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Abstract. Land surface modelling runs with CLM5 over Africa at 3km resolution were carried out and we 

assessed the impact of different sources of soil information and different upscaling strategies of the soil 

information, also in combination with different atmospheric forcings and different temporal resolutions of those 

atmospheric forcings. FAO and SoilGrids250m were used as soil information. SoilGrids information at 250m 

resolution was upscaled to the 3km grid scale by three different methods: (i) random selection of one of the small 15 

SoilGrids250m grid cells contained in the model grid cell; (ii) arithmetic averaging of SoilGrids soil texture values 

and (iii) selection of the dominant soil texture. These different soil model inputs were combined with different 

atmospheric forcing model inputs, which provide inputs at different temporal resolutions: CRUNCEPv7 (6-hourly 

input resolution), GSWPv3 (3-hourly) and WFDE5 (hourly). We found that varying the atmospheric forcing 

influenced simulated states and fluxes by CLM5 much more than changing soil information. Varying the source 20 

of soil texture information (FAO or SoilGrids250m) influences model water balance outputs more than the 

upscaling methodology of the soil texture maps. However, for high temporal resolution of atmospheric forcings 

(WFDE5) the different soil texture upscaling methods result in considerable differences in simulated 

evapotranspiration (ET), surface runoff and subsurface runoff at the local and regional scales related to the higher 

temporal resolution representation of rainfall intensity in the model. The upscaling methodology of fine scale soil 25 

texture information influences land surface model simulation results, but only clearly in combination with high 

temporal resolution atmospheric forcings.  

 

1. Introduction 

Understanding the intricate dynamics of land surface models (LSMs) over Africa involves a detailed examination 30 

of soil properties, which are indispensable yet steeped with uncertainty. The heterogeneity and complexity of soil 

properties (Vågen et al., 2016; Hengl et al., 2021) influence LSM simulations (Li et al., 2022), yet they often 

remain inadequately described within LSMs (Xu et al., 2023) due to limited data availability as a result of spatially 
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insufficient measurements (Dube et al., 2023). This inadequacy is further exacerbated in LSMs by the need to 

represent the point scale measurements at a coarse spatial resolution for field, regional or continental scale studies. 35 

Consequently, upscaling of soil information becomes a critical undertaking, aiming to bridge the gap between the 

fine-scale variability of soil properties and the broader scale at which LSMs usually operate (Van Looy et al., 

2017; Montzka et al., 2017).  

Quality of input datasets, like atmospheric forcings, soil physical properties or land surface parameters were 

found to greatly impact land surface modelling. Vahmani & Hogue (2014) compared remotely sensed green 40 

vegetation fraction (GVF) and impervious surface area (ISA) with the default look-up table derived values of the 

same parameters. The authors found that using the remotely sensed parameters, the model was able to replicate 

the observed ET. The feat was attributed to capturing all year-round irrigation by the remotely sensed data in the 

domain of interest. This highlights the importance of the source of input datasets into LSMs. The sensitivity of 

land surface models to atmospheric forcings as exemplified by Traore et al. (2014) over Africa was analyzed with 45 

two atmospheric forcing datasets; Watch Forcing Data Era Interim (WFDEI) and Watch Forcing Data (WFD). 

These two reanalysis datasets were generated using the same methodologies but with a slight difference in their 

source datasets (Weedon et al., 2014). The results showed that although there is a poor performance of ET in 

Central African forests, WFDEI was closer to eddy covariance measurements than WFD with correlations 

between 0.25 and 0.40. Lovat et al. (2019) used the ISBA-TOP coupled system (Bouilloud et al., 2010) over 50 

locations in the Mediterranean region at varying resolutions to assess river discharge and spatial runoff. It was 

noted that soil texture influences river discharge and runoff more than land cover does. Tafasca et al. (2019) used 

the land surface model ORCHIDEE and various global soil texture maps and noted that SoilGrids1km upscaled 

to 0.5o by selecting the dominant soil type generated similar water budgets as the 5 arc-min FAO Soil Map of The 

World (Reynolds et al., 2000) and the 1o resolution Global Soil Types map of Zobler (1986). The authors however 55 

indicated that the weak model sensitivity to the soil texture variation could have been caused by the coarse spatial 

resolution of 0.5o at which soil texture was discretized in the ORCHIDEE model. 

These existing gaps in data and the critical impact of their uncertainties on LSM performance highlight the 

need for detailed studies. Studying how varying resolutions of soil and atmospheric data affect high resolution 

LSM outputs across diverse African ecosystems could help in refining model parameters and improving prediction 60 

accuracy. Furthermore, exploring new methods for effectively upscaling fine-scale soil measurements to broader 

applications in LSMs could provide insights into more robust upscaling strategies. 

In this work, we are concerned with understanding the role of high-resolution soil texture input (at 3km 

horizontal spatial resolution) and its upscaling in the Community Land Model version 5.0 (Lawrence et al., 2019) 

(hereafter, CLM5) simulations over the entire African continent. This study investigates the impact of uncertainty 65 

in soil input variables and the upscaling method of soil texture information, at different spatial scales (from local 

to continental), and also in combination with different temporal resolutions of atmospheric forcings. The aim is 

not to compare simulations with measurements, but to detect model-internal sensitivities to (the upscaling of) soil 

texture information.  

Twelve simulations combining four different soil texture inputs (FAO (Global Soil Data Task, 2014) and 70 

three differently upscaled SoilGrids maps (Hengl et al., 2017)) and three different meteorological forcings were 
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carried out and results are analysed in this work at the continental, regional and point scale. We also compared 

our outputs with an external dataset, GLDAS-2.1 (Rodell, 2020) to assess the performance of the different 

upscaling methods. The novelty of this work lies in the detection of the impact of uncertainty in the (upscaling of) 

soil texture information, especially in combination with different temporal resolutions of atmospheric forcings. 75 

The impact of uncertainties of atmospheric forcings on land surface model simulations over Africa has been 

studied (Boone et al., 2009 and Iyakaremye et al., 2021) but its interaction with the uncertainties in soil 

information has not been studied over Africa at a high spatial resolution. 

This research therefore seeks to answer the following questions: 1) Are simulation results of CLM5 sensitive 

to different soil texture inputs, and different upscaling methods applied to soil texture input? 2) What is the role 80 

of the temporal resolution of atmospheric forcings in combination with the different soil texture inputs?  

 

2. Materials and Methods 

2.1. CLM5 

CLM5 is a mechanistic land surface model which represents land surface heterogeneity differently from most 85 

other land surface models previously used over Africa in continental simulations (Traore et al., 2014; Ghent et al., 

2010a ; Weber et al., 2009). While some of the models previously used over Africa had a single layered sub-grid 

system popularly known as mosaic system, CLM5 uses a multi-layered sub-grid hierarchy. This means that in 

CLM5, each grid cell represents multiple land units consisting of vegetated, lake, urban and glacier areas. Each 

land unit represents multiple columns which could have different soil profiles with autonomously evolving vertical 90 

profiles of soil moisture content and temperature, and each column has multiple patches of Plant Functional Type 

(PFT) or Crop Functional Type (CFT) (Lawrence et al., 2018). Among the numerous improvements of CLM5 

compared to its predecessor, are the inclusion of a spatially variable soil depth, replacement of Ball-Berry by 

Medlyn stomatal conductance and updated irrigation scheduling (Lawrence et al., 2019). Considering Africa’s 

land surface heterogeneity, CLM5 has features of great interest for land surface modelling over Africa at a high 95 

spatial resolution.  

 

CLM5 provides a framework for modelling the soil processes necessary for understanding terrestrial hydrology. 

This version of the model improves the representation of soil porosity and pore size distributions, considering 

both mineral and organic components of the soil (Lawrence et al., 2018).Saturated hydraulic conductivity and soil 100 

matric potential are calculated using Cosby et al. (1984) for mineral soils, with modifications to accommodate the 

effects of organic matter based on its depth and content. Detailed equations are comprehensively provided in 

Lawrence et al. (2018). 

Furthermore, CLM5 employs the Brooks and Corey model (Brooks and Corey, 1964) to associate soil moisture 

content with water potential, considering the variability in soil texture using organic and mineral soil fraction 105 

parameters.  

Bi =  (1 − f{om,i}) ⋅ B{min,i} + f{om,i} ⋅ B{om}                            (1) 
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where B{om} covers organic matter,  f{om,i} represents organic matter fraction and  

B{min,i} =  2.91 +  0.159 ⋅ (%{ clay})i                                     (2) 

is for mineral soil where (%{ clay}) is the percentage of clay in each grid cell at level i. 110 

The full water balance equation now implies interactions between canopy, surface, soil, and aquifer water and ice 

storage, defining the model’s detailed approach to hydrologic partitioning over varying temporal scales.  

