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Abstract 42 

Metaproteomics is an increasingly popular methodology that provides information regarding the 43 

metabolic functions of specific microbial taxa and has potential for contributing to ocean ecology 44 

and biogeochemical studies. A blinded multi-laboratory intercomparison was conducted to 45 

assess comparability and reproducibility of taxonomic and functional results and their sensitivity 46 

to methodological variables. Euphotic zone samples from the Bermuda Atlantic Time-Series 47 

Study in the North Atlantic Ocean collected by in situ pumps and the AUV Clio were distributed 48 

with a paired metagenome, and one-dimensional liquid chromatographic data dependent 49 

acquisition mass spectrometry analyses was stipulated. Analysis of mass spectra from seven 50 

laboratories through a common bioinformatic pipeline identified a shared set of 1056 proteins 51 

from 1395 shared peptides constituents. Quantitative analyses showed good reproducibility: 52 

pairwise regressions of spectral counts between laboratories yielded R2 values averaged 0.62 53 

+/- 0.11ranging from 0.43 to 0.83, and a Sørensen similarity analysis of the top 1,000 proteins 54 

revealed 70-80% similarity between laboratory groups. Taxonomic and functional assignments 55 

showed good coherence between technical replicates and different laboratories. A bion 56 

informatic intercomparison study, involving 10 laboratories using 8 software packages 57 

successfully identified thousands of peptides within the complex metaproteomic datasets, 58 

demonstrating the utility of these software tools for ocean metaproteomic research. Lessons 59 

learned and potential improvements in methods were described. Future efforts could examine 60 

reproducibility in deeper metaproteomes, examine accuracy in targeted absolute quantitation 61 

analyses, and develop standards for data output formats to improve data interoperability. 62 

Together, these results demonstrate the reproducibility of metaproteomic analyses and their 63 

suitability for microbial oceanography research including integration into global scale ocean 64 

surveys and ocean biogeochemical models.  65 

 66 
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1. Introduction 67 

Microorganisms within the oceans are major contributors to global biogeochemical cycles, 68 

influencing the cycling of carbon, nitrogen, phosphorus, sulfur, iron, cobalt and other elements 69 

(Falkowski et al., 2008; Moran et al., 2022; Worden et al., 2015). ‘Omic methodologies can 70 

provide an expansive window into these communities, with genomic approaches characterizing 71 

the diversity and potential metabolisms, and transcriptomic and proteomic methods providing 72 

insights into expression and function of that potential. Similar to other ‘omics approaches, 73 

proteomics is increasingly being applied to natural ocean environments and the diverse 74 

microbial communities within them. When proteomics is applied to such mixed communities, it is 75 

generally referred to as metaproteomics (Wilmes and Bond, 2006).Of these, proteomics is 76 

increasingly being applied to natural ocean environments—when applied to complex 77 

communities with diverse taxa present, the technique is commonly referred to as 78 

metaproteomics (Wilmes and Bond, 2006). Metaproteomic samples contain an extraordinary 79 

level of complexity relative to single organism proteomes (at least 1-2 orders of magnitude) due 80 

to the simultaneous presence of many different organisms in widely varying abundances 81 

(McCain and Bertrand, 2019). In particular, ocean metaproteome samples are significantly more 82 

complex than the human proteome, the latter of which is itself considered to be a highly 83 

complex sample (Saito et al., 2019). Proteomics (including metaproteomics) provides a 84 

perspective distinct from other ‘omics methods: as a direct measurement of cellular functions it 85 

can be used to examine the diversity of ecosystem biogeochemical capabilities, to determine 86 

the extent of specific nutrient stressors by measurement of transporters or regulatory systems, 87 

to determine cellular resource allocation strategies in-situ, estimate biomass contributions from 88 

specific microbial groups, and even to estimate potential enzyme activity (Bender et al., 2018; 89 

Bergauer et al., 2018; Cohen et al., 2021; Fuchsman et al., 2019; Georges et al., 2014; Hawley 90 

et al., 2014; Held et al., 2021; Leary et al., 2014; McCain et al., 2022; Mikan et al., 2020; Moore 91 

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted: Font: Not Italic



 

4 
 

et al., 2012; Morris et al., 2010; Saito et al., 2020; Sowell et al., 2009; Williams et al., 2012). The 92 

functional perspective that metaproteomics allows is often complementary to metagenomic and 93 

metatranscriptomic analyses and can provide biological insights that are distinct from organisms 94 

studied in the laboratory (Kleiner et al., 2019). Moreover, the measurement of microbial proteins 95 

in environmental samples has improved greatly in recent years, due to the advancements in 96 

nanospray-liquid chromatography and high-resolution mass spectrometry approaches (Mueller 97 

and Pan, 2013; Ram et al., 2005; McIlvin and Saito, 2021).  98 

With increasing interest in the measurement of proteins and their biogeochemical 99 

functions within the oceans, the metaproteomic datatype is beginning to establish itself as a 100 

valuable research and monitoring tool. However, given rapid changes in technology and 101 

methods, as well as the overall youth of the metaproteomic field, demonstrating the 102 

reproducibility and robustness of metaproteomic measurements to microbial ecology and 103 

oceanographic communities is an important goal. This is particularly true as applications for 104 

metaproteomics expand in research and monitoring of the changing ocean environment, for 105 

example in global scale efforts such as the developing BioGeoSCAPES program 106 

(www.biogeoscapes.org; (Tagliabue, 2023)), which aims to characterize the ocean metabolism 107 

and nutrient cycles on a changing planet. As a result, there is a pressing need to assess inter-108 

laboratory consistency, and to understand the impacts of sampling, extraction, mass 109 

spectrometry, and bioinformatic analyses on the biological inferences that can be drawn from 110 

the data. 111 

 There have been efforts to conduct intercomparisons of metaproteomic analyses in both 112 

biomedical and environmental sample types in recent years that provide precedent for this 113 

study. A recent community best practice effort in ocean metaproteomics data-sharing also 114 

identified major challenges in ocean metaproteomics research, including sampling, extraction, 115 

sample analysis, bioinformatics pipelines, and data sharing, and conducted a quantitative 116 

http://www.biogeoscapes.org/
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assessment of sample complexity in ocean metaproteome samples (Saito et al., 2019). A 117 

previous benchmark study, driven by the Metaproteomics Initiative (Van Den Bossche et al., 118 

2021), was the “Critical Assessment of Metaproteome Investigation study” (CAMPI) that 119 

employed a laboratory-assembled microbiome and human fecal microbiome sample to 120 

successfully demonstrate reproducibility of results between laboratories. CAMPI found 121 

robustness in results across datasets, while also observing variability in peptide identifications 122 

largely attributed to sample preparation. This observation was consistent with prior findings on 123 

single organism samples that determined >70% of the variability was due to sample processing, 124 

rather than chromatography and mass spectrometry (Piehowski et al., 2013). Finally, the 125 

Proteomics Informatics Group (iPRG) from the Association of Biomolecular Resources Facilities 126 

(ABRF) conducted a study examining the influence of informatics pipelines on metaproteomics 127 

analyses that found consistency among research groups in taxonomic attributions (Jagtap et al., 128 

2023), and previous research has demonstrated the impact of database choices on final 129 

functional annotations and biological implications (Timmins-Schiffman et al., 2017). 130 

Here we describe the results from the first ocean metaproteomic intercomparison. In this 131 

study, environmental ocean samples were collected from the euphotic zone of the North Atlantic 132 

Ocean and partitioned into subsamples and distributed to an international group of laboratories 133 

(Fig. 1). The study was designed to examine inter-laboratory consistency rather than maximal 134 

capabilities, stipulating one-dimensional chromatographic analyses from each laboratory (with 135 

optional deeper analysis). Users were invited to use their preferred extraction, analytical, and 136 

bioinformatic procedures. The effort focused on the data dependent analysis (DDA) methods,  137 

also known as global proteomics where the targets are unknown and hence there is a discovery 138 

element to the approach. DDA is that are currently common in ocean and other environmental 139 

and biomedical metaproteomics, and its associated spectral abundance units of relative 140 

quantitation, which have been shown to be reproducible in metaproteomics (Kleiner et al., 2017; 141 
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Pietilä et al., 2022). Blinded results were submitted, compared and discussed at a virtual 142 

community workshop in September of 2021. An additional bioinformatic pipeline comparison 143 

study was also conducted where participants were provided metaproteomic raw data and 144 

associated metagenomic sequence database files and were encouraged to use the 145 

bioinformatic pipeline of their choice.  146 

2. Methods 147 

2.1 Sample Collection and Metadata 148 

Ocean metaproteome filter samples for the wet lab comparison (Figure 1) were collected 149 

at the Bermuda Atlantic Time-series Study (31o 40’N 64 o 10’W) on expedition BATS 348 on 150 

