Supplement of

Concentration and source changes of HONO during the COVID-19 lockdown in Beijing

Yusheng Zhang¹, Feixue Zheng¹, Zemin Feng^{1,2}, Chaofan Lian^{3,4}, Weigang Wang^{3,4*}, Xiaolong Fan^{1,5,6}, Wei Ma¹, Zhuohui Lin¹, Chang Li¹, Gen Zhang⁷, Chao Yan^{8,9}, Ying Zhang^{1,9}, Veli-Matti Kerminen^{1,8}, Federico Bianch^{1,8}, Tuukka Petäjä^{1,8}, Juha Kangasluoma^{1,8}, and Markku Kulmala^{1,8}, Yongchun Liu^{1*}

*Correspondence: Yongchun Liu (liuyc@buct.edu.cn) and Weigang Wang (wangwg@iccas.ac.cn)

Parameter	Instrument	Time resolution	Detection limit	Accuracy
HONO	LOPAP	60 s	0.01 ppb	10%
NO	Thermo Scientific 42i	60 s	0.05 ppb	5%
NO ₂	Thermo Scientific 42i	60 s	0.05 ppb	5%
SO ₂	Thermo Scientific 43i	60 s	0.12 ppb	5%
СО	Thermo Scientific 48i	60 s	40 ppb	5%
O3	Thermo Scientific 49i	60 s	0.5 ppb	5%
PM _{2.5}	TEOM	300 s	$0.05 \ \mu g \ m^{-3}$	10%
Temperature	AWS310	60 s	-	1%
Relative humidity	AWS310	60 s	-	1%
Wind speed	AWS310	60 s	0.01 m s ⁻¹	1%
Wind direction	AWS310	60 s	-	1%
UVB	AWS310	60 s	0.001 W m ⁻²	1%
J _{NO2}	2-pi-J _{NO2} radiometer	60 s	1.0×10 ⁻⁵ s ⁻¹	1%
Boundary layer height	Ceilometer (CL51)	60 s	50 m	10%
Nitrate	ToF-ACSM	600 s	$0.021 \ \mu g \ m^{-3}$	5%
Sulfate	ToF-ACSM	600 s	0.018 µg m ⁻³	5%
Chloride	ToF-ACSM	600 s	0.011 µg m ⁻³	5%
Ammonium	ToF-ACSM	600 s	$0.182 \ \mu g \ m^{-3}$	5%
Organic	ToF-ACSM	600 s	0.198 µg m ⁻³	5%

 Table S1. Instruments used in the measurement.

Method	Emission factor	ОН	γ _{NO2} (ground)	γ _{NO2} (aerosol)	J _{N03} -	As	δ	$F_{HONO,soil}$	V _d	K _{dilution}	Sensitivity
M0	0.0109	CaV1 ^a	2×10 ⁻⁶	2×10 ⁻⁶	8.24×10 ⁻⁵	CaV2 ^b	3.85	CaV3 ^c	0.001	0.23	-
M1	0.008	CaV1	2×10 ⁻⁶	2×10 ⁻⁶	8.24×10 ⁻⁵	CaV2	3.85	CaV3	0.001	0.23	-8%
M2	0.0186	CaV1	2×10 ⁻⁶	2×10 ⁻⁶	8.24×10 ⁻⁵	CaV2	3.85	CaV3	0.001	0.23	20%
M3	0.0109	CaV1×0.1	2×10 ⁻⁶	2×10 ⁻⁶	8.24×10 ⁻⁵	CaV2	3.85	CaV3	0.001	0.23	-24%
M4	0.0109	CaV1×2	2×10 ⁻⁶	2×10 ⁻⁶	8.24×10 ⁻⁵	CaV2	3.85	CaV3	0.001	0.23	26%
M5	0.0109	CaV1	1×10 ⁻⁵	2×10 ⁻⁶	8.24×10 ⁻⁵	CaV2	3.85	CaV3	0.001	0.23	40%
M6	0.0109	CaV1	2×10 ⁻⁷	2×10 ⁻⁶	8.24×10 ⁻⁵	CaV2	3.85	CaV3	0.001	0.23	-9%
M7	0.0109	CaV1	2×10 ⁻⁶	1×10 ⁻⁵	8.24×10 ⁻⁵	CaV2	3.85	CaV3	0.001	0.23	4%
M8	0.0109	CaV1	2×10 ⁻⁶	2×10 ⁻⁷	8.24×10 ⁻⁵	CaV2	3.85	CaV3	0.001	0.23	-1%
M9	0.0109	CaV1	2×10 ⁻⁶	2×10 ⁻⁶	6.0×10 ⁻⁶	CaV2	3.85	CaV3	0.001	0.23	-25%
M10	0.0109	CaV1	2×10 ⁻⁶	2×10 ⁻⁶	3.7×10 ⁻⁴	CaV2	3.85	CaV3	0.001	0.23	95%
M11	0.0109	CaV1	2×10 ⁻⁶	2×10 ⁻⁶	8.24×10 ⁻⁵	CaV2×0.1	3.85	CaV3	0.001	0.23	-1%