The water balance equation is represented by:  

∆Sc,l + ∆Sc,sn + ∆Ssfc + ∆Ssn + ∑ ( 𝜃𝑠𝑙𝑖𝑞 ,𝑖+  𝜃𝑠𝑖𝑐𝑒 ,𝑖 )
𝑁𝑙𝑒𝑣𝑠𝑜𝑖
𝑖=1  + ∆Sacq =  

(qrn + qsn – Ev – Eg – qover – qsfcwat – qdr – qrgl – qsnsfc) ∆t                                    (3) 115 

where ∆Sc,l represents changes in canopy water, ∆Sc,sn changes in canopy snow, ∆Ssfc changes in surface water, 

∆Ssn changes in surface snow and ∆Sacq changes in water stored in the aquifer. sliq,i represents changes in soil 

water, sice,i  represents changes in soil ice at each soil level i. Nlevsoi refers to the number of soil levels. On the 

right-hand side of the equation, qrn represents rainfall, qsn snowfall, Ev transpiration, Eg evaporation, while qover 

refers to surface runoff, qsfcwat runoff from surface water storage, qdr drainage, qrgl glacier and lakes runoff and 120 

qsnsfc snow-capped surface runoff. Precipitation (qrn + qsn) is intercepted by canopy, which is controlled by leaf 

area index. The moisture input reaching the surface after evaporative losses from both the vegetation and surface 

(Ev , Eg) is then divided between surface runoff, surface water storage and infiltration. The units for fluxes are 

kg/m2s while storage variables are quantified in kg/m2 and ∆t is in mm/second. For a detailed description of the 

mathematical formulations and their applications within CLM5, readers are referred to Lawrence et al. (2018), 125 

where these processes are described in-depth.  

Irrigation in CLM5 separates irrigated and rainfed crops by assigning them to separate soil columns. Irrigation is 

applied daily at 6am based on the difference between soil moisture content and target soil moisture taking also 

the crop leaf area index into account. Irrigation decisions are guided by datasets detailing areas equipped for 

irrigation according to Portmann et al. (2010). To constrain CLM5 irrigation, irrigation water is sourced from 130 

river storage, with provisions for supplements from ocean reserves. Alternatively, in severe cases of water scarcity, 

irrigation demand is dynamically adjusted to conserve river water levels. The applied irrigation in CLM5 is hard 

coded to bypass canopy interception, meaning it is added directly to the ground surface. More details can be found 

in Lawrence et al. (2018). 

2.2. Soil Texture Information 135 

Soil hydraulic and thermal properties are critical for flux and state calculations in LSMs (Zhao et al., 2018). These 

values are generally obtained from soil texture information through pedotransfer functions, which is also the case 

for CLM5. Two different soil texture datasets, the IGBP-DIS Soil Dataset and SoilGrids250m dataset, were used 

as input for CLM5 simulations over Africa. The IGBP-DIS soil dataset was generated using the linkage method 

which is characterized by lack of intra-polygonal variation. This soil texture dataset is the default soil texture 140 

information available in CLM5. The soil texture dataset which is at approximately 8km resolution provides 

information for the top 10 CLM5 soil layers: at 0.0175, 0.0451, 0.0906, 0.1656, 0.2892, 0.493, 0.829, 1.3829, 

2.2962 and 3.4332 meter depth. 
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ISRIC’s SoilGrids250m (Hengl et al., 2017) was produced by machine learning and it is the successor of the 

SoilGrids1km product (Hengl et al., 2014). SoilGrids250m has a spatial resolution of 250m and is therefore 145 

considered because of its potential to better represent local scale soil processes related to the higher spatial 

resolution. When evaluated with soil profiles from WoSIS (World Soil Information Service), SoilGrids250m has 

a higher accuracy than FAO with a RMSE of 18.6% versus 26.3% for the sand fraction at 0-30cm depth and 

12.5% versus 15.4% for clay fractions at this depth (Dai et al., 2019).  

Improvements in SoilGids250m compared to its earlier version SoilGrids1km include for example further soil 150 

information for deserts and arid areas such as the Sahara Desert covering about 30% of Africa’s land mass (Tucker 

& Nicholson, 1999). About 150,000 soil profiles were obtained globally across all continents from both actual 

and pseudo-observations. Actual observations were from in situ and remote sensing measurements and values 

reported by national classification systems. Pseudo-observations came from expert assessment of both restricted 

areas and places with extreme climate conditions like deserts, glaciers, mountain tops, tropical forests, and austere 155 

regions. SoilGrids250m provides global estimates for soil texture fractions, organic carbon, bulk density, cation 

exchange capacity, pH and coarse fragments. Compared to SoilGrids1km, SoilGrids250m records in sand, silt and 

clay contents, over 60% relative improvement as explained by a 10-fold cross validation exercise. The 

Soilgrids250m unlike the IGBP-DIS was provided at seven standard soil depths of 0, 0.05, 0.15, 0.30, 0.60, 1.00 

and 2.00 meters depth. 160 

2.3. Upscaling of Soil Textural properties  

Upscaling of soil hydraulic properties is needed when the model resolution is coarser than the resolution of the 

measurement based product. SoilGrids250m soil texture information needs to be upscaled to the 3km x 3km 

resolution of the CLM5 model for Africa. One CLM5 grid cell contains therefore 144 SoilGrids250m grid cells. 

Three upscaling methods of soil texture information were compared in this work:  165 

(i) Simple averaging of the soil texture values for all the SoilGrids grid cells which are contained in a 

larger CLM grid cell (e.g., Kochendorfer and Ramírez, 2010). Since both clay and sand soil texture 

information were provided as fractions per grid cell, a simple averaging of the fractions was 

performed. 

(ii) Selection of the dominant soil type (according to USDA soil classification) in a CLM grid cell and 170 

use of the soil texture values for that soil type for the complete CLM grid cell. This method was for 

example used in Tafasca et al. (2019). The dominant soil type is any soil type with the highest 

representation among the 144 SoilGrids grid cells.  

(iii) Random selection of a single SoilGrid cell and use of the soil texture values for this grid cell for the 

complete 3km x 3km CLM model grid cell. This method which is a novelty of this work, creates a 175 

chance for texture outliers to define the soil hydraulic parameters. This ensures that over larger 

regions the Probability Density Function (PDF) of soil properties is better reproduced by the model 

than by selecting the dominant soil texture or average soil texture. It differs from other upscaling 

methods as it avoids spatial averaging or smoothing. Although it can introduce larger local biases in 

the soil hydraulic parameters and thus model output variables, it is not expected to induce systematic 180 
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biases at larger scales, as local biases for some grid cells will be cancelled out by biases at other grid 

cells. In addition, as soil texture is not averaged or smoothed before processing it through the non-

linear simulation model, it is expected that also model output variables, averaged over larger areas, 

are unbiased. We also specified a random number generator (RNG) seed which makes the 

randomisation reproducible in other machines.  185 

 

2.4. Meteorological Forcing datasets and evaluation dataset 

In this work, the impact of three different meteorologic forcing datasets with different temporal resolution, in 

combination with the different soil texture input datasets, was investigated. We examined CRUNCEPv7 (Viovy, 

2018), GSWP3 (Hyungjun, 2017) and WFDE5 (the bias corrected ERA5 dataset using WATCH Forcing Data 190 

methodology) (Cucchi et al., 2020). These three forcings have been selected because they possess all atmospheric 

variables CLM5 requires, have similar spatial resolution and, especially, their varying temporal resolution of 6 

hours (CRUNCEP), 3 hours (GSWP) and 1 hour (WFDE5). The impact of the varying temporal resolution was 

studied in combination with the different soil texture inputs. GSWPv3 and CRUNCEPv7 have been used in the 

past already in combination with CLM4, CLM4.5 and CLM5 (Bonan et al., 2019). WFDE5 has been tested at 13 195 

globally spread FLUXNET2015 locations. Cucchi et al. (2020) showed that WFDE5 has smaller mean absolute 

errors and larger correlations of variables like precipitation, global radiation, specific humidity, air temperature, 

and wind speed with observations than the WFDEI (Watch Forcing data ERA Interim) dataset which was used in 

Traore et al. (2014) over Africa. For comparison and assessment of the different upscaling methods performance, 

the GLDAS-2.1 dataset was used. The dataset has been used over Africa to train deep learning algorithms for 200 

modelling groundwater (Gaffoor et al., 2022), calculate drought recovery time (Hao et al., 2022) and asses the 

spatio-temporal patterns of drought in East Africa (Liu et al., 2022). Our choice of GLDAS-2.1 dataset is 

motivated by the fact that it provides soil moisture information from 0-200cm. 

