NCBI nr database (downloaded 12/17/2019). ORFs were also annotated with InterProScan 219 

(v 5.29) and with GhostKOALA (Kanehisa et al., 2016) (submitted to server 1/2/2020). Taxonomy 220 

lineages were generated by using the best DIAMOND (Buchfink et al., 2015) hit and pulling lineage 221 

information from NCBI Taxonomy database using BioPython v. 1.73 222 

2.3 Proteomic methodologies: Extraction, instrumentation, and bioinformatics 223 

Some basic protocol stipulations were provided to study participants regarding analytical 224 

conditions to set a uniformity of experimental design. While users were encouraged to use the 225 

extraction method of their preference, constraints on chromatography and mass spectrometry 226 

conditions were set, limiting the number of chromatographic dimensions to one (1D), the total 227 

length of the chromatographic run, the amount of protein injected (as proteolytic digests), and a 228 

single mass spectrometry injection rather than gas phase fraction approaches (Table S4). Each 229 

laboratory group’s specific approach is summarized in the supplemental methods, with 230 

extraction in Table S5, and chromatography and mass spectrometry equipment and parameters 231 

in Tables S6 and S7. While there are more sophisticated methods such as two-dimensional 232 

(2D) chromatography and gas phase fractionations that have been demonstrated to provide 233 

deeper metaproteomes (McIlvin and Saito, 2021), these often require specialized equipment 234 

and/or additional instrument time. As a result, the study constraints were provided to ensure a 235 

single simple method that all labs could utilize. Laboratories were invited to submit additional 236 

data from more complex analytical setups if they first completed the 1D analyses.  237 

 238 

http://exon.gatech.edu/meta_gmhmmp.cgi
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2.4 Compilation, analysis, and re-analysis of laboratory data submissions 239 

Results from individual laboratories’ data submissions were analyzed in two ways as 240 

shown in the flowchart of Figure 1a. First, submitted processed data reports (i.e. PSMs, 241 

taxonomic, functional annotations) were compiled and interpreted. Second, raw data files (i.e. 242 

spectra directly from instruments) from each group were put through a single bioinformatic 243 

pipeline using SEQUEST HT/Percolator within Proteome Discoverer (Version 2.2.0.388, 244 

Thermo Scientific) and Scaffold (Version 5.2.1, Proteome Software) to isolate variability 245 

associated with bioinformatic processing. Note that Scaffold ignores the Percolator output from 246 

Proteome Discoverer when re-running in Scaffold. This re-analysis (single pipeline re-analysis 247 

hereon) allowed detailed cross-comparisons of laboratory practices to assess the influence of 248 

the extraction and mass spectrometry components. Specific parameters of the latter included: 249 

parent  of tolerances of 10ppm were used on all instruments (all Orbitraps) for fragments 250 

tolerances of 0.02 Da or 0.6 Da were used for Orbitrap ms2 instruments and for ion trap ms2 251 

instruments, respectively. Fixed and variable modifications of +57 on C (fixed), and +16 on M 252 

and +42 on Peptide N-Terminal (variable) were used. Peptide and protein FDRs (false 253 

discovery rates) were set to lower than 1.0% using a decoy database, with 1 minimum peptide 254 

per protein, and the resulting peptide FDR was 0.1%. The database used for PSMs was 255 

Intercal_ORFs_prodigal_metagenemark.fasta based on the metagenomic sequencing 256 

described above with 197,824 protein entries. The re-analysis was conducted within Scaffold 257 

using total spectral counts and allowing single peptides to be attributed to proteins. In addition to 258 

the total number of protein identifications, the number of protein groups identified by Scaffold 259 

was also provided. Each protein group represented proteins identified with identical peptides, 260 

collapsed into a single protein entry with the highest probability and number of spectral counts.  261 

 262 

2.5 Data analysis methods 263 
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Several analyses were conducted using data from the single pipeline re-analysis. First, 264 

pairwise comparisons of protein identifications were conducted using spectral abundance 265 

reports produced in Scaffold, and loaded, analyzed and visualized in MATLAB (MathWorks Inc). 266 

Two-way (independent) linear regressions were conducted using the script linfit.m. R2 on the 267 

seven datasets were averaged and their standard deviation calculated for shared proteins in 268 

each dataset. Second, a Sørensen similarity (Sørensen, 1948) was calculated where a matrix 269 

was generated that consisted of the unique proteins or peptides identified across all technical 270 

replicates from the various labs with the relative abundance per replicate (% contribution of 271 

each protein/peptide per technical replicate total). The Bray-Curtis dissimilarity pairwise distance 272 

was calculated on this matrix using Python and the SciPy library (v. 1.4.1, (Virtanen et al., 273 

2020)) and then 1 – Bray-Curtis dissimilarity was calculated across the matrix to generate the 274 

Sørensen pairwise similarity across all replicates. The resulting similarities per replicate were 275 

clustered and visualized using the clustermap function in the Seaborn library (v. 0.10.0, 276 

(Waskom, 2021)). Third, shared peptides and proteins were visualized using Upset plots, using 277 

the R package UpSetR (Conway et al., 2017) to determine the number of unique peptide 278 

sequences and annotated proteins in intersecting sets between all labs, all permutations of lab 279 

subsets, and all lab pairs.  280 

2.6. Bioinformatics Intercomparison Methods 281 

The methods used for the bioinformatics intercomparison study are described by each 282 

laboratory using their unique three-digit identifier code. All laboratories used the metagenomic 283 

database generated in the laboratory study (see Section 2.2). Lab 109: The raw files were 284 

searched against the metagenomic database employing a 2 round search using PEAKS Studio 285 

