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Abstract. There has been a steady increase of marine activity throughout the Arctic Ocean during the last decades, and mar-

itime end users are requesting skillful high-resolution sea ice forecasts to ensure operational safety. Different studies have

demonstrated the effectiveness of utilizing computationally lightweight deep learning models to predict sea ice properties in

the Arctic. In this study, we utilize operational atmospheric forecasts as well as ice charts and sea ice concentration passive

microwave observations as predictors to train a deep learning model with
:::::
future

:
ice charts as the ground truth. The developed5

deep learning forecasting system can predict regional sea ice concentration
::::::
predicts

:::::::
regional

:::
ice

:::::
charts

::::::::
covering

::::
parts

:::
of

:::
the

:::
East

:::::::::
Greenland

::::
and

:::::::
Barents

::::
seas at one kilometer resolution for 1 to 3-day lead time. We validate the deep learning system

performance by evaluating the position of forecasted sea ice concentration contours at different concentration thresholds. It

is shown that the deep learning forecasting system achieves a lower error for several sea ice concentration contours when

compared against baseline-forecasts (persistence-forecasts,
:::
sea

:::
ice

::::::::
free-drift and a linear trend), as well as two state-of-the-art10

dynamical sea ice forecasting systems (neXtSIM and Barents-2.5) for all considered lead times and seasons.

1 Introduction

Arctic sea ice thickness and extent have decreased since the first satellite observations were obtained (Kwok, 2018; Serreze

and Meier, 2019) as a response to climate change (Notz and Marotzke, 2012) which is amplified in the Arctic region (Serreze

and Barry, 2011). Summer months are experiencing the greatest loss of sea ice extent (Comiso et al., 2017), with models15

from the Coupled Model Intercomparisson Project 6 (CMIP6) projecting the first virtually ice-free (< 1 million square km)

Arctic summer before 2050 (Notz and Community, 2020). As a consequence of the sea ice retreat during the summer months,

there has been an increase in maritime activity in the Arctic (Eguíluz et al., 2016; Gunnarsson, 2021) resulting in a consistent

increase in the number of ships present in the Arctic. The period during which many vessels operate has also extended beyond

the summer months, increasing mariners exposure to hazardous sea ice conditions (Müller et al., 2023). The influx of operators20

to the Arctic region has increased the demand for accurate short-range sea ice forecasts (Stocker et al., 2020), and that end-users

needs are taken into account during the validation of these forecasts (Melsom et al., 2019; Wagner et al., 2020).
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Although dynamical sea-ice forecasting systems have been producing operational forecasts at different resolutions and lead

times e.g. (Sakov et al., 2012; Metzger et al., 2014; Williams et al., 2021; Röhrs et al., 2023), feedback from maritime operators

suggests that current sea ice forecasts lack sufficient and relevant verification (Veland et al., 2021). Consequently, maritime25

operators tend to rather rely on their own experience (Blair et al., 2022) despite the improved situational awareness provided by

sea ice forecasts for tactical navigation (Rainville et al., 2020). Moreover, dynamical forecasts are computationally expensive,

especially when targeting high spatial resolutions. In recent years, statistical forecasting approaches have emerged where deep

neural networks have been trained on past sea ice information as well as the state of the atmosphere in order to predict the future

state of sea ice concentration (SIC) (e.g. Fritzner et al., 2020; Liu et al., 2021b; Andersson et al., 2021; Liu et al., 2021a; Ren30

et al., 2022; Grigoryev et al., 2022). These machine learning approaches require little memory and computational resources to

produce a forecast, once they are trained.

Previous studies (Liu et al., 2021b; Andersson et al., 2021; Liu et al., 2021a; Ren et al., 2022) train deep learning models

on reanalysis datasets such as ERA5 (0.25◦ resolution) (Hersbach et al., 2020) or use SIC derived from coarse resolution (25

km resolution) satellite climate data records (such as the products from Cavalieri et al. (1996) and Lavergne et al. (2019)).35

Andersson et al. (2021) proposed IceNet, a pan-Arctic U-Net which
:::::::::
classifying

:::
SIC

::::
into

:::::::
separate

::::::
classes

:::::::
defined

:::
by

:::
sea

:::
ice

:::::::::::
concentration

:::::::::
thresholds.

::::::::::::::::::::
Andersson et al. (2021)

:::::::::::
demonstrated

:::
that

::::::
IceNet consistently improved upon the seasonal numerical

forecasting system SEAS5 (Johnson et al., 2019) for lead times of 2 months and longer. Similarly, Liu et al. (2021b) showed that

a convolutional LSTM
:::
long

:::::::::
short-term

:::::::
memory

:::::::
network

:
covering the Barents Sea with a 6 week lead time

::::::
directly

:::::::::
predicting

:::
SIC

:
was more skillful than persistence for all considered weekly lead times. However, due to the aforementioned models using40

climatological-scale data as predictors and ground truth, their application to maritime users as short term operational forecasts

are limited (Wagner et al., 2020).

