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Abstract. Surface hoar crystals are snow grains that form when water vapor deposits on the snow surface. Once buried, 

surface hoar creates a weak layer in the snowpack that can later cause large avalanches to occur. The formation and 

persistence of surface hoar are highly spatiotemporally variable making its detection difficult. Remote sensing technology 10 

capable of detecting the presence and spatial distribution of surface hoar would be beneficial for avalanche forecasting, 

however this capability has yet to be developed. Here, we hypothesize that near-infrared (NIR) texture, defined as the spatial 

variability of reflectance magnitude, may produce an optical signature unique to surface hoar due to the grains distinct shape 

and orientation. We tested this hypothesis by performing reflectance experiments in a controlled cold laboratory environment 

to evaluate the potential and accuracy of surface hoar mapping from NIR texture using a near-infrared hyperspectral imager 15 

(NIR-HSI) and a lidar operating at 1064 nm. We analyzed forty-one snow samples; three of which were surface hoar and 38 

that consisted of other grain morphologies. When using NIR-HSI under direct and diffuse illumination, we found that 

surface hoar displayed higher NIR texture relative to all other grain shapes across numerous spectral bands and a wide range 

of spatial resolutions (0.5 - 50 mm). Due to the large number of spectral and spatial resolution combinations, we conducted a 

detailed samplewise case study at 1324 nm spectral and 10 mm spatial resolutions. The case study resulted in the median 20 

texture of surface hoar being 1.3 to 8.6 times greater than the 38 other samples under direct and diffuse illumination (p < 

0.05 in all cases). Using lidar, surface hoar also exhibited significantly increased NIR texture in 30 out of 38 samples, but 

only at select (5 – 25 mm) spatial resolutions. Leveraging these results, we propose a simple binary classification algorithm 

to map the extent of surface hoar on a pixelwise basis using both the NIR-HSI and lidar instruments. The NIR-HSI under 

direct and diffuse illumination performed best, with a median accuracy of 96.91% and 97.37%, respectively. Conversely, 25 

median classification accuracy with lidar was only 66.99%. Further, to assess the repeatability of our method and 

demonstrate mapping capacity, we ran the algorithm on a new sample with mixed microstructures, with accuracy of 99.61% 

and 96.15% for using NIR-HSI under direct and diffuse illumination, respectively. As NIR-HSI detectors become 

increasingly available, our findings demonstrate the potential of a new tool for avalanche forecasters to remotely assess the 

spatiotemporal variability of surface hoar, which would improve avalanche forecasts and potentially save lives.  30 
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1 Introduction and background 

Mountainous and polar snowpacks are commonly blanketed by surface hoar, unique ice crystals that grow when water vapor 

deposits on the snow surface (Horton and Jamieson, 2017). Hoar crystals can grow to several centimeters in length and stand 

in a predominately vertical (but often quite variable) orientation atop the snow surface. Surface hoar is a prominent concern 35 

for avalanche forecasters due to its propensity for creating weak layers in the snowpack that can cause large avalanches. 

Generally, a weak layer is formed due to a snow layer being weakly bonded to the slab above, as in the case of an ice lens, or 

being of low shear strength, such as with surface hoar. Once buried, surface hoar layers are prone to fracture propagation and 

avalanche release (Horton and Jamieson, 2017; Jamieson and Schweizer, 2000). For instance, Birkeland (1998) found that 

nearly one-third of large natural avalanches in southwestern Montana failed on buried layers of surface hoar, while Jamieson 40 

and Schweizer (2000) similarly observed in a Swiss dataset that 40% of avalanches released on a surface hoar weak layer.  

Surface hoar formation and persistence is highly spatiotemporally variable. Its presence is difficult to predict 

because it depends on the complex spatial distributions of atmospheric water vapor, precipitation, wind, radiation, and 

vegetation that are present in polar and mountainous environments. Temporally, surface hoar can be promptly destroyed by 

environmental influences, such as wind, or it can persist for weeks (Champollion et al., 2013; Lutz and Birkeland, 2011). 45 

The formation of surface hoar can occur across the landscape or in isolated sub-slope regions. Therefore, before becoming a 

buried weak layer in the snowpack, surface hoar detection is an ideal application for remote sensing. 

Optical remote sensing retrievals of snow and ice commonly use near-infrared (NIR) wavelengths where ice is 

absorptive, and reflectance is sensitive to microstructure. In the NIR, snow grain size is the primary driver of snow 

reflectance and albedo; the increased path length of light through ice yields a reduction in reflectance. Despite the complex 50 

shapes of snow grains, representing snow as a collection of ice spheres with radius (re), known as the optical or effective 

snow grain size, is commonly used for simulating snow reflectance and albedo (Grenfell and Warren, 1999). The effective 

grain size is related to the physical snow microstructure through the ice surface area-to-volume ratio (or specific surface 

area; SSA) by the following relationship: 

                                                                          𝑟𝑒 =   
3

𝑆𝑆𝐴
                                                                       (1) 55 

In practice, the non-linear inverse relationship between NIR reflectance and re is leveraged to map re from reflectance 

measurements (e.g., Nolin and Dozier, 2000). Because grain size controls broadband NIR albedo, estimates of re have 

historically dominated physical snow surface characterization, constituting a major goal of snow optics.  

In recent decades, the use of NIR hyperspectral imaging (NIR-HSI), and (to a lesser extent) light detection and 

ranging (lidar), have enhanced re mapping efforts. Hyperspectral instruments have superior spectral resolution relative to 60 

broadband or multispectral reflectance measurements, producing a nearly continuous measured spectra for each pixel in an 

image. Lidar, on the other hand, holds key advantages as an active remote sensor. Lidar units scan a surface by emitting 

rapid pulses of light (most commonly at a NIR wavelength) and record both the relative strength of backscattered light after 

reflecting off a target, and the two-way travel time. These two measurement types can be used independently; the travel time 
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is used to measure surface topography, whereas the backscattered magnitude has been demonstrated as a useful measure of 65 

optical properties. Although far less validated than traditional passive reflectance measurements, lidar backscatter may 

provide adequate re estimates (Yang et al., 2017).   

Despite advances in snow optics, Horton and Jamieson (2017) note the fundamental disconnect between snow 

surface characterizations conducted by the remote sensing community (i.e., re mapping), and the physical properties relevant 

to avalanche release. For avalanche forecasters, characterizing snow surface microstructure with the morphological grain 70 

shapes defined in the International Classification for Seasonal Snow on the Ground (ICSSG, Fierz et al., 2009) and their 

associated mechanical properties is critically important because these mechanical properties help determine how well new 

snow will bond to the old snow surface. Hence, a forecaster would much prefer a map identifying a potential future weak 

layer, like surface hoar, than a map of re. Relating morphological grain shape to re is difficult because effective grain size 

only considers the path length of ice which is a complex function of grain shape, traditional grain size, bulk density, and 75 

other physical characteristics. Therefore, re is not particularly useful for avalanche forecasting operations, although room for 

this adaptation does exist. While certain magnitudes of re are generally related to grain shape (Domine et al., 2007; Matzl and 

Schneebeli, 2010), few studies have formally attempted to use NIR reflectance for mapping morphological grain shape 

instead of re. Further, the studies that have attempted this (e.g., Bϋhler et al., 2014; Horton and Jamieson, 2017) have found 

that surface hoar crystals produce moderate reflectance signatures relative to other grain shapes, making them difficult to 80 

delineate from less-concerning snow microstructures based on NIR reflectance magnitude. 

To the best of our knowledge, the only study to date that successfully identified surface hoar formation from NIR 

remote sensing was conducted by Champollion et al. (2013) in Antarctica. As opposed to evaluating magnitudes of NIR 

reflectance, the researchers leveraged a NIR texture signature, defined as the localized spatial variability in reflectance, to 

classify the presence of surface hoar using an infrared camera and an 850 nm artificial light source. Simply put, the 85 

researchers found that a large, localized variance in NIR reflectance, as quantified by a contrast index, was strongly 

correlated with surface hoar crystals. Similarly, in the preliminary findings presented by Walter et al. (2023), the researchers 

quantified a 600% increase in NIR reflectance spatial variability during surface hoar formation, measured with a 905 nm 

lidar unit.  