X. The initial database search was performed to focus the metagenomic database for protein 286 

sequences with peptide sequence matches at 5% FDR. The focused database was further used 287 

for a second round search, which allowed a parent mass error tolerance of 10.0 ppm and a 288 

fragment mass error tolerance of 0.6 Da. The search considered up to 3 missed cleavages, 289 
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carbamidomethylation as fixed and methionine oxidation and N-terminal acetylation as variable 290 

modifications. The cRAP protein sequences (http://ftp.thegpm.org/fasta/cRAP./) were included 291 

as contaminant database. Finally, PSMs were filtered for 1% FDR and annotated with 292 

taxonomic lineages (obtained from the metagenomic experiments). Non-unique peptide 293 

matches were annotated with the LCA of the respective lineages.  294 

Lab 321: SearchGUI (Galaxy Version 3.3.10.1) was used to search using multiple search 295 

algorithms (X!Tandem, MS-GF+ and Comet). For each search algorithm, Precursor Tolerance 296 

of 10.0 ppm, Fragment Ion Tolerance of 0.6 Da and trypsin was used as an enzyme for 297 

proteolytic cleavage. Searches were performed allowing for two missed cleavages fixed 298 

modification of Carbamidomethylation at cysteine and Variable Modifications of Acetylation of 299 

protein N-term and Oxidation of Methionine. PeptideShaker (Version: 1.16.36) was used to filter 300 

peptides with the length of 8-50 aas and a precursor m/z tolerance of 10.0 ppm. Detected 301 

peptide-spectral matches, peptides and proteins were reported at 1% global FDR. All of the 302 

analysis was performed within Galaxy platform.  303 

Lab 321: MaxQuant (Galaxy version 1.6.17.0+galaxy3) was used to search the datasets. A 304 

fixed modification of carbamidomethylation at cysteine and variable mmodifications of 305 

acetylation of protein N-term and oxidation of methionine was applied along with allowing for 306 

two missed cleavages. The detection peptides and proteins were reported at 1% FDR.  307 

Lab 362: The raw files were converted using ThermoRawFileParserGUI (version 1.4.1) to peak 308 

lists (.mgf files) using “native Thermo library peak picking” as the peak picking option and 309 

“Ignore missing instrument properties” as the error option. The peak lists (.mgf files) obtained 310 

from MS/MS spectra were identified using X! Tandem version X! Tandem (Vengeance version 311 

2015.12.1) using SearchGUI version 4.1.0. Here, the parameters provided and suggested by 312 

the study were used: tolerances of 10 ppm for MS1 and 0.6 Dalton for MS/MS; dynamic 313 

modifications: oxidation of M, and acetyl on N-terminus; static modifications: carbamidomethyl 314 
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of C. Identification was conducted against a concatenated target/decoy database of the 315 

provided database.  316 

The X!Tandem files were used as input in MS²ReScore 317 

(https://github.com/compomics/ms2rescore), a machine learning-based post-processing tool 318 

that improves upon Percolator rescoring of peptide-to-spectrum matches (PSMs). Here, the 319 

search engine-dependent features of Percolator were appended with MS2 peak intensity 320 

features by comparing the PSM with the corresponding MS²PIP-predicted spectrum. All 321 

reported MS²ReScore PSM identifications have a q-value < 0.01. No protein grouping algorithm 322 

was applied, and all identified taxa and functions are extracted from the provided database.  323 

Lab 458: The Proteome Discoverer 2.5 platform was used (SequestHT + Percolator (MPS)).  324 

Fully tryptic peptides with a minimum length of 6 peptides and a maximum of 2 missed 325 

cleavages were required.  Precursor Tolerance of 10.0 ppm, Fragment Ion Tolerance of 0.6 Da. 326 

carbamidomethylation as fixed and methionine oxidation was set as a variable modification. Filtering 327 

was performed at a 1% PSM- and peptide-level FDR.  The MaxQuant contaminant list was used as 328 

a contaminant database.  329 

Lab 501: We first appended the database with a set of common contaminants (Global 330 

Proteome Machine Organization common Repository of Adventitious Proteins). Then, we used 331 

MSGF+ (Kim and Pevzner, 2014) to match mass spectra with peptide sequences, with cysteine 332 

carbamidomethylation as a fixed modification, and methionine oxidation, glutamine modified to 333 

pyro-glutamic acid, deamidated asparagine, and deamidated glutamine, as variable 334 

modifications. Peptides were searched for with a Target-Decoy approach, with a 1% false 335 

discovery rate at the peptide spectrum match level. For spectral counts, we summed MS2 336 

spectra that identified a peptide, and normalized all spectral counts to the total spectral counts 337 

per sample. Proteins were quantified using the median spectral count for all proteotypic 338 

peptides (those peptides which uniquely correspond to a protein), specifically using the 339 
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OpenMS tool ProteinQuantifier. This approach requires at least one proteotypic peptide, but if 340 

more are identified, those peptides are also used for quantification.  341 

Lab 828: The raw files were analyzed using Thermal proteome discover. MS/MS spectrums 342 

were searched against provided database using SEQUEST-HT engine. MS/MS spectra 343 

searches were performed as follows: precursor ion tolerance of 10.0 ppm; fragment ion 344 

tolerance of 0.6 Da; carbamidomethyl cysteine was specified as fixed modification, whereas 345 

oxidation (M), deamidation (N/Q), and N-terminal protein acetylation were set as variable 346 

modifications. Trypsin was specified as the proteolytic enzyme, allowing for two missed 347 

cleavages. Percolator-based scoring was chosen to improve the discrimination between correct 348 

and incorrect spectrum identifications, learning from the results of a decoy and target database; 349 

settings were as follows: maximum delta Cn, 0.05; strict false-discovery rate of 0.01 and 350 

validation based on q values.  351 

Lab 902: SEQUEST-HT was used within Proteome Discoverer 2.2 using the following settings: 352 

maximum missed cleavage 2, minimum peptide length 6, maximum peptide length 122, 353 

precursor mass tolerance 10ppm, fragment mass tolerance 0.6 Dalton; dynamic modifications: 354 

M oxidation, acetyl on N-terminus; static modifications: C carbamidomethyl. Percolator PSM 355 

validator (within Proteome Discoverer) with following settings: maximum Delta Cn 0.05, target 356 

FDR strict 0.01, target FDR relaxed 0.05, validation based on PEP. Scaffold 5.0 used to analyze 357 

Proteome Discoverer generated files with following settings: scoring system: prefiltered mode; 358 

protein grouping: standard experiment wide protein grouping; protein threshold 1.0% FDR; 359 

peptide threshold 0.1% FDR; minimum number of peptides 1.  360 

Lab 932: Mass spectrometry data were transformed from Thermo RAW format (version 66) to 361 

mzML and Mascot Generic (MGF) formats using ThermoRawFileParser (version 1.2.0, 362 

Hulstaert et al., 2020). Experimental metadata were extracted from mass spectrometry data 363 

using the MARMoSET program (Kiweler et al. 2019). Mascot Server (version 2.6.2, Matrix 364 