June 16th, 2018, between 01:00 and 05:00 am local time. In situ (underwater) large volume 151 

filtration was conducted using submersible pumps to produce replicate biomass samples at a 152 

single depth in the water column for intercomparisons. All filter subsamples are matched for 153 

location, time, and depth. To collect the samples, two horizontal McLane pumps were clamped 154 

together (Figure 1c) and attached at the same depth (80 m) with two filter heads (Mini-MULVS 155 

design) on each pump and a flow meter downstream of each filter head. This depth was chosen 156 

to correspond to a depth with abundant chlorophyll and photosynthetic organisms. Each filter 157 

head contained a 142 mm diameter 0.2 µm pore-size Supor (Pall Inc.) filter with an upstream 158 

142 mm diameter 3.0 µm pore-size Supor (Figure 1b, d). Only the 0.2 – 3.0 µm size fraction 159 

was used in this study. The pumps were set to run for 240 min at 3 L per min. Volume filtered 160 

was measured by three gauges on each pump, one downstream of each pump head, and one 161 

on the total outflow (Table S2). Individual pump head gauges summed to the total gauge for 162 

pump 1 (within 1 L; 447 L and 446.2 L), but deviated by 89 L on pump 2 (478 L and 388.9 L). 163 

Given that the total gauge is further downstream, we report the pump head gauges as being 164 

more accurate. 165 
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The pump heads were removed from the McLane pumps immediately upon retrieval, 166 

decanted of excess seawater by vacuum, placed in coolers with ice packs, and brought into a 167 

fabricated clean room environment aboard the ship. The 0.2 µm pore-size filters were cut in 168 

eight equivalent pieces and frozen at -80°C in 2 mL cryovials, creating 16 samples per pump 169 

that were co-collected temporally and in very close proximity (<1 m) to each other for a total of 170 

32 samples used in this study (Figure 1d). The 3.0 µm pore-size filters are not included in this 171 

study but are archived for future efforts. The sample naming scheme associated with the 172 

different pumps and pump heads is described in Table S2. Note that pump 1A and 1B samples 173 

accidentally had two 3.0 µm filters superimposed above the 0.2 µm filter, and 1B had a small 174 

puncture in it, although neither of these seemed to affect the biomass collected, presumably the 175 

puncture occurred after sampling was completed. 176 

Samples for the bioinformatic component were collected by the autonomous underwater 177 

vehicle Clio. The vehicle and its sampling characteristics were used as previously described 178 

(Breier et al., 2020; Cohen et al., 2023). Specifically, samples  Ocean-8 and Ocean-11 were 179 

also collected from the BATS station on R/V Atlantic Explorer expedition identifier AE1913 (also 180 

described as BATS validation track BV55 32.75834o N 65.7374o W). The samples were 181 

collected by autonomous underwater vehicle (AUV) Clio on June 19th 2019, dive Clio020, with 182 

samples collected at 20 m (Ocean-11) and 120 m (Ocean-8) with 66.6 L and 92.6 L filtered, 183 

respectively, used for this study. These depths were chosen to reflect the near surface (high-184 

light) and deep chlorophyll maximum (low-light) communities present in the stratified summer 185 

conditions. These samples were analyzed by 1D DDA analysis using extraction and mass 186 

spectrometry for laboratory 438 within their laboratory (Tables S5-S7). Sample metadata for 187 

both arms of this intercomparison study and corresponding repository information is provided in 188 

Table S3 and repository links are in the Data Availability Statement.   189 

2.2 Metagenomic Extraction, Sequencing, and Assembly 190 
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A metagenomic (reference sequence) database was created for peptide to spectrum 191 

matching  (PSMs) for the metaproteomic studies using a 1/8th sample split from the exact 192 

sample used in the intercomparison as described above. Samples were shipped on dry ice to 193 

the Naval Research Laboratory in Washington D.C. (USA), where DNA was extracted and 194 

sequenced. Preserved filters were cut into smaller pieces using a sterile blade and placed into a 195 

PowerBead tube with a mixture of zirconium beads and lysis buffer (CD1) from the Dneasy 196 

PowerSoil Pro kit (Qiagen, Hilden Germany). The bead tube with filter sample was heated at 197 

65°C for 10 min then placed on a vortex adapter and vortexed at maximum speed for 10 min. 198 

After sample homogenization/lysis, the bead tube was centrifuged at 16 k x g for 2 min. The 199 

supernatant was transferred to a DNA LoBind tube and processed using the manufacturer’s 200 

recommendations. The purified DNA was further concentrated by adding 10 μL3 M NaCl and 201 

100 μL cold 100% ethanol. The sample was incubated at -30°C for 1 hour, followed by 202 

centrifugation at 16 k x g for 10 min. The supernatant was removed and precipitated DNA was 203 

air-dried and resuspended in 10 mM Tris. DNA concentration was quantified with the Qubit 204 

dsDNA High Sensitivity assay (Thermo Fisher Scientific, Waltham, MA, USA) and DNA quality 205 

was assessed using the NanoDrop (ThermoFisher) and gel electrophoresis. Processing controls 206 

included reagent only and blank filter samples.  207 

Sequencing libraries were created from purified sample DNA using the IonExpress Plus 208 

gDNA Fragment Library Preparation kit (Thermo Fisher) for a 200 bp library insert size. No 209 

amplification of the library was required as determined by qPCR using the Ion Library TaqMan 210 

Quantitation Kit. A starting library concentration of 100 pM was used in template generation and 211 

chip loading with the Ion 540 Kit on the Ion Chef instrument prior to single-end sequencing on 212 

the S5 benchtop sequencer. 213 

Sequencing used a mix of Ion Torrent and Oxford Nanopore sequencing and resulting 214 

sequencing reads were assembled using SPAdes v. 3.13.1 with Python v. 3.6.8. Following 215 
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metagenome assembly, contigs smaller than 500 bases were discarded. Open reading frame 216 

(ORF) calling was performed on contigs 500 bps or longer using Prodigal v. 2.6.3 (Hyatt et al., 217 

2010) run with metagenomic settings as well as MetaGeneMark by submitting to the 218 

MetaGeneMark server (http://exon.gatech.edu/meta_gmhmmp.cgi) using GeneMark.hmm 219 

prokaryotic program v. 3.25 on August 11, 2019. ORFs called from both programs were 220 

combined and made non-redundant using in-house Python scripts that utilize BioPython v. 1.73. 221 

Non-redundant ORFs were annotated using the sequence alignment program DIAMOND (v 0.9.29) 222 

with the NCBI nr database (downloaded 12/17/2019). ORFs were also annotated with InterProScan 223 

(v 5.29) and with GhostKOALA (Kanehisa et al., 2016) (submitted to server 1/2/2020). Taxonomy 224 

lineages were generated by using the best DIAMOND (Buchfink et al., 2015) hit and pulling lineage 225 

information from NCBI Taxonomy database using BioPython v. 1.73. 226 

2.3 Proteomic methodologies: Extraction, instrumentation, and bioinformatics 227 

Some basic protocol stipulations were provided to study participants regarding analytical 228 

conditions to set a uniformity of experimental design. While users were encouraged to use the 229 

extraction method of their preference, constraints on chromatography and mass spectrometry 230 

conditions were set, limiting the number of chromatographic dimensions to one (1D), the total 231 

length of the chromatographic run, the amount of protein injected (as proteolytic digests), and a 232 

single mass spectrometry injection rather than gas phase fraction approaches (Table S4). Each 233 

laboratory group’s specific approach is summarized in the supplemental methods, with 234 

extraction in Table S5, and chromatography and mass spectrometry equipment and parameters 235 

in Tables S6 and S7. While there are more sophisticated methods such as two-dimensional 236 

(2D) chromatography and gas phase fractionations that have been demonstrated to provide 237 

deeper metaproteomes (McIlvin and Saito, 2021), these often require specialized equipment 238 

and/or additional instrument time. As a result, the study constraints were provided to ensure a 239 

http://exon.gatech.edu/meta_gmhmmp.cgi
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single simple method that all labs could utilize. Laboratories were invited to submit additional 240 

data from more complex analytical setups if they first completed the 1D analyses.  241 

Methods used for the informatics intercomparison study are also presented within the 242 