Here, we postulate that the physical phenomena for these findings include increasing specular contributions with 90 

surface hoar growth (Walter et al., 2023), as well as variable ice absorption and path length (Fig. 1b). Depending on how an 

incoming photon interacts with the relatively large, often vertically oriented surface hoar crystals, the photon could 

experience a wide range of ice path lengths and thus absorption. Further, it is thought that surface hoar plates promote 

specular reflectance, which can cause large portions of radiation to either return to the sensor or forward scatter toward the 

snowpack and into the “radiation trap” of hoar crystals. As a result, we hypothesize that the presence of surface hoar will 95 

coincide with a quantifiable increase in localized reflectance variance, a texture signature, which could be used to map its 

distribution. If this is the case, it would enable fine spatial and temporal resolution mapping of surface hoar extent (prior to 

burial) in challenging to observe environments, particularly as NIR remote sensors and uncrewed aerial vehicles (UAVs) 
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become more cost-effective as forecasting tools. However, such a texture analysis has never been fully evaluated, rigorously 

quantified for accuracy, or compared to a wide variety of well-defined microstructures to ensure that the NIR texture is 100 

indeed a unique defining feature of surface hoar. 

 

Figure 1: Profile view of surface hoar atop an underlying snow layer (a) juxtaposed with an idealized schematic of light scattering 

when encountering a surface hoar layer (b). Because surface hoar crystals are typically large and vertically oriented, incoming 

photons may experience a very long path length and thus substantial absorption before reaching the underlying snow layer 105 
(leftmost case). Depending on the angle of interaction, that path may be considerably shortened (middle left case), or, as these 

crystals tend to be modestly spaced, photons may evade the surface hoar crystals entirely and pass straight into the underlying 

snow layer (middle case). Further, specular contributions are thought to increase in surface hoar layers (rightmost cases), which 

can produce particularly high or low reflectance depending on the angle of interaction. Last, because the surface hoar crystals will 

almost certainly have a different SSA than the underlying layer, light scattering back to the sensor directly from the surface hoar 110 
layer should further enhance the spatial variability of reflectance.    

To address this knowledge gap, we performed controlled cold laboratory experiments to determine whether NIR 

texture can delineate the extent of surface hoar. We first created snow samples with varying grain shapes and physical 

properties and quantified their microstructures using X-ray computed microtomography (micro-CT). Using both a compact 

NIR-HSI and a terrestrial lidar unit, we scanned each sample under a variety of illumination conditions. We subsequently 115 

analyzed the resulting maps of reflectance to produce measurements of NIR texture. Finally, we assessed the statistical 

significance of increased texture in surface hoar samples. We used our results to inform optimal thresholds for classifying 

surface hoar on a per-pixel basis, before analyzing the accuracy of our resulting classified data products. 

2 Methodology 

We aimed to prepare laboratory snow samples with a wide variety of well-defined grain shapes and microstructures, acquire 120 

optical measurements, and perform a texture analysis towards delineation of surface hoar from other snow surface grain 

shapes. Section 2.1 describes snow sample preparation and physical characterization, Sect. 2.2 describes the acquisition of 
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NIR-HSI and lidar data, Sect. 2.3 covers image texture analysis, Sect. 2.4 describes classification, and Sect. 2.5 evaluates the 

repeatability of our work. 

2.1 Sample preparation and physical characterization 125 

2.1.1 Sample preparation 

We utilized Montana State University’s Subzero Research Laboratory (SRL), a controlled cold laboratory environment, for 

sample preparation, testing and assessment. The snow used in these experiments was a combination of laboratory-grown 

crystals produced in the SRL’s snowmaking apparatus, which is similar to the systems presented in Schleef et al. (2014) and 

Abe and Kosugi (2019), and natural undisturbed snow that we collected from the surrounding area. To ensure the snow was 130 

completely dry, we kept all samples in a cold room at -30° C and allowed them to equilibrate for at least 24 hours prior to 

evaluation. We prepared forty-one snow samples from twelve batches of differing snow grains (Fig. 2). From the bulk 

batches, we sieved snow grains through differing mesh sizes to further promote disparate microstructures (Table 1). The 

exception to this was surface hoar, which was grown in the laboratory atop rounded grains following the methods used by 

Stanton et al. (2016) via an apparatus similar to Chandel et al. (2023) and Ozeki et al. (2020). Samples 25 and 26 consisted 135 

of in situ surface hoar growth at differing stages, measuring ~ 0.5 – 2.0 cm in length. Meanwhile, Sample 24 featured these 

surface hoar grains redistributed through a large (6.30 mm) sieve, in an effort to further examine the optical behavior of these 

grains after disrupting their typical vertical structure. Sample grain shapes included precipitation particles (PP), decomposing 

and fragmented precipitation particles (DF), rounded grains (RG), melt forms (MF), faceted crystals (FC), depth hoar (DH), 

and surface hoar (SH) (Fierz et al., 2009). We prepared snow samples to be microstructurally homogeneous, both laterally 140 

across the sample and vertically over sample depth, in a rectangular 38 cm x 23 cm sample holder. Sample thickness was 3.8 

cm, over twice the largest optically active depth estimates for our sample microstructures in the NIR spectrum (Nolin and 

Dozier, 2000).   
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Figure 2: Microscopy images of grains from each initial batch (left columns) and binary micro-CT cross-sections from 145 
representative samples (right columns). In the microscopy images, the grid size on the underlying blue grain card is 2 mm. 
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Table 1: Physical snow sample characteristics organized by primary grain shape and listed in order of decreasing surface area-to-

volume ratio therein.  

                  

Sample 
# 

Batch 
ID 

Primary 
Grain 
Shape 

Secondary Grain 
Shape(s) 

Micro-CT 
SSA (mm-1) 

Micro-CT 
ρ (kg m-3) 

Sieve Size (mm) 
Notes 

Passed Caught 

1 A PP PPrm, DF 32.87 176 2.38 1.18  

2 A PP PPrm, DF 28.98 217 2.38  -  

3 A PP PPrm, DF 26.31 211 1.18 0.42  

4 B PP PPgp, DF 31.79 160 2.38 1.18  

5 C PP DF 33.10 94  -  - In situ fresh PP 
6 C PP DF 20.54 286 2.38 1.18  

7 C PP DF 20.45 280 0.85 0.42  

8 C PP DF 20.12 275 2.38  -  

9 C PP DF 18.39 303 1.18 0.85   

10 D DF RG 27.44 293 2.38 1.18  

11 D DF RG 25.85 323 0.85 0.42  

12 D DF RG 25.11 351 1.18 0.85  

13 D DF RG 20.77 365 2.38  -  

14 E DF DFbk, RGwp 16.27 374 0.85  -  

15 F DF PP 14.39 322 2.38  -  

16 F DF PP 13.79 312 2.38 1.18  

17 F DF PP 13.65 309 1.18 0.85  

18 F DF PP 12.99 382 0.85  -   

19 G FC DH 14.67 407 1.18 0.42  

20 G FC DH 11.32 448 2.38 1.18  

21 G FC DH 10.26 417 6.30 3.35  

22 G FC DH 10.05 472 6.30  -  

23 G FC DH 9.87 404 3.35 2.38   

24 H SH RG 14.52 213 6.30  - Re-sieved SH grains 
25 H SH RG 10.82 65  -  - In situ SH atop RGs 
26 H SH RG 7.50 94  -  - Smaller than S25 

27 I RG DF 13.53 381 2.38 1.18  

28 I RG DF 13.08 419 1.18 0.85  

29 I RG DF 12.77 431 2.38  -  

30 I RG DF 12.43 489 0.85 0.42  

31 I RG DF 12.40 452  -  - S29 melt/refreeze 
32 J RG DF 13.76 394 0.85  -  

33 J RG DF 13.45 355 0.42  -  

34 J RG DF 10.66 460 1.18  -  

35 K RG DF 11.13 404 1.18 0.85  

36 K RG DF 10.84 428 0.85 0.42   

37 L MF RG 4.96 582 2.38 0.42  

38 L MF RG 3.69 545 6.30  -  

39 L MF RG 3.13 512 3.15 2.38  

40 L MF RG 2.88 467  -  - Refrozen in-situ 

41 L MF RG 2.37 433 6.30 3.15   

         

2.1.2 Physical characterization 

We thoroughly characterized the physical properties of each sample, as summarized in Table 1. First, we performed 150 

microscopy on representative grains from each batch prior to sieving (Fig. 2), and classified grain shapes using a crystal card 
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and lens following Fierz et al. (2009). After sieving and sample preparation, we collected micro-CT data from each sample 

using a Bruker SkyScan 1173 housed in a -10° C chamber within the SRL, generally following the protocol outlined by 