Science, LTD) software performed peptide-spectrum matching between experimental data and 365 
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a reference sequence database. Reference sequences included a total of 197,824 predicted 366 

protein-coding ORFs from a metagenome assembly. Peptides matching an in-house curated 367 

inventory of contaminant protein sequences, mass standards, and proteolytic enzyme 368 

sequences were removed from the results. Mascot search parameters included the following 369 

settings: +10.0 ppm monoisotopic precursor mass tolerance; +0.6 Da monoisotopic fragment 370 

ion tolerance; one fixed modification (+57 to C residues); two variable modifications (+16 to M 371 

residues, +42 to peptide amino-termini); digestion enzyme trypsin; two missed cleavages; 372 

peptide charges +2-+7; and instrument type: electrospray ionization coupled to fourier-transform 373 

ion cyclotron resonance (ESI-FTICR). Mascot search results containing peptide-spectrum 374 

matches (PSMs) were exported for downstream data analysis. Scaffold Q+S (version 4.8.9) was 375 

used to validate MS/MS-based peptide- and protein-level peptide-spectrum matches (PSM) with 376 

the Peptide Prophet algorithm. Mascot PSM data were imported into Scaffold Q+S with the 377 

following settings specified: quantitative metric: spectrum counting; scoring system: use legacy 378 

Peptide Prophet scoring (high mass accuracy); protein grouping: use standard experiment-wide 379 

grouping; optional loading steps: pre-compute false discovery rate (FDR) thresholds; and, use 380 

local gene ontology (GO) annotations (UniProt GO annotation data retrieved 25 JUN 2020). 381 

Scaffold Q+S identification criteria were set at greater/equals >99.9% probability by the Peptide 382 

Prophet algorithm (Keller et al. Anal. Chem. 2002.) and >99.9% probability by the Protein 383 

Prophet algorithm (Nesvizhskii et al., Anal. Chem. 2003) with >2 peptides at the protein level.  384 

Lab 957: MSFragger 3.3 searches were performed with FragPipe 16.0 and Philosopher 4.0.0. A 385 

concatenated target/reverse database was searched with a 50 PPM precursor and 0.4 Da 386 

fragment mass tolerance. Automatic mass calibration and parameter optimization was enabled 387 

and precursor mass errors for up to +2 neutrons were considered. Peptide candidates were 388 

generated from database protein sequences assuming tryptic digestion, allowing for up to one 389 

missed cleavage. Peptides were required to have between 8-50 amino acids and range from 390 

500 to 5000 m/z. Cysteines were assumed to be fully carbamidomethylated, and peptides were 391 
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searched considering variable n-terminal pyroglutamic acid formation and methionine oxidation. 392 

PeptideProphet was used for FDR validation with the following default options: “--decoy probs”, 393 

“--ppm”, “--accmass”, “--nonparam”, and “--expectscore”, which allow for additional high-mass 394 

accuracy analysis and non-parametric distribution fitting. ProteinProphet was used for protein-395 

level FDR validation with the following default option: “--maxppmdiff 2000000”. Filtering was 396 

performed using a 1% peptide-level and a 1% protein-level FDR threshold. 397 

3. Results  398 

3.1 Experimental Design 399 

This ocean metaproteomic intercomparison consisted of two major components: a 400 

laboratory component, where independent labs processed identical ocean samples 401 

simultaneously collected from the North Atlantic Ocean (Fig. 1a, see Section 2.1), and a 402 

subsequent bioinformatic component. Participating institutions and persons at those institutions 403 

are listed in Table S1, with all participants also listed as co-authors. Both arms of the study were 404 

conducted under blinded conditions, where correspondence with participants was conducted by 405 

an individual not involved in either study, and submitted results and data were anonymized prior 406 

to sharing with the consortium. Within both arms of the study, participants were provided the 407 

location of the study site and metadata about the sampling locations, time and depth at the 408 

onset of the study. The laboratory study involved two biomass-laden filter slices collected from 409 

the North Atlantic Ocean Bermuda Atlantic Time series Study site at 80m depth being sent to 410 

each participating group for protein extraction, mass spectrometry, and bioinformatic analyses 411 

(see Section 2.1). This depth was chosen to correspond to a depth with abundant chlorophyll 412 

and associated photosynthetic organisms. The bioinformatic effort was independent of the 413 

laboratory effort and involved the distribution and bioinformatic analysis of two metaproteomic 414 

raw data files generated from samples also from the North Atlantic Ocean upper water column 415 

BATS station (20m and 120m depths, see Section 2.1). These depth were chosen to reflect the 416 
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near surface (high-light) and deep chlorophyll maximum (low-light) communities present in the 417 

stratified summer conditions.These files were distributed after labs had submitted their 418 

laboratory extracted raw data files. The raw files from the bioinformatic study were distinct from 419 

the samples used in the laboratory intercomparison study to avoid any biases from groups that 420 

analyzed those samples previously. Submitted results from both components were anonymized 421 

and assigned three-digit lab identifiers generated randomly with laboratory and bioinformatic 422 

results from the same lab being assigned distinct identifiers.  423 

We report results for two study components: Part 1 (Section 3.2) involves the data 424 

generation intercomparison of distributed subsamples from the North Atlantic Ocean (Fig. 1; 425 

Section 2.1). Part 2 (Section 3.3) was an bioinformatic intercomparison, where metaproteomic 426 

raw files were shared with participants and processed results were submitted. Both components 427 

were conducted as blinded studies, where each dataset was assigned a three digit randomly 428 

generated identifier, with those identifiers used throughout the Results and Discussion.  429 

 430 

3.2 Mass Spectrometry Data Generation Intercomparison  431 

 Nine laboratories submitted raw and processed datasets from the analysis of the 432 

distributed Atlantic Ocean field samples (Table S1). The processed data submissions were 433 

heterogeneous in output formats, statistical approaches, and parameter definitions. Because of 434 

the challenges of comparing data derived from different types of statistical approaches used for 435 

peptide and protein identification and inference, as well as the varying output formats from 436 

various software packages, the user-generated data submissions were difficult to compile and 437 

compare, resulting in variability in the number of identifications depending on the statistical 438 

approaches and thresholds applied. These results are further discussed in the Supplemental 439 

Section (Figure S1, Table S8). Despite these challenges, an average of 7142 +/- 2074 peptides 440 

were identified across the pairwise comparisons (Figure S1c) representing 20% of the 35,715 441 
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total unique peptides detected across all labs. Together these findings implied a consistency of 442 

peptide identifications across participants. The variability in proteome depth reflected the 443 

combination of differing parameters employed by software and laboratory approaches. 444 