Supplemental Materials.  243 

 244 

2.4 Compilation, analysis, and re-analysis of laboratory data submissions 245 

Results from individual laboratories’ data submissions were analyzed in two ways as 246 

shown in the flowchart of Figure 1a. First, submitted processed data reports (i.e. PSMs, 247 

taxonomic, functional annotations) were compiled and interpreted. Second, raw data files (i.e. 248 

spectra directly from instruments) from each group were put through a single bioinformatic 249 

pipeline using SEQUEST HT/Percolator within Proteome Discoverer (Version 2.2.0.388, 250 

Thermo Scientific) and Scaffold (Version 5.2.1, Proteome Software) to isolate variability 251 

associated with bioinformatic processing. Note that Scaffold ignores the Percolator output from 252 

Proteome Discoverer when re-running in Scaffold. This re-analysis (single pipeline re-analysis 253 

hereon) allowed detailed cross-comparisons of laboratory practices to assess the influence of 254 

the extraction and mass spectrometry components. Specific parameters of the latter included: 255 

parent and fragment  of tolerances of 10ppm were used on all instruments (all Orbitraps) for 256 

fragments tolerances of 0.02 Da or 0.6 Da were used for the instruments with Orbitrap ms2 257 

instruments and , for ion trap ms2 0.6 Dafor ion trap ms2 instruments, respectively.. and 0.02 258 

Da, respectively, with fFixed and variable modifications of +57 on C (fixed), and +16 on M and 259 

+42 on Peptide N-Terminal (variable) were used. 0.02 for the instruments with Orbitrap ms2, for 260 

ion trap ms2 0.6 Da. Peptide and protein FDRs (false discovery rates) were set to lower than 261 

1.0% using a decoy database, with 1 minimum peptide per protein, and the resulting peptide 262 

FDR was 0.1%. The database used for PSMs was 263 

Intercal_ORFs_prodigal_metagenemark.fasta based on the metagenomic sequencing 264 

described above with 197,824 protein entries. The protein in this The re-analysis was conducted 265 
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within Scaffold using total spectral counts and allowing single peptides to be attributed to 266 

proteins. In addition to the total number of protein identifications, the number of protein groups 267 

identified by Scaffold was also provided. Each protein group represented proteins identified with 268 

identical peptides, collapsed into a single protein entry with the highest probability and number 269 

of spectral counts.  270 

 271 

2.5 Data analysis methods 272 

Several analyses were conducted using data from the single pipeline re-analysis. First, 273 

pairwise comparisons of protein identifications were conducted using spectral abundance 274 

reports produced in Scaffold, and loaded, analyzed and visualized in MATLAB (MathWorks Inc). 275 

Two-way (independent) linear regressions were conducted using the script linfit.m. R2 on the 276 

seven datasets were averaged and their standard deviation calculated for shared proteins in 277 

each dataset. Second, a Sørensen similarity (Sørensen, 1948) was calculated where a matrix 278 

was generated that consisted of the unique proteins or peptides identified across all technical 279 

replicates from the various labs with the relative abundance per replicate (% contribution of 280 

each protein/peptide per technical replicate total). The Bray-Curtis dissimilarity pairwise distance 281 

was calculated on this matrix using Python and the SciPy library (v. 1.4.1, (Virtanen et al., 282 

2020)) and then 1 – Bray-Curtis dissimilarity was calculated across the matrix to generate the 283 

Sørensen pairwise similarity across all replicates. The resulting similarities per replicate were 284 

clustered and visualized using the clustermap function in the Seaborn library (v. 0.10.0, 285 

(Waskom, 2021)). Third, shared peptides and proteins were visualized using Upset plots, using 286 

the R package UpSetR (Conway et al., 2017) to determine the number of unique peptide 287 

sequences and annotated proteins in intersecting sets between all labs, all permutations of lab 288 

subsets, and all lab pairs.  289 

2.6. Bioinformatics Intercomparison Methods 290 Formatted: Font: Italic
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The Mmethods used for the bioinformatics intercomparison study are also presented within the 291 

Supplemental Materials. are described by each laboratory using their unique three-digit identifier 292 

code. All laboratories used the metagenomic database generated in the laboratory study (see 293 

Section 2.2).  294 

Lab 109: The raw files were searched against the metagenomic database employing a 2 round 295 

search using PEAKS Studio X. The initial database search was performed to focus the 296 

metagenomic database for protein sequences with peptide sequence matches at 5% FDR. The 297 

focused database was further used for a second round search, which allowed a parent mass 298 

error tolerance of 10.0 ppm and a fragment mass error tolerance of 0.6 Da. The search 299 

considered up to 3 missed cleavages, carbamidomethylation as fixed and methionine oxidation 300 

and N-terminal acetylation as variable modifications. The cRAP protein sequences 301 

(http://ftp.thegpm.org/fasta/cRAP./) were included as contaminant database. Finally, PSMs were 302 

filtered for 1% FDR and annotated with taxonomic lineages (obtained from the metagenomic 303 

experiments). Non-unique peptide matches were annotated with the LCA of the respective 304 

lineages.  305 

Lab 321: SearchGUI (Galaxy Version 3.3.10.1) was used to search using multiple search 306 

algorithms (X!Tandem, MS-GF+ and Comet). For each search algorithm, Precursor Tolerance 307 

of 10.0 ppm, Fragment Ion Tolerance of 0.6 Da and trypsin was used as an enzyme for 308 

proteolytic cleavage. Searches were performed allowing for two missed cleavages fixed 309 

modification of Carbamidomethylation at cysteine and Variable Modifications of Acetylation of 310 

protein N-term and Oxidation of Methionine. PeptideShaker (Version: 1.16.36) was used to filter 311 

peptides with the length of 8-50 aas and a precursor m/z tolerance of 10.0 ppm. Detected 312 

peptide-spectral matches, peptides and proteins were reported at 1% global FDR. All of the 313 

analysis was performed within Galaxy platform.  314 

Lab 321: MaxQuant (Galaxy version 1.6.17.0+galaxy3) was used to search the datasets. A 315 

fixed modification of carbamidomethylation at cysteine and variable mmodifications of 316 

Formatted: Indent: First line:  0"
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acetylation of protein N-term and oxidation of methionine was applied along with allowing for 317 

two missed cleavages. The detection peptides and proteins were reported at 1% FDR.  318 

Lab 362: The raw files were converted using ThermoRawFileParserGUI (version 1.4.1) to peak 319 

lists (.mgf files) using “native Thermo library peak picking” as the peak picking option and 320 

“Ignore missing instrument properties” as the error option. The peak lists (.mgf files) obtained 321 

from MS/MS spectra were identified using X! Tandem version X! Tandem (Vengeance version 322 

2015.12.1) using SearchGUI version 4.1.0. Here, the parameters provided and suggested by 323 

the study were used: tolerances of 10 ppm for MS1 and 0.6 Dalton for MS/MS; dynamic 324 

modifications: oxidation of M, and acetyl on N-terminus; static modifications: carbamidomethyl 325 

of C. Identification was conducted against a concatenated target/decoy database of the 326 

provided database.  327 

The X!Tandem files were used as input in MS²ReScore 328 

(https://github.com/compomics/ms2rescore), a machine learning-based post-processing tool 329 

that improves upon Percolator rescoring of peptide-to-spectrum matches (PSMs). Here, the 330 

search engine-dependent features of Percolator were appended with MS2 peak intensity 331 

features by comparing the PSM with the corresponding MS²PIP-predicted spectrum. All 332 

reported MS²ReScore PSM identifications have a q-value < 0.01. No protein grouping algorithm 333 

was applied, and all identified taxa and functions are extracted from the provided database.  334 

Lab 458: The Proteome Discoverer 2.5 platform was used (SequestHT + Percolator (MPS)).  335 

Fully tryptic peptides with a minimum length of 6 peptides and a maximum of 2 missed 336 

cleavages were required.  Precursor Tolerance of 10.0 ppm, Fragment Ion Tolerance of 0.6 Da. 337 

carbamidomethylation as fixed and methionine oxidation was set as a variable modification. Filtering 338 

was performed at a 1% PSM- and peptide-level FDR.  The MaxQuant contaminant list was used as 339 

a contaminant database.  340 

Lab 501: We first appended the database with a set of common contaminants (Global 341 