 Table S2. Sensitivity analysis with different parameters for the HONO budget

M12	0.0109	CaV1	2×10 ⁻⁶	2×10 ⁻⁶	8.24×10 ⁻⁵	CaV2×10	3.85	CaV3	0.001	0.23	9%
M13	0.0109	CaV1	2×10 ⁻⁶	2×10 ⁻⁶	8.24×10 ⁻⁵	CaV2	1	CaV3	0.001	0.23	-7%
M14	0.0109	CaV1	2×10 ⁻⁶	2×10 ⁻⁶	8.24×10 ⁻⁵	CaV2	2.2	CaV3	0.001	0.23	-4%
M15	0.0109	CaV1	2×10 ⁻⁶	2×10 ⁻⁶	8.24×10 ⁻⁵	CaV2	3.85	CaV3×0.1	0.001	0.23	-1%
M16	0.0109	CaV1	2×10 ⁻⁶	2×10 ⁻⁶	8.24×10 ⁻⁵	CaV2	3.85	CaV3×10	0.001	0.23	4%
M17	0.0109	CaV1	2×10 ⁻⁶	2×10 ⁻⁶	8.24×10 ⁻⁵	CaV2	3.85	CaV3	0.00077	0.23	1%
M18	0.0109	CaV1	2×10 ⁻⁶	2×10 ⁻⁶	8.24×10 ⁻⁵	CaV2	3.85	CaV3	0.025	0.23	-24%
M19	0.0109	CaV1	2×10 ⁻⁶	2×10 ⁻⁶	8.24×10 ⁻⁵	CaV2	3.85	CaV3	0.001	0.1	12%
M20	0.0109	CaV1	2×10 ⁻⁶	2×10 ⁻⁶	8.24×10 ⁻⁵	CaV2	3.85	CaV3	0.001	0.44	-19%

Here CaV1^a, CaV2^b and CaV3^c represented the Calculated values of OH (according to Eq. (8)), *As* is the surface area concentration of aerosol and *F*_{HONO,soil} is soil emission flux (Oswald et al., 2013). The emission factor and δ are based on measurements in our previous work (Liu et al., 2020b). *J*_{NO3⁻} (Liu et al., 2020a), *V*_d (Han et al., 2017) and *K*_{dilution} (Dillon et al., 2002) are from references, respectively. The γ _{NO2} for aerosol and ground surface are calculated using Eq. (3-7). M0 represents the parameterized scheme input for the base case. M1-M20 are sensitivity analyses for different parameters in the HONO budget analysis, respectively.

BCNY COVID Category Periods January 1 - January 24 January 25 - March 6 Wind speed (m/s) 0.64 ± 0.42 (0.04-3.65) 0.80±0.55 (0.02-3.86) $PM_{2.5} (\mu g/m^3)$ 47.23±44.50 (3-265) 69.86±67.26 (2-268) RH (%) 36.79±14.66 (12-94) 45.14±21.20 (12-95) T (°C) 0.89±2.98 (-7.5-9.9) 3.42±3.97 (-6.8-12.6) HONO (ppb) 0.97±0.74 (0.17-3.85) $0.53 \pm 0.45 (0.01 - 2.11)$ NO (ppb) 18.42±29.24 (0.03-162.92) 2.44±5.40 (0.01-51.08) NO₂ (ppb) 26.99±13.41 (2.68-54.51) 17.26±11.34 (0.57-64.44) 45.35±38.90 (2.27-207.46) 19.52±14.41 (0.33-89.09) NO_x (ppb) CO (ppb) 907.72±499.16 (294.93-3013.30) 954.87±624.04 (242.24-3751.68) SO₂ (ppb) 2.09±1.36 (0.03-8.56) $1.47 \pm 1.95 (0.01 - 14.25)$ O₃ (ppb) 12.16±10.79 (0.38-37.90) 21.29±11.78 (0.56-60.69) NO_3^{-} (µg/m³) 9.99±9.72 (0.09-57.62) 16.71±18.20 (0.08-89.28) SO_4^{2-} (µg/m³) 4.59±7.08 (0.43-56.91) 7.99±8.61 (0.35-37.39) NH_4^+ (µg/m³) 4.95±5.08 (0.23-31.90) 9.24±10.32 (0.17-51.36) $Cl^{-}(\mu g/m^{3})$ 1.22±1.24 (0.01-6.72) 1.42 ± 1.53 (0.01-8.37) $OA(\mu g/m^3)$ 14.71±10.75 (0.88-60.54) 18.19±16.52 (0.88-77.28)