To remove this variability associated with user-selected bioinformatic pipelines, a single 445 

pipeline re-analysis of the submitted raw mass spectral data was conducted. Raw data files 446 

were processed together within a single bioinformatic pipeline consisting of SEQUEST-HT, 447 

Percolator, and Scaffold software and evaluated to a false discovery rate threshold of < 0.1% for 448 

peptides and 1.0% for proteins  (see Section 2.4). Two datasets were found to have had issues 449 

during extraction and analysis that affected the results in both processed and raw data (Labs 450 

593 and 811; Table S8). Notably these two laboratories differed from the others in that they did 451 

not use SDS as a protein solubilizing detergent (Table S5). This likely resulted in inefficient 452 

extraction of the bacteria that dominated the sample biomass (e.g. picocyanobacteria and 453 

Pelagibacter) embedded within the membrane filter slices. Further examination showed 454 

polyethylene glycol contamination of one dataset (Lab 811) and low yield from sample 455 

processing and extraction from the other (Lab 593). As a result, those datasets were not 456 

included in the single pipeline re-analysis. The standardized pipeline included calculations of 457 

shared peptides and proteins, quantitative comparisons, and consistency of taxonomic and 458 

functional results.  459 

The total number of peptide and protein identifications and PSMs in the single 460 

bioinformatic pipeline analysis varied by laboratory (Table S9), with unique peptides ranging by 461 

more than a factor of 3 from 3,354 to 16,500, and with 27,346 total unique peptides identified 462 

across laboratories. This variability was likely due to different extraction, chromatographic, and 463 

mass spectrometry hardware and parameters employed used by each laboratory, resulting in a 464 

varying depth of metaproteomic results. Yet, as with the user-submitted results, there was 465 

considerable overlap in identifications between all datasets. An intersection analysis found the 466 

numerous shared peptides between all combinations of laboratories, with 1,395 peptides shared 467 
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between all seven laboratory datasets (Figure 2a). Laboratories with deeper proteomes shared 468 

numerous peptides, for example the two laboratories with the most discovered unique peptides 469 

shared ~3000 peptides between them, implying that shared peptides is a useful metric for 470 

intercomparability. They also had the largest numbers of peptides that were not found by any 471 

other labs (3617 and 2819, respectively). The fourth largest intersection size (1395) represented 472 

the unique peptides discovered by all labs. Beyond that there were 12 different groupings of 473 

peptides that were shared among at least four laboratories. Consistent with this, 3-way Venn 474 

diagrams of labs 135, 209 and 438 had an intersection of 2398 peptides, labs 652, 729, and 774 475 

shared 3016 peptides, and labs 127, 135, and 309 shared 2304 peptides (Figure 2d).  476 

A similar analysis was conducted at the protein level, where the number of proteins 477 

identified (see Section 2. Methods) identified 8,043 unique proteins in total across all 478 

laboratories, with 1,056 proteins of those observed in all seven labs (see 7-way Venn diagram in 479 

Figure 2c). Three-way Venn diagram comparisons among labs 135, 209 and 438 had an 480 

intersection of 1,254 proteins, and labs 652, 729, and 774 shared 1,925 proteins (data not 481 

shown).  482 

Optional deeper metaproteome results were submitted by three laboratories using either 483 

a long gradient of 12 hours or 2 dimensional chromatographic methods (Table S10). The 484 

number of discovered peptide and protein identifications were higher in each case, with as 485 

many as 18477 unique peptides and 7765 protein identifications from an online 2-dimensional 486 

chromatographic analysis from a 5 g single injection.  487 

The mapping of identified peptides to protein sequences forms the basis for protein 488 

identifications in the form of DDA bottom-up proteomics employed here. The relationship 489 

between peptides and protein identification was explored in Figure 3 and found to be correlated 490 

by two-way linear regression with R2 values of 0.97 and 0.98 for total protein identifications and 491 

protein groups, respectively. Together, the fact that there is a linear relationship between 492 

peptides and proteins across all laboratories (including labs employing deeper methods) could 493 
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imply that the number of protein identifications has not begun to plateau and reached 494 

‘saturation’, likely due to the immense biological diversity and abundance of lower abundance 495 

peptides within these samples. This approach has some similarities to rarefaction curves used 496 

in metagenomic sequencing to determine if the majority of species diversity has been sampled, 497 

although in this case number of peptides used as a metric for sampling depth instead of 498 

additional number of DNA sequencing samples typically used for rarefaction curves. This 499 

indicated that with deeper depth of analysis by some laboratories, there was no fall off in the 500 

increase in protein identifications that might be attributed to additional peptides mapping to 501 

already discovered protein sequences. In addition, the 2D and long gradient additional analyses 502 

conducted by several laboratories fell upon this line consistent with this “more peptides – more 503 

proteins” observation, implying more room for improvements in depth of metaproteomic 504 

analyses.  505 

A quantitative analysis of spectral counts from the wet lab re-analysis showed broad 506 

coherence among the seven laboratories. Pairwise comparisons of protein spectral counts were 507 

conducted for each of the seven labs against the other six (visualized in a 7x7 matrix, with 508 

duplicate comparisons removed (e.g., A vs B and B vs A)), where each data point reflects the 509 

spectral counts for a protein shared between laboratories (Figure 4a). When a dataset was 510 

compared with itself a unity line of datapoints was observed along the diagonal axis as 511 

expected. Two-way linear regressions were conducted on each of these pairwise comparisons. 512 

The slopes ranged from 0.33 to 5.5 (Figure S2), implying a varying dynamic range in spectral 513 

counts across laboratories, likely due to variations in instrument parameterizations selected by 514 

each laboratory, and consistent with the lack of normalization between laboratories. The 515 

coefficient of determination R2 values from 0.43 to 0.84 with an average of 0.63 +/- 0.11, 516 

showing coherence among results for these large metaproteomic datasets (Figure 4b, Table 517 

S12). To provide a sense of coherence of each laboratory to the others, the R2 values of a lab 518 

against the other six laboratories were averaged and the standard deviation calculated. All of 519 
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these average R2 values were higher than 0.5, which showed overall quantitative consistency 520 

despite the size and complexity of these datasets (Figure 4d).  521 

A comparative taxonomic and functional analysis was also conducted using a single 522 

bioinformatic pipeline (see metagenomic sequencing methods for annotation pipeline). Lowest 523 

common ancestor (LCA) analysis of peptides identified from datasets from seven laboratories 524 

showed consistent patterns of taxonomic distribution using the MetaTryp package (Figure 5a; 525 