(i) CRUNCEPv7. CRUNCEPv7 dataset is a combination of CRU (Climate Research unit Time Series) 

3.24 (Harris, 2013) and National Centre for Environmental Protection (NCEP) reanalysis (Kalnay 205 

et al., 1996). The data are available for the period between 1901 and 2016 with a horizontal 

resolution of 0.5o and 6 hourly temporal resolution. Precipitation, cloudiness, temperature, and 

relative humidity were taken from CRU while wind speed, pressure and long wave radiation were 

obtained from NCEP.  

(ii) GWSP3. The Global Soil Wetness Project version 3 dataset is a 3-hourly, 0.5o horizontal resolution 210 

atmospheric forcing product. The data are available for the period between 1900 and 2014 and are 

based on NCEP’s 20th century reanalysis project (Compo et al., 2011). Though the 20th century 

project dataset was published at 2o horizontal resolution, the GSWP version 3 dataset was 

downscaled to 0.5o horizontal resolution using a spectral nudging technique (Yoshimura and 

Kanamitsu, 2008). Four out of seven variables namely air temperature, precipitation, long and short 215 

wave radiation were bias corrected using Climate Research Unit’s CRU Tsv3.21 (Harris, 2013), 

Global Precipitation Climatology Centre’s GPCCv7 (Schneider et al., 2014) and surface radiation 

budget datasets (Lawrence et al., 2019). GSWP3 is the default forcing provided with the CLM5 
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Model (Lawrence et al., 2018). Since both GSWP3 and CRUNCEPv7 datasets were provided for 

use in CLM by the developers there was no additional processing needed to use these datasets in 220 

CLM5. 

(iii) WFDE5. The WFDE5 dataset was created by using the WATer and global CHange (WATCH) 

Forcing Data methodology to process near surface 5th generation ECMWF (European Centre for 

Medium-range Weather Forecasts) ReAnalysis (ERA5) variables. WFDE5 was provided globally 

on a regular lonlat grid at 0.5o x 0.5o spatial resolution at hourly time steps. It has therefore the 225 

highest temporal resolution of the considered atmospheric forcing datasets in this study. WFDE5 

correlates better with FLUXNET2015 datasets at each site than WFDEI (Traore et al. 2014).  

Another advantage WFDE5 has over the higher spatial resolution ERA5 data set is that the monthly 

precipitation totals were bias corrected using precipitation data from the Climate Research unit Time 

Series (CRU TS) and Global Precipitation Climatology Centre (GPCC). This is important as 230 

precipitation has a large impact on LSM simulations compared to other meteorological forcings 

(Bucchignani et al., 2016) over Africa.  

 

GLDAS-2.1. GLDAS-2.1 dataset was used for verification purposes in this work. The Global Land 

Data Assimilation System was originally developed to absorb satellite- and ground-based 235 

observational data products, using advanced land surface modelling and data assimilation 

techniques, in order to generate fields of land surface states and fluxes (Rodell et al., 2004). The 

GLDAS-2.1 dataset, which was reprocessed in January 2020, delivers monthly 0.25-degree data 

produced by temporal averaging of 3-hourly simulations using the Noah Model 3.6 in LIS Version 

7. The GLDAS-2.1 simulations were driven by NOAA/GDAS atmospheric fields, GPCP V1.3 240 

precipitation data, and AGRMET radiation variables from March 2001 onward.  Table 1 summarizes 

details regarding the different meteorological forcing and evaluation datasets used in this work. 

 

Table 1. Main properties of the reanalysis datasets CRUNCEPv7, GSWPv3, WFDE5 and GLDAS-

2.1 used in this work. 245 

Properties CRUNCEPv7 GSWP3 WFDE5 GLDAS-2.1 

Spatial 

resolution 

0.5o 0.5o 0.5o 0.25o 

Temporal 

resolution 

6 Hourly 3 Hourly 1 Hourly Monthly 

 

2.5. Model Setup and analysis 

CLM5 was run in this work in land only mode, i.e., instead of coupling CLM5 with an atmospheric model, 

atmospheric reanalysis datasets are used as external forcings to the land surface model. Atmospheric input to 

CLM5 includes precipitation, incoming shortwave radiation, air temperature, surface air pressure, specific 250 
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humidity, wind speed and incoming longwave radiation. These are available for CRUNCEP every 6 hours, GSWP 

every 3 hours and for WFDE5 hourly. But since model time step is 30 minutes, precipitation is divided equally 

over the different model time steps. For air temperature, surface air pressure, specific humidity and wind speed, 

all values are interpolated to model time steps using nearest neighbour algorithm. For solar radiation, cosine of 

the solar zenith angle is used to ensure a smoother diurnal cycle, while preserving the total radiation from the 255 

atmospheric input data. 

Sixteen plant functional types were activated, alongside transient CO2 and aerosol deposition rates. All twelve 

model simulations (Table 2) apply monthly leaf area index (LAI) as observed from satellite phenology. A spatially 

varying soil thickness dataset (Pelletier et al., 2016) with values ranging from 0.4m to 8.5m was also applied. The 

land cover description is based on 1km resolution Moderate Resolution Imaging Spectroradiometer (MODIS) 260 

products. Land Cover Type is from MCD12Q1 version 5 which provides annual land cover intervals between 

2000 and 2015. 

 

Twelve simulations (3 atmospheric forcings combined with 4 soil texture maps) were performed over the 

CORDEX Africa domain which covers longitude -24.64oW to 60.28oE and latitude 45.76oS to 42.24oN (results 265 

over African continent only). The horizontal resolution for all model simulations was approximately 0.027o, i.e. 

about 3 km. This discretization results in 10,033,920 grid cells. Simulation period was from the 1st of January 

2011 to the 31st of December 2014 and results for the first two years were discarded (spin up year). Earlier works 

over the Southern Africa region including Crétat et al. (2012),  Ratna et al. (2014) and Zhang et al. (2023) have 

employed 6 months or less spin-up times using different land surface models while Zheng et al. (2017) employed 270 

1 year for spin-up with a predecessor of CLM5 over the Tibetan Plateau. We compared the simulated water 

balance components in this work with water balance components (evapotranspiration, surface runoff and soil 

water content) from a fresh simulation which had 11-years of spin up time and the results do not alter our initial 

conclusion in this study (S54-S56). Moreover, we evaluated the adequacy of the reference period employed in 

this study. The continental annual average of the deepest soil moisture layer was calculated, a trend line was fixed, 275 

and the statistical significance was calculated to determine whether the slope of the trend differed significantly 

from zero. The resulting p-value of 0.353 indicated that the trend in soil moisture over the three-year period was 

not statistically significant based on a 95% confidence interval (S57), suggesting that extending the study period 

will not alter the current outcome. 

 280 

Although the model time step size was 30 minutes, most results are presented as monthly sums (at regional and 

local scales). For continental scale results, annual mean of evapotranspiration (ET), surface runoff, and subsurface 

runoff were computed as well as the seasonal mean of the weighted average of the top 2 meters soil moisture 

content. The weights for calculating weighted average of soil moisture content were defined according to the 

thickness of each soil layer in CLM5.  285 

 

To further substantiate the role of soil texture input to CLM5, a new set of simulations was conducted. To ensure 

comparability with CRUNCEP (6 hourly) and GSWP (3 hourly), the hourly WFDE5 forcings were aggregated to 

6 hours and 3 hours, respectively. The model was then run with the soil texture information. This was conducted 
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to identify discrepancies between the simulation outcomes of WFDE5 at hourly, 3-hour and 6-hour temporal 290 

resolutions. Furthermore, a comparison was made with the results obtained by CRUNCEP and GSWP. The results 

were also analysed at the monthly level, in addition to the regional and local time series. 

A metric termed “average margin” was introduced to quantify the impact of temporal resolution of atmospheric 

forcings in combination with soil texture map variation. The four soil texture maps were considered each providing 

a unique output at every timestep within the time series. The average margin for a simulated variable for a certain 295 

atmospheric forcing/soil texture map combination at a given time step is denoted by M1(t), M2(t), M3(t) and 

M4(t). The difference in the maximum and minimum simulated value for the variable, between the soil texture 

maps at a given time step is then computed as: 

D(t) = max(M1(t), M2(t), M3(t),M4(t)) - min(M1(t), M2(t), M3(t),M4(t))            (4) 

and the average margin is given by: 300 

      A = 
1

𝑇
∑ 𝐷(𝑡)𝑇

𝑡=1                                                                                                 (5) 

where T represents the total number of time steps in the time series and t denotes time step. 

