
Response to anonymous referee 1: 
(https://doi.org/10.5194/egusphere-2023-3143-RC1) 

 

We thank the reviewer for their feedback and constructive comments on our 
manuscript. Our responses are in blue below. 

 

Summary: 

The authors compare the means of pCO2 data measured by ships (1972-2021) 
with pCO2 data derived from Argo floats (2014-2023) in the Southern Ocean. 
They find an increase in the float pCO2 values compared to the ship pCO2 and 
explain the mean difference by seasonality, trends in atmospheric CO2, 
differences in sampling location, errors in TA, and the choice of carbonate system 
constants. Consequently, they adjust the pCO2 values by removing the influence 
of these factors on the mean (e.g., normalizing the data to a reference year). 
They attribute the remaining difference in mean pCO2 to quality issues. While I 
appreciate the concept of comparing float pCO2 data with ship pCO2 data, I have 
major issues with this study. My greatest concerns are as follows: 

1. Content: The study falls short in making a meaningful contribution to the 
existing knowledge base. It lacks the presentation of any novel findings. 
(Higher pCO2 observed in Argo float data than ship data → partially caused 
by seasonality, different sampling location etc). The conclusion of "bad data 
quality" appears inadequate given the methodology and is insufficiently 
discussed).  
Response: we agree with the reviewer that we did not adequately convey the 
validity of our methods and the novelty of our findings to readers. The 
reviewer is correct that there have been multiple studies comparing pCO2 
estimates from different observational platforms in surface waters. The 
possibility of a discrepancy in sea surface pCO2 data between float-based and 
ship-based approaches has been considered and investigated in a number of 
previous studies (Jin et al., 2024, Wimart-Rousseau et al., 2023, Wu and Qi, 
2022, Sutton et al., 2021, Mackay and Watson, 2021, Long et al., 2021, Fay et 
al., 2018). As suspected by some of these authors, we have indeed identified 
significant deviations that merit further investigation.  
 
Our novel finding sheds light and provides greater context on the important 
and controversial question as to why the air-sea CO2 annual flux calculated 
from float data is inconsistent with that from other platforms. It remains to 
be explained why other observations (e.g. from unmanned surface vehicles, 
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reconstructed pseudo-observations and aircraft-based flux results) are in 
better agreement with sparse ship observations but differ significantly from 
float data (Sutton et al., 2021, Mackay and Watson, 2021, Long et al., 2021, 
Jin et al., 2024). The data collected by these different modalities are broadly 
consistent, whereas fluxes based on float data suggest significantly lower 
carbon dioxide uptake. Moreover, sensors on aircraft have not detected the 
carbon dioxide outgassing at high latitudes in the Southern Ocean predicted 
by the float data (Long et al., 2021). This study is the first attempt at a novel 
approach to assessing float data quality and it suggests that the answer to 
the question is a bias in average float pCO2. The amount of float data we used 
to check for discrepancies exceeds that used in previous comparison 
methods. Further justification of our approach and exploration of uncertainty 
sources are given below and will be added to an amended version of the 
manuscript (we concur that it needs further discussion).  
 

2. Methodology: I fail to understand the rationale behind comparing data from 
various time periods, seasons, and sampling locations in the first place, 
particularly when focusing solely on the mean values. In my opinion, this 
approach is simply not acceptable, as e.g. ocean biogeochemistry undergoes 
changes over time, leading to higher CO2 levels in more recent float data. 
While the authors acknowledge this in their later analyses presented in the 
discussion section, the results in the results section of the study are therefore 
not comparable. Additionally, the study does not quantify the sources of 
uncertainty in float pCO2 data, rendering the conclusions regarding data 
quality issues questionable.  
 
Response: in the following, we describe shortcomings of the main method 
used previously for comparing pCO2 data from float and ship. We also justify 
the method applied in this study and explain why it is novel, appropriate and 
useful. 
 
The main method that has been used prior to this work to assess float data 
quality is crossover comparisons, i.e. direct comparison of ship and float data 
when measurements from both are made at the same place and time. While 
of course valuable, unfortunately there are limitations to this approach. 
Firstly, ships are only very rarely in the same place as a float at the same time. 
Therefore, only a very small proportion of the total amount of data can be 
used in crossover analyses (less than 1%, up to 2023 December). In contrast, 
our approach compares the totality of float and ship data. Secondly, nearly 
all the crossover comparisons are made within 3 days of the time that a float 



was deployed (Gray et al., 2018, Johnson et al., 2017), because that is the 
only time when a ship and a float are likely to be coincident. Crossover 
comparisons made almost exclusively at time of deployment cannot assess 
lifetime performance of float pH sensors (and thus the pCO2 estimates that 
are derived) whereas our method can. Some additional analyses (part of 
future work intended for another manuscript, but shown below) suggest that 
float age dramatically affects the coherence of float pCO2 data while the 
oxygen data shows excellent agreement between young and old floats 
(Figure.1). Although neither overall approach is without shortcomings, our 
bulk data comparison method is an alternative method of assessing float data 
quality that is able to assess float sensor performance across whole lifetimes 
of float deployment. We suggest that it is a valuable complement to 
crossover analysis. 