(Saunders et al., 2020). Cyanobacteria and alphaproteobacteria were the top two taxonomic 526 

groups in all laboratory submissions, consistent with the abundant picocyanobacteria 527 

Prochlocococcus and the heterotrophic bacterium Pelagibacter ubique known to be dominant 528 

components of the Sargasso Sea ecosystem (Sowell et al., 2009; Malmstrom et al., 2010). For 529 

example, Prochlorococcus  is consistently present between 104 and 105 cells per milliliter in this 530 

region and has been observed to contribute to carbon export from the euphotic zone (Casey et 531 

al., 2007). Pelagibacter cells can also be in excess of 105 cells per milliliter at the BATS North 532 

Atlantic location (Carlson et al., 2009). These results are broadly similar to the representation of 533 

phyla within the metagenome annotations, where Proteobacteria (including Pelagibacter) and 534 

Cyanobacteria (including Prochlorococcus and Synechococcus) were major components,  535 

although Bacteriodetes (including Flavobacteria) are more prevalent in the metagenome 536 

annotations than in the metaproteome. Some differences may also be due to the incorporation 537 

of protein abundances in Fig 5a, versus simple taxonomic attribution of non-redundant 538 

assembled open reading frames in the metagenome analysis, as well as the use of multiple 539 

sequencing platforms and gene calling algorithms (Section 2.2, Figure S4).  540 

Similarly, KEGG Orthology group (KO) analysis of those datasets also showed highly 541 

similar patterns of protein functional distributions across laboratories (Figure 5b). Notably the 542 

PstS phosphate transporter protein from Prochlorococcus was the most abundant protein in all 543 

datasets, consistent with observations of phosphorus stress in the North Atlantic oligotrophic 544 

gyre and its biosynthesis in marine cyanobacteria (Scanlan et al., 1997; Coleman and Chisholm, 545 
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2010; Ustick et al., 2021). These findings demonstrate the reproducibility in the primary 546 

functional and taxonomic conclusions from the metaproteome datasets. Finally, a Sørensen 547 

similarity analysis of the 1,000 proteins with highest spectral counts revealed 70–80% 548 

similarities between most laboratory groups in the data re-analysis (Figure 6). When conducted 549 

on the full dataset with all peptides and proteins, the Sørensen similarity analyses showed 550 

peptides had lower similarity than proteins, implying variability is ameliorated when aggregated 551 

to the protein level (Figure S3). 552 

  553 

3.3. Bioinformatic Data Analysis Intercomparison  554 

 Two metaproteomic raw files were provided to intercomparison participants and were 555 

searched with each laboratory’s preferred database searching bioinformatic pipeline. The 556 

samples that generated the data for these files were collected by autonomous AUV Clio during 557 

a single dive at the Bermuda Atlantic Time-series Study Station (Breier et al., 2020), and were 558 

distinct from the samples associated with the laboratory intercomparison component. However, 559 

they were also from the North Atlantic Ocean, allowing the same metagenomic database to be 560 

used. This database was not collected simultaneously with the bioinformatics samples, so it was 561 

not as representative as that used in the laboratory intercomparison. However, the BATS study 562 

region is known to maintain similar major taxonomic composition throughout the year (e.g., 563 

Prochlorococcus and SAR11, see discussion in Section 3.2), hence enabling many protein 564 

identifications. This bioinformatic study component was not launched until after the laboratory-565 

based intercomparison submission deadline to avoid influencing that part of the study by 566 

sharing similar raw data. Samples were named Ocean 8 and Ocean 11 and were taken from 567 

120 m and 20 m depths, respectively.  568 

The bioinformatic intercomparison involved 10 laboratories utilizing 8 different software 569 

pipelines including the PSM search engines: SEQUEST, X!Tandem, MaxQuant, MSGF+, 570 

Mascot, MSFragger, and PEAKS (Table S11, see Methods Section 2.6). As with the user 571 
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supplied laboratory results, the results were challenging to compile due to different types of data 572 

outputs, approaches used in protein inference, and statistical approaches applied within each 573 

pipeline. Unique peptide discoveries served as a useful base unit of comparison that were less 574 

subject to these comparison challenges. The number of peptides ranged from 1724 to 6369 in 575 

Ocean 8 and 3019 to 8288 in Ocean 11 (Figure 7; Table S11). The differences in the number of 576 

peptides was likely due to parameters used in software, for example, laboratory 932 had the 577 

lowest number of peptides identified in both samples, but also used a highly stringent 99.9% 578 

probability cutoff that likely influenced this result.  579 

 580 

4. Discussion 581 

4.1 Assessment of Ocean Metaproteomics Reproducibility 582 

Given the recent establishment of complex metaproteomic techniques, intercomparisons 583 

are valuable in demonstrating their suitability for ocean ecological and biogeochemistry studies. 584 

Synthesizing the results of the laboratory and mass spectrometry blinded intercomparison study 585 

(Section 3.2) processed with a single bioinformatic pipeline (Section 2.4), we observed 586 

consistent reproducibility with regards to three attributes of ocean metaproteomics analyses: 1) 587 

the identity of discovered peptides and proteins (Fig. 2), 2) their relative quantitative 588 

abundances (Figs. 4 and 6), and 3) the taxonomic and functional assignments within 589 

intercompared samples (Fig 5). With over 1000 proteins identified across seven laboratories 590 

and Sørensen similarity indexes typically higher than 70–80% (Fig. 6), the results demonstrate 591 

consistent detection and quantitation of major proteins in the sample. These results provide 592 

confidence that multiple laboratories can generate reproducible results describing the major 593 

proteome composition of ocean microbiome samples to assess their functional and 594 

biogeochemical activity .  595 
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While there is good agreement, this congregation of data allows further exploration of 596 

the influence of methods on the results. In particular, as mentioned above the range of pairwise 597 

comparisons had correlation coefficients ranging from 0.43 to 0.84, with most values falling 598 

between 0.6 and 0.8 (Figure 4b and 4e; Table S12). This average of all correlation coefficients 599 

described above (0.63 +/- 0.11) implied good reproducibility between laboratories in general. 600 