Donahue et al. (2021). To prepare samples, we used a cylindrical holder with 3 cm diameter x 4 cm length, which allowed 

for a voxel size of 14.5 μm. The voxel size of 14.5 μm was the finest spatial resolution achievable with the relatively large 155 

cylindrical micro-CT sample holder used in this study. The larger micro-CT sample holder was chosen to provide sufficient 

surface area for larger-grained samples, namely surface hoar, to be encapsulated and transported to micro-CT for 

measurement. We intuitively note that this will result in neglection or mischaracterization of fine dendrites smaller than th is 

size. Consequentially, it is possible that the SSA of samples with a PP primary grain habit (particularly Samples 1 – 5) was 

underestimated by micro-CT, although this is of little consequence for the optical texture analysis presented here. We 160 

obtained measurements using a 42 kV, 190 mA X-ray beam, 100 ms exposure time, with each sample rotated 180° at 0.7° 

increments. After scanning, we performed thresholding of grey-scale images into ice and air phases by visual inspection 

(e.g., Fig. 2), and used a despeckling filter to remove white and black speckles. Reconstructions via the marching cubes 

method (Lorensen and Cline, 1987) allowed us to determine the volume and surface area in 3D, which we used to calculate 

the SSA and density of each sample. 165 

2.2 Optical measurements 

We examined NIR texture under a variety of illumination and viewing conditions, using both lidar and NIR-HSI 

independently. For NIR-HSI, we constructed laboratory setups for both direct (Sect. 2.2.1.1) and diffuse (Sect. 2.2.1.2) 

illumination conditions. As lidar (Sect. 2.2.2) produces its own direct illumination via laser irradiance, this was the only 

possible illumination condition for lidar analysis. Furthermore, it is well-understood that incidence angle impacts snow 170 

reflectance in the NIR spectral region; snow is nearly Lambertian under nadir incidence and predominantly forward 

scattering at off-nadir incidence. To consider this, for each of the aforementioned illumination configurations/instruments, 

we collected data with: 1) the sample container perpendicular to the detector (nadir), and 2) tilted 10° away from the 

detector. Hereafter, these incidence angles of 0° and 10° are termed Ɵ. The result was six datasets representing each 

illumination/instrument/incidence combination for every sample. We acquired all optical data immediately prior to micro-CT 175 

analysis at a constant temperature of -10° C.   

2.2.1 Hyperspectral imaging 

We used a Resonon Inc. Pika NIR-640 near-infrared hyperspectral imager to map snow reflectance in the NIR 

(www.resonon.com). Donahue et al. (2021) provide a detailed description of the instrument.  Briefly, the imager’s spectral 

resolution ranges from 2.39 to 2.50 nm, and measures 336 bands across the NIR region from 891–1711 nm. It constructs a 180 

2D image containing the full spectrum in each pixel by collecting the image line by line, known commonly as a “push 

broom” or “line” scanner. Thus, to collect an image, the camera must move (translating or rotating) relative to the scene, or 
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the scene must move relative to the imager. We used a Resonon benchtop linear scanning stage to move the sample beneath 

the sensor. 

2.2.1.1 Direct illumination data collection 185 

We positioned the hyperspectral imager above the linear translating stage that held the samples. For more details on the 

benchtop apparatus, see Donahue et al. (2022). The lens of the imager is surrounded by a set of four halogen lamps that 

produce direct illumination (Fig. 3a). The halogen lamps and lens of the imager are at a height of 38 and 47 cm above the 

snow surface, respectively. We used a large Spectralon white diffuse reflectance panel to perform a pixel-by-pixel 

calibration, resulting in a reflectance factor (R) measured for each band in every individual pixel of the image. The 190 

spectralon panel is 30.5 x 30.5 cm, thus larger in both dimensions than our optical ROI. We built a sample holder with the 

same external dimensions as our snow sample holders, but specifically made to hold the spectralon panel, both centered on 

the ROI and at the same distance from the illumination source as the snow surfaces. For each snow sample scan, we also 

conducted a reference scan with the spectralon panel. This allowed for pixel-by-pixel calibration of the entire optical ROI, 

thus accounting for any heterogeneous illumination. We made these reference measurements for each sample and each 195 

illumination condition. 
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Figure 3: Laboratory data collection schematic for hyperspectral imaging under direct (a) and diffuse (b) illumination conditions, 

as well as for lidar (c). Data regions-of-interest (ROIs) within the snow sample are illustrated in (d). Angle Ɵ refers to the viewing 

incidence angle (as well as the illumination incidence angle, in the case of both lidar and NIR-HSI under direct illumination).  200 

2.2.1.2 Diffuse illumination data collection 

For the diffuse illumination setup, we kept the imager mounted in the same orientation, but removed the set of four halogen  

lights used for direct illumination. Instead, we positioned two larger softbox diffuse halogen lamps (Westcott uLite) 

perpendicular to the snow sample surface (Fig. 3b). Aiming the lights at a large white panel on the opposite side of the snow 

sample, 51 cm away mimicked diffuse hemispheric illumination conditions with no direct component. Once again, we used a 205 

Spectralon panel to convert raw data to reflectance images.   
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2.2.1.3 Hyperspectral data processing 

Initial processing took place in Resonon’s proprietary Spectronon software, and analyses thereafter performed in Rstudio. 

We began by truncating the reflectance data from each dataset to a central region-of-interest (ROI) encapsulating the micro-

CT ROI (Fig. 3d). Our goal was to exclude edge effects from mixed pixels/points, particularly considering lidar beam 210 

dilation when samples were tilted off-nadir. Resulting NIR-HSI ROIs contained 224,000 pixels with a spatial resolution of 

0.5 mm. Reflectance images were produced from 188 of the 336 available bands, ranging from 951 – 1403 nm, trimmed to 

reduce noise at the lower end of the imager spectral range and to exclude regions where snow and ice are scarcely reflective. 

Example snow sample reflectance maps from a single band centered at 1030 nm, the location of a prominent ice absorption 

feature, (hereafter R1030) are illustrated in Fig. 4c and 4d. The last factor we sought to examine was spatial resolution, 215 

considering that if a NIR texture signature specific to surface hoar does exist, then it is likely resolution-dependent. Thus, we 

coarsened all datasets to spatial resolutions of 1, 2.5, 5, 10, 25, and 50 mm (hence two orders of magnitude), as an attempt to 

mimic the finer spatial resolutions achievable by UAV-mounted systems. 

2.2.2 Lidar 

2.2.2.1 Data collection 220 

We used a Riegl VZ-6000 terrestrial laser scanner mounted to a tripod. The scanner achieves vertical (line) scanning via an 

oscillating mirror while moving horizontally on a rotating head (Fig. 3c). The maximum vertical scan field-of-view (sFOV) 

is 60° - 120° from zenith and selectable therein, while the horizontal sFOV can range from 0° to a full 360° panorama. The 

laser operates in the NIR range narrowly around a central wavelength of 1064 nm. We set vertical and horizontal angular 

increments to 0.01° to maximize resolution (point density) and selected a pulse repetition frequency of 300 kHz. The initial 225 

laser beam diameter upon exiting the scanner is 15 mm with a divergence of 0.12 mrad. We positioned the scanner about 2.5 

m from the snow samples. The duration of each scan was approximately 1 minute. The resulting data product for lidar is a 

“cloud” of discrete vector data points, called returns. Similar to the hyperspectral imaging setup, we used a Lambertian 

reflectance standard to convert return power to bidirectional reflectance factor for each individual point in the clouds.  

2.2.2.2 Lidar data processing 230 

Initial processing of point clouds took place in Riegl’s RiScan application, and analyses thereafter in Rstudio. As with NIR-

HSI data, we trimmed point clouds to a central ROI (Fig. 3d). After truncation, the average point cloud contained 80,000 

returns, with spacing of ~ 1.4 pts/mm2. In order to perform pixelwise operations and to better compare with hyperspectral 

imagery, we converted the point cloud into an image of continuous pixels. Using a Delaunay triangulation, we interpolated 

point clouds into images with 1 mm spatial resolution, resulting in 56,000 pixels per dataset. The Riegl VZ-6000 lidar unit 235 

operates narrowly around a central wavelength of 1064 nm. Therefore, unlike NIR-HSI, the lidar is only capable of 

measuring bidirectional reflectance specifically at 1064 nm (hereafter R1064; e.g., Fig. 4e and 4f). This wavelength occurs on 
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the shoulder of the ice absorption feature centered at 1030 nm (Inset of Fig. 4e). Last, as with NIR-HSI, we coarsened all 

lidar datasets to the resolutions listed in Sect. 2.2.1.3 to examine the influence of spatial resolution on NIR texture. However, 

we remind the reader that the original lidar beam diameter is 15 mm, and thus spatial resolutions lower than this are not as 240 

relevant as with NIR-HSI.   