Proteome Machine Organization common Repository of Adventitious Proteins). Then, we used 342 
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MSGF+ (Kim and Pevzner, 2014) to match mass spectra with peptide sequences, with cysteine 343 

carbamidomethylation as a fixed modification, and methionine oxidation, glutamine modified to 344 

pyro-glutamic acid, deamidated asparagine, and deamidated glutamine, as variable 345 

modifications. Peptides were searched for with a Target-Decoy approach, with a 1% false 346 

discovery rate at the peptide spectrum match level. For spectral counts, we summed MS2 347 

spectra that identified a peptide, and normalized all spectral counts to the total spectral counts 348 

per sample. Proteins were quantified using the median spectral count for all proteotypic 349 

peptides (those peptides which uniquely correspond to a protein), specifically using the 350 

OpenMS tool ProteinQuantifier. This approach requires at least one proteotypic peptide, but if 351 

more are identified, those peptides are also used for quantification.  352 

Lab 828: The raw files were analyzed using Thermal proteome discover. MS/MS spectrums 353 

were searched against provided database using SEQUEST-HT engine. MS/MS spectra 354 

searches were performed as follows: precursor ion tolerance of 10.0 ppm; fragment ion 355 

tolerance of 0.6 Da; carbamidomethyl cysteine was specified as fixed modification, whereas 356 

oxidation (M), deamidation (N/Q), and N-terminal protein acetylation were set as variable 357 

modifications. Trypsin was specified as the proteolytic enzyme, allowing for two missed 358 

cleavages. Percolator-based scoring was chosen to improve the discrimination between correct 359 

and incorrect spectrum identifications, learning from the results of a decoy and target database; 360 

settings were as follows: maximum delta Cn, 0.05; strict false-discovery rate of 0.01 and 361 

validation based on q values.  362 

Lab 902: SEQUEST-HT was used within Proteome Discoverer 2.2 using the following settings: 363 

maximum missed cleavage 2, minimum peptide length 6, maximum peptide length 122, 364 

precursor mass tolerance 10ppm, fragment mass tolerance 0.6 Dalton; dynamic modifications: 365 

M oxidation, acetyl on N-terminus; static modifications: C carbamidomethyl. Percolator PSM 366 

validator (within Proteome Discoverer) with following settings: maximum Delta Cn 0.05, target 367 

FDR strict 0.01, target FDR relaxed 0.05, validation based on PEP. Scaffold 5.0 used to analyze 368 
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Proteome Discoverer generated files with following settings: scoring system: prefiltered mode; 369 

protein grouping: standard experiment wide protein grouping; protein threshold 1.0% FDR; 370 

peptide threshold 0.1% FDR; minimum number of peptides 1.  371 

Lab 932: Mass spectrometry data were transformed from Thermo RAW format (version 66) to 372 

mzML and Mascot Generic (MGF) formats using ThermoRawFileParser (version 1.2.0, 373 

Hulstaert et al., 2020). Experimental metadata were extracted from mass spectrometry data 374 

using the MARMoSET program (Kiweler et al. 2019). Mascot Server (version 2.6.2, Matrix 375 

Science, LTD) software performed peptide-spectrum matching between experimental data and 376 

a reference sequence database. Reference sequences included a total of 197,824 predicted 377 

protein-coding ORFs from a metagenome assembly. Peptides matching an in-house curated 378 

inventory of contaminant protein sequences, mass standards, and proteolytic enzyme 379 

sequences were removed from the results. Mascot search parameters included the following 380 

settings: +10.0 ppm monoisotopic precursor mass tolerance; +0.6 Da monoisotopic fragment 381 

ion tolerance; one fixed modification (+57 to C residues); two variable modifications (+16 to M 382 

residues, +42 to peptide amino-termini); digestion enzyme trypsin; two missed cleavages; 383 

peptide charges +2-+7; and instrument type: electrospray ionization coupled to fourier-transform 384 

ion cyclotron resonance (ESI-FTICR). Mascot search results containing peptide-spectrum 385 

matches (PSMs) were exported for downstream data analysis. Scaffold Q+S (version 4.8.9) was 386 

used to validate MS/MS-based peptide- and protein-level peptide-spectrum matches (PSM) with 387 

the Peptide Prophet algorithm. Mascot PSM data were imported into Scaffold Q+S with the 388 

following settings specified: quantitative metric: spectrum counting; scoring system: use legacy 389 

Peptide Prophet scoring (high mass accuracy); protein grouping: use standard experiment-wide 390 

grouping; optional loading steps: pre-compute false discovery rate (FDR) thresholds; and, use 391 

local gene ontology (GO) annotations (UniProt GO annotation data retrieved 25 JUN 2020). 392 

Scaffold Q+S identification criteria were set at greater/equals >99.9% probability by the Peptide 393 
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Prophet algorithm (Keller et al. Anal. Chem. 2002.) and >99.9% probability by the Protein 394 

Prophet algorithm (Nesvizhskii et al., Anal. Chem. 2003) with >2 peptides at the protein level.  395 

Lab 957: MSFragger 3.3 searches were performed with FragPipe 16.0 and Philosopher 4.0.0. A 396 

concatenated target/reverse database was searched with a 50 PPM precursor and 0.4 Da 397 

fragment mass tolerance. Automatic mass calibration and parameter optimization was enabled 398 

and precursor mass errors for up to +2 neutrons were considered. Peptide candidates were 399 

generated from database protein sequences assuming tryptic digestion, allowing for up to one 400 

missed cleavage. Peptides were required to have between 8-50 amino acids and range from 401 

500 to 5000 m/z. Cysteines were assumed to be fully carbamidomethylated, and peptides were 402 

searched considering variable n-terminal pyroglutamic acid formation and methionine oxidation. 403 

PeptideProphet was used for FDR validation with the following default options: “--decoy probs”, 404 

“--ppm”, “--accmass”, “--nonparam”, and “--expectscore”, which allow for additional high-mass 405 

accuracy analysis and non-parametric distribution fitting. ProteinProphet was used for protein-406 

level FDR validation with the following default option: “--maxppmdiff 2000000”. Filtering was 407 

performed using a 1% peptide-level and a 1% protein-level FDR threshold. 408 

 409 

3. Results  410 

3.1 Experimental Design 411 

This ocean metaproteomic intercomparison consisted of two major componentsactivities: 412 

a laboratory component, where independent labs processed identical ocean samples 413 

simultaneously collected from the North Atlantic Ocean (Fig. 1a, see Section 2.1), and a 414 

subsequent bioinformatic component. Participating institutions and persons at those institutions 415 

are listed in Table S1, with all participants also listed as co-authors. Both arms of the study were 416 

conducted under blinded conditions, where correspondence with participants was conducted by 417 

an individual not involved in either study, and submitted results and data were anonymized prior 418 
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to sharing with the consortium. Within both arms of the study, participants were provided the 419 

location of the study site and metadata about the sampling locations, time and depth at the 420 

onset of the study. The laboratory study involved two biomass-laden filter slices collected from 421 

the North Atlantic Ocean Bermuda Atlantic Time series Study site at 80m depth being sent to 422 

each participating group for protein extraction, mass spectrometry, and bioinformatic analyses 423 

(see Section 2.1 below). This depth was chosen to correspond to a depth with abundant 424 

chlorophyll and associated photosynthetic organisms. The bioinformatic effort was independent 425 

of the laboratory effort and involved the distribution and bioinformatic analysis of two 426 

metaproteomic raw data files generated from samples also from the North Atlantic Ocean upper 427 

water column BATS station (20m and 120m depths, see Section 2.1). These depth were chosen 428 

to reflect the near surface (high-light) and deep chlorophyll maximum (low-light) communities 429 

present in the stratified summer conditions.These files were distributed after labs had submitted 430 

their laboratory extracted raw data files. The raw files from the bioinformatic study were distinct 431 

from the samples used in the laboratory intercomparison study to avoid any biases from groups 432 

that analyzed those samples previously. Submitted results from both components were 433 

anonymized and assigned three-digit lab identifiers generated randomly with laboratory and 434 

bioinformatic results from the same lab being assigned distinct identifiers.  435 

We report results for two study components: Part 1 (Section 3.2) involves the data 436 

generation intercomparison of distributed subsamples from the North Atlantic Ocean (Fig. 1; 437 

Section 2.1). Part 2 (Section 3.3) was an bioinformatic intercomparison, where metaproteomic 438 

raw files were shared with participants and processed results were submitted. Both components 439 

were conducted as blinded studies, where each dataset was assigned a three digit randomly 440 

generated identifier, with those identifiers used throughout the Results and Discussion.  441 