Table S3. Periods and mean values (mean ± standard deviation, (minimum to maximum value)) of wind speed, PM_{2.5}, RH, T, HONO, trace gas,

and NR-PM_{2.5} in field observation.

Location	Date	HONO	NO ₂	NO	PM _{2.5}
This study	2020.1.1-2020.1.24	0.97±0.74	26.9±13.41	18.4±29.24	47.2±44.5
	2020.1.25-2020.3.6	0.53±0.44	17.2±11.34	2.43±5.39	69.9±67.2
Shijia Zhuang (Liu et al., 2020a)	2019.12.15-2020.1.22	2.43±1.08	31.7	26.3±26.2	137.9±85.8
Beijing (Liu et al., 2020b)	2018.2.1-2018.6.30	1.26±1.06			
Guangzhou (Li et al., 2012)	2006.7.3-2006.7.31	0.95(night) 0.24(day)	16.5(night) 4.5(day)		
Beijing	2007.1.23-2007.2.14	1.04±0.73	38.76±10.02		
(Spataro et al., 2013)	2007.8.2-2007.8.31	1.45±0.58	31.7±7.82		70.12±29.62
Hyytiälä.Finland (Oswald et al., 2015)	2010.7.12-2010.8.12	0.037(night) 0.027(day)			
Beijing (Tong et al., 2015)	2014.10.28-2014.12.2	1.45	37.4	44.4	
Hong Kong (Xu et al., 2015)	2011.8(Summer)	0.65	19.8	8	
	2011.11(Autumn)	0.93	26.8	10.1	
	2012.2(Winter)	0.91	24.7	19.3	

 Table S4. Summaries for HONO concentration of field observation.

	2012.5(Spring)	0.35	15.5	5.5	
Beijing (Tong et al., 2016) Xi'an (Huang et al., 2017) Beijing (Wang et al., 2017)	2015.12.12-2015.12.22 2015.7.24-2015.8.6	1.34(haze) 0.51(clean) 1.12±0.97	28.4(haze) 7.1(clean) 20.9±11.0	70.73(haze) 17.0(clean)	144 (haze) 29 (clean)
	2015.9.22-10.21(Autumn)	2.27±1.82	32.91±20.44	38.79(night)	99.28(night)
	2016.4.1-5.14(Spring)	1.05 ± 0.89 1.05 ± 0.95	19.96±16.28 25.97±15.8	21.39(night)	56.6(night)
Shanghai (Cui et al. 2018)	2016.6.20-7.25(Summer) 2016.5.12-2016.5.28	1.38±0.9 2.31	19.21±11.25 46.46	3.08(night)	49.55(night)
(Cui et al., 2018) Ji'nan (Li et al., 2018)	2015.9-2015.11(Autumn) 2015.12-2016.2(Winter)	0.87±0.66 2.15±1.35	25.4±23.2 41.1±34.6	12.6 37.4	
	2016.3-2016.5(Spring) 2016.6-2016.8(Summer)	1.24±1.04 1.2±1.01	35.8±25.8 22.5±19.0	11.5 6.6	
Nanjing (Liu et al., 2019)	2017.12-2018.2(Winter)	1.15(night); 0.92(day)	28.4(night);23(day)	17.1(night);14.6(day)	
()	2018.3-5 (Spring) 2018.6-8 (Summer)	0.76(night);0.59 (day) 0.56(night);0.34(day)	17.4(night);12.9(day) 12.5(night);7.7(day)	1.7(night);3.0(day) 1.0(night);1.4(day)	