 

Figure 4: Visible photographs of two different snow samples (a and b) are juxtaposed with greyscale images of hyperspectral 

reflectance at 1030 nm (c and d), as well as lidar-derived reflectance at 1064 nm (e and f). Samples are shown under direct 

illumination at Ɵ = 0° and at their original resolutions, prior to any coarsening. The data in the top row depicts Sample 3, a snow 245 
microstructure with relatively high specific surface area (26.31 mm-1) compared to Sample 31 in the bottom row, which had a 

specific surface area of 12.40 mm-1. The insensitivity of reflectance to snow microstructure in the visible range, as opposed to the 

dramatically different reflected magnitudes in the NIR, is apparent. The inset figures illustrate the location of the bidirectional 

reflectance measurements relative to the ice absorption spectra. These example spectra were produced using the Asymptotic 

Radiative Transfer model (Kokhanovsky and Zege, 2004).  250 
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2.3 Texture analysis   

2.3.1 Moving window focal analysis 

To restate our hypothesis, we anticipated that surface hoar would display heightened NIR variability, or texture, relative to 

other snow surface grain shapes due to the physical phenomenon illustrated in Fig. 1. Therefore, we sought to evaluate 

localized variability of reflectance. To achieve this, we performed a moving window focal analysis to create maps of local 255 

standard deviation. Using R1030 from NIR-HSI, a demonstration of both coarsening and subsequent moving window analysis 

is presented in Fig. 5 for Sample 20. Beginning with a map of R at either the native 0.5 mm resolution (Fig. 5a), or coarsened 

resolutions of 5 mm and 50 mm (Fig. 5b – 5c, respectively), a 9-pixel neighborhood is placed around a central pixel. The 

standard deviation of R1030 (hereafter σ1030) is calculated within the window via Equation 2:  

 260 

                                𝜎 =  √
∑ ∑ (𝑅𝑖𝑗− 𝑅̅)23

𝑗=1
3
𝑖=1

𝑁
                               (2) 

 

where Rij is the reflectance value at row i and column j in the 3x3 grid, R̅, is the mean of the reflectance values in the 3x3 

grid, and N is the total number of pixel values (nine in this case). The resulting value of σ is assigned to the central pixel. 

We handled edges by truncating the window size when necessary, such that corner pixels only considered three neighboring 265 

cells, for example. Moving the window across each R1030 map and evaluating every pixel independently yields a map of σ1030 

(Fig. 5d – 5f). Hence, these maps depict NIR reflectance texture, rather than magnitude. We underwent this process for all 

datasets, thus each of the 188 NIR-HSI bands and lidar-derived R1064, for each illumination condition and incidence angle.  
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Figure 5: A map of R1030 from NIR-HSI at its raw resolution of 0.5 mm (a) is coarsened by two orders of magnitude to 5 mm (b) 270 
and 50 mm (c). For each resolution, the localized standard deviation, σ1030, is calculated using a nine-pixel moving window analysis 

(d – f). The data shown is from Sample 26 under direct illumination at an incidence angle of Ɵ = 0°.      

2.3.2 Spatial and spectral texture analysis 

Once texture maps were derived for each dataset, we determined which spatial resolutions were best for surface hoar 

delineation, assuming some degree of resolution-dependence. Furthermore, leveraging the spectral data provided by NIR-275 

HSI, we examined the relationship between NIR texture and wavelength. We began by grouping the pixelwise σ 

distributions from surface hoar samples 24 – 26 for each dataset. Similarly, we grouped σ distributions of all other samples 

(hereafter termed “Other”, meaning a microstructure other than SH). Next, we calculated median values of both grouped 

distributions for each instrument, band, and spatial resolution, and determined the percent difference in medians for each 

case. Using heat maps and line graphs, we evaluated σ distributions and resulting differences in medians (i.e., Δ M(σ)). This 280 

allowed us to determine the spatial resolutions and, in the case of NIR-HSI, the wavelengths, that maximized the difference 

between SH and Other microstructure medians. We note that a larger difference in texture medians between SH and Other 

samples should allow for greater ease of SH classification.  
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2.3.3 Samplewise analysis and significance testing 

We next examined how texture varied between individual samples, rather than considering SH samples against an 285 

aggregation of other microstructures (Sect. 2.3.2). As a case study, we selected a single band and spatial resolution for each 

instrument. For NIR-HSI, we chose the band centered at 1324 nm. The results of our spatial and spectral analysis (described 

in Sect. 2.3.2; results to be discussed in Sect. 3.1) indicated that this was an optimal wavelength under both direct and diffuse 

illumination. This is a sensible finding, considering that 1324 nm sits amid a prominent ice absorption feature where 

reflectance is particularly sensitive to the path length of ice (i.e., optical grain size). The lidar unit has only one band, 290 

centered at 1064 nm. We elected to optimize spatial resolutions based on the results in Sect. 3.1 as well, and thus we selected 

10 mm for NIR-HSI and 5 mm for lidar. To determine if surface hoar textures are significantly larger than those of differing 

microstructures, we compared distributions and median values of σ across samples. As in Sect. 2.3.2, we grouped the 

pixelwise σ distributions of surface hoar (Samples 24 – 26) for each dataset. We then compared the median value of this 

grouped SH distribution against samplewise medians. Specifically, we performed one-sided, one-sample t-tests to assess the 295 

grouped median against the median σ of each sample. The flow chart in Fig. 6 describes the processing workflow from raw 

reflectance images through statistical analyses for the case study. Our hypotheses can be summarized as follows, where X 

describes an individual sample number: 

 

𝐻0:   𝑀(σ𝑆24:𝑆26)  =   𝑀(𝜎𝑆(𝑋)) 300 

𝐻𝐴:    𝑀(σ𝑆24:𝑆26)  >  𝑀(𝜎𝑆(𝑋)) ;    𝛼 = 0.05 
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Figure 6: Flowchart of samplewise data processing and statistical analysis workflow. 

2.4 Classification algorithm 305 

Continuing our samplewise case study (Sect. 2.3.3), we next produced classified maps of surface hoar. We determined 

optimal threshold values of σ to delineate surface hoar from other snow surface shapes on a per-pixel basis. In addition to 

visualizing distributions (across all pixels) of σ with boxplots for each sample, we also constructed probability density 

functions (PDFs). As in Sect. 2.3.2, we grouped the distributions of surface hoar samples (Samples 24 – 26) and compared 

them to the aggregated distributions of all other samples. We selected values of σ corresponding to the intersection of the 310 

grouped PDFs as the optimal thresholds of delineation for each dataset (i.e., each combination of instrument, illumination 

condition, and incidence angle), termed σcrit. Using these threshold values, we performed a binary pixelwise classification; 

pixels with σ values above σcrit were classified as surface hoar, while values beneath were designated as “Other” 

microstructures. We ran the classification algorithm on all samples using the appropriate σcrit value for each dataset. To 

evaluate the success of the classification algorithm, we calculated the true positive rate (TPR), true negative r ate (TNR), and 315 

overall accuracy (A) for each sample using the following equations: 

 

                                                                              𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                    (3)                        

                                                                             𝑇𝑁𝑅 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                                    (4)                        
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 320 

                                                                      𝐴 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 +  𝐹𝑁
                                         (5)                        

where TP is a true positive, TN is a true negative, etc. In this case, a TP refers to the correct identification of surface hoar 

when it is present, a TN corresponds to the correct identification of an “Other” microstructure, a FP is when the algorithm 

makes an incorrect surface hoar classification, and a FN is when surface hoar is misclassified as “Other”.  

2.5 Method repeatability assessment 325 

Our final investigation was to test the spatial mapping capacity and repeatability of our texture-based classification on a new 

snow sample, one that was not involved in the initial analysis. Using the techniques outlined in Sect. 2.1.1, we prepared a 

snow sample of rounded grains and grew surface hoar atop roughly half of the surface area, while the other half remained 

covered. Thus, the resulting snow surface grain shape was a 1:1 ratio of SH:RG. We proceeded to run the classification 

algorithm (Sect. 2.4) on the mixed sample to produce a map of surface hoar extent, using the appropriate values of σcrit for 330 

each dataset. Unfortunately, the lidar unit was no longer available at the time of this assessment, so only NIR-HSI was 

evaluated. We again quantified accuracy using Equations 3 – 5. 

3 Results 

Here, we discuss results at nadir orientations, hence Ɵ = 0° (as defined in Fig. 3). The results of each case at Ɵ = 10° were 

very similar to their nadir counterparts, and so for clarity we address only the latter here. Results for Ɵ = 10° are presented in 335 

Appendix A.   