We can explore what might have influenced the variability and lower range of coefficients. The 601 

correlation coefficients of lab 209 had two of the three R2 values below 0.499 in pairwise 602 

comparisons (0.431 and 0.475), yet also had values that ranged from 0.61 to 0.70. Why would 603 

this variability exist?  Lab 209 ‘s methods differed from other labs in several ways: they used the 604 

oldest and slowest instrument of the group (Thermo Orbitrap Elite), used CID instead of HCD for 605 

fragmentation and rapid scan mode, and used an unusually long column of 200cm to 606 

compensate for the older instrument (Table S6). As a result, lab 209 had the lowest number of 607 

peptide (3354) and protein (1586) ID's of the seven labs (Table S9), which was several fold 608 

lower than the lab with the highest number and reduced the number of shared peptides across 609 

all laboratories. In pairwise comparisons, lab 209 had the lowest number of shared peptides at 610 

an average of 1304. Interestingly however, lab 209 did not have the lowest number of total 611 

spectral counts (63198), being close to the average (70843 +/- 27455), implying that more 612 

abundant peptides were detected relative to rarer ones.  613 

We initially suspected the lower R2 values in pairwise comparisons with lab 209 may 614 

have been related to comparisons to laboratories with similarly lesser peptide depth, but this 615 

was not the case: the two lowest correlation coefficients for lab 209 were with laboratories 135 616 

and 774 (the 0.431 and 0.475 values), the latter of which had the highest number of peptide 617 

identifications. The answer for this difference in quantitative values maybe within the selection of 618 

parameters used to sample peptide peaks: Both lab 135 and 774 used 60 second dynamic 619 

exclusion, whereas the other 5 labs used dynamic exclusions between 10 and 30 seconds in 620 
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length (Table S7). This higher dynamic exclusion likely contributed to providing greater peptide 621 

discovery depth, but at the cost of quantitative consistency with other laboratories, since this 622 

parameter selects against repeat counting of abundant peaks and would reduce spectral counts 623 

of the more abundant peptides that lab 209 was detecting. This result demonstrates the 624 

influence of the mass spectrometer parameters in quantitative reproducibility when using global 625 

proteomic DDA mode.  626 

4.2 Metrics in metaproteomics: Core versus rare “long tail“ proteins 627 

While abundant proteins were consistently detected across seven laboratories’ 628 

submissions, there was substantial variability in the less abundant proteins (Fig. 2). This is 629 

evident in Figure 8, where most of the 1063 proteins across seven laboratories in the re-630 

analysis were in the upper half of proteins when ranked by abundance. This simultaneous 631 

consistency in abundant proteins and diversity in rare proteins (and their respective peptide 632 

constituents) was likely a result of several factors. First, the intercomparison experimental 633 

design stipulated 1D chromatography in order to provide straightforward comparisons that all 634 

laboratories could accomplish. This contributed to study consistency, but also resulted in lesser 635 

proteome depth compared to more elaborate methods such as 2D chromatography and gas 636 

phase fractionation commonly in use. Second, the sample complexity of ocean metaproteomes 637 

has been shown to be enormous, with a far greater number of low abundance peptides present 638 

than HeLa human cell lines (Saito et al., 2019). The combined effect of these factors meant that, 639 

while laboratories were able to detect abundant proteins consistently, there was considerable 640 

stochasticity associated with the detection of less abundant peptides resulting in a long tail of 641 

discovered lower abundance proteins.  642 

Mass spectrometer settings such as dynamic exclusion, chromatography conditions, and 643 

variation in sample preparation methods all likely contributed to this stochastic variability in rare 644 
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peptide detection among laboratories. Moreover, while all participating laboratories used 645 

Thermo orbitrap mass spectrometers, there were seven variants of instrument model, including 646 

some with Tribrid multiple detector capability (Table S6). While testing other mass spectrometry 647 

platforms is of interest, this trend of community orbitrap usage in this study is consistent with the 648 

broader proteomics community, where currently 9 of the top 10 instruments used in 649 

ProteomeXchange consortium repository data submissions utilize orbitraps as of the manuscript 650 

submission date (Deutsch et al., 2019). When conducting analysis of environmental samples, 651 

choices can be made about instrument setup and parameters based on the scientific objectives, 652 

for example if maximal proteome depth or robust quantitation while using a discovery approach 653 

is desired. Future intercalibration efforts enlisting more sensitive metaproteomic methods such 654 

as 2D-chromatography (McIlvin and Saito, 2021), more sensitive instruments (Stewart et al., 655 

2023), and other emerging methods can greatly improve detection and quantitation of rarer 656 

proteins in metaproteomes, allowing exploration of the depths of state-of-the-art capabilities 657 

rather than our present emphasis on interlaboratory consistency. Moreover, the development 658 

and adoption of best practices in sample collection, extraction, chromatographic separation, 659 

mass spectrometry analyses, and bioinformatic approaches will contribute to interlaboratory 660 

consistency. 661 

4.3 Despite the inter-laboratory variability in the detected sets of rarer peptides and proteins, we 662 

interpret these to be largely robust identifications. The stringent 0.1% peptide-level FDR 663 

threshold we use here is determined by scoring decoys: reverse sequenced peptides that 664 

are not in our samples. Peptide assignments to these decoys model the score distribution of 665 

all incorrect peptide-spectrum matches (PSMs) in our study such that FDRs can be 666 

estimated in an unbiased way for each laboratory. However, these estimates are 667 

complicated by subtle sequence diversity within a population’s proteome, which is typically 668 

not considered by proteomics software designed to analyze single species (Schiebenhoefer 669 
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et al., 2019). This diversity within metaproteomic samples results in the presence of highly 670 

similar peptides with nearly identical precursor masses that produce many of the same b- 671 

and y-ions, and this similarity is not well modeled by decoy peptides. The influence of 672 

microdiversity on metaproteomics FDR estimation using strain-specific proteogenomic 673 

databases is an important area of future exploration (Wilmes et al., 2008).Bioinformatics 674 