A one-way analysis of variance (ANOVA) was conducted to ascertain whether the outputs of the four soil maps 

for each atmospheric forcing group exhibited significant variation. Firstly, the mean of the four soil map outputs 

was calculated, and the deviation of each map's output from the mean was obtained. The resulting deviations were 305 

subsequently expressed as percentages relative to the mean output, thus providing a normalised measure of the 

deviation for each soil map, which could then be compared with results for other atmospheric forcings. The data 

were subsequently transformed into a long format suitable for ANOVA, in which the percentage deviations for 

each soil map were compared. The dependent variables were the obtained percentage deviations, while the 

independent variables were the categorical variable defining the compared groups (FAO, dominant, mean and 310 

random). Subsequently, an analysis of variance (ANOVA) was conducted to ascertain whether there were 

statistically significant discrepancies between the models' percentage deviations. The results of the ANOVA 

analysis yielded a p-value statistic, which was used to determine the significance of the observed variations in soil 

texture map outputs at the 95% confidence interval. For further details on the ANOVA framework, we direct the 

reader to the works of Fisher (1925) and Brandt (2014).  315 

Finally, we compared the different soil texture map outcomes with the GLDAS-2.1 dataset as a benchmark to 

compare CLM5 model outputs to an established external dataset. We compared ET, surface runoff and soil 

moisture content using the Pearsons correlation (Pearson and Henrici, 1997) to measure the strength of 

relationship between the datasets and Root Mean Square Error (RMSE). More details about RMSE and its proper 

use are described by Hodson, (2022). For the reference study period, for every grid cell and all time steps the 320 

calculated water balance components were compared with the ones from the GLDAS-2.1 dataset. This comparison 

was performed on a grid cell-by-grid cell basis, resulting in a complete continental assessment of the water balance 

components.” 

 

Table 2: Summary of CLM5 experiments in this study, combing different soil texture input information and 325 

atmospheric forcings. 
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Experiment Soil Texture Forcing 

FAO_CRU FAO CRUNCEP 

SGd_CRU SoilGrids-Dominant CRUNCEP 

SGm_CRU SoilGrids-Mean CRUNCEP 

SGr_CRU SoilGrids-Random CRUNCEP 

FAO_GSW FAO GSWP 

SGd_GSW SoilGrids-Dominant GSWP  

SGm_GSW SoilGrids-Mean GSWP  

SGr_GSW SoilGrids-Random GSWP  

FAO_WFD FAO WFDE5 

SGd_WFD SoilGrids-Dominant WFDE5 

SGm_WFD SoilGrids-Mean WFDE5 

SGr_WFD SoilGrids-Random WFDE5 

FAO_WFD FAO WFDE5-3H 

SGd_WFD SoilGrids-Dominant WFDE5-3H 

SGr_WFD SoilGrids-Random WFDE5-3H 

FAO_WFD FAO WFDE5-6H 

SGd_WFD SoilGrids-Dominant WFDE5-6H 

SGr_WFD SoilGrids-Random WFDE5-6H 

 

2.6 Definition of regions 

Iturbide et al. (2020) updated the IPCC climate reference regions for subcontinental analysis based on, amongst 

others, coherence of climate variables. The new reference regions for Africa include the Mediterranean, Sahara, 330 

West Africa, North-East Africa, Central Africa, Central-East Africa, South-West Africa, and South-East Africa. 

Here we combined South-East Africa and Madagascar into one region. Figure S1 shows the African sub-regions. 

The eight regions are used as basis to calculate region-specific water balance components.  

 

3. Results and Discussion 335 
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3.1. Comparison of simulated water balance components with GLDAS-2.1 Datasets 

To assess the agreement between the CLM5-simulated water balance components and a reference dataset, a 

comparison was conducted with the outputs of GLDAS-2.1. We acknowledge that while the GLDAS-2.1 serves 

as a benchmark for comparison, the extent to which it accurately represents actual conditions remains uncertain. 

 340 

Figure 1: Temporal correlation maps of simulated evapotranspiration compared with the Global Land Data 

Assimilation System (GLDAS-2.1) dataset over Africa for three different atmospheric forcing datasets (CRUN, 

GSWP, and WFDE5) and four soil texture maps (FAO, SGDom, SGMean, and SGRan). Top Row: Correlation maps 

for the CRUNCEP dataset using the FAO, SGDom, SGMean, and SGRan soil texture maps. Middle Row: 

Correlation maps for the GSWP dataset using the same four soil texture maps. Bottom Row: Correlation maps for 345 

the WFDE5 dataset using similar maps. 

Evapotranspiration 

The correlation of CLM5 simulated ET with GLDAS (Figure 1) shows a clear spatial gradient across Africa. 

Strong positive correlations above 0.75 as referenced in hydrology studies over Africa (Scanlon et al., 2022; Larbi 

et al., 2020) are mainly seen in the equatorial region and parts of Eastern Africa, Southern Africa and Madagascar, 350 

indicating acceptable model performance in these regions. Northern Africa, some parts of Central Africa, and the 

cape of South Africa tend to show moderate to weak positive correlations, with some areas having negative 

correlation (down to around -0.79). The mean correlation values hover around 0.64-0.70, reflecting relatively 

moderate agreement with GLDAS across the continent. RMSE for ET (Figure S50) displays a concentration of 

lower errors in the moisture deficient Northern and Southern parts of Africa, while the moisture richer Central 355 
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and Eastern regions show higher RMSE values. This suggests that while CLM5 simulated ET corresponds well 

with GLDAS in the equatorial zones, there is higher variability and model uncertainty in the arid and semi-arid 

regions. It is important to note however that RMSE scores are magnitude dependent as they increase or decrease 

with the magnitude of evaluated variables. 

 360 

Surface Runoff 

Surface runoff correlations (Figure 2) over Africa exhibit wide variability, with very high positive correlations 

(up to 1.0) in Savannah regions of West Africa including parts of Namibia, Zambia and Mozambique. There are 

however areas with low to strongly negative correlations, particularly in Mauritania, Mali, Algeria, Libya, Egypt 

and Sudan, where correlation values are as low as -1.0. This high variability results in an average continental 365 

correlation of 0.50-0.58. The RMSE for surface runoff over Africa (Figure S52) shows minimal errors in water 

scarce Northern and South-western Africa, with the highest RMSE values ranging from 0-11mm/month . Central 

Africa and Western regions show relatively higher RMSE values. The high RMSE values suggest substantial 

discrepancies in surface runoff simulation between CLM5 and GLDAS, especially in equatorial areas. 

 370 

Figure 3: Temporal correlation maps of simulated surface runoff compared with the Global Land Data Assimilation 

System (GLDAS-2.1) dataset over Africa for three different atmospheric forcing datasets (CRUN, GSWP, and 

WFDE5) and four soil texture maps (FAO, SGDom, SGMean, and SGRan). Top Row: Correlation maps for the 

CRUNCEP dataset using the FAO, SGDom, SGMean, and SGRan soil texture maps. Middle Row: Correlation maps 
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for the GSWP dataset using the same four soil texture maps. Bottom Row: Correlation maps for the WFDE5 dataset 375 

using similar maps. 

 

Soil Moisture 

Soil moisture correlations with GLDAS (Figure 3) show a slightly different spatial pattern compared to ET. The 

highest correlations (strong positive) are generally observed above the equator, top fringes of Southern Africa and 380 

Northern Madagascar. Strong negative correlations however are found in parts of Sahara specifically Mauritania, 

Mali, Algeria, Egypt and Sudan where certain grid cells exhibit correlations as low as -0.79. Overall, the average 

correlations for soil moisture are lower than for ET with a range of 0.56-0.67, indicating less correlation across 

the continent compared to ET. The RMSE map for soil moisture (Figure S51) exhibits average values ranging 

between 0.05-0.06 cm3/cm3. There is slightly higher RMSE in parts of Central and Africa specifically in Congo 385 

DR, where errors peak around 0.26-0.27 cm3/cm3. This RMSE pattern suggests that the CLM5 simulated soil 

moisture maintains a relatively stable agreement with GLDAS having minimal extreme errors across the 

continent. 

