A theoretical study on the mechanism of citric acid-driven multicomponent nucleation of sulfuric acid-base-water clusters

Xiaoli Gong^{1,2}, Liyao Zhu¹, Renyi Zhang³

¹Electronics and Information College, Hangzhou Dianzi University, Hangzhou 310018, China

²Institute of Carbon Neutrality and New Energy, Hangzhou Dianzi University, Hangzhou 310018, China

³Department of Atmospheric Sciences and Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.

Correspondence to: Xiaoli Gong (gxl@hdu.edu.cn) and Renyi Zhang (renyi-zhang@geos.tamu.edu)

Table S1. The number and length of hydrogen bonds in Å in all clusters.

10

5

cluster	Number of water molecules							
	0	1	2	3	4			
SA·AM·	1	3	5	6	7			
$W_n (n = 0$	(1.539)	(1.563 ,1.719,2	(1.725,1.732,1.79	(1.708,1.720,1.723,1.7	(1.633,1.758,1.796,1.831,1			
- 4)		.067)	4,1.799,1.933)	94,1.903,1.998)	.854,1.961,1.980)			
SA·AM·C	4	6	8	11	11			
$A \cdot W_n$ (n =	(1.450,1.457	(1.659,1.703,1	(1.584 ,1.883,1.88	(1.686,1.695,1.714,1.7	(1.582, 1.666, 1.783, 1.834, 1			
0 - 4)	,1.913,2.146	.757,1.789,1.8	9,1.917,2.044,2.0	39,1.897,1.917,1.926,1.	.857,1.884,1.920,1.929,1.9			
)	58,1.935)	64,2.073,2.121)	945,1.959,1.961,1.969)	47,1.958,2.002)			
SA·DMA·	1	3	4	6	8			
$W_n (n = 0$	(1.392)	(1.569 ,1.803,1	(1.710,1.735,1.79	(1.738,1.785,1.809,1.9	(1.694,1.700,1.724,1.748,1			
- 4)		.868)	1,2.021)	25,1.939,2.003)	.870,1.904,1.928,1.943)			
SA·DMA·	5	5	7	8	9			
$CA \cdot W_n$ (n	(1.643,1.770	(1.466 ,1.676,1	(1.548,1.770,1.77	(1.629,1.698,1.738,1.7	(1.502, 1.654, 1.780, 1.853, 1			
= 0 - 4)	,2.030,2.041	.774,1.838,1.9	8,1.965,2.003,2.0	47,1.844,1.849,1.974,	.862,1.889,1.929,1.968,1.9			
	,2.152)	83)	88,2.088)	2.110)	73)			
SA·AM·D	2	4	5	7	8			
$MA{\cdot}W_n(n$	(1.586 ,1.792	(1.531 ,1.684,1	(1.712,1.813,2.02	(1.688,1.689,1.698,1.7	(1.659,1.718,1.767,1.849,1			
= 0 - 4))	.812,1.878)	4,2.077,2.157)	04,1.889,1.966,1.985)	.863,1.916,1.938,1.989)			
SA·AM·D	4	6	9	10	8			
MA·CA·	(1.45,1.567,	(1.581 ,1.634,1	(1.516 ,1.647,1.72	(1.593,1.670,1.670,1.7	(1.587,1.602,1.735,1.768,1			

$W_n (n = 0$	1.703 ,	.780,1.785,1.8	6,1.791,1.817,1.8	95,1.800,1.905,1.906,1.	.805,1.857,1.899,1.963)
- 4)	1.791)	64,1.957)	29,1.854,1.972)	979,2.077,2.098)	

Table S2.	The number	of proton	transfers in	n all clusters.
-----------	------------	-----------	--------------	-----------------

cluster Number of water molect				olecules	5
	0	1	2	3	4
$SA \cdot AM \cdot W_n (n = 0 - 4)$	0	0	1	1	1
$SA \cdot AM \cdot CA \cdot W_n (n = 0 - 4)$	1	1	1	1	1
$SA \cdot DMA \cdot W_n (n = 0 - 4)$	1	1	1	1	1
$SA \cdot DMA \cdot CA \cdot W_n (n = 0 - 4)$	1	1	1	1	1
$SA \cdot AM \cdot DMA \cdot W_n (n = 0 - 4)$	1	1	1	1	1
$SA \cdot AM \cdot DMA \cdot CA \cdot W_n (n = 0 - 4)$	1	1	2	1	1

Table S3. The contribution of CA in the formation of hydrogen bonds in all clusters.