3.1 Spatial and spectral texture analysis 

We evaluated a grouped distribution of σ for surface hoar (Samples 24 – 26) against a grouped distribution containing all 

other samples for each instrument/illumination condition. We performed this evaluation across a variety of spatial 

resolutions spanning two orders of magnitude. Further, in the case of NIR-HSI where spectral data were available, we 340 

examined results over 188 bands from 951 – 1403 nm. Using NIR-HSI under both direct and diffuse illumination, we found 

that the median value of σ for surface hoar was nearly always greater than that of “Other” microstructure group, but with 

considerable spatial and spectral dependence (Fig. 7a and 7b). When evaluating the difference in medians (i.e., SH minus 

Other), a normal distribution is evident along the spatial (vertical) axis, with the largest differences observed at the 10 mm 

spatial resolution for both illumination cases. Spectrally, the difference in medians remains fairly constant, peaking in the 345 

~1250 – 1350 nm range. The maximum increase was 383% at 1246 nm for diffuse illumination and 294% at 1369 nm for 

direct illumination. The differences in median values tend to be larger in the case of diffuse illumination relative to direct, 

and therefore we anticipate greater ease of surface hoar classification with diffuse lighting.          
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Figure 7: Heat maps depicting the percent difference in median values of σ for surface hoar samples versus all other 350 
microstructures (SH minus other) across a variety of spatial resolutions and spectral bands (a and b). Data were acquired via NIR-

HSI under diffuse (a) and direct (b) illumination conditions. In (c), a line graph illustrates the same percent difference for lidar-

derived σ1064 with points colored by the same scale when an increase is observed. Black vertical lines in (a) and (b) are located at 

the lidar wavelength of 1064 nm, for reference, while the grey vertical line in (c) is centered at zero. 

To reiterate, when using NIR-HSI, median values of σ were larger in grouped SH distributions than other 355 

microstructure distributions across nearly all cases (Fig. 7a and 7b); at worst the medians were essentially equal. This 

provides evidence for our hypothesis that surface hoar will produce increased NIR reflectance texture under a variety of 

conditions. Our lidar observations, however, were less consistent. The mere presence of heightened texture in SH was 

dependent on spatial resolution (Fig. 7c). At the lowest (1 mm and 2.5 mm) and highest (50 mm) spatial resolutions, we 

observed larger medians in the “Other” microstructure group than in SH, a result that contrasts our hypothesis. A normal 360 

distribution of delta median values corresponding to spatial resolution is evident, as in NIR-HSI, with 5 mm and 10 mm 

datasets producing the largest (positive) differences. As discussed, we were limited to evaluation of a single band with our 

lidar unit (R1064), although our NIR-HSI spectral results (Fig. 7a and 7b) indicate that 1064 nm is a suitable wavelength.    

3.2 Samplewise statistical analysis and significance testing 

We conducted a samplewise case study using NIR-HSI derived σ1324 (both direct and diffuse) at 10 mm and lidar σ1064 at 5 365 

mm spatial resolution. These selections were based on our findings in Sect. 3.1; the spatial resolutions were the optimal 

choice for each instrument, and 1324 nm maximized NIR-HSI texture increases under both illumination conditions. When 

using NIR-HSI, we found that surface hoar exhibited larger values of σ1324 relative to other sample microstructures in both 

direct and diffuse illumination conditions. This is evident in Fig. 8d and 8e, while also outlining the problem with using NIR 

reflectance magnitude to delineate surface hoar. In both cases, the median reflectance magnitude (R1324) gradually increased 370 

proceeding from lower to higher SSA (Fig. 8a and 8b), as expected. This leaves the reflectance magnitude of surface hoar 
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“hidden” in the middle of all other grain shapes, with moderate median R1324 values (fuchsia horizontal reference lines). 

When examining values of σ1324 (Fig. 8d and 8e), a different pattern is evident. In Fig. 8d and 8e, median values of σ1324 are 

fairly constant across all samples with the exception of surface hoar, where a spike is present. The separation between the 

median value of σ1324 for surface hoar samples compared to the best-fit line of all other samples (black lines) further 375 

illustrates this and may allow for delineation of surface hoar based on a texture parameter. Our results for lidar R1064 indicate 

a similar trend, although the distinction is less pronounced (Fig. 8c and 8f).   

 

Figure 8: Samplewise median values of reflectance (a – c) and σ (d – f) for each instrument/illumination case study. The black lines 

are spline or linear best fits to all samples other than surface hoar, while fuchsia horizontal reference lines depict SH median 380 
values. Colors and point shapes correspond to those suggested by the ICSSG (Fierz et al., 2009).    
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To restate our central finding, when using NIR-HSI under both direct and diffuse illumination, surface hoar 

exhibited larger median values of σ1324 relative to other sample microstructures in all cases (Table 2, Fig. 9a and 9b), thus 

confirming our hypothesis. Furthermore, this increase was statistically significant in all cases. The in situ Samples 25 and 26 

were particularly distinct, with interquartile ranges rarely overlapping those of any other sample, making these easily 385 

discernible. Interestingly, Sample 24, which consisted of sieved SH grains (Table 1), displayed heightened texture under 

direct illumination but not diffuse. As with Fig. 8, our lidar results were similar to those of NIR-HSI, but less pronounced 

(Fig. 9c), with particular confusion occurring with PP and MF samples. Still, the grouped SH median value of σ1064 was 

significantly larger than sample medians in 30/38 cases. Table 2 provides complete significance findings for all scenarios, 

with greyed cells denoting a case where the sample median σ value is significantly less than the surface hoar median.  390 

 

 

Figure 9: Samplewise boxplot analysis for all three instrument/illumination scenarios. Boxes are colored by primary grain shape 

following the ICSSG. Fuchsia horizontal reference lines depict the median value of σ for surface hoar Samples 24 – 26. Samples 

with an asterisk had median values significantly lower than surface hoar medians based on one-sample, one-sided t-tests at α = 395 
0.05.     
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Table 2: Sample median values of σ for each instrument and illumination condition. Median σ values of surface hoar Samples 24 – 400 
26 are shown at the top. Bold sSample median σ values shaded in grey denote values significantly lower than the corresponding 

surface hoar medians at a significance level of α = 0.05.   

            

 
   NIR-HSI Diffuse NIR-HSI Direct Lidar  

 
  M (σ) for SH Samples 24 - 26  

     0.0343 0.0119 0.0034  

 Sample 
# 

1° Grain 
Shape 

M (σ1324) M (σ1324) M (σ1064)  
  

 1 PP 0.0132 0.0027 0.0037  
 2 PP 0.0120 0.0028 0.0029  

 3 PP 0.0076 0.0022 0.0019  
 4 PP 0.0180 0.0035 0.0037  

 5 PP 0.0121 0.0046 0.0047  
 6 PP 0.0086 0.0041 0.0021  
 7 PP 0.0057 0.0024 0.0017  
 8 PP 0.0076 0.0033 0.0019  

 9 PP 0.0057 0.0026 0.0021  

 10 DF 0.0100 0.0030 0.0028  
 11 DF 0.0061 0.0023 0.0019  

 12 DF 0.0079 0.0024 0.0024  
 13 DF 0.0068 0.0023 0.0020  

 14 DF 0.0044 0.0022 0.0016  
 15 DF 0.0093 0.0034 0.0024  

 16 DF 0.0080 0.0036 0.0019  
 17 DF 0.0059 0.0029 0.0019  
 18 DF 0.0056 0.0027 0.0017  

 19 FC 0.0051 0.0027 0.0023  

 20 FC 0.0102 0.0041 0.0020  
 21 FC 0.0211 0.0061 0.0032  

 22 FC 0.0124 0.0058 0.0026  
 23 FC 0.0155 0.0060 0.0024  

 24 SH  -  -  -  
 25 SH  -  -  -  

 26 SH  -  -  -  

 27 RG 0.0081 0.0035 0.0022  
 28 RG 0.0064 0.0031 0.0017  
 29 RG 0.0049 0.0027 0.0017  
 30 RG 0.0040 0.0032 0.0016  
 31 RG 0.0111 0.0081 0.0035  
 32 RG 0.0065 0.0029 0.0015  

 33 RG 0.0050 0.0028 0.0018  
 34 RG 0.0053 0.0028 0.0014  

 35 RG 0.0079 0.0044 0.0029  
 36 RG 0.0056 0.0030 0.0018  

 37 MF 0.0105 0.0067 0.0027  
 38 MF 0.0113 0.0089 0.0046  

 39 MF 0.0110 0.0048 0.0019  
 40 MF 0.0165 0.0076 0.0030  

 41 MF 0.0129 0.0058 0.0028  
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3.3 Classification algorithm 

We used PDFs to compare the probability density distributions of surface hoar samples (Samples 24 – 26) against all other 405 

samples, which allowed us to determine critical texture thresholds (σcrit) for surface hoar delineation under each 

instrument/illumination scenario. This process is illustrated in Fig. 10. Probability density describes the relative likelihood of 

sampling a certain value of σ; y-values are assigned such that the entire area under the curve is equal to unity. Therefore, the 

area under the curve over a given range of σ is equivalent to the probability of sampling a value of σ in that range. Selecting 

the intersection point of the two distributions, following Champollion et al. (2013), allows for optimal binary classification 410 

of a given pixel. The resulting critical values for each condition are listed on the PDF plots. Using these σcrit values, we 

conducted pixelwise classification of all samples). Examples of this binarization for several samples of varying primary 

grain shape are shown in Fig. 11. All samplewise accuracy values (A) are listed in Table 3, while median values of A, TPR, 

and TNR for each scenario are included on the PDF plots in Fig. 10. Classification results generally mirrored those of the 

statistical analysis. That is, results were excellent for NIR-HSI under both direct and diffuse illumination, but dwindled 415 

substantially when using lidar-derived σ1064. The classification algorithm generally struggled most with samples of a FC or 

MF primary grain shape.  