 

Figure 2: Pearson correlation maps of simulated soil water content compared with the Global Land Data 390 

Assimilation System (GLDAS-2.1) dataset over Africa for three different atmospheric forcing datasets (CRUN, 

GSWP, and WFDE5) and four soil texture maps (FAO, SGDom, SGMean, and SGRan). Top Row: Correlation maps 

for the CRUNCEP dataset using the FAO, SGDom, SGMean, and SGRan soil texture maps. Middle Row: 
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Correlation maps for the GSWP dataset using the same four soil texture maps. Bottom Row: Correlation maps for 

the WFDE5 dataset using similar maps. 395 

 

3.2. Continental Simulated Water Balance Components 

 

3.2.1 Evapotranspiration 

Figure 4 shows actual ET estimates over Africa for the different soil texture maps used in this study and the 400 

different atmospheric forcings. Continental average ET and local ET maxima were estimated for all 12 simulations 

for the reference period of 2013-2014. 

The soil texture map has in general only a limited impact on simulated ET. For CRUNCEP forced simulations the 

yearly ET varies among the soil maps between 452.9 mm/year and 454.4 mm/year, with the lowest ET for the 

FAO soil texture map and slightly higher ET for the SoilGrids texture maps. Also, for GSWP forced simulations 405 

we find the lowest simulated ET for the FAO soil texture map (438.7 mm/year), while the highest simulated ET 

is only slightly higher (439.6 mm/year). Simulated ET is highest for the SoilGrids soil map which is randomly 

upscaled. Also, for the WFDE5 simulations differences in simulated ET are very small and vary between 442.5 

mm/year (FAO) and 443.5 mm/year (SoilGrids, randomly upscaled). These numbers also illustrate that the impact 

of variations in soil texture input are much smaller than variations in atmospheric forcings. While the four different 410 

soil texture maps result in maximum variations in average yearly ET over the African continent of only ~1mm for 

a given atmospheric forcing, the variations in atmospheric forcings result in maximum variations in average yearly 

ET over the African continent around 14mm/year, for a given soil texture dataset. Specifically, the upscaling 

procedure of the soil texture information exhibits negligible effects on the mean annual estimates of 

evapotranspiration over Africa. Also, the maximum simulated ET for a grid cell over Africa is hardly affected by 415 

the soil texture map input (<1mm/year), with even smaller variations among soil texture maps than the continental 

average. On the other hand, variations in atmospheric forcings affect the local maximum simulated yearly ET 

stronger with variations among forcings ~36mm/year. 
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 420 

Figure 4: Spatial distribution of simulated mean annual evapotranspiration over Africa. Upper row: CRUNCEP forced 

simulations with, from left to right, FAO, Dominant, Mean and Random upscaled soil texture map inputs. Middle row: 

like row 1, but GSWP forced simulations. Bottom row: similar to row 1, but WFDE5 forced simulations. 

 

3.2.2 Surface runoff 425 

Also, the continental surface runoff is not strongly affected by variations in the soil texture map (Figure 5). For 

all three atmospheric forcings, the average surface runoff over the African continent is almost the same for the 

four different soil texture maps and differences in surface runoff are never larger than 0.3mm/year, for a given 

atmospheric forcing. When examining the influence of soil texture maps on surface runoff, it becomes evident 

that the disparities between the various SoilGrids maps, generated using different upscaling methods, are minimal. 430 

The maximum difference in continental averages of surface runoff between the SoilGrids soil texture maps with 

the highest and lowest values is only 0.01-0.02 mm/year, depending on the atmospheric forcing. However, slightly 

larger differences are observed when comparing the FAO soil texture map with the SoilGrids texture maps, with 

a maximum variation of 0.20-0.26 mm/year, again depending on the atmospheric forcing. These findings indicate 

that while the upscaling process of soil texture maps does not substantially impact simulated surface runoff with 435 

CLM5, the source and type of soil texture maps employed do have a small, yet perceivable, influence on the 

results. 

On the other hand, the atmospheric forcing shows a much larger impact on average surface runoff over Africa 

with a value of approximately 94 mm/year for CRUNCEP (6 hourly temporal resolution), 114 mm/year for GSWP 

(3-hourly temporal resolution of atmospheric forcings) and 122 mm/year for WFDE5 (hourly forcings). Spatial 440 

details can be found in Figure 2. The substantial difference of 28 mm/year in average annual surface runoff 
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between WFDE5 and CRUNCEP contributes potentially to higher ET estimates for CRUNCEP by 11 mm/year. 

The increased surface runoff in the WFDE5 forced simulations reduces the availability of water for ET processes 

especially after runoff events. 

The differences in surface runoff could be related to the temporal resolution of the atmospheric forcings. A higher 445 

temporal resolution of the atmospheric forcings as for WFDE5 will result in higher peaks of precipitation intensity, 

whereas a coarser temporal resolution of 6 hours like for CRUNCEP will average out intensive precipitation over 

longer time periods with less high peaks in precipitation intensity. As surface runoff is generated under conditions 

of (very) high precipitation intensity, it can be expected that the temporal resolution of the atmospheric forcings 

will affect the simulated amount of surface runoff.  450 

 

 

Figure 5: Spatial distribution of simulated mean annual surface runoff over Africa. Upper row: CRUNCEP forced 

simulations with, from left to right, FAO, Dominant, Mean and Random upscaled soil texture map inputs. Middle row: 

similar to row 1, but GSWP forced simulations. Bottom row: similar to row 1, but WFDE5 forced simulations. 455 

 

3.2.3 Subsurface runoff 

Simulated subsurface runoff across the African continent (Figure 6) is in general low in most regions and across 

all simulation scenarios, typically below 250 mm/year. The estimation of subsurface runoff is more influenced by 

soil texture variations and the upscaling of soil texture properties compared to ET and surface runoff simulations. 460 

The most substantial differences in simulated subsurface runoff among soil texture inputs are between the FAO 

soil map and the SoilGrids250m maps, while the disparities among the upscaled SoilGrids250m maps are smaller 
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especially with GSWP and CRUNCEP forcings. For CRUNCEP forcings, the difference between the maximum 

and minimum simulated subsurface runoff among the soil texture maps (averaged over Africa) is 11.3 mm/year, 

whereas it is 2.1 mm/year among the upscaled SoilGrids maps. For GSWP, these differences are 11.6 mm/year 465 

and 2.4 mm/year, respectively, while for WFDE5, they are 26.0 mm/year and 14.5 mm/year, respectively. 

Notably, for WFDE5 (with 1-hourly forcings), the differences in simulated subsurface runoff among the different 

upscaled SoilGrids maps are considerably larger than for the other forcings. The variations in maximum 

subsurface runoff values among soil texture maps are more pronounced than for the mean subsurface runoff, 

particularly for CRUNCEP and WFDE5, where the differences among upscaled SoilGrids maps are also 470 

substantial.  

On the other hand, the spatially averaged subsurface runoff over Africa showed considerable variations among 

atmospheric forcings: 17-29 mm/year for CRUNCEP, between 36 and 48 mm/year for GSWP and 42-68 mm/year 

for WFDE5. Like surface runoff patterns, WFDE5 has the highest values, followed by GSWP, while CRUNCEP 

simulations yield the lowest subsurface runoff estimates. This discrepancy can be attributed to the higher average 475 

precipitation in WFDE5 over Africa (see Figure 2).  

In summary, for subsurface runoff simulation, both variations in atmospheric forcings and soil texture, including 

different upscaling methods, play an important role. 

 

Figure 6: Spatial distribution of simulated mean annual sub-surface runoff over Africa. Upper row: CRUNCEP forced 480 
simulations with, from left to right, FAO, Dominant, Mean and Random upscaled soil texture map inputs. Middle row: 

like row 1, but GSWP forced simulations. Bottom row: like row 1, but WFDE5 forced simulations. 
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3.2.4 Soil moisture content 

Soil moisture content estimates were obtained by calculating the weighted average of soil moisture content over 485 

the top 2 meters of the soil profile in CLM5. Mean annual maxima and averages have also been  analysed for each 

season, as seasonal analysis of soil moisture content reflects seasonal changes in hydrological processes (Myeni 

et al., 2019), and allows a better understanding of the relationship between vegetation and water availability 

(Huber et al., 2011). Specifically, for the boreal summer season (JJA), the average simulated soil moisture content 

across the African continent varies between 0.02 cm3/cm3 in the Sahara and 0.54 cm3/cm3 in both Equatorial 490 

Guinea and the coasts of Sierra Leone among the 12 simulations (Figure 7). The upscaled soil texture maps give 

all very similar continental averages of soil moisture content for the summer season. The source of the soil texture 

maps (FAO vs SoilGrids) resulted in some variation in the continental soil moisture content averages. A difference 

map showing the difference between the SGMean and the 3 other soil texture maps (FAO, SGDom and SGRand) 

for the same season (Figure S2) also shows clearly that while there is a 0.0 cm3/cm3 continental mean difference 495 

among the upscaled SoilGrids maps, there is an maximum difference of 0.19 cm3/cm3, minimum difference of -

0.19 cm3/cm3 and a mean continental difference of 0.01 cm3/cm3 between FAO and SGMean. This suggests that 

the source of a soil texture map could influence soil moisture content estimates by a land surface model more than 

the upscaling procedure of the soil texture information. The WFDE5 atmospheric forcings are associated with 

more variation in simulated soil moisture content among the 4 soil texture maps than the other atmospheric 500 

forcings. The mean soil moisture content and the difference maps for other seasons can be found in Figures S3 – 

Figure S8. 