1	~
	~
-	~

cluster		Donor	Acceptor	Hydrogen bond	Hydrogen
					bond length/Å
$SA \cdot AM \cdot CA \cdot W_n (n = 0 - $	n=0	β-СООН	SA	C-O-H···O=S	1.457
4)		SA	β-СООН	S=O-H···O=C	1.913
		AM	а1-СООН	N-H···O=C	2.146
	n=1	α1-СООН	SA	C-O-H···O=S	1.757
		AM	а1-СООН	N-H···O=C	1.858
		β-СООН	W	С-О-Н…О-Н	1.659
		AM	β-СООН	N-H···O=C	1.935
	n=2	α1-СООН	W	С-О-Н…О-Н	1.584
		AM	а1-СООН	N-H···O=C	2.073
		AM	β-СООН	N-H···O=C	2.044
	n=3	β-ОН	а1-СООН	С-О-Н…О=С	1.897
		SA	β-ОН	S=O-H···O-C	1.959
		β-СООН	SA	C-O-H···O=S	1.686
		AM	β-СООН	N-H···O=C	1.917
	n=4	β-СООН	SA	C-O-H···O=S	1.582

		W	β-СООН	О-Н…О=С	2.002
		W	а1-СООН	О-Н…О=С	1.929
$SA \cdot DMA \cdot CA \cdot W_n$ (n =	n=0	α1-СООН	SA	C-O-H···O=S	1.643
0 - 4)		DMA	а1-СООН	N-H···O=C	2.152
		β-СООН	SA	C-O-H···O=S	2.030
		DMA	β-СООН	N-H···O=C	2.041
	n=1	α1-СООН	SA	C-O-H···O=S	1.466
		DMA	α1-СООН	N-H···O=C	1.774
		W	β-ОН	О-Н…О-С	1.983
	n=2	α1-СООН	W	С-О-Н…О-Н	1.778
		W	α1-СООН	О-Н…О=С	2.003
		W	а2-СООН	О-Н…О=С	1.965
		β-СООН	SA	C-O-H···O=S	1.548
		DMA	β-СООН	N-H···O=C	2.088
	n=3	α1-СООН	W	С-О-Н…О-Н	1.698
		DMA	α1-СООН	N-H···O=C	2.110
		β-СООН	W	С-О-Н…О-Н	1.629
		W	β-СООН	О-Н…О=С	1.849
	n=4	α1-СООН	SA	C-O-H···O=S	1.502
		SA	α1-СООН	S=O-H···O=C	1.862
		W	β-ОН	О-Н…О-С	1.889
$SA \cdot AM \cdot DMA \cdot CA \cdot W_n$	n=0	α1-COOH	SA	C-O-H···O=S	1.454
(n = 0 - 4)		DMA	α1-СООН	N-H···O=C	1.791
	n=1	α1-COOH	SA	C-O-H···O=S	1.581
		DMA	α1-СООН	№-Н…О-С	1.957
		а2-СООН	SA	C-O-H···O=S	1.780
		β-ΟΗ	SA	C-O-H···O=S	1.785
	n=2	DMA	α1-СООН	№-Н…О-С	1.516
		β-ОН	α1-СООН	С-О-Н…О-С	1.647
		AM	β-ОН	N-H…O-C	1.829
		α2-СООН	SA	C-O-H···O=S	1.726
		W	а1-СООН	О-Н…О=С	1.972

n	n=3	а1-СООН	AM	С-О-Н…№Н	1.670
		W	α1-СООН	О-Н…О=С	1.905
		а2-СООН	W	С-О-Н…О-Н	1.800
		W	α2-СООН	О-Н…О=С	1.979
		β-СООН	SA	C-O-H···O=S	1.593
		SA	β-СООН	S=O-H···O=C	1.670
n	n=4	a1-COOH	W	С-О-Н…О-Н	1.587
		W	а2-СООН	О-Н…О=С	1.963

Table S4 The reaction Gibbs free energies (Kcal mol⁻¹) of SA·AM·W_n·CA_m (n = 0 - 4, m=0-1), SA·DMA·W_n·CA_m (n = 0 - 4, m=0-1) and SA·AM·DMA·W_n·CA_m (n = 0 - 4, m=0-1) clusters through various formation manners using M06-2X/6-311++G (2d, 2p) at 298.15K and 101.3KPa.