 442 

3.2 Mass Spectrometry Data Generation Intercomparison  443 
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 Nine laboratories submitted raw and processed datasets from the analysis of the 444 

distributed Atlantic Ocean field samples (Table S1). The processed data submissions were 445 

heterogeneous in output formats, statistical approaches, and parameter definitions. Because of 446 

the challenges of comparing data derived from different types of statistical approaches used for 447 

peptide and protein identification and inference, as well as the varying output formats from 448 

various software packages, the user-generated data submissions were difficult to compile and 449 

compare, resulting in variability in the number of identifications depending on the statistical 450 

approaches and thresholds applied. These results are further discussed in the Supplemental 451 

Section (Figure S1, Table S8). Despite these challenges, an average of 7142 +/- 2074 peptides 452 

were identified across the pairwise comparisons (Figure S1c) representing 20% of the 35,715 453 

total unique peptides detected across all labs. Together these findings , implyimplieding a 454 

consistency of peptide identifications across participants. The variability in proteome depth 455 

reflected the combination of differing parameters employed by software and laboratory 456 

approaches. 457 

To remove this variability associated with user-selected bioinformatic pipelines, a single 458 

pipeline re-analysis of the submitted raw mass spectral data was conducted. Raw data files 459 

were processed together within a single bioinformatic pipeline consisting of SEQUEST-HT, 460 

Percolator, and Scaffold software and evaluated to a false discovery rate threshold of < 0.1% for 461 

peptides and 1.0% for proteins % (see see Section 2.4). Two datasets were found to have had 462 

issues during extraction and analysis that affected the results in both processed and raw data 463 

(Labs 593 and 811; Table S8). Notably these two laboratories differed from the others in that 464 

they did not use SDS as a protein solubilizing detergent (Table S5). This likely resulted in 465 

inefficient extraction of the bacteria that dominated the sample biomass (e.g. picocyanobacteria 466 

and Pelagibacter) embedded within the membrane filter slices. Further examination showed 467 

polyethylene glycol contamination of one dataset (Lab 811) and low yield from sample 468 

processing and extraction from the other (Lab 593). As a result, those datasets were not 469 
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included in the single pipeline re-analysis. The standardized pipeline included calculations of 470 

shared peptides and proteins, quantitative comparisons, and consistency of taxonomic and 471 

functional results.  472 

The total number of peptide and protein identifications and PSMs in the single 473 

bioinformatic pipeline analysis varied by laboratory (Table S9), with unique peptides ranging by 474 

more than a factor of 3 from 3,354 to 16,500, and with 27,346 total unique peptides identified 475 

across laboratories. This variability was likely due to different extraction, chromatographic, and 476 

mass spectrometry hardware and parameters employed approaches used by each laboratory, 477 

resulting in a varying depth of metaproteomic results. Yet, as with the user-submitted results, 478 

there was considerable overlap in identifications between all datasets. An intersection analysis 479 

found the numerous shared peptides between all combinations of laboratories, with 1,395 480 

peptides shared between all seven laboratory datasets (Figure 2a). Laboratories with deeper 481 

proteomes shared numerous peptides, for example the two laboratories with the most 482 

discovered unique peptides shared ~3000 peptides between them, implying that shared 483 

peptides is a useful metric for intercomparability. They also had the largest numbers of peptides 484 

that were not found by any other labs (3617 and 2819, respectively). The fourth largest 485 

intersection size (1395) represented the unique peptides discovered by all labs. Beyond that 486 

there were 12 different groupings of peptides that were shared among at least four laboratories. 487 

Consistent with this, 3-way Venn diagrams of labs 135, 209 and 438 had an intersection of 2398 488 

peptides, labs 652, 729, and 774 sharedowed 3016 peptides, and labs 127, 135, and 309 489 

shared 2304 peptides (Figure 2d).  490 

A similar analysis was conducted at the protein level, where the number of proteins 491 

identified for each sample based on peptide mapping to the metagenome database (see 492 

Section 2. Methods) , identified 8,043 total unique proteins in total across all seven laboratories, 493 

with  and 1,056 proteins of those observed in shared amongst those laboratories all seven labs 494 

(see as shown in the 7-way Venn diagram in (Figure 2c). Three-way Venn diagram comparisons 495 
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among labs 135, 209 and 438 had an intersection of 1,254 proteins, and labs 652, 729, and 774 496 

shared 1,925 proteins (data not shown).  497 

Optional deeper metaproteome results were submitted by three laboratories using either 498 

a long gradient of 12 hours or 2 dimensional chromatographic methods (Table S10). The 499 

number of discovered peptide and protein identifications were higher in each case, with as 500 

many as 18477 unique peptides and 7765 protein identifications from an online 2-dimensional 501 

chromatographic analysis from a 5 g single injection.  502 

The mapping of identified peptides to protein sequences forms the basis for protein 503 

identifications in the form of DDA bottom-up proteomics employed here. The relationship 504 

between peptides and protein identification was explored in Figure 3 and found to be correlated 505 

by two-way linear regression with R2 values of 0.97 and 0.98 for total protein identifications and 506 

protein groups, respectively. Together, the fact that there is a linear relationship between 507 

peptides and proteins across all laboratories (including labs employing deeper methods) could 508 

imply that the number of protein identifications has not begun to plateau and reached 509 

‘saturation’, likely due to the immense biological diversity and abundance of lower abundance 510 

peptides within these samples. This approach has some similarities to rarefaction curves used 511 

in metagenomic sequencing to determine if the majority of species diversity has been sampled, 512 

although in this case number of peptides used as a metric for sampling depth instead of 513 

additional number of DNA sequencing samples typically used for rarefaction curves. This 514 

indicated that with deeper depth of analysis by some laboratories, there was no fall off in the 515 

increase in protein identifications that might be attributed to additional peptides mapping to 516 

already discovered protein sequences. In addition, the 2D and long gradient additional analyses 517 

conducted by several laboratories fell upon this line consistent with this “more peptides – more 518 

proteins” observation, implying more room for improvements in depth of metaproteomic 519 

analyses.  520 
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A quantitative analysis of spectral counts from the wet lab re-analysis showed broad 521 

coherence among the seven laboratories. Pairwise comparisons of protein spectral counts were 522 

conducted for each of the seven labs against the other six (visualized in a 7x7 matrix, with 523 

duplicate comparisons removed (e.g., A vs B and B vs A)), where each data point reflects the 524 

spectral counts for a protein shared between laboratories (Figure 4a). When a dataset was 525 

compared with itself a unity line of datapoints was observed along the diagonal axis as 526 

expected. Two-way linear regressions were conducted on each of these pairwise comparisons. 527 

The slopes ranged from 0.33 to 5.5 (Figure S2), implying a varying dynamic range in spectral 528 

counts across laboratories, likely due to variations in instrument parameterizations selected by 529 

each laboratory, and consistent with the lack of normalization between laboratories. The 530 

coefficient of determination R2 values from 0.43 to 0.8473 with an average of 0.63 +/- 0.11,  531 

showinged coherence among results for these large metaproteomic datasets (Figure 4b, Table 532 

S12). To provide a sense of coherence of each laboratory to the others, the R2 values of a lab 533 

against the other six laboratories were averaged and the standard deviation calculated. All of 534 

these average R2 values were higher than 0.5, which showed overall quantitative consistency 535 

despite the size and complexity of these datasets (Figure 4d).  536 

A comparative taxonomic and functional analysis was also conducted using a single 537 

bioinformatic pipeline (see metagenomic sequencing methods for annotation pipeline). Lowest 538 

common ancestor (LCA) analysis of peptides identified from datasets from seven laboratories 539 

showed consistent patterns of taxonomic distribution using the MetaTryp package (Figure 5a; 540 

(Saunders et al., 2020). Cyanobacteria and alphaproteobacteria were the top two taxonomic 541 

groups in all laboratory submissions, consistent with the abundant picocyanobacteria 542 

Prochlocococcus and the heterotrophic bacterium Pelagibacter ubique known to be dominant 543 

components of the Sargasso Sea ecosystem (Sowell et al., 2009; Malmstrom et al., 2010). For 544 

example, Prochlorococcus  is consistently present between 104 and 105 cells per milliliter  in this 545 

region and has been observed to contribute to carbon export from the euphotic zone (Casey et 546 
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al., 2007). Pelagibacter cells can also be in excess of 105 cells per milliliter at the BATS North 547 

Atlantic location (Carlson et al., 2009). These results are broadly similar to the representation of 548 

phyla within the metagenome annotations, where Proteobacteria (including Pelagibacter) and 549 

