

Planetary Aeronomy: ...
By Siegfried Bauer, H...

Planetary Aeronomy

Atmosphere Environment

By Siegfried Bauer, Helmut Lammer

Preview

Search inside

Overview

Get the book

About this edition

ISBN: 9783662093627, 3662

Published: March 9, 2013

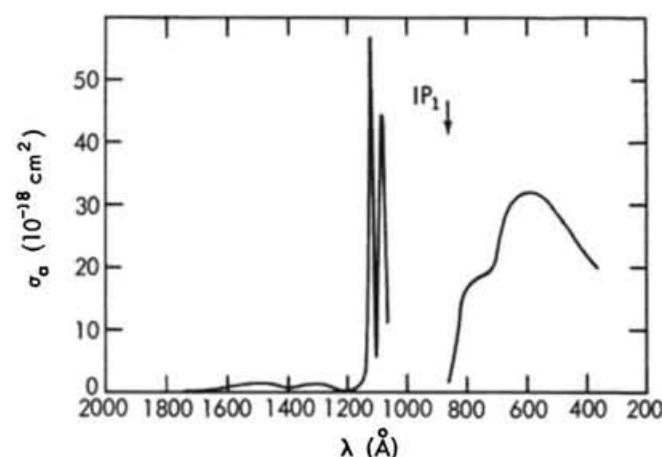
Publisher: Springer Berlin Heidelberg

Author: Siegfried Bauer, Helmut Lammer

Create Citation

Table of

Planetary Aeronomy is a modern and comprehensive book that governs the formation and evolution of planetary atmospheres. It permits consideration of the growing number of processes that will become possible over the next decades. The book is divided into two parts, which are relevant for the evolution of planetary atmospheres. The first part contains useful scaling laws and analytical expressions for the evolution of terrestrial planets and their atmospheres. The second part is used both as graduate textbook for students and as a reference for researchers in the field.


Source: Publisher

Get book

BUY DIGITAL

I.1 Extreme Ultraviolet Radiation (EUV) and X-Rays

17

Fig. 1.8. Absorption cross-section of CO₂ from experimental data (after E. W. McDaniel [9]).

A number of analytical approximations to the Chapman function have been developed, including the extension to a constant scale height gradient β (cf. Sect. II.1). For an isothermal atmosphere a useful approximation of the Chapman function is given in terms of the tabulated error function

$$\begin{aligned} \text{Ch}\left(x, \frac{\pi}{3} \leq \chi \leq \frac{\pi}{2}\right) &\approx \left(\frac{\pi x}{2}\right)^{\frac{1}{2}} \left\{ 1 - \text{erf}\left(\frac{x^{\frac{1}{2}} \cos \chi}{\sqrt{2}}\right) \right\} \exp\left(\frac{x \cos^2 \chi}{2}\right) \\ \text{Ch}\left(x, \chi \geq \frac{\pi}{2}\right) &\approx \left(\frac{\pi x}{2} \sin \chi\right)^{\frac{1}{2}} \left\{ 1 + \text{erf}\left(\frac{x^{\frac{1}{2}} \cos \chi}{\sqrt{2}}\right) \right\} \exp\left(\frac{x \cos^2 \chi}{2}\right) \quad (1.9) \end{aligned}$$

where $x = R/H = (R_0 + h)/H$ with H the scale height and R_0 the planetary radius. The *Chapman function* for different values of x and its comparison with $\sec \chi$ is shown in Fig. 1.9.

For $\chi = 90^\circ$, $\text{Ch}(x, \pi/2) = (x\pi/2)^{\frac{1}{2}}$, representing the ratio of the total content in the line of sight to the vertical content of an atmospheric constituent, a quantity of interest in occultation experiments. At high enough altitudes where the optical depth is small the exponential factor in (1.9) can be neglected and the ion production function in this “low attenuation region” assumes the simple form

$$q = J(\sigma_i, \lambda) n_j(z) \quad (1.10)$$

where $J = \langle \sigma_i \Phi_\infty \rangle$ is the photoionization rate coefficient (or frequency of ionization ν_{ion} , [sec⁻¹]). The ionization coefficient is based on the averaged ionization cross-sections and photon fluxes over all pertinent wavelengths. For the light atmospheric constituents H and He, which will make up the main constituents of planetary exospheres, the ionization coefficients are listed for Venus, Earth and Mars in Table 1.8. Since many wavelengths will contribute