Like for ET and surface runoff, varying the atmospheric forcing impacted continental maximum of soil moisture 

content more than variations in soil texture input. CRUNCEP forced simulations (6 hourly timesteps) gave lower 

maximum soil moisture content values (0.46-0.47cm3/cm3) than GSWP (3 hourly timesteps; 0.51-0.53 cm3/cm3) 505 

and WFDE5 (hourly timesteps; 0.50-0.54 cm3/cm3) forced simulations. This difference is likely attributed to lower 

precipitation amounts in the CRUNCEP forced simulations, combined with slightly higher ET values in 

comparison to simulations with the other forcings.  
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Figure 7: Spatial distribution of simulated soil moisture content in the JJA season over Africa. Top row: CRUNCEP 510 
forced simulations with FAO, Dominant, Mean and Random upscaled soil texture map inputs. Middle row: like top 

row, but GSWP forced simulations. Bottom row: like top row, but WFDE5 forced simulations. 

 

3.3 Regional Results 

We present results for two regions (Sahara and Central Africa) based on their moisture availability contrast. 515 

3.3.1 Sahara region 

The Sahara region is generally on average the most moisture deficient region in Africa. Rainfall over the region 

was highest in August 2013 (around 30mm/month) and was near 0mm/month for many other months, especially 

in the winter season (see Figure 8, row 1).  



20 

 

 520 

Figure 8: Monthly regional mean of water balance components over the Sahara. The p-values indicate the statistical 

significance of the variations observed in the model outputs. Rows 1-5 show precipitation, actual ET, surface runoff, 

subsurface runoff, and soil moisture content respectively. Left, middle and right columns show the same variables for 

CRUNCEP, GSWP and WFDE5 atmospheric forcings respectively. The lines in the figures represent results for 

different soil textures as input. Red line: FAO, green line: SoilGrids-Dominant, blue line: SoilGrids-Mean and purple 525 
line: SoilGrids-Random. 

 

Simulated ET and surface runoff differed little among the different soil texture maps for the different atmospheric 

forcings. The average margin in actual ET among soil texture maps is only 0.4mm/month for both CRUNCEP 

and GSWP forcings, and 0.8mm/month for WFDE5 forcing. ET simulated by the CLM5 model varied more as 530 

function of the atmospheric forcing and can for a given soil texture map vary up to a few mm per month between 

different atmospheric forcings. 

Simulated surface runoff exhibits similar patterns for all soil texture maps, with minimal surface runoff and slight 

increases during months with higher precipitation. The average monthly differences in surface runoff between the 
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different soil texture maps are smaller than 0.1mm/month. Subsurface runoff shows a decreasing trend, which is 535 

attributed to initially higher groundwater levels. While subsurface runoff is generally small in absolute terms, the 

different soil texture maps result in significantly varying relative amounts of subsurface runoff. Simulated average 

soil moisture content over the Sahara region is consistently low, with values around 0.12 cm3/cm3. These 

significantly different values, which are not extremely low despite very limited precipitation, could be attributed 

to the amount of loamy soil over the region (Figure S10) with higher residual soil moisture content than in sandy 540 

soils. Differences in simulated soil moisture content among the soil texture maps are primarily influenced by the 

variations in soil properties used in each map. 

The different soil texture inputs to the WFDE5 forced simulations result in larger differences in simulated ET and 

surface runoff (though not significant according to ANOVA) compared to the other atmospheric forcings, for 

regions with low soil moisture content like the Mediterranean (Figure S12) and South-West Africa (Figure S16). 545 

The higher temporal resolution (1 hour) of the WFDE5 atmospheric forcing leads to varying surface runoff 

compared to forcings with lower temporal resolutions (3-hour or 6-hour).  

Overall, these findings over the Sahara and other low moisture regions like the Mediterranean and South-West 

Africa highlight some influence of atmospheric forcing and its temporal resolution, soil texture maps variation, 

and their interactions on the simulation of ET, surface runoff, subsurface runoff, and soil moisture content across 550 

different regions of Africa. 

3.3.2 Central Africa 
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Figure 9: Monthly regional mean of water balance components over the Central Africa. The p-values indicate the 

statistical significance of the variations observed in the model outputs. Left, middle and right columns show the same 555 
variables for CRUNCEP, GSWP and WFDE5 atmospheric forcings respectively. The lines in the figures represent 

results for different soil textures as input. Red line: FAO, green line: SoilGrids-Dominant, blue line: SoilGrids-Mean 

and purple line: SoilGrids-Random. 

 

Central Africa encompasses the Congo rainforest, the second-largest rainforest in the world, consisting of 560 

evergreen and semi-evergreen deciduous forests (Aloysius & Saiers, 2017) and stands out as one of the most 

moisture-rich regions in Africa, characterized by a regional mean rainfall ranging from 50 to 200mm/month. The 

proximity to the equator results in frequent rainfall events due to recurrent convective precipitation events. The 

dense vegetation in Central Africa contributes to high transpiration rates, which are supported by the substantial 

amounts of rainfall. 565 

Once again, we observe that only the WFDE5 atmospheric forcings exhibits a variation (not significant) in ET 

values across different soil texture maps, as shown in Figure 9. On average (over the years 2013 and 2014), the 
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soil texture maps with the highest and lowest monthly averaged ET differ by 0.5mm/month for CRUNCEP and 

GSWP, but by 5.8mm/month for WFDE5. The monthly averaged surface runoff values for CRUNCEP and GSWP 

show little variation among different soil texture maps. However, for WFDE5, the SoilGrids map upscaled with 570 

random selection results on average in a significant 6.7mm/month higher surface runoff than the other soil texture 

maps. Regarding subsurface runoff, GSWP and CRUNCEP simulations exhibit, at most, a 0.4mm/month 

difference in average monthly subsurface runoff among different soil texture maps, whereas WFDE5 shows a 

significant difference of 7.0mm/month. The soil moisture content maps display near similar average values across 

all atmospheric forcings and soil texture maps with no significant differences.  575 

Other moisture rich regions including West Africa (Figure S13), North-East Africa (Figure S14), Central-East 

Africa (Figure S15) and South-East Africa (Figure S17) also show that WFDE5 forced simulations resulted in 

clear differences which are mostly closer to significance than GSWP and CRUNCEP in simulated ET, surface 

runoff and subsurface runoff for the different soil texture inputs. On the other hand, soil moisture content did not 

show clear significant differences for the different soil texture maps in all regions. 580 

3.4. Local Results 

We now look at the results at the local scale (grid scale) to analyse further the impact of the variation of soil 

texture maps and atmospheric forcings on simulation outcomes. We selected one location for each of the eight 

climate regions: Cairo (Egypt, Mediterranean), Agadez (Niger, Sahara), Abuja (Nigeria, West Africa), Addis-

Ababa (Ethiopia, North-East Africa), Salong (DR Congo, Central Africa), Daar-es-Salaam (Tanzania, Central-585 

East Africa), Windhoek (Namibia, South-West Africa) and Maseru (Lesotho, South-East Africa). Two of the eight 

locations are discussed due to their contrasting moisture availability while other locations are available in the 

supplementary materials. 

3.4.1 Agadez 

Agadez, situated at 16.97°N and 7.98°E, experienced its highest precipitation of 125mm/month in August 2013 590 

and received no rainfall during several winter months within our reference period. The grid cell in focus is also 

dominated by sandy and loamy soils according to all 4 soil texture maps. The results for Agadez indicate a close 

association between ET peaks and precipitation peaks, as ET in this region, the Sahara, is limited by water 

availability. Despite a five-month period without rainfall from September 2013 to January 2014, ET values in 

Agadez remained nonzero (1.5mm/month) between January 2014 and April 2014. This can be attributed to 595 

irrigation practices automatically applied to sustain irrigated crops when the soil moisture content falls below a 

critical threshold within CLM5. 