Cyanobacteria (including Prochlorococcus and Synechococcus) were major components,.  550 

although Bacteriodetes (including Flavobacteria) are more prevalent in the metagenome 551 

annotations than in the metaproteome. Some differences may also be due to the incorporation 552 

of protein abundances in Fig 5a, versus simple taxonomic attribution of non-redundant 553 

assembled open reading frames in the metagenome analysis, as well as the use of multiple 554 

sequencing platforms and gene calling algorithms (Section 2.2, Figure S4).  555 

Similarly, KEGG Orthology group (KO) analysis of those datasets also showed highly 556 

similar patterns of protein functional distributions across laboratories (Figure 5b). Notably the 557 

PstS phosphate transporter protein from Prochlorococcus was the most abundant functional 558 

protein in all datasets, consistent with observations of phosphorus stress in the North Atlantic 559 

oligotrophic gyre and its biosynthesis in marine cyanobacteria (Scanlan et al., 1997; Coleman 560 

and Chisholm, 2010; Ustick et al., 2021). These findings demonstrate the reproducibility in the 561 

primary functional and taxonomic conclusions from the metaproteome datasets. Finally, a 562 

Sørensen similarity analysis of the 1,000 proteins with highest spectral counts revealed 70–80% 563 

similarities between most laboratory groups in the data re-analysis (Figure 6). When conducted 564 

on the Similarity analyses on the full dataset (with all peptides and proteins), the Sørensen 565 

similarity analyses showed  revealed lower similarity at the peptides had lower similarity than  566 

level than the proteins level, implying variability in peptide identification is ameliorated when as it 567 

is aggregated to the protein level (Figure S3). 568 

  569 

3.3. BioIinformatic Data Analysis Intercomparison  570 

 Two metaproteomic raw files were provided to intercomparison participants and were 571 

searched with each laboratory’s preferred database searching bioinformatic pipeline. The 572 
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samples that generated the data for these files were collected by autonomous AUV Clio during 573 

a single dive at the Bermuda Atlantic Time-series Study Station (Breier et al., 2020), and were 574 

distinct from the samples associated with the laboratory intercomparison component. However, 575 

they were also from the North Atlantic Ocean, allowing the same metagenomic database to be 576 

used. This database was not collected simultaneously with the bioinformatics samples, so it was 577 

not as representative as that used in the laboratory intercomparison. However, the BATS study 578 

region is known to maintain similar major taxonomic composition throughout the year (e.g., 579 

Prochlorococcus and SAR11, see discussion in Section 3.2), hence enabling many protein 580 

identifications. This bioinformatic study component was not launched until after the laboratory-581 

based intercomparison submission deadline to avoid influencing that part of the study by 582 

sharing similar raw data. Samples were named Ocean 8 and Ocean 11 and were taken from 583 

120 m and 20 m depths, respectively.  584 

The bioinformatic intercomparison involved 10 laboratories utilizing 8 different software 585 

pipelines including the PSM search engines: SEQUEST, X!Tandem, MaxQuant, MSGF+, 586 

Mascot, MSFragger, and PEAKS (Table S11, see Methods Section 2.6). As with the user 587 

supplied laboratory results, the results were challenging to compile due to different types of data 588 

outputs, approaches used in protein inference, and statistical approaches applied within each 589 

pipeline. Unique peptide discoveries served as a useful base unit of comparison that were less 590 

subject to these comparison challenges. The number of peptides ranged from 1724 to 6369 in 591 

Ocean 8 and 3019 to 8288 in Ocean 11 (Figure 7; Table S11). The differences in the number of 592 

peptides was likely due to parameters used in software, for example, laboratory 932 had the 593 

lowest number of peptides identified in both samples, but also used a highly stringent 99.9% 594 

probability cutoff that likely influenced this result.  595 

 596 

4. Discussion 597 
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4.1 Assessment of Ocean Metaproteomics Reproducibility 598 

Given the relatively recent establishment of complex ocean metaproteomic techniques 599 

as well as their methodological complexity, intercomparisons of methods are valuable important 600 

in demonstrating their the suitability of metaproteomic analyses in for ocean ecological and 601 

biogeochemistry studies. Synthesizing the results of the laboratory and mass spectrometry 602 

blinded intercomparison study (Section 3.2) processed with a single bioinformatic pipeline 603 

(Section 2.4), we observed consistent reproducibility with regards to three attributes of ocean 604 

metaproteomics analyses: 1) the identity of discovered peptides and proteins (Fig. 2), 2) their 605 

relative quantitative abundancestion (Figs. 4 and 6), and 3) the taxonomic and functional 606 

assignments within intercompared samples (Fig 5). With over 1000 proteins identified across 607 

seven laboratories and Sørensen similarity indexes typically higher than 70–80% (Fig. 6), the 608 

results unambiguously demonstrate consistent detection and quantitation of major proteins in 609 

the sample. Together Tthese results provide confidence that multiple laboratories can generate 610 

reproducible results describing the major proteome composition of ocean microbiome samples 611 

to , and in doing so can assess their functional composition and biogeochemical activity 612 

significance of these complex microbial communities.  613 

While there is good agreement, this congregation of data allows further exploration of 614 

the influence of methods on the results. In particular, as mentioned above the range of pairwise 615 

comparisons had correlation coefficients ranging from 0.43 to 0.84, with most values falling 616 

between 0.6 and 0.8 (Figure 4b and 4e; Table S12). This average of all correlation coefficients 617 

described above (0.63 +/- 0.11) implied good reproducibility between laboratories in general. 618 

We can explore what might have influenced the variability and lower range of coefficients. The 619 

correlation coefficients of lab 209 had two of the three R2 values below 0.499 in pairwise 620 

comparisons (0.431 and 0.475), yet also had values that ranged from 0.61 to 0.70. Why would 621 

this variability exist?  Lab 209 ‘s methods differed from other labs in several ways: they used the 622 



 

25 
 

oldest and slowest instrument of the group (Thermo Orbitrap Elite), used CID instead of HCD for 623 

fragmentation and rapid scan mode, and used an unusually long column of 200cm to 624 

compensate for the older instrument (Table S6). As a result, lab 209 had the lowest number of 625 

peptide (3354) and protein (1586) ID's of the seven labs (Table S9), which was several fold 626 

lower than the lab with the highest number and reduced the number of shared peptides across 627 

all laboratories. In pairwise comparisons, lab 209 had the lowest number of shared peptides at 628 

an average of 1304. Interestingly however, lab 209 did not have the lowest number of total 629 

spectral counts (63198), being close to the average (70843 +/- 27455), implying that more 630 

abundant peptides were detected relative to rarer ones.  631 

We initially suspected the lower R2 values in pairwise comparisons with lab 209 may 632 

have been related to comparisons to laboratories with similarly lesser peptide depth, but this 633 

was not the case: the two lowest correlation coefficients for lab 209 were with laboratories 135 634 

and 774 (the 0.431 and 0.475 values), the latter of which had the highest number of peptide 635 

identifications. The answer for this difference in quantitative values maybe within the selection of 636 

parameters used to sample peptide peaks: Both lab 135 and 774 used 60 second dynamic 637 

exclusion, whereas the other 5 labs used dynamic exclusions between 10 and 30 seconds in 638 

length (Table S7). This higher dynamic exclusion likely contributed to providing greater peptide 639 

discovery depth, but at the cost of quantitative consistency with other laboratories, since this 640 

parameter selects against repeat counting of abundant peaks and would reduce spectral counts 641 

of the more abundant peptides that lab 209 was detecting. This result demonstrates the 642 

influence of the mass spectrometer parameters in quantitative reproducibility when using global 643 

proteomic DDA mode.  644 

4.2 Metrics in metaproteomics: Core versus rare “long tail“ proteins 645 
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While abundant proteins were consistently detected across seven laboratories’ 646 

submissions, there was substantial variability in the less abundant proteins (Fig. 2). This is 647 

evident in Figure 8, where most of the 1063 proteins across seven laboratories in the re-648 

analysis were in the upper half of proteins when ranked by abundance. This simultaneous 649 

consistency in abundant proteins and diversity in rare proteins (and their respective peptide 650 

constituents) was likely a result of several factors.  in the study design and execution. First, the 651 

intercomparison experimental design stipulated 1D chromatography in order to provide 652 

straightforward comparisons that all laboratories could accomplish. This contributed to study 653 

consistency, but also resulted in lesser proteome depth compared to more elaborate methods 654 

such as 2D chromatography and gas phase fractionation commonly in use. Second, the sample 655 

complexity of ocean metaproteomes has been shown to be enormous, with a far greater 656 

number of low abundance peptides present than HeLa human cell lines (Saito et al., 2019). The 657 

combined effect of these factors meant that, while laboratories were able to detect abundant 658 

proteins consistently, there was considerable stochasticity associated with the detection of less 659 

abundant peptides resulting in a long tail of discovered lower abundance proteins. This is 660 

evident in Figure 8, where most of the 1063 proteins across seven laboratories in the re-661 

analysis were in the upper half of proteins when ranked by abundance.  662 

Mass spectrometer settings such as dynamic exclusion, chromatography conditions, and 663 

variation in sample preparation methods all likely contributed to this stochastic variability in rare 664 

peptide detection among laboratories. Moreover, while all participating laboratories used 665 