 

 

Figure 10: Probability density functions juxtaposing the σ distributions of surface hoar, Samples 24 – 26 (fuchsia curves), with 420 
those of all other samples (grey curves). The area under each curve is equal to unity. Dotted vertical reference lines represent the 

distribution intersection, where the critical threshold values (σcrit) were extracted. Median accuracy metrics from the resulting 

samplewise binary classifications are also listed for each scenario.  

 

 425 
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Table 3: Samplewise and median accuracy (A) values for each instrument/illumination combination. Results for surface hoar, 

Samples 24 – 26, are shaded in fuchsiaitalicized.   

      

   NIR-HSI Diffuse NIR-HSI Direct Lidar  

  σcrit  

  0.0168 0.0068 0.0025  

 Sample # A (%)  

 1 71.67 99.85 20.26  

 2 80.81 98.02 38.31  

 3 99.48 100.00 69.69  

 4 42.19 95.45 20.89  

 5 80.67 91.09 15.60  

 6 97.27 93.51 63.71  

 7 98.62 100.00 80.09  

 8 88.01 99.31 72.02  

 9 100.00 100.00 64.68  

 10 89.50 97.34 43.93  

 11 100.00 100.00 74.31  

 12 91.18 100.00 53.45  

 13 96.91 100.00 66.99  

 14 100.00 100.00 90.67  

 15 93.35 97.37 54.83  

 16 99.15 94.01 75.43  

 17 88.97 98.81 80.64  

 18 100.00 100.00 84.12  

 19 100.00 99.71 56.27  

 20 94.16 95.44 67.89  

 21 22.71 66.05 32.27  

 22 83.87 68.61 44.99  

 23 60.34 65.59 51.89  

 24 47.76 86.10 75.12  

 25 100.00 97.20 75.97  

 26 99.07 90.88 71.58  

 27 98.04 95.24 60.70  

 28 100.00 100.00 86.56  

 29 100.00 99.87 87.04  

 30 100.00 97.63 93.47  

 31 93.83 31.25 25.54  

 32 98.66 97.62 91.21  

 33 100.00 100.00 75.55  

 34 100.00 98.99 96.40  

 35 97.30 89.08 39.34  

 36 100.00 99.57 74.68  

 37 96.39 52.66 44.08  

 38 93.42 22.10 12.32  
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 39 91.74 85.85 76.60  
 40 52.24 37.43 35.75  
 41 79.27 72.25 37.70  

 Median 96.91 97.37 66.99  

      
 

 435 

Figure 11: Example transformations from maps of σ1324 (a – f) to pixelwise classifications (g – l) via binarization with a critical 

threshold. The data shown here are from direct illumination at 10 mm spatial resolution. 

3.4 Classification assessment 

Classification accuracy assessed on a new sample, comprised of a 1:1 ratio of RG and SH surface grain shapes, proved 

consistent, demonstrating repeatability of the texture phenomenon when using NIR-HSI (Fig. 12). Further, we observe the 440 

capacity to map surface hoar extent amid mixed surface conditions. In the R1324 maps (Fig. 12b and 12c) the heterogeneity of 

surface hoar reflectance is already apparent compared to the RGs, and then quantified via a moving window analysis (Fig. 

12d and 12e). Using the appropriate values of σcrit (Sect. 3.3), we binarized each texture image to create a classified data 

product (Fig. 12f and 12g). In the classified maps, correct rejection of the RG surface (hence TNR) was perfect (100.00%) 

for diffuse illumination and suitable (92.23%) under direct illumination. Accurate identification of SH (i.e., TPR) was also 445 

excellent, at 99.35% and 99.32% for diffuse and direct, respectively, while overall accuracy was 99.61% and 96.15%.   
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Figure 12: A sample with a 50:50 ratio of RG:SH surface grain shapes is displayed in the visible (a). Under both diffuse (upper 

row) and direct (lower row) illumination conditions, the bidirectional reflectance factor at 1324 nm is extracted (b and c) from 

NIR-HSI. Via a moving window analysis, localized standard deviation (σ1324), or NIR texture, is quantified (d and e), and then 450 
binarized using critical thresholds to produce classified maps (f and g). Overall accuracy, true positive rates, and true negative 

rates are listed on the classified maps. The transitional zone was excluded in accuracy analyses. 

4 Discussion 

4.1 NIR-HSI 

We found that, when measured with NIR-HSI, surface hoar exhibited larger median values of σ, a NIR texture metric, than 455 

other snow microstructures across a variety of spatial resolutions and spectral bands. Furthermore, in a samplewise case 

study evaluating σ1342 at 10 mm spatial resolution, we determined that median surface hoar values were significantly larger 

than other snow surface structures (primary grain habits of PP, DF, FC, RG and MF) in all cases under both direct and 

diffuse illumination (one-sided, one-sample t-test, α = 0.05). Our findings are consistent with Champollion et al. (2013), who 

found that under artificial lighting conditions the NIR texture (in this case a contrast index) of the Antarctic snow surface 460 

was higher when surface hoar was present as compared to when it was absent. These researchers used a passive NIR camera 

and downward-looking lights, all mounted ~ 2 m above a flat snow surface, to create a field setup akin to the direct 

illumination (Ɵ = 0°) case presented here. Although they do not explicitly mention the spatial resolution of their images, they 

imply that individual surface hoar crystals spanned 5 – 10 pixels, and thus their resolution was likely on the order of 
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millimeters. While Champollion et al. (2013) simply juxtaposed the presence versus absence of surface hoar, we build on 465 

these foundational findings by quantifying the texture phenomenon against a variety of differing, thoroughly characterized 

snow microstructures in a controlled laboratory environment. Further, our work features the explicit inclusion of diffuse 

illumination, varied illumination/viewing incidence angle, and a range of spatial resolutions and spectral bands. Last, 

whereas Champollion et al. (2013) used texture metrics across an entire image to confirm the presence of hoar crystals on a 

given day (with accuracy of 94%), we extend this classification by demonstrating a per-pixel mapping methodology, 470 

allowing us to map the spatial extent of surface hoar within an image (Fig. 12). Median sample classification accuracy was 

96.91% and 97.37% for diffuse and direct illumination, respectively. As discussed in Sect. 3.1 and illustrated in Fig. 8, 

surface hoar exhibits moderate NIR reflectance when compared to other grain shapes, and thus leveraging reflectance 

magnitude alone is insufficient for surface hoar delineation. These results highlight the importance of our texture-based 

approach. 475 

 Spatial resolution was perhaps the factor with the most influence on our results, with the maximal difference 

between surface hoar and other median values occurring at 10 mm resolution for both illumination cases (Fig. 7). However, 

consistent differences in median values can be observed at nearly all resolutions beneath 50 mm, indicating that 

classification at coarser resolutions may still be suitable under the right conditions. This trend makes sense physically; we 

attribute the rise in texture metrics associated with surface hoar to be related to the lateral spacing between large hoar 480 

crystals (Fig. 1). Given that this spacing is often on the order of millimeters, it is possible that the raw resolution is too fine 

to optimally observe this variability, while 50 mm resolution is too coarse. Further, the fact that results were fairly consistent 

spectrally from 951 – 1403 nm implies that hyperspectral capacity is likely unnecessary; a broadband passive NIR sensor 

could likely observe the same texture increases. An even more cost-effective option would be to remove the NIR filter from 

a standard CCD camera, allowing for light detection up to 950 nm. The success of Walter et al. (2023), discussed further in 485 