The WFDE5 forced simulations for Agadez (Figure 10) show that different (upscaled) soil texture maps yield 

varying monthly ET, surface runoff, and subsurface runoff values. On average (over the years 2013 and 2014), 

the soil texture maps with the highest and lowest monthly averaged ET differ by 0.7mm/month for CRUNCEP, 600 

0.9mm/month for GSWP, and 1.8mm/month for WFDE5 (though not significant according to ANOVA). This can 

be attributed to low rainfall. Model simulations driven by CRUNCEP or GSWP show no variation in surface 

runoff as function of the soil texture map, while slight but insignificant variations in surface runoff are found for 

WFDE5. A similar pattern is observed for subsurface runoff. Although the texture class for Dom and Mean is 
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Loamy Sand (LS) and for FAO and Rand Sandy Loam (SL) for the grid cell under concern (Table T17), 605 

statistically significant differences in soil water content are observed among the four soil texture maps. These 

differences arise because, although the soil texture classes are similar, the proportions of clay, sand, and silt vary 

among the four maps, resulting in different hydraulic conductivities. 

Overall, the results for Agadez demonstrate the influence of soil texture map variation on ET, surface runoff and 

subsurface runoff, with WFDE5 simulations exhibiting more pronounced variations compared to CRUNCEP and 610 

GSWP forcings. These findings underscore the importance of soil texture representation and temporal resolution 

of the atmospheric forcing in capturing the hydrological processes in Agadez and similar locations.  

 

Figure 10: Monthly local estimates of water balance components over Agadez. The p-values indicate the statistical 

significance of the variations observed in the model outputs. Left, middle and right columns show the same variables 615 
for CRUNCEP, GSWP and WFDE5 atmospheric forcings respectively. The lines in the figures represent results for 
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different soil textures as input. Red line: FAO, green line: SoilGrids-Dominant, blue line: SoilGrids-Mean and purple 

line: SoilGrids-Random. 

 

3.4.2 Abuja 620 

Abuja, situated in Nigeria at coordinates 9.07°N, 7.30°E, exhibits a distinct yearly precipitation cycle 

characterized by high rainfall during the summer months, with precipitation exceeding 200mm/month. 

Conversely, the winter season is dry, with months devoid of any rainfall (Figure 11). ET peaks in Abuja typically 

occur approximately one month or more after the peak of rainfall, as observed in 2014. 

Simulated ET, surface runoff, and subsurface runoff in Abuja demonstrate variations across different soil texture 625 

maps, although not statistically significant, particularly noticeable with the high temporal resolution atmospheric 

forcings provided by WFDE5. In terms of ET, WFDE5 displays the highest mean margin differences among soil 

texture maps (10.4mm/month), followed by GSWP (1.4mm/month) and CRUNCEP (1.0mm/month). Regarding 

surface runoff, WFDE5 also yields the highest mean margin (7.5mm/month), while CRUNCEP and GSWP exhibit 

negligible differences (<0.2mm/month). Similarly, the ranking of differences in subsurface runoff follows the 630 

same pattern, with WFDE5 showing the largest disparities (7.7mm/month), followed by GSWP (0.4mm/month), 

and finally CRUNCEP (0.0mm/month). Notably, the FAO soil texture map consistently results in slightly higher 

soil moisture content (SWC) compared to the SoilGrids soil texture maps for all atmospheric forcings (as depicted 

in the lower row of Figure 8). However, these differences in SWC do not exceed 0.01 cm3/cm3 across all 

atmospheric forcings and are valued as insignificant according to ANOVA. 635 

Similar patterns are observed for other locations, including Cairo (Figure S18), Addis-Ababa (Figure S19), Salong 

(Figure S20), Daar-es-Salaam (Figure S21), Windhoek (Figure S22), and Maseru (Figure S23). WFDE5 forced 

simulations exhibit larger variations in simulated ET, surface runoff, and subsurface runoff among different soil 

texture maps compared to the other atmospheric forcings. Simulated soil moisture content shows minimal 

variations among the different soil texture maps for a given atmospheric forcing. 640 
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Figure 11: Monthly local estimates of water balance components over Abuja. The p-values indicate the statistical 

significance of the variations observed in the model outputs. Left, middle and right colums show the same variables for 645 
CRUNCEP, GSWP and WFDE5 atmospheric forcings respectively. The lines in the figures represent results for 

different soil textures as input. Red line: FAO, green line: Soilgrids-Dominant, blue line: SoilGrids-Mean and purple 

line: SoilGrids-Random. 

 

3.4.3 Aggregation of WFDE5 to 3-hourly and 6-hourly 650 

To further validate the role of the temporal resolution of atmospheric forcings, WFDE5 forcing was aggregated 

(from hourly data) to 3 hourly and 6 hourly so that it varied temporally only on a 3 hourly and 6 hourly basis, like 

GSWP and CRUNCEP. Simulations were performed to examine the impact of the new temporal resolution on 

ET, surface runoff, subsurface runoff and soil moisture content both regionally and locally. We compare 

CRUNCEP (6 hourly), 6H-WFDE5 (6 hourly), 3H-WFDE5 (3 hourly), GSWP (3 hourly) and WFDE5 (1 hourly).  655 
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Table 3: Mean margin of simulated variables among soil texture maps for CRUNCEP (6 hourly), GSWP (3 

hourly), 6H-WFDE5 (6 hourly), 3H-WFDE5 (3 hourly) and WFDE5 (1 hourly) 

Variable CRUNCEP GSWP 6H-WFDE5 3H-WFDE5 WFDE5 

Evapotranspiration 

(mm/month) 

0.59 0.60 0.61 0.61 4.34 

Surface Runoff 

(mm/month) 

0.06 0.07 0.08 0.09 2.68 

Subsurface Runoff 

(mm/month) 

0.49 0.48 0.56 0.59 3.00 

Soil moisture content 

cm3/cm3 

0.00 0.00 0.00 0.00 0.00 

 

Table 3 shows the impact of varying soil texture map inputs on different water balance component for West Africa. 660 

Simulated variables show much less variation as function of soil texture map input for CRUNCEP, GSWP, 6-

hourly aggregated WFDE5 forcings and 3-hourly aggregated WFDE5 forcings compared to 1-hourly WFDE5 

forcings. Similar results are found for Abuja (Table 4), where CRUNCEP, GSWP, 6H-WFDE5 and 3H-WFDE5 

forcings produce variations between 0.02 and 2.0 mm/month in ET, surface runoff and subsurface runoff as 

function of the soil texture map, while WFDE5 produces variations between 7.43 and 9.93 mm/month among soil 665 

texture maps.  Similar observation was also made for other regions (Tables S1, S2, S4, S5, S6, S7 and S8) and 

locations (grid cells) (Tables S9, S10, S11, S12, S13, S14, S15 and S16). 

 

Table 4: Mean margin of simulated variables among soil texture maps for CRUNCEP (6 hourly), GSWP (3 

hourly), 6H-WFDE5 (6 hourly), 3H-WFDE5 (3 hourly) and WFDE5 (1 hourly).  670 

Variable CRUNCEP GSWP 6H-WFDE5 3H-WFDE5 WFDE5 

Evapotranspiration 

(mm/month) 

0.91 1.33 1.70 2.00 9.93 

Surface Runoff 

(mm/month) 

0.03 0.15 0.19 0.21 7.43 

Subsurface Runoff 

(mm/month) 

0.02 0.41 0.59 0.63 7.70 
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Soil moisture content 

cm3/cm3 

0.01 0.01 0.01 0.01 0.01 

 

3.5. Discussion 

The simulation results over Africa suggest that the atmospheric forcings exert an important control on the ET 

estimates, while soil texture is important for simulating surface and subsurface runoff. The simulation results also 

suggest that the temporal resolution of atmospheric forcings influences the simulation outcomes, especially 675 

surface and subsurface runoff, and the interaction with soil texture seems to play a role here. These findings agree 

with the work of Zhang et al. (2023) on the role of soil texture and Beusekom et al. (2022) on the impact of 

temporal forcing aggregation on Land Surface model outputs. 