Thermo orbitrap mass spectrometers, there were seven variants of instrument model, including 666 

some with Tribrid multiple detector capability (Table S6). While testing other mass spectrometry 667 

platforms is of interest, this trend of community orbitrap usage in this study is consistent with the 668 

broader proteomics community, where currently 9 of the top 10 instruments used in 669 

ProteomeXchange consortium repository data submissions utilize orbitraps as of the manuscript 670 
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submission date (Deutsch et al., 2019). When conducting analysis of environmental samples, 671 

choices can be made about instrument setup and parameters based on the scientific objectives, 672 

for example if maximal proteome depth or robust quantitation while using a discovery approach 673 

is desired. Future intercalibration efforts enlisting more sensitive metaproteomic methods such 674 

as 2D-chromatography (McIlvin and Saito, 2021), more sensitive instruments (Stewart et al., 675 

2023), and other emerging methods can greatly improve detection and quantitation of rarer 676 

proteins in metaproteomes, allowing exploration of the depths of state-of-the-art capabilities 677 

rather than our present emphasis on interlaboratory consistency. Moreover, the development 678 

and adoption of best practices in sample collection, extraction, chromatographic separation, 679 

mass spectrometry analyses, and bioinformatic approaches will contribute to interlaboratory 680 

consistency. 681 

Despite the inter-laboratory variability in the detected sets of rarer peptides and proteins, 682 

we interpret these to be largely robust identifications. The stringent 0.1% peptide-level FDR 683 

threshold we use here is determined by scoring decoys: reverse sequenced peptides that are 684 

not in our samples. Peptide assignments to these decoys model the score distribution of all 685 

incorrect peptide-spectrum matches (PSMs) in our study such that FDRs can be estimated in an 686 

unbiased way for each laboratory. However, these estimates are complicated by subtle 687 

sequence diversity within a population’s proteome, which is typically not considered by 688 

proteomics software designed to analyze single species (Schiebenhoefer et al., 2019). This 689 

diversity within metaproteomic samples results in the presence of highly similar peptides with 690 

nearly identical precursor masses that produce many of the same b- and y-ions, and this 691 

similarity is not well modeled by decoy peptides. The influence of microdiversity on 692 

metaproteomics FDR estimation using strain-specific proteogenomic databases is an important 693 

area of future exploration (Wilmes et al., 2008). 694 

4.44.3 BioIinformatics Intercomparison Assessment 695 
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 The discovery of peptide constituents of proteins within a complex ocean metaproteomic 696 

matrix was successful across all software packages tested (Figure 7), where the metric for 697 

success is a comparable number of peptide identifications. This is a notable finding due to the 698 

highly complex mass spectra, large number of chimeric peaks present (Saito et al., 2019), and 699 

large database sizes involved in ocean metaproteomes. To our knowledge, some of these 700 

software packages had not yet been applied to ocean metaproteomes. There was also 701 

variability associated with the stringency of statistical parameters employed, which points to the 702 

challenges in assembling datasets from multiple laboratories with different depth of proteome 703 

identifications.  704 

 Despite the success of this intercomparison component across software packages, there 705 

is likely considerable room for improvement in the future. As mentioned previously, ocean 706 

samples are highly complex and there are likely additional peptides that remain unidentified 707 

using current technology, due to low intensity peaks and co-elution with other peptides resulting 708 

in the chimeric spectra. Significant improvements in depth of analysis can be achieved through 709 

increased chromatographic sample separation and optimized (or alternative) mass spectrometry 710 

data acquisition strategies. Yet there is room for bioinformatic improvements as well: most DDA 711 

database searching algorithms are unable to identify multiple peptides within a single 712 

fragmentation spectrum. Moreover, when in DDA collection mode mass spectrometry software 713 

typically does not isolate and fragment peptides that cannot be assigned a charge state, which 714 

is a common occurrence for the low abundance peaks within ocean samples. As a result, there 715 

is considerable room for improvements in bioinformatic pipelines to discover additional peptides. 716 

Although the application of data independent approaches (DIA) to oceanographic 717 

metaproteomics analysis has been is currently limited (e.g. Morris et al., 2010), the systematic 718 

nature of ion selection and fragmentation allows for a greater number of low abundant peptides 719 

to be quantified. By avoiding the need to select precursor ions for fragmentation, DIA methods 720 



 

29 
 

have the promise to identify some of these rarer peptides,  when assuming enough ions can be 721 

isolated to produce robust MS2 spectra., as the wider isolation windows often used in DIA will 722 

dilute precursor ions within ion traps.  723 

4.54.4 Lessons Learned and Future Efforts in Ocean Metaproteomic Intercomparisons and 724 

Intercalibrations 725 

As the first interlaboratory ocean metaproteomics study, we chose to describe this study 726 

as an intercomparison rather than an intercalibration and it served as a vehicle with which to 727 

assess the extent of reproducibility. There were several lessons learned that can be 728 

summarized here. These include the efficacy of a SDS detergent and heat treatment in lysing 729 

and solubilizing marine microbial cells embedded on membrane filters, the significant problem 730 

of data intercomparability between PSM software outputs and need for data output 731 

standardization, and the influence of different hardware capabilities (Orbitrap generation) and 732 

their parameter settings such as dynamic exclusion on proteome depth and quantitative 733 

comparisons of spectral counts. As mentioned above, The development of best practices 734 

associated with sample collection, extraction, and analysis would be valuable, while also 735 

encouraging methodological improvements and backward compatibility through the use of 736 

reference samples. 737 

Future intercalibration efforts could aim to further assess and improve upon the level of 738 

accuracy, reproducibility, and standardization of ocean metaproteome measurements. As 739 

mentioned above, development of best practices associated with sample collection, extraction, 740 

and analysis would be valuable, while also encouraging methodological improvements and 741 

backward compatibility through the use of reference samples.  In particular, Aalternative modes 742 

of data collection and quantitation could also be tested in future interlaboratory comparisons, 743 

including parallel reaction monitoring mode (PRM), multiple reaction monitoring mode (MRM), 744 
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quantification using isotopic labeling or tagging, and DIA methods. PRM and MRM methods 745 

allow sensitive targeted measurements of absolute quantities of peptides (e.g. copies per liter of 746 

seawater in the ocean context). As many ‘omics methodologies applied in environmental 747 

settings operate in relative abundance modes, adding the ability to measure absolute quantities 748 

would be particularly valuable for comparisons of environments across space and time. 749 

Targeted metaproteomic methods have been deployed in marine studies using stable isotope 750 

labeled peptides for calibration, achieving femtomoles per liter of seawater estimates of 751 

transporters, regulatory proteins, and enzymes (Saito et al., 2020; Bertrand et al., 2013; Saito et 752 

al., 2014, 2015; Joy-Warren et al., 2022; Wu et al., 2019). These methods are not yet widely 753 

adopted, but with growing interest could be deployed to other laboratories and incorporated into 754 

future iterations of intercomparison and intercalibration studies. DIA also has great potential in 755 

ocean metaproteome studies and is increasingly being deployed in laboratory and field studies 756 

of marine systems. Similar to this DDA intercomparison, the methodological and bioinformatic 757 

challenges of DIA could be explored during intercomparisons of analyses of ocean samples. 758 

Finally, as mentioned above, all participants of this study used orbitrap mass spectrometers for 759 

DDA submissions, but new instrumentation such as trapped ion mobility spectrometry time of 760 

flight mass spectrometers (timsTOF) may be applied to ocean metaproteome analyses and 761 

would be important to intercompare with orbitrap platforms.  762 

As noted above, there were also challenges in collating and comparing data outputs 763 

from various software, as well as variation in how those programs conducted protein inference. 764 

For example, peptide-level data from different research groups were reported as either 765 

unmodified peptide sequences or as various peptide analytes (where modifications and charges 766 

states were included with the peptide sequence), making compilation of peptide reports difficult. 767 