Intercomparison Assessment 675 

 The discovery of peptide constituents of proteins within a complex ocean metaproteomic 676 

matrix was successful across all software packages tested (Figure 7), where the metric for 677 

success is a comparable number of peptide identifications. This is a notable finding due to the 678 

highly complex mass spectra, large number of chimeric peaks present (Saito et al., 2019), and 679 

large database sizes involved in ocean metaproteomes. To our knowledge, some of these 680 

software packages had not yet been applied to ocean metaproteomes. There was also 681 

variability associated with the stringency of statistical parameters employed, which points to the 682 

challenges in assembling datasets from multiple laboratories with different depth of proteome 683 

identifications.  684 

 Despite the success of this intercomparison component across software packages, there 685 

is likely considerable room for improvement in the future. As mentioned previously, ocean 686 

samples are highly complex and there are likely additional peptides that remain unidentified 687 

using current technology, due to low intensity peaks and co-elution with other peptides resulting 688 

in the chimeric spectra. Significant improvements in depth of analysis can be achieved through 689 

increased chromatographic sample separation and optimized (or alternative) mass spectrometry 690 

data acquisition strategies. Yet there is room for bioinformatic improvements as well: most DDA 691 

database searching algorithms are unable to identify multiple peptides within a single 692 

fragmentation spectrum. Moreover, when in DDA collection mode mass spectrometry software 693 

typically does not isolate and fragment peptides that cannot be assigned a charge state, which 694 
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is a common occurrence for the low abundance peaks within ocean samples. As a result, there 695 

is considerable room for improvements in bioinformatic pipelines to discover additional peptides. 696 

Although the application of data independent approaches (DIA) to oceanographic 697 

metaproteomics analysis has been limited (e.g. Morris et al., 2010), the systematic nature of ion 698 

selection and fragmentation allows for a greater number of low abundant peptides to be 699 

quantified when enough ions can be isolated to produce robust MS2 spectra.,.  700 

4.4 Lessons Learned and Future Efforts in Ocean Metaproteomic Intercomparisons and 701 

Intercalibrations 702 

As the first interlaboratory ocean metaproteomics study, we chose to describe this study 703 

as an intercomparison rather than an intercalibration and it served as a vehicle with which to 704 

assess the extent of reproducibility. There were several lessons learned that can be 705 

summarized here. These include the efficacy of a SDS detergent and heat treatment in lysing 706 

and solubilizing marine microbial cells embedded on membrane filters, the significant problem 707 

of data intercomparability between PSM software outputs and need for data output 708 

standardization, and the influence of different hardware capabilities (Orbitrap generation) and 709 

their parameter settings such as dynamic exclusion on proteome depth and quantitative 710 

comparisons of spectral counts. The development of best practices associated with sample 711 

collection, extraction, and analysis would be valuable, while also encouraging methodological 712 

improvements and backward compatibility through the use of reference samples. 713 

Future intercalibration efforts could aim to further assess and improve upon the level of 714 

accuracy, reproducibility, and standardization of ocean metaproteome measurements.  In 715 

particular, alternative modes of data collection and quantitation could also be tested in future 716 

interlaboratory comparisons, including parallel reaction monitoring mode (PRM), multiple 717 

reaction monitoring mode (MRM), quantification using isotopic labeling or tagging, and DIA 718 
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methods. PRM and MRM methods allow sensitive targeted measurements of absolute 719 

quantities of peptides (e.g. copies per liter of seawater in the ocean context). As many ‘omics 720 

methodologies applied in environmental settings operate in relative abundance modes, adding 721 

the ability to measure absolute quantities would be particularly valuable for comparisons of 722 

environments across space and time. Targeted metaproteomic methods have been deployed in 723 

marine studies using stable isotope labeled peptides for calibration, achieving femtomoles per 724 

liter of seawater estimates of transporters, regulatory proteins, and enzymes (Saito et al., 2020; 725 

Bertrand et al., 2013; Saito et al., 2014, 2015; Joy-Warren et al., 2022; Wu et al., 2019). These 726 

methods are not yet widely adopted, but with growing interest could be deployed to other 727 

laboratories and incorporated into future iterations of intercomparison and intercalibration 728 

studies. DIA also has great potential in ocean metaproteome studies and is increasingly being 729 

deployed in laboratory and field studies of marine systems. Similar to this DDA intercomparison, 730 

the methodological and bioinformatic challenges of DIA could be explored during 731 

intercomparisons of analyses of ocean samples. Finally, as mentioned above, all participants of 732 

this study used orbitrap mass spectrometers for DDA submissions, but new instrumentation 733 

such as trapped ion mobility spectrometry time of flight mass spectrometers (timsTOF) may be 734 

applied to ocean metaproteome analyses and would be important to intercompare with orbitrap 735 

platforms.  736 

As noted above, there were also challenges in collating and comparing data outputs 737 

from various software, as well as variation in how those programs conducted protein inference. 738 

For example, peptide-level data from different research groups were reported as either 739 

unmodified peptide sequences or as various peptide analytes (where modifications and charges 740 

states were included with the peptide sequence), making compilation of peptide reports difficult. 741 

Similarly, at the protein level reported proteins could be counted either before or after protein 742 

grouping, e.g. applying Occam’s-razor logic to peptide groupings into proteins – the former 743 
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reflecting the set of all proteins in the database that could be in the sample, the latter the 744 

minimum set required to explain the peptide data. Such issues will also contribute to challenges 745 

in integration and assembly of data from different laboratories for large ocean datasets. While 746 

best practices for metadata and data types have been described by the community that include 747 

specific attributes important for environmental and ocean samples such as geospatial location 748 

and sample collection information (Saito et al., 2019) similar to the metadata standard recently 749 

put forward in the human proteome field (Dai et al., 2021), this study also demonstrated that 750 

there is  a need for standardization of data output formats for metaproteomic results.,.  751 

4.5 Metaproteomics in Global Ocean Surveys  752 

Understanding how the oceans are responding to the rapid changes driven by human 753 

alteration of ecosystems is a high priority. Ocean and environmental sciences have a long 754 

history of chemical measurements that are critical to assessing ecosystems and climatic 755 

change. Such measurements have been straightforward for discrete measurements, such as 756 

temperature, pH, chlorophyll, phosphate, dissolved iron and numerous other variables. When 757 

collected over large spatial (ocean basin) or temporal (seasonal or decadal spans) scales, these 758 

datasets have been powerful in identifying major (both cyclical and secular) changes. ‘Omics’ 759 

measurements represent a more complex data type where each discrete sample can generate 760 

thousands (if not more) of units of information. This study demonstrates the power and potential 761 

for collaborative metaproteomics studies to identify key functional molecules and relate them to 762 

their taxonomic microbial sources within the microbiome from multiple lab groups. Moreover, 763 

multi-lab metaproteomics results in vastly enhanced identification of low abundance proteins 764 

that are not identified by all research groups. Such low abundance proteins can be more likely 765 

to change in abundance with changing environmental conditions and nutrient limitations, 766 

resulting in a more nuanced and richer investigation of marine microbial ecology and 767 

biogeochemistry with collaborative metaproteomics research. The implementation of such 768 
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voluminous data is beginning to be applied on larger scales and holds great promise in 769 

improving not only our understanding of the functioning of the current system, but also the way 770 

we assess how environments are changing with continued human perturbations.  771 

Intercomparison and intercalibration are critical activities to undertake in order to allow 772 

comparison of ‘omics results across time and space dimensions. With major programs 773 

underway and being envisioned such as the BioGEOTRACES, AtlantECO, Bio-GO-SHIP, and 774 