The analysis of water budget components shows differences in simulated ET, surface runoff and subsurface runoff 

for the different upscaled soil texture maps in combination with WFDE5 forced simulations, but not in 680 

combination with other atmospheric forcings with more coarse temporal resolution. We observed for ET and 

surface runoff across all regions, that higher temporal resolution led to higher differences in ET and surface runoff 

between soil texture map outcomes with the largest differences for WFDE5 (hourly resolution), followed by 

GSWP (3 hourly resolution) and CRUNCEP (6 hourly resolution). For subsurface runoff, higher temporal 

resolution did not result in such a systematic pattern in moisture-rich regions with rainfall above 200mm/month. 685 

However, in moisture deficient regions  higher temporal resolution of atmospheric forcing is associated with more 

variation in subsurface runoff for different soil texture maps. The temporal resolution of the atmospheric forcings 

did not result in different soil moisture content results for each soil texture map, but in all regions it was observed 

that the FAO soil texture map resulted in different soil moisture content than the Soilgrids250m soil texture maps 

partially confirming the findings of Tafasca et al. (2019) which showed that soil mapping had a stronger influence 690 

on soil moisture content compared to fluxes. 

3.5.1 The role of temporal resolution in rainfall intensity representation 

We investigated whether the higher temporal resolution of simulations influenced the rainfall partitioning into 

surface runoff and infiltration.  The absolute monthly (Figures S26 and S27) and annual (Figure S9) precipitation 

amounts over the continent vary only slightly among CRUNCEP, GSWP and WFDE5. The spatial averages for 695 

annual precipitation are 608mm/year, 638mm/year and 666mm/year for CRUNCEP, GSWP and WFDE5 

respectively. These differences in rainfall amount do not explain why only for WFDE5, soil texture variations 

result in larger runoff and evapotranspiration variations. We analysed also the number of precipitation events with 

a rainfall intensity above 3mm/hour for each of the three atmospheric forcings and eight selected locations. We 

found that WFDE5 had a much higher number of precipitation events with rainfall intensity greater than 3mm/hour 700 

than both CRUNCEP and GSWP at all 8 locations (see Table T17) indicating a better representation of rainfall 

intensity. GSWP and CRUNCEP had more rainfall events with much lower intensities. This indicates that rainfall 

intensity representation and its impact on the partitioning between infiltration and surface runoff in the land 

surface model is a likely reason for the higher sensitivity of model outcomes towards soil texture input in WFDE5 

forced simulations than GSWP and CRUNCEP forced simulations. 705 
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3.5.2 The role of soil texture in water balance components 

Rainfall intensity has a stronger influence on surface runoff generation than rainfall amount  (e.g., Jungerius & 

ten Harkel, 1994; Yao et al., 2021) and surface runoff is on the other hand also strongly influenced by the hydraulic 

conductivity with lower conductivity supporting higher surface runoff (Suryatmojo & Kosugi, 2021; Ow & Chow, 

2021; Chandler et al., 2018). Therefore, for WFDE5 forcings there are potentially more situations with surface 710 

runoff, such that the role of different soil properties can come into play. We analysed this for all 8 locations (Figure 

S53) by calculating the standard deviation of the fraction of precipitation turned into surface runoff among the 4 

soil texture maps, for each atmospheric forcing. For the WFDE5 atmospheric forcings, this standard deviation 

varies between 1.2% of rainfall for Daar es Salaam and 10.1% of rainfall in Addis-Ababa while the standard 

deviations are less than 0.4% for both CRUNCEP (6 hourly) and GSWP (3 hourly) atmospheric forcings, for all 715 

locations. This identified impact of surface runoff agrees with Mizuochi et al. (2021) for the ORCHIDEE model 

and Fersch et al. (2020) for the WRF-Hydro model.  This shows that the soil texture information has a control on 

the partitioning of fluxes for higher temporal resolution atmospheric forcings (Shuai et al., 2022). Since surface 

runoff and infiltration are sensitive to rainfall intensity (Mertens et al., 2002) and soil texture determines saturated 

hydraulic conductivity and therefore the timing of runoff (Hammond et al., 2019), surface runoff and subsurface 720 

runoff vary as a function of soil texture inputs in the WFDE5 simulations (mainly at the local and regional scales). 

3.5.3 Implications for land surface modelling and community impact 

This work demonstrates the critical role that high-resolution soil texture information and higher temporal 

resolution forcing datasets play in simulating water balance components. It highlights the need to use higher 

resolution soil texture information in land surface model simulations to improve the capturing of grid and sub-725 

grid scale land surface heterogeneity. It is also necessary to provide better pedotransfer functions which link soil 

texture and soil hydraulic parameters which ultimately control infiltration. Higher temporal resolution of 

atmospheric forcing (hourly) in this work has also captured water balance dynamics differently from coarse 

temporal resolution atmospheric forcing which indicate a need for the community to further strengthen research 

to improve temporal resolution of atmospheric forcings especially over Africa. There have been advances in 730 

improving spatial resolution of atmospheric forcings (e.g., Funk et al., 2015) but this work serves as an indicator 

that higher temporal resolution atmospheric forcings are also needed. The works of Hersbach et al. (2020) and 

Cucchi et al. (2020) must be complemented in producing higher temporal resolution of atmospheric forcings. This 

advancement can eliminate the need for temporal disaggregation of precipitation as done in this work. This work 

showed that soil texture information is important in combination with high temporal resolution of atmospheric 735 

forcings as it impacts the division of rainfall into surface runoff and infiltration. Ultimately, land surface models 

also need to be better tuned to correctly reproduce this division, in the context of the higher temporal resolution 

of atmospheric input data and higher spatial resolution of information on soil hydraulic properties. 

4. Conclusion 

1. Community Land Model version 5 (CLM5) model runs over the African continent were performed at a 740 

high spatial resolution of approximately 3km, with four different soil texture maps and three different 

atmospheric forcings. The four different soil texture inputs included the FAO soil map and three 
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differently upscaled SoilGrids250 maps. The three different atmospheric forcings were CRUNCEPv7, 

GSWP3 and WFDE5.  The most important findings were: Average evapotranspiration and surface runoff 

simulated by CLM5 over the African continent show a limited sensitivity to variations in the soil texture 745 

input. The source of soil texture information (FAO versus SoilGrids) results only in minor variations in 

the continental average ET or surface runoff (0.3% variations around mean), and the impact of different 

upscaling approaches of soil texture information is even smaller. This sensitivity to soil texture input is 

much smaller than the sensitivity to the different atmospheric forcings (3% variations for mean ET and 

26% for surface runoff). Average subsurface runoff and average soil moisture at the continental scale are 750 

both as sensitive to variations in atmospheric forcings as to variations in soil texture information.  

2. Although average surface runoff at the continental scale shows a limited sensitivity to soil texture input, 

at the regional and, especially, the local scale this sensitivity is much higher, but mainly in combination 

with the higher temporal resolution of WFDE5 forcings (hourly). The higher temporal resolution of 

WFDE5 forcings (hourly) than the other atmospheric forcings resulted not only in larger variations in 755 

simulated surface runoff, but also ET and subsurface runoff for the different soil texture maps. This 

points to the fact that the impact of soil texture becomes more important in combination with higher 

temporal resolution of atmospheric forcings. We explain this with the impact of the temporal resolution 

of atmospheric forcings on the rainfall intensity and the partitioning of rainfall into surface runoff, which 

is also determined by the hydraulic conductivity of the soil. This, in turn, affects also the amount of water 760 

available for evapotranspiration and drainage. 

This study therefore recommends further advances in the provision of both higher temporal resolution climate 

datasets and higher spatial resolution soil information over Africa. With higher spatial resolution soil information, 

sub-grid scale land surface heterogeneity will be handled with more accuracy. Also, higher temporal resolution 

climate datasets at less than 1-hour timesteps will not only eliminate the need for temporal disaggregation in land 765 

surface model applications but ensure that more accurate atmospheric variables are supplied to the land surface 

model at each time step.  

This study also highlights specific implications for the simulation of surface runoff by land surface models. Higher 

spatial resolution of soil texture data, or soil hydraulic properties, at finer spatial scales allow potentially for a 

better modelling of surface runoff and subsequently other water balance components at each grid cell. In addition, 770 

higher temporal resolution atmospheric forcing captures high-intensity rainfall events that can produce more 

surface runoff in a short period of time, especially on soils with low hydraulic conductivity, leading to a more 

accurate estimate of surface runoff at each affected grid cell. 

It is assumed in this work that model shortcomings (for example related to the representation of yearly vegetation 

cycles and the representation of different crop types) do not affect substantially the differences in the simulation 775 

results. Furthermore, the release of CLM5 used in this work assumes 16 plant functional types for the African 

continent by default which does not represent all vegetation types. Also, irrigation is hardcoded into the surface 

datasets. Future work should reduce these limitations.  
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