Sect. 4.2, provides optimism for observing SH texture at NIR wavelengths beneath 950 nm. Samples that proved the most 

challenging to discern from SH were FC (Samples 19 – 23), and the large MF grains from Batch L (Samples 37 – 41). The 

latter was likely due to enhanced surface roughness, as these grains were several mm in length (Fig. 2), a rather extreme 

case, and indicates that caution should be used when conditions favor wet snow metamorphism. Sporadic misclassification 

of FC (e.g., Fig. 11i) is perhaps understandable, given that these grains form from kinetic snow metamorphism, which is 490 

somewhat similar to surface hoar growth. In practice, it may be useful to try to identify these surfaces as well, as near -

surface FC also tend to act as weak layers once buried. The relatively lower median σ1342 value of the sieved SH Sample 24 

under diffuse illumination (Fig. 9a) is an interesting result. This anomaly perhaps implies that the texture signature dissipates 

when the predominately vertical orientation of SH grains is interrupted, and thus surface hoar that has been blown over is 

likely more difficult to detect. The low accuracy value of this sample under diffuse illumination (47.76%, Table 3) is 495 

evidence of this. The uncertainty involved in SH classification for any case can be quantified by examining the area under 

the intersecting PDF curves (Fig. 10). Furthermore, uncertainty with regards to a specific microstructure (such as FC) could 
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be observed by comparing PDFs between individual samples, rather than grouping SH samples versus all other samples. 

However, our goal was to determine robust thresholds for delineation of SH from any other microstructure.        

4.2 Lidar 500 

For as impressive as the performance of NIR-HSI was, the results of our lidar analysis were more perplexing. In Fig. 7c, we 

can observe that the median value of σ1064 for SH Samples 24 – 26 was only greater than that of other microstructures at 

spatial resolutions of 5, 10, and 25 mm. At the largest and smallest resolutions, much like with NIR-HSI, performance 

diminished. However, unlike NIR-HSI, in these cases the median SH value was actually lower than the other microstructure 

median, a result that runs counter to our hypothesis. Even at 5 mm resolution, our lidar classification results were 505 

considerably less robust than those of NIR-HSI, with median sample accuracy of 66.99%. Unexpected results in texture 

analyses are not unheard of. While Champollion et al. (2013) noted increases in NIR texture when surface hoar was present 

under direct, “artificial” illumination at nadir incidence (as we did with NIR-HSI), they also documented a reversal of this 

trend under natural (solar) illumination. However, this was at very large (80° - 85°) solar zenith angles, and thus represents 

an extreme case of grazing incidence, and the cause of this observation was not thoroughly explained. For the laboratory 510 

setup used here, we expected lidar to reproduce similar results to those of our NIR-HSI analysis and to the findings of 

Champollion et al. (2013) using artificial light. Like NIR-HSI, the lidar classification algorithm struggled with the large MFs 

of Batch L, as well as PP (Fig. 9c).   

In general, the use of lidar reflectance to ascertain snow surface properties is far less validated relative to passive 

imagery, like NIR-HSI. While passive NIR imagery has been used to estimate SSA or re for decades, leveraging the well-515 

established sensitivity of NIR reflectance to snow microstructure, very few studies (e.g., Yang et al., 2017) have attempted to 

do so with lidar. Therefore, the dependence of NIR lidar reflectance on snow microstructure is substantially less understood.  

This is important because lidar scanning represents a unique bidirectional reflectance scenario. For instance, the beam 

emitted from lidar units is collimated, and thus it experiences less loss due to scattering and absorption compared to direct 

solar irradiance, and results in higher irradiance at the wavelength of interest. Collimation alters scattering and reflectance in 520 

optically rough materials like snow relative to an un-collimated illumination source (Murphy, 2006). Additionally, lidar 

beams are predominately linearly polarized, which contrasts with the often randomly polarized nature of solar illumination 

(Sassen, 2005). The scattering process is partly polarizing, and therefore multiple scattering can have significant polarizat ion 

dependence (Li et al., 2008; Bhandari et al., 2011). Last, lidar presents a monostatic geometric condition on bidirectional 

reflectance, such that every measurement strictly observes direct backscatter. This is beneficial in that it limits the number of 525 

characterizations required compared to a full bidirectional reflectance investigation. However, observations of snow 

reflectance at this geometry are lacking, and radiative transfer models are not well-validated for the case of direct 

backscatter. Thus, lidar is an optically unique case of bidirectional reflectance that requires careful examination , so it is not 

entirely surprising that a texture analysis of lidar reflectance produced peculiar results.   
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One possible explanation for the relatively poor performance of our algorithm when using lidar reflectance can be 530 

found in the work of Walter et al. (2023), who leveraged a laboratory setup much like the apparatus presented here. These 

researchers focused on a temporal analysis, using a 905 nm lidar to observe changes in the mean reflectance magnitude and 

standard deviation (across an entire image) at prescribed time intervals as they grew surface hoar atop a layer of compressed 

PP. Consistent with our spatial analysis, they noted that reflectance magnitude was insufficient to characterize surface hoar 

growth, as the mean reflectance changed only 4%, while standard deviation increased as much as 600%. Although this 535 

juxtaposition features only a single microstructure other than SH (compressed PP), these lidar-based results seem more 

encouraging than our own, and are more consistent with our NIR-HSI findings. A key distinction is, perhaps, the lidar spot 

size. Their spot size of 3 mm is much smaller than that of our lidar/setup (15 mm), and likely closer to the size and spacing 

of individual surface hoar crystals in many cases. Indeed, the authors predict that surface hoar crystals smaller than the lidar 

beam diameter will not be detectable, and thus it is possible that our beam diameter is simply too coarse for this application.      540 

4.3 Future work and speculations on scaling to field applications 

Though scaling to field applications presents considerable challenges and uncertainty, it is likely that our NIR-HSI findings 

can be extended to operational avalanche forecasting in the near future. A simple setup like that of Champollion et al. 

(2013), where a downward-looking NIR camera acquired daily and nightly images, could be installed at remote weather 

stations to monitor the formation and persistence of surface hoar layers prior to burial. Such remote measurements are not 545 

currently available but are critically important for avalanche forecasters. Further, UAV snow mapping using NIR-HSI has 

recently been demonstrated as a useful tool to measure snow grain size and albedo at the slope scale (Skiles et al. 2023) and  

future studies should consider texture analyses. To accomplish this, a greater variety of incidence angles must be evaluated. 

Although it is encouraging that our results remained promising at Ɵ = 10° (Appendix A), more oblique angles will inevitably 

be encountered in the field. Even on overcast days, where diffuse solar illumination is prevalent, variance in terrain slope 550 

beneath a downward looking imager would still alter the viewing incidence angle and thus the magnitude, and likely texture, 

of NIR snow reflectance. Using direct solar illumination would add another factor, the illumination incidence angle, 

although this could be kept consistent by using artificial lighting. Ideal thresholds of σcrit will likely continue to vary between 

incidence angles, as well as between instruments/applications. Further, the flight plan and/or optical logistics would need to 

be controlled to ensure adequate spatial resolution. Another factor that may be worth investigating is the window size during  555 

focal analysis, although a preliminary study determined that the neighborhood size was of little consequence for our data. 

Last, evaluating the influence of the underlying substrate grains on SH texture would be useful, as we only examined 

rounded grains here.  

Although we realized limited success with lidar, the use of lidar for surface hoar mapping via texture requires 

further evaluation, particularly with regards to beam diameter. A better physical understanding regarding the resolution-560 

dependence of our lidar results is needed. At a minimum, lidar could be useful in conjunction with NIR-HSI or other passive 

NIR detection. Using the spatial capacity of lidar, values of slope angle (and thus incidence angle if using a downward-
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oriented imager), could be determined on a per-pixel basis, allowing for the proper threshold value to be used when 

analyzing NIR-HSI texture data. Though challenging, slope, or even basin-scale mapping of surface hoar extent is likely 

possible with current technology, though a field campaign would be required to tune our method to a wider variety of 565 

illumination conditions and incidence angles. Maps of surface hoar extent over avalanche terrain prior to burial would be 

vital in making slope-specific avalanche forecasts. Such maps could also identify likely avalanche trigger points, improving 

avalanche mitigation with explosives, for example. While our work focused on surface hoar classification, texture analysis 

will likely provide a useful tool for evaluating other physical phenomena as well, such as surface roughness.  

5 Conclusion 570 

Our research demonstrates a novel method for mapping the spatial extent of surface hoar using NIR texture in a cold 

laboratory. In essence, we found that:   

I. Hyperspectral imaging can robustly measure the texture of snow and ice by computing pixelwise variability in 

reflectance at any NIR wavelength. 