Similarly, at the protein level reported proteins could be counted either before or after protein 768 

grouping, e.g. applying Occam’s-razor logic to peptide groupings into proteins – the former 769 
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reflecting the set of all proteins in the database that could be in the sample, the latter the 770 

minimum set required to explain the peptide data. Such issues will also contribute to challenges 771 

in integration and assembly of data from different laboratories for large ocean datasets. While 772 

best practices for metadata and data types have been described by the community that include 773 

specific attributes important for environmental and ocean samples such as geospatial location 774 

and sample collection information (Saito et al., 2019) similar to the metadata standard recently 775 

put forward in the human proteome field (Dai et al., 2021), this study also demonstrated that 776 

there is  continues to be a need for standardization of data output formats for metaproteomic 777 

results., similar to the metadata standard recently put forward in the human proteome field (Dai 778 

et al., 2021).  779 

4.5 Metaproteomics in Global Ocean Surveys  780 

Understanding how the oceans are responding to the rapid changes driven by human 781 

alteration of ecosystems is a high priority. Ocean and environmental sciences have a long 782 

history of chemical measurements that are critical to assessing ecosystems and climatic 783 

change. Such measurements have been straightforward for discrete measurements, such as 784 

temperature, pH, chlorophyll, phosphate, dissolved iron and numerous other variables. When 785 

collected over large spatial (ocean basin) or temporal (seasonal or decadal spans) scales, these 786 

datasets have been powerful in identifying major (both cyclical and secular) changes. ‘Omics’ 787 

measurements represent a more complex data type where each discrete sample can generate 788 

thousands (if not more) of units of information. This study demonstrates the power and potential 789 

for collaborative metaproteomics studies to identify key functional molecules and relate them to 790 

their taxonomic microbial sources within the microbiome from multiple lab groups. Moreover, 791 

multi-lab metaproteomics results in vastly enhanced identification of low abundance proteins 792 

that are not identified by all research groups. Such low abundance proteins can be more likely 793 

to change in abundance with changing environmental conditions and nutrient limitations, 794 
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resulting in a more nuanced and richer investigation of marine microbial ecology and 795 

biogeochemistry with collaborative metaproteomics research. The implementation of such 796 

voluminous data is beginning to be applied on larger scales and holds great promise in 797 

improving not only our understanding of the functioning of the current system, but also the way 798 

we assess how environments are changing with continued human perturbations.  799 

Intercomparison and intercalibration are critical activities to undertake in order to allow 800 

comparison of ‘omics results across time and space dimensions. With major programs 801 

underway and being envisioned such as the BioGEOTRACES, AtlantECO, Bio-GO-SHIP, and 802 

BioGeoSCAPES efforts, the imperative for such intercalibration has grown and the need for best 803 

practices is urgent. This Ocean Metaproteomic Intercomparison study is a valuable step in 804 

assessing metaproteomic capabilities across a number of international laboratories, 805 

demonstrating a clear consistency in measurement capability, while also pointing to the 806 

potential for continued community development of metaproteomic capacity and technology.  807 
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(Intercal_assembly_annotations.csv) for this project summarized in Table S3 are available at 822 

ProteomeXchange and PRIDE repository with the dataset identifier PXD043218 and 823 

PXD04423410.6019/PXD043218. Access for reviewers is available using the username: 824 
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Figure Captions  1078 

Figure 1. Ocean metaproteomics intercomparison experimental design and sample collection. 1079 

a) The laboratory component (left) consisted of collection of field samples, 1-dimensional (1D) 1080 

chromatographic separation followed by data dependent analysis (DDA) uniformly employing 1081 

orbitrap mass spectrometers analyses by participating laboratories and submission of raw and 1082 

processed data. The bioinformatic (right) component consisted of distribution of two 1D-DDA 1083 

files, peptide-to-spectrum matching (PSMs), and submission and compilation of results. b) Size-1084 

fractionated sample collection on 3.0 m pore-size filter followed by a 0.2 m pore-size Supor 1085 

filter, and the 0.2–3.0 m size fraction was used for the intercomparison study. c) Two horizontal 1086 

in-situ McLane pumps were bracketed together with two Mini-MULVS filter head units each and 1087 

deployment on synthetic line. d) The four 142 mm filters were sliced into eighths (inset) and two 1088 

slices were distributed to each participating laboratory. 1089 

 1090 

Figure 2. Shared peptides and proteins between laboratory groups using laboratory 1091 

submissions processed through a single bioinformatics re-analysis pipeline. a) Total number of 1092 

discovered unique peptides varied by more than three-fold among seven laboratory groups 1093 

(horizontal bars) due to varying extraction and analytical schemes (FDR 0.1%). The number of 1094 

intersections between datasets across all seven datasets was 1395 (fourth blue bar from left), 1095 

and various sets of intersections of peptides were observed amongst the data. b) Total number 1096 

of discovered proteins (FDR < 1%) varied more than four-fold from 1586 to 6221 among labs 1097 

(horizontal bars). Intersections between datasets across all seven laboratories was 1056, with 1098 

various sets of intersections of proteins observed, similar to the peptides. c) 7-way Venn 1099 

diagrams of shared unique peptides between laboratories showed 1056 shared peptides 1100 

between the 7 laboratories. d) 3-way Venn diagrams showed 2398, 2304, and 3016 shared 1101 

unique peptides between laboratories.  1102 
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 1103 

Figure 3.  Comparison of unique peptides and discovered proteins. Comparison as total protein 1104 

identifications and protein groups from the single pipeline re-analysis based on submissions 1105 

from 9 laboratories. Increasing sample depth is linear with mapping to proteins, (R2 of 0.97 and 1106 

0.98 for total protein IDs and protein groups, respectively, with slopes of 0.37 and 33) implying 1107 

that additional peptide discovery leads to proportionally more protein discovery, and that protein 1108 

discovery has not yet begun to saturate with more peptides mapping to each protein. Because 1109 

simple 1D analyses were stipulated in the intercomparison experimental design, peptide and 1110 

protein discovery was correspondingly limited in depth. 1111 

 1112 

Figure 4.  Quantitative comparison of intercomparison results. a) Pairwise comparisons of 1113 

uantitativequantitative abundance across six laboratories in units of spectral counts 1114 

(comparisons with itself show unison diagonals). b) R2 values from pairwise linear regressions. 1115 

d) Total proteins identified in each laboratory. d) Average of each laboratory’s R2 values from 1116 

pairwise regression with the other six laboratories (error bars are standard deviation). In all 1117 

cases average R2 values are higher than 0.5. e) Occurrences of R2 values in pairwise 1118 

comparisons spanning 0.4 to 0.9. Potential causes of this range are outlined in the Discussion 1119 

section.  1120 

 1121 

Figure 5. Taxonomic and functional analysis of metaproteomic intercomparison. a) Percent 1122 

spectral counts by taxonomy was similar across laboratories and technical replicates within 1123 

laboratories. The sample was dominated by cyanobacteria and alphaproteobacteria, 1124 

corresponding primarily to Prochlorococcus and Pelagibacter, respectively. b) Percent spectral 1125 

counts per Kegg Ontology group showed the functional diversity of the sample.  1126 

 1127 

Figure 6. Quantitative Sørensen similarity analysis. Analysis of top 1000 proteins (~75% of all 1128 

Formatted: Superscript



 

43 
 

proteins) showed 70–80% similarity between most laboratory groups. Technical triplicates for 1129 

each laboratory group are shown.  1130 

 1131 

Figure 7. Intercomparison of bioinformatic pipelines among laboratories. Unique peptide 1132 

identifications for sample Ocean 8 from 120m depth (a) and Ocean 11 from 20m depth (b), both 1133 

from the North Atlantic Ocean (Table S3), using a variety of pipelines and PSM algorithms. 1134 

 1135 

Figure 8. Variability in discovered proteins between laboratories occurs in lower abundance 1136 

proteins. Top 7 panels: Abundance of proteins as percentage of total protein spectral counts 1137 

within each laboratory (y-axis is percentage), with proteins on the x-axis shown by ranked 1138 

abundance as the sum of spectral counts across all laboratories. Almost all proteins fall below 1139 

1% of spectral counts within the sample, and deeper proteomes have lower percentages due to 1140 

sharing of percent spectral counts across more discovered proteins. Bottom panel: Shared 1141 

proteins were found early within the long-tail of discovered proteins: the 1056 proteins shared 1142 

between all laboratory groups are almost all found to the left side indicating their higher 1143 

abundance in all seven datasets. Scale is binary in the seventh panel indicating presence in 7 1144 

labs or not. 1145 
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Figure 1.   1148 
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 Figure 2. 1152 
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Figure 3 1166 
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Figure 4.  1175 
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Figure 5. 1183 
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Figure 8.  1210 
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