$SA+AM+nW \rightarrow SA \cdot AM \cdot (W)_n$	
$n = 0, \triangle G = -7.98$	
$n = 1, \triangle G = -10.61$	
$n = 2, \triangle G = -12.80$	
<i>n</i> =3, △ <i>G</i> =-14.70	
<i>n</i> =4, △ <i>G</i> =-18.02	
$SA \cdot AM \cdot W_n + CA \rightarrow SA \cdot AM \cdot CA \cdot W_n$	$SA+AM+CA+nW \rightarrow SA \cdot AM \cdot CA \cdot W_n$
$n = 0, \triangle G = -8.45$	$n = 0, \triangle G = -16.42$
$n = 1, \triangle G = -8.52$	$n=1, \triangle G=-19.13$
$n = 2, \triangle G = -7.74$	$n = 2, \triangle G = -20.54$
<i>n</i> =3, △ <i>G</i> =-7.47	$n = 3, \triangle G = -22.17$
$n = 4, \triangle G = -5.26$	$n = 4, \triangle G = -23.29$
$SA+DMA+nW \rightarrow SA \cdot DMA \cdot (W)_n$	
$n = 0, \triangle G = -11.22$	
$n = 1, \triangle G = -16.07$	
$n = 2, \triangle G = -19.34$	
$n = 3, \Delta G = -21.34$	
	SA+AM+ $nW \rightarrow$ SA·AM·(W) $_n$ $n = 0, \Delta G = -7.98$ $n = 1, \Delta G = -10.61$ $n = 2, \Delta G = -12.80$ $n = 3, \Delta G = -14.70$ $n = 4, \Delta G = -18.02$ SA·AM·W $_n$ +CA \rightarrow SA·AM·CA·W $_n$ $n = 0, \Delta G = -8.45$ $n = 1, \Delta G = -8.52$ $n = 2, \Delta G = -7.74$ $n = 3, \Delta G = -7.47$ $n = 4, \Delta G = -5.26$ SA+DMA+ $nW \rightarrow$ SA·DMA·(W) $_n$ $n = 0, \Delta G = -11.22$ $n = 1, \Delta G = -16.07$ $n = 2, \Delta G = -19.34$ $n = 3, \Delta G = -21.34$

$n = 4, \triangle G = -1.7$	$n = 4, \triangle G = -23.02$			
$SA \cdot DMA \cdot CA \cdot W_n$	$SA \cdot DMA \cdot W_n + CA \rightarrow SA \cdot DMA \cdot CA \cdot W_n$	SA+	DMA	
$_1+W \rightarrow SA \cdot DMA \cdot CA \cdot W_n$		$+CA+nW \rightarrow SA \cdot DMA \cdot CA \cdot (W)_n$		
	$n = 0, \triangle G = -13.45$	$n = 0, \triangle G = -24.67$		
n=1, riangle G=0.83	$n = 1, \Delta G = -7.77$	$n=1, \triangle G=-23.84$		
$n=2, \triangle G=-1.7$	$n = 2, \Delta G = -6.18$	$n = 2, \triangle G = -25.52$		
$n=3, \triangle G=-3.4$	$n = 3, \triangle G = -7.55$	$n = 3, \triangle G = -28.89$		
$n = 4, \triangle G = 0.26$	$n = 4, \triangle G = -5.61$	$n = 4, \triangle G = -28.63$		
$SA \cdot AM \cdot DMA \cdot W_{n}$	$SA+AM+DMA+nW \rightarrow SA\cdot AM\cdot DMA\cdot (W)_n$			
$_1+W \rightarrow SA \cdot AM \cdot DMA \cdot W_n$				
	$n = 0, \triangle G = -15.49$			
$n=1, \triangle G=-3.4$	$n = 1, \bigtriangleup G = -18.86$			
$n=2, \triangle G=-2.0$	$n = 2, \triangle G = -20.83$			
$n = 3, \triangle G = -3.2$	$n = 3, \triangle G = -23.98$			
$n = 4, \triangle G = -3.0$	$n = 4, \triangle G = -26.98$			
$SA \cdot AM \cdot DMA \cdot CA \cdot W_n$	$SA \cdot AM \cdot DMA \cdot W_n + CA \rightarrow SA \cdot AM \cdot DMA \cdot CA \cdot$	SA+ AM	+ DMA	
$_1+W \rightarrow SA \cdot AM \cdot DMA \cdot CA \cdot W_n$	\mathbf{W}_n	$+CA+nW \rightarrow SA \cdot AM$	\cdot DMA \cdot CA \cdot (W) _n	
	$n = 0, \bigtriangleup G = -10.24$	$n = 0, \triangle G = -25.73$		
$n=1, \triangle G=1.81$	$n = 1, \triangle G = -5.06$	$n = 1, \triangle G = -23.91$		
$n=2, \triangle G=-4.4$	$n = 2, \Delta G = -7.49$	$n = 2, \triangle G = -28.32$		
$n = 3, \triangle G = 1.61$	$n = 3, \Delta G = -2.74$	$n = 3, \triangle G = -26.72$		
$n = 4, \triangle G = -2.6$	$n = 4, \triangle G = -2.33$	$n = 4, \triangle G = -29.31$		