	2018.9-11 (Autumn)	0.81(night);0.51(day)	18.9(night);13.4(day)	6.2(night);4.3(day)
Beijing (Zhang et al., 2019)	2016.12	3.5±2.7	56±23	67±48
	2016.12(clean)	0.5 ± 0.2	19 ± 9	5 ± 5
	2016.12(haze)	3.4 ± 1.7	60 ± 13	75 ± 39
	2016.12(severe haze)	5.8 ± 3.0	76 ± 14	94 ± 40
Nanjing	2015.12.1-12.31	1.32±0.92	23.9±7.5	
(Zheng et al., 2020) Beijing (Liu et al., 2021)	2018.5.25-7.15(Summer)	1.27 ± 0.44	18.98 ± 4.47	
	2018.11.26-2019.1.15(winter)	1.13 ± 0.68	19.99 ± 9.38	
Xiamen	2018.8 (Summer)	0.51(night);0.72(day)	15.7(night);11.0(day)	3.2(night);5.6(day)
(Hu et al., 2022)	2018.10 (Autumn)	0.33(night);0.50(day)	14.3(night);11.4(day)	0.8(night);2.7(day)
	2018.12 (Winter)	0.52(night);0.61(day)	18.3(night);15.8(day)	4.8(night);12.2(day)
	2019.3 (Spring)	0.51(night);0.72(day)	17.7(night);18.5(day)	6.8(night);10.1(day)
Guangzhou (Yu et al., 2022)	2018.9-11	0.91(night);0.44(day)	36.9(night);23.3(day)	10.8(night);6.8(day)

Figure S1. Diurnal variation of OH concentrations observed in different areas of the North China Plain (a-d) (Tan et al., 2017; Tan et al., 2018; Ma et al., 2019; Tan et al., 2020) and parameterized fitting in this study (e).

Figure S2. Correlation and scatterplot between HONO, NO_x (a: BCNY; b: COVID-

lockdown) and PM_{2.5} (c: BCNY; d: COVID-lockdown).

Figure S3. Diurnal variations of observed HONO_{corr}/NO₂ in BCNY (black line) and COVID (red line).

Figure S4. Comparison of simulated (HONO_{sim}, red line) and observed (HONO_{obs}, black line) hourly mean HONO concentration at the BUCT site over the period Jan. 1~Mar. 6, 2020.

Figure S5. Observed and simulated HONO concentrations. Diurnal variations of observed HONO (HONO_{obs}, black line) and simulated HONO (HONO_{sim}, red line) in (a) BCNY and (b) COVID.

Figure S6. Correlation and Scatter plots between HONO_{obs} and HONO_{sim}.

Figure S7. The percentage of daytime and nighttime contribution from different sources in (a,c) BCNY and (b,d) COVID.

Reference

Cui, L., Li, R., Zhang, Y., Meng, Y., Fu, H., and Chen, J.: An observational study of nitrous acid (HONO) in Shanghai, China: The aerosol impact on HONO formation during the haze episodes, Sci Total Environ, 630, 1057-1070, 10.1016/j.scitotenv.2018.02.063, 2018.

Dillon, M. B., Lamanna, M. S., Schade, G. W., Goldstein, A. H., and Cohen, R. C.: Chemical evolution of the Sacramento urban plume: Transport and oxidation, Journal of Geophysical Research: Atmospheres, 107, ACH 3-1-ACH 3-15, 10.1029/2001jd000969, 2002.

Han, X., Zhang, M., Skorokhod, A., and Kou, X.: Modeling dry deposition of reactive nitrogen in China with RAMS-CMAQ, Atmospheric Environment, 166, 47-61, 10.1016/j.atmosenv.2017.07.015, 2017.

Hu, B., Duan, J., Hong, Y., Xu, L., Li, M., Bian, Y., Qin, M., Fang, W., Xie, P., and Chen, J.: Exploration of the atmospheric chemistry of nitrous acid in a coastal city of southeastern China: results from measurements across four seasons, Atmospheric Chemistry and Physics, 22, 371-393, 10.5194/acp-22-371-2022, 2022.

Huang, R. J., Yang, L., Cao, J., Wang, Q., Tie, X., Ho, K. F., Shen, Z., Zhang, R., Li, G., Zhu, C., Zhang, N., Dai, W., Zhou, J., Liu, S., Chen, Y., Chen, J., and O'Dowd, C. D.: Concentration and sources of atmospheric nitrous acid (HONO) at an urban site in Western China, Sci Total Environ, 593-594, 165-172, 10.1016/j.scitotenv.2017.02.166, 2017.

Li, D., Xue, L., Wen, L., Wang, X., Chen, T., Mellouki, A., Chen, J., and Wang, W.: Characteristics and sources of nitrous acid in an urban atmosphere of northern China: Results from 1-yr continuous observations, Atmospheric Environment, 182, 296-306, 10.1016/j.atmosenv.2018.03.033, 2018.