 
Figure (1): Crossover comparison between different floats when they are 
coincidentally adjacent in time and space. (A) pCO2 comparison between 
floats having conducted < 50 profiles and floats having conducted > 50 
profiles. The best-fit line in red is y=0.53x+184 (r=0.51); (B) The same 
comparison but for O2 from adjacent floats. The best-fit line in red is 
y=0.99x+0.78 (r=0.97). Points in both scatterplots are coloured according to 
the difference in numbers of profiles carried out (as an indication of 
differences in time since deployment). Two floats are considered adjacent 
when within 400 km in distance and 7 days in time (Wimart-Rousseau et al., 
2023). 
 
We present evidence here that justifies our approach. When two means of 
measuring the ocean are both measuring correctly then we would expect the 
large-scale patterns across a basin to agree with each other. We show below 
that this is true for other parameters measured by floats, although in some 



cases only after sampling biases are taken into account. We also show that 
that discrepancies in pCO2 remain even after sampling biases are corrected 
for. The reviewer does make a good point, and we agree that it would have 
been useful to show the comparison for other parameters and we will add 
this to the manuscript.  

 
Figure (2): Salinity(mean) at different depths. The left panel shows the 
average float and ship salinity at different depths; the right panel shows the 
difference between the two (float salinity minus ship salinity). 

 
Figure (3): Nitrate(mean) at different depths. The left panel shows the 
average float and ship nitrate at different depths; the right panel shows the 
difference between the two (float nitrate minus ship nitrate). 



 
Figure (4): Temperature(mean) at different depths. The left panel shows the 
average float and ship temperature at different depths; the right panel shows 
the difference between the two (float temperature minus ship temperature). 

 
Figure (5): Oxygen(mean) at different depths. The left panel shows the 
average float and ship oxygen at different depths; the right panel shows the 
difference between the two (float oxygen minus ship oxygen). 

 
The nitrate and salinity profiles show very good consistency between ship 
data and float data, while the temperature and oxygen profiles are not well 
aligned. The misalignment in temperature is explained by a latitudinal 
gradient in temperature and a sampling bias between ships and floats. More 
ship data comes from areas further south than does float data (Figure.6). 
 



 
Figure (6): Proportions of float and ship data from between 50°S and 60°S 

versus south of 60°S. 

 
The plots below show a comparison between ship temperature and float 
temperature when the data is separated into 2 regions: between 50°S-60°S 

and south of 60°S. 

 
Figure (7): Temperature(mean) and difference at different depths in different 
regions. (A) float and ship data located between 50°S and 60°S; (B) float and 

ship data south of 60°S region. 

 
The temperature discrepancies are explained by latitudinal effects (Figure.7). 
This raises the question as to whether a latitudinal effect could also explain 
the pCO2 discrepancy. The plots below show the effect of latitude on the 
pCO2 discrepancy (Figure.8). The pCO2 difference in surface waters is 7.0 μ



atm between 50-60°S and 15 μatm south of 60°S. The discrepancy exists in 

both regions and is in line with the average discrepancy derived in our 
manuscript. We recognise the necessity of adding a discussion of the effect 
of latitude on average pCO2 discrepancy to the next version of the manuscript. 
This will be discussed in addition to the other possible sampling biases 
already considered (seasonal, spatial and temporal). 
 

 
Figure (8): pCO2(mean) and difference at different depths in different regions. 
(A) float data and ship data located in  50°S-60°S region; (B) float data and 

ship data located in  south of 60°S region. 

 
The solubilities of gases dissolved in seawater are mainly controlled by 
temperature. Oxygen and carbon dioxide gas concentrations therefore tend 
to be higher in colder waters. To counteract the effect of a potential sampling 
bias in temperature (due to a greater proportion of ship data coming from 
further south where waters are colder; Figure 6) potentially leading to a bias 
in CO2 and O2 gas concentrations), we calculated the O2 saturation anomaly 
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Figure (9): Oxygen saturation anomaly(mean) at different depths. The left 
panel shows the average float and ship oxygen saturation anomaly at 
different depths; the right panel shows the difference between the two (float 
oxygen saturation anomaly minus ship oxygen saturation anomaly). 

 
Figure (10): [CO2] saturation anomaly(mean) at different depths. The left 
panel shows the average float and ship oxygen saturation anomaly at 
different depths; the right panel shows the difference between the two (float 
[CO2] saturation anomaly minus ship [CO2] saturation anomaly). 
 