Grigoryev et al. (2022) presented a multi-regional U-Net forecasting system
::::::::
predicting

::::
SIC

:
for lead times up to 10 days

where the real-time availability of SIC satellite retrievals and numerical weather forecasts were considered. The deep learning

forecasts of Grigoryev et al. (2022) considerably outperformed persistence and linear trend baseline forecasts in the considered45

regions of the Barents, Labrador, and Laptev Seas. Fritzner et al. (2020) demonstrated the possibility of utilizing a deep learning

system to forecast sea ice
:::
fully

::::::::::::
convolutional

:::::::
network

::
to

::::::
forecast

:::
ice

:::::
charts

:
for the region around Svalbard and the Barents Sea,

however the forecasts had a coarse spatial resolution due to limited computational resources. High resolution sea ice forecasts

are important for this region as it is the focus of many commercial operators from different maritime sectors such as shipping,

fishing and tourism (Stocker et al., 2020; Müller et al., 2023).50

In this paper we present the development of a regional deep learning forecasting system targeting 1 km spatial resolution

and 1 – 3 day lead time covering the area around Svalbard and the Barents Sea. The choice of predictors and target data is

made with operational concerns, and the quality of the forecasts is assessed against relevant baseline forecasts and dynamical

sea ice forecasting systems in a manner relevant for end-users (Melsom et al., 2019; Wagner et al., 2020). The impact from the

different predictors is also assessed. Section 2 describes the datasets used for this study, followed by Section 3 presenting the55

neural network implementation and verification setup. Section 4 presents the results, with Section 5 providing the discussions

and conclusions.
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2 Data

To develop the deep learning forecasting system, several observation and physical model forecasting system datasets have

been chosen as predictors, targets and for validation. When selecting appropriate datasets, their spatial resolution as well as60

release frequency has been considered in order to develop an operational product. Table 1 presents the different products we

have used, as well as the role they play in our forecasting system which will be further described in the following sections.

The region of interest is depicted in Fig. 1 and is constructed as an intersection between the regional domains of the gridded

ice chart data produced by the Norwegian Ice Service (https://cryo.met.no/en/latest-ice-charts) and the regional numerical

weather prediction system AROME Arctic (Müller et al., 2017). The deep learning model has been developed using the U-Net65

architecture (Ronneberger et al., 2015), which requires the spatial dimensions of the input fields to be repeatedly divisible by

a given factor a number of times. For simplicity, the model domain was set to be a one kilometer spatial resolution square grid

containing 1792×1792 equidistant grid-cells, which is four times divisible by 4. This domain was achieved by removing lower

latitudes from the original AROME Arctic domain, affecting the
:::::::
southern Norwegian, Barents and Kara seas.

Table 1. Products used, their application as well as temporal regime. Observational products and physical forecasting models are separated

by descriptive italic text. Time regime refers to which time period the dataset covers with respect to the initialization date of the deep learning

model.

Product Variables Training Validation Time regime

Observations

Ice charts SIC Predictor / Target Yes Present / Future

OSI SAF SSMIS SIC trend Predictor Yes Past

AMSR2 (ASI) SIC No Yes Future

Models

AROME Arctic T2M, X,Y-Winds Predictor No Future

NeXtSIM SIC No Yes Future

Barents-2.5 SIC No Yes Future

2.1 Sea-ice concentration observations70

The ice charts are manually drawn to deliver a SIC product which is distributed every workday at 15:00 UTC by the Ice Service

of the Norwegian Meteorological Institute (https://www.cryo.met.no/en/latest-ice-charts). The ice analyst who draws the ice

chart assesses and merges available synthetic aperture radar (SAR) scenes with visible- and infrared imager observations. These

data sources are supplemented by coarse resolution passive microwave observations to achieve a consistent spatial coverage.

::::::::
Incoming

::::::::::
observations

:::
are

::::::::::
interpreted

::
by

:::
the

:::
ice

::::::
analyst

:::
as

::::
they

::::::
become

:::::::::
available.

:::
For

:::
our

::::::
model

::::::
domain

:::::
(Fig.

::
1)

:::::::::
Sentinel-175
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Figure 1. The model domain (dashed-contour) together with the SIC retrieved from a ice chart (15 sep 2022). The SIC intervals and color

code follows the WMO Ice Chart Colour Standard and Sea Ice Nomenclature.

::::
SAR

::::::
swaths

:::
are

:::::::
available

:::