Li, X., Brauers, T., Häseler, R., Bohn, B., Fuchs, H., Hofzumahaus, A., Holland, F., Lou, S., Lu, K. D., Rohrer, F., Hu, M., Zeng, L. M., Zhang, Y. H., Garland, R. M., Su, H., Nowak, A., Wiedensohler, A., Takegawa, N., Shao, M., and Wahner, A.: Exploring the atmospheric chemistry of nitrous acid (HONO) at a rural site in Southern China, Atmospheric Chemistry and Physics, 12, 1497-1513, 10.5194/acp-12-1497-2012, 2012.

Liu, J., Liu, Z., Ma, Z., Yang, S., Yao, D., Zhao, S., Hu, B., Tang, G., Sun, J., Cheng, M., Xu, Z., and Wang, Y.: Detailed budget analysis of HONO in Beijing, China: Implication on atmosphere oxidation capacity in polluted megacity, Atmospheric Environment, 244, 10.1016/j.atmosenv.2020.117957, 2021. Liu, Y., Nie, W., Xu, Z., Wang, T., Wang, R., Li, Y., Wang, L., Chi, X., and Ding, A.: Semi-quantitative understanding of source contribution to nitrous acid (HONO) based on 1 year of continuous observation at the SORPES station in eastern China, Atmospheric Chemistry and Physics, 19, 13289-13308, 10.5194/acp-19-13289-2019, 2019.

Liu, Y., Ni, S., Jiang, T., Xing, S., Zhang, Y., Bao, X., Feng, Z., Fan, X., Zhang, L., and Feng, H.: Influence of Chinese New Year overlapping COVID-19 lockdown on HONO sources in Shijiazhuang, Sci Total Environ, 745, 141025, 10.1016/j.scitotenv.2020.141025, 2020a.

Liu, Y., Zhang, Y., Lian, C., Yan, C., Feng, Z., Zheng, F., Fan, X., Chen, Y., Wang, W., Chu, B., Wang, Y., Cai, J., Du, W., Daellenbach, K. R., Kangasluoma, J., Bianchi, F., Kujansuu, J., Petäjä, T., Wang, X., Hu, B., Wang, Y., Ge, M., He, H., and Kulmala, M.: The promotion effect of nitrous acid on aerosol formation in wintertime in Beijing: the possible contribution of traffic-related emissions, Atmospheric Chemistry and Physics, 20, 13023-13040, 10.5194/acp-20-13023-2020, 2020b.

Ma, X., Tan, Z., Lu, K., Yang, X., Liu, Y., Li, S., Li, X., Chen, S., Novelli, A., Cho, C., Zeng, L., Wahner, A., and Zhang, Y.: Winter photochemistry in Beijing: Observation and model simulation of OH and HO2 radicals at an urban site, Sci Total Environ, 685, 85-95, 10.1016/j.scitotenv.2019.05.329, 2019.

Oswald, R., Behrendt, T., Ermel, M., Wu, D., Su, H., Cheng, Y., Breuninger, C., Moravek, A., Mougin, E., Delon, C., Loubet, B., Pommerening-Roser, A., Sorgel, M., Poschl, U., Hoffmann, T., Andreae, M. O., Meixner, F. X., and Trebs, I.: HONO emissions from soil bacteria as a major source of atmospheric reactive nitrogen, Science, 341, 1233-1235, 10.1126/science.1242266, 2013.

Oswald, R., Ermel, M., Hens, K., Novelli, A., Ouwersloot, H. G., Paasonen, P., Petäjä, T., Sipilä, M., Keronen, P., Bäck, J., Königstedt, R., Hosaynali Beygi, Z., Fischer, H., Bohn, B., Kubistin, D., Harder, H., Martinez, M., Williams, J., Hoffmann, T., Trebs, I., and Sörgel, M.: A comparison of HONO budgets for two measurement heights at a field station within the boreal forest in Finland, Atmospheric Chemistry and Physics, 15, 799-813, 10.5194/acp-15-799-2015, 2015.

Spataro, F., Ianniello, A., Esposito, G., Allegrini, I., Zhu, T., and Hu, M.: Occurrence of atmospheric nitrous acid in the urban area of Beijing (China), Science of The Total Environment, 447, 210-224, 10.1016/j.scitotenv.2012.12.065, 2013.