Based on the saturation anomaly results (which correct for temperature 
differences), the float Δ[O2] is in rough overall agreement with ship Δ[O2] 
(Figure.9). The float surface Δ[CO2] is however approximately 2% higher than 
ship surface Δ[CO2], which converts (at pCO2 of 400 μatm) to a pCO2 



difference of around 8 μatm. After correcting for various effects and possible 

biases, the calculated discrepancy in pCO2 is thus close to the results in our 
manuscript. The large-scale patterns across the Southern Ocean are similar 
between ship and float data for nitrate, salinity, temperature and oxygen 
(after removal of latitude/solubility effects) (Figure.2-5,7,9). The fact that the 
large-scale patterns do not agree for pCO2 even after correcting for sampling 
biases (Figure.8,10) is therefore a point of interest. 
 
We corrected for accumulation of anthropogenic CO2 over time in surface 
waters by using the same method as Wu et al. (2019) (their section 2.1), 
which in turn built on methods described by Takahashi et al. (2009) (their 
section 2.4). Moving the results of this analysis into the results section, as 
recommended by the reviewer, will make this clearer and we are happy to 
do this in the amended version. 
 
The uncertainty in each independent float pCO2 data value does not affect  
our finding that float pCO2 is systematically high; assuming a normal 
distribution in individual float uncertainties, as our results are based on a 
significantly large number of data points, and the standard error of the mean 

(the standard deviation of mean values) decreases as a function of (1 √𝑁⁄ ) 

where N is the number of data points, then the effect of individual point 
estimate uncertainties becomes negligible. Williams et al. (2017) estimated 
the uncertainty of an individual float pCO2 value to be around ±11 μatm when 

float pCO2 is 400 μatm. In the figure below we show the probability density 

function of average float pCO2 minus ship pCO2 from 1000 Monte Carlo 
iterations. This figure was generated by the following procedure: (1) assume 
ship average pCO2 to be 400 μatm, (2) generate 30,000 independent float 

pCO2 values, each equal to 400 + 𝐺(0,11) , where 𝐺(µ, 𝜎)  is a random 
number from a normal (Gaussian) distribution with mean of µ and standard 
deviation of σ, (3) calculate the average float pCO2 and then the difference 
between ship and float average values, (4) repeat 1000 times to obtain 1000 
differences, (5) plot the frequency distribution of the differences. The effect 
of uncertainty in each single point of float pCO2 data on the difference in the 
final float mean is minor (Figure.11). This procedure assumes that errors are 
random and independent. It does not hold for systematic biases, but that of 
course is what we are investigating in our study. 
 



 
Figure (11): Assessment of the impact of uncertainty in individual float pCO2 
data on the uncertainty in the overall value of (float pCO2 – ship pCO2), based 
on Monte Carlo calculations. 
 
We thank the reviewer for raising this point and will add our response to it 
to our manuscript. We hope that this, together with the other additions, will 
be seen to have improved the discussion of the merits of this method and 
additionally will have addressed the reviewer’s concerns that our method is 
not suitable. 
 

3. Structure: Result sections 3.1, 3.2 and 3.3 should be merged as the 
subsections merely contain different plots. The discussion section comprises 
the presentation of additional analyses, thereby resembling more of a result 
section.  
 
Response: we agree with this suggestion. We will restructure the results and 
discussion sections according to this comment in the next version of the 
manuscript. 
 

4. Choice of visualization: The content in Figure 2, 3, S1 as well as 4, 5, S2 could 
be merged (remove scatterplots, add error bars to line plots).  
 
Response: we appreciate this suggestion, and we will take it into account and 
make this change in the next vision of the manuscript. 
 



5. Authors doubt/question data quality without further arguments (l.200-206). 
After adjusting the means, they did not go into “float pH data quality issues”. 
I would have appreciated a discussion on why the quality is perceived as poor 
and how it could be improved etc.  
 
Response: we thank the reviewer for this constructive suggestion. We 
highlight the quality of float pCO2 data (estimated from pH data) because this 
is the most likely explanation for the finding in our results that float pCO2 
exhibits an overall bias in all our analyses, even after considering (and, where 
relevant, correcting for) various possible sampling biases. Another reason is 
that no such bias is seen when comparing O2 data corrected for temperature, 
whereas a significant bias is seen in pCO2 data corrected both for increasing 
temperature and increasing atmospheric CO2 (figure 10). We hope that the 
additions we will make to the manuscript (described above) provide the 
further arguments the reviewer would like to see.  
 
A float pCO2 bias explains well the large difference between the fluxes 
calculated by the floats and the fluxes calculated by the other observing 
platforms. We look forward with anticipation to improved calibration of the 
float pH data and estimated pCO2, but it is not within the scope of this study 
to suggest how it should be done. Instead, we present new evidence that the 
float pCO2 is anomalously high through novel methods, bringing new 
information to an important field of research.  Subsequent work will 
hopefully ascertain the reasons for this and therefore the solutions. The best 
process for processing float pH data (and from it float pCO2 values) remains 
open to discussion; we expect that our findings will eventually contribute to 
higher accuracy of float pCO2 data.  
 
We appreciate the reviewer’s many minor, detailed comments and will 
attend to these in the revised version of the manuscript. 
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