II. When evaluated with NIR-HSI, surface hoar has significantly heightened NIR texture relative to other snow 575 

microstructures across a range of spectral bands and spatial resolutions, likely as a result of variable ice absorption 

and specular contributions. 

III. Near-infrared texture thresholds can be used to binarize NIR-HSI texture measurements, resulting in accurate maps 

of surface hoar spatial extent on a per-pixel basis.  

IV. Similar results were achieved with 1064 nm lidar, although the phenomenon was resolution-dependent and 580 

performance was substantially less robust. The use of lidar for this purpose requires further investigation, and is 

likely dependent on beam diameter. 

As NIR-HSI and lidar become more economical, these may provide capable methods for measuring NIR texture and 

subsequently mapping surface hoar. Extending the work presented here to field operations will have immediate implications 

for broad-scale snow surface mapping and avalanche forecasting. 585 
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6 Appendix A 

Results for the Ɵ = 10° incidence viewing angle case are presented below. As mentioned in the text, the results are very 

similar to the case of Ɵ = 0°, particularly regarding the samplewise comparison and classification mapping. This is perhaps 600 

unsurprising, as the bidirectional reflectance distribution function (BRDF) of snow changes very little for the case of direct 

backscatter between 0 – 10°. Thus, we certainly would not expect large changes in reflectance magnitude, and this is likely 

true for spatial variability as well. We observed the most pronounced differences in the spatial/spectral analysis. By 

juxtaposing Fig. 7 and Fig. A1, we note slightly larger increases in M(σ) under diffuse illumination for Ɵ = 10° relative to Ɵ 

= 0°, while the opposite is true under direct illumination. The latter difference is likely related to how non-nadir direct 605 

illumination interacts with the predominately vertically oriented SH crystals, although this topic requires further 

investigation. As mentioned in Sect. 4.3, it is imperative that future studies evaluate texture at more oblique incidence 

angles, particularly when considering scaling to field applications.  

 

Figure A1: Heat maps depicting the percent difference in median values of σ for surface hoar samples versus all other 610 
microstructures (SH minus other) across a variety of spatial resolutions and spectral bands (a and b). Data were acquired via NIR-

HSI under diffuse (a) and direct (b) illumination conditions. In (c), a line graph illustrates the same percent difference for lidar-

derived σ1064 with points colored by the same scale when an increase is observed. Black vertical lines in (a) and (b) are located at 

the lidar wavelength of 1064 nm, for reference, while the grey vertical line in (c) is centered at zero. Relative to the nadir case, 

performance generally improved for NIR-HSI under diffuse illumination, but decreased under direct illumination for both NIR-615 
HSI and lidar. 
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Figure A2: Samplewise median values of reflectance (a – c) and σ (d – f) for each instrument/illumination case study. The black 

lines are spline or linear best fits to all samples other than surface hoar, while fuchsia horizontal reference lines depict SH median 

values. Colors and point shapes correspond to those suggested by the ICSSG (Fierz et al., 2009).    

 

Figure A3: Samplewise boxplot analysis for all three instrument/illumination scenarios. Boxes are colored by primary grain shape 625 
following the ICSSG. Fuchsia horizontal reference lines depict the median value of σ for surface hoar Samples 24 – 26. Samples 

with an asterisk had median values significantly lower than surface hoar medians based on one-sample, one-sided t-tests at α = 

0.05.     
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 640 

Table A1: Sample median values of σ for each instrument and illumination condition. Median σ values of surface hoar Samples 24 

– 26 are shown at the top. Bold sSample median σ values shaded in grey denote values significantly lower than the corresponding 

surface hoar medians at a significance level of α = 0.05.   

            

 
   NIR-HSI Diffuse NIR-HSI Direct Lidar  

 
  M (σ) for SH Samples 24 - 26  

     0.0400 0.0117 0.0034  

 Sample 
# 

1° Grain 
Shape 

M (σ1030) M (σ1030) M (σ1064)  

  

 1 PP 0.0145 0.0042 0.0039  

 2 PP 0.0123 0.0036 0.0029  

 3 PP 0.0084 0.0032 0.0021  

 4 PP 0.0186 0.0047 0.0038  

 5 PP 0.0119 0.0048 0.0049  

 6 PP 0.0089 0.0049 0.0023  

 7 PP 0.0059 0.0030 0.0019  

 8 PP 0.0069 0.0034 0.0019  

 9 PP 0.0066 0.0034 0.0021  

 10 DF 0.0117 0.0040 0.0027  

 11 DF 0.0067 0.0030 0.0021  

 12 DF 0.0084 0.0032 0.0024  

 13 DF 0.0066 0.0032 0.0021  

 14 DF 0.0047 0.0027 0.0016  

 15 DF 0.0105 0.0040 0.0023  

 16 DF 0.0097 0.0044 0.0020  

 17 DF 0.0065 0.0030 0.0019  

 18 DF 0.0058 0.0031 0.0017  

 19 FC 0.0053 0.0031 0.0024  

 20 FC 0.0106 0.0045 0.0021  

 21 FC 0.0229 0.0065 0.0035  

 22 FC 0.0125 0.0063 0.0027  

 23 FC 0.0180 0.0070 0.0026  

 24 SH  -  -  -  

 25 SH  -  -  -  

 26 SH  -  -  -  

 27 RG 0.0082 0.0036 0.0024  

 28 RG 0.0066 0.0033 0.0016  

 29 RG 0.0053 0.0030 0.0017  

 30 RG 0.0044 0.0035 0.0016  

 31 RG 0.0109 0.0087 0.0034  

 32 RG 0.0065 0.0032 0.0015  

 33 RG 0.0057 0.0032 0.0016  

 34 RG 0.0060 0.0032 0.0015  

 35 RG 0.0082 0.0049 0.0031  

 36 RG 0.0061 0.0035 0.0018  

 37 MF 0.0113 0.0070 0.0028  

 38 MF 0.0121 0.0094 0.0046  

 39 MF 0.0120 0.0050 0.0021  

 40 MF 0.0161 0.0078 0.0031  

 41 MF 0.0136 0.0066 0.0030  
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 645 

Figure A4: Probability density functions juxtaposing the σ distributions of surface hoar, Samples 24 – 26 (fuchsia curves), with 

those of all other samples (grey curves). Dotted vertical reference lines represent the distribution intersection, where the critical 

threshold values (σcrit) were extracted. Median accuracy metrics from the resulting samplewise binary classifications are also listed 

for each scenario. 
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 670 

Table A2: Samplewise and median accuracy (A) values for each instrument/illumination combination. Results for surface hoar, 

Samples 24 – 26, are shaded in fuchsiaitalicized.   

      

   NIR-HSI Diffuse NIR-HSI Direct Lidar  

  σcrit  

  0.0186 0.0070 0.0027  

 Sample # A (%)  

 1 72.33 89.15 24.87  

 2 83.13 95.96 45.25  

 3 99.68 99.23 73.05  

 4 50.38 83.29 24.38  

 5 85.71 90.30 18.42  

 6 99.23 90.61 63.28  

 7 99.27 100.00 77.67  

 8 97.84 97.86 78.17  

 9 99.68 100.00 70.60  

 10 85.13 93.71 51.30  

 11 100.00 99.47 69.40  

 12 92.55 99.79 58.86  

 13 97.50 99.52 69.08  

 14 100.00 99.86 92.61  

 15 95.87 98.92 62.54  

 16 99.56 93.72 75.56  

 17 99.71 98.88 83.55  

 18 99.72 100.00 87.14  

 19 100.00 99.03 59.43  

 20 97.30 92.69 71.82  

 21 26.82 59.36 31.77  

 22 91.19 65.53 49.82  

 23 54.19 49.75 54.41  

 24 45.48 75.78 69.72  

 25 99.49 97.47 71.65  

 26 99.42 90.85 68.56  

 27 97.47 98.79 61.54  

 28 99.85 99.88 89.85  

 29 100.00 99.75 90.04  

 30 100.00 99.55 95.68  

 31 96.31 23.70 31.09  

 32 99.32 100.00 90.86  

 33 100.00 98.37 86.31  

 34 98.78 99.88 98.35  

 35 97.39 85.68 41.07  

 36 100.00 98.51 77.23  

 37 96.67 49.46 46.40  

 38 91.27 25.22 14.25  
 39 97.30 86.69 77.62  
 40 61.71 41.65 39.89  
 41 81.77 56.24 39.62  
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 Median 97.50 97.47 69.08  
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