Tan, Z., Hofzumahaus, A., Lu, K., Brown, S. S., Holland, F., Huey, L. G., Kiendler-Scharr, A., Li, X., Liu, X., Ma, N., Min, K. E., Rohrer, F., Shao, M., Wahner, A., Wang, Y., Wiedensohler, A., Wu, Y., Wu, Z., Zeng, L., Zhang, Y., and Fuchs, H.: No Evidence for a Significant Impact of Heterogeneous Chemistry on Radical Concentrations in the North China Plain in Summer 2014, Environ Sci Technol, 54, 5973-5979, 10.1021/acs.est.0c00525, 2020.

Tan, Z., Fuchs, H., Lu, K., Hofzumahaus, A., Bohn, B., Broch, S., Dong, H., Gomm, S., Häseler, R., He,
L., Holland, F., Li, X., Liu, Y., Lu, S., Rohrer, F., Shao, M., Wang, B., Wang, M., Wu, Y., Zeng, L., Zhang,
Y., Wahner, A., and Zhang, Y.: Radical chemistry at a rural site (Wangdu) in the North China Plain:
observation and model calculations of OH, HO2 and RO2 radicals, Atmospheric Chemistry and Physics,
17, 663-690, 10.5194/acp-17-663-2017, 2017.

Tan, Z., Rohrer, F., Lu, K., Ma, X., Bohn, B., Broch, S., Dong, H., Fuchs, H., Gkatzelis, G. I., Hofzumahaus, A., Holland, F., Li, X., Liu, Y., Liu, Y., Novelli, A., Shao, M., Wang, H., Wu, Y., Zeng, L., Hu, M., Kiendler-Scharr, A., Wahner, A., and Zhang, Y.: Wintertime photochemistry in Beijing: observations of ROx radical concentrations in the North China Plain during the BEST-ONE campaign, Atmospheric Chemistry and Physics, 18, 12391-12411, 10.5194/acp-18-12391-2018, 2018.

Tong, S., Hou, S., Zhang, Y., Chu, B., Liu, Y., He, H., Zhao, P., and Ge, M.: Comparisons of measured nitrous acid (HONO) concentrations in a pollution period at urban and suburban Beijing, in autumn of 2014, Science China Chemistry, 58, 1393-1402, 10.1007/s11426-015-5454-2, 2015.

Tong, S., Hou, S., Zhang, Y., Chu, B., Liu, Y., He, H., Zhao, P., and Ge, M.: Exploring the nitrous acid (HONO) formation mechanism in winter Beijing: direct emissions and heterogeneous production in urban and suburban areas, Faraday Discuss, 189, 213-230, 10.1039/c5fd00163c, 2016.

Wang, J., Zhang, X., Guo, J., Wang, Z., and Zhang, M.: Observation of nitrous acid (HONO) in Beijing, China: Seasonal variation, nocturnal formation and daytime budget, Sci Total Environ, 587-588, 350-359, 10.1016/j.scitotenv.2017.02.159, 2017.

Xu, Z., Wang, T., Wu, J., Xue, L., Chan, J., Zha, Q., Zhou, S., Louie, P. K. K., and Luk, C. W. Y.: Nitrous acid (HONO) in a polluted subtropical atmosphere: Seasonal variability, direct vehicle emissions and heterogeneous production at ground surface, Atmospheric Environment, 106, 100-109, 10.1016/j.atmosenv.2015.01.061, 2015.

Yu, Y., Cheng, P., Li, H., Yang, W., Han, B., Song, W., Hu, W., Wang, X., Yuan, B., Shao, M., Huang, Z., Li, Z., Zheng, J., Wang, H., and Yu, X.: Budget of nitrous acid (HONO) at an urban site in the fall season of Guangzhou, China, Atmospheric Chemistry and Physics, 22, 8951-8971, 10.5194/acp-22-8951-2022, 2022.

Zhang, W., Tong, S., Ge, M., An, J., Shi, Z., Hou, S., Xia, K., Qu, Y., Zhang, H., Chu, B., Sun, Y., and He, H.: Variations and sources of nitrous acid (HONO) during a severe pollution episode in Beijing in winter 2016, Sci Total Environ, 648, 253-262, 10.1016/j.scitotenv.2018.08.133, 2019.

Zheng, J., Shi, X., Ma, Y., Ren, X., Jabbour, H., Diao, Y., Wang, W., Ge, Y., Zhang, Y., and Zhu, W.: Contribution of nitrous acid to the atmospheric oxidation capacity in an industrial zone in the Yangtze River Delta region of China, Atmospheric Chemistry and Physics, 20, 5457-5475, 10.5194/acp-20-5457-2020, 2020.