BioGeoSCAPES efforts, the imperative for such intercalibration has grown and the need for best 775 

practices is urgent. This Ocean Metaproteomic Intercomparison study is a valuable step in 776 

assessing metaproteomic capabilities across a number of international laboratories, 777 

demonstrating a clear consistency in measurement capability, while also pointing to the 778 

potential for continued community development of metaproteomic capacity and technology.  779 
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Figure Captions  1048 

Figure 1. Ocean metaproteomics intercomparison experimental design and sample collection. 1049 

a) The laboratory component (left) consisted of collection of field samples, 1-dimensional (1D) 1050 

chromatographic separation followed by data dependent analysis (DDA) uniformly employing 1051 

orbitrap mass spectrometers analyses by participating laboratories and submission of raw and 1052 

processed data. The bioinformatic (right) component consisted of distribution of two 1D-DDA 1053 

files, peptide-to-spectrum matching (PSMs), and submission and compilation of results. b) Size-1054 

fractionated sample collection on 3.0 m pore-size filter followed by a 0.2 m pore-size Supor 1055 

filter, and the 0.2–3.0 m size fraction was used for the intercomparison study. c) Two horizontal 1056 

in-situ McLane pumps were bracketed together with two Mini-MULVS filter head units each and 1057 

deployment on synthetic line. d) The four 142 mm filters were sliced into eighths (inset) and two 1058 

slices were distributed to each participating laboratory. 1059 

 1060 

Figure 2. Shared peptides and proteins between laboratory groups using laboratory 1061 

submissions processed through a single bioinformatics re-analysis pipeline. a) Total number of 1062 

discovered unique peptides varied by more than three-fold among seven laboratory groups 1063 

(horizontal bars) due to varying extraction and analytical schemes (FDR 0.1%). The number of 1064 

intersections between datasets across all seven datasets was 1395 (fourth blue bar from left), 1065 

and various sets of intersections of peptides were observed amongst the data. b) Total number 1066 

of discovered proteins (FDR < 1%) varied more than four-fold from 1586 to 6221 among labs 1067 

(horizontal bars). Intersections between datasets across all seven laboratories was 1056, with 1068 

various sets of intersections of proteins observed, similar to the peptides. c) 7-way Venn 1069 

diagrams of shared unique peptides between laboratories showed 1056 shared peptides 1070 

between the 7 laboratories. d) 3-way Venn diagrams showed 2398, 2304, and 3016 shared 1071 

unique peptides between laboratories.  1072 
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 1073 

Figure 3.  Comparison of unique peptides and discovered proteins. Comparison as total protein 1074 

identifications and protein groups from the single pipeline re-analysis based on submissions 1075 

from 9 laboratories. Increasing sample depth is linear with mapping to proteins, (R2 of 0.97 and 1076 

0.98 for total protein IDs and protein groups, respectively, with slopes of 0.37 and 33) implying 1077 

that additional peptide discovery leads to proportionally more protein discovery, and that protein 1078 

discovery has not yet begun to saturate with more peptides mapping to each protein. Because 1079 

simple 1D analyses were stipulated in the intercomparison experimental design, peptide and 1080 

protein discovery was correspondingly limited in depth. 1081 

 1082 

Figure 4.  Quantitative comparison of intercomparison results. a) Pairwise comparisons of 1083 

quantitative abundance across six laboratories in units of spectral counts (comparisons with 1084 

itself show unison diagonals). b) R2 values from pairwise linear regressions. d) Total proteins 1085 

identified in each laboratory. d) Average of each laboratory’s R2 values from pairwise regression 1086 

with the other six laboratories (error bars are standard deviation). In all cases average R2 values 1087 

are higher than 0.5. e) Occurrences of R2 values in pairwise comparisons spanning 0.4 to 0.9. 1088 

Potential causes of this range are outlined in the Discussion section.  1089 

 1090 

Figure 5. Taxonomic and functional analysis of metaproteomic intercomparison. a) Percent 1091 

spectral counts by taxonomy was similar across laboratories and technical replicates within 1092 

laboratories. The sample was dominated by cyanobacteria and alphaproteobacteria, 1093 

corresponding primarily to Prochlorococcus and Pelagibacter, respectively. b) Percent spectral 1094 

counts per Kegg Ontology group showed the functional diversity of the sample.  1095 

 1096 

Figure 6. Quantitative Sørensen similarity analysis. Analysis of top 1000 proteins (~75% of all 1097 

proteins) showed 70–80% similarity between most laboratory groups. Technical triplicates for 1098 
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each laboratory group are shown.  1099 

 1100 

Figure 7. Intercomparison of bioinformatic pipelines among laboratories. Unique peptide 1101 

identifications for sample Ocean 8 from 120m depth (a) and Ocean 11 from 20m depth (b), both 1102 

from the North Atlantic Ocean (Table S3), using a variety of pipelines and PSM algorithms. 1103 

 1104 

Figure 8. Variability in discovered proteins between laboratories occurs in lower abundance 1105 

proteins. Top 7 panels: Abundance of proteins as percentage of total protein spectral counts 1106 

within each laboratory (y-axis is percentage), with proteins on the x-axis shown by ranked 1107 

abundance as the sum of spectral counts across all laboratories. Almost all proteins fall below 1108 

1% of spectral counts within the sample, and deeper proteomes have lower percentages due to 1109 

sharing of percent spectral counts across more discovered proteins. Bottom panel: Shared 1110 

proteins were found early within the long-tail of discovered proteins: the 1056 proteins shared 1111 

between all laboratory groups are almost all found to the left side indicating their higher 1112 

abundance in all seven datasets. Scale is binary in the seventh panel indicating presence in 7 1113 

labs or not. 1114 
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Figure 1.   1117 
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Figure 3 1135 
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Figure 4.  1144 
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Figure 5. 1149 
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Figure 6.    1162 
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Figure 7.    1170 
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Figure 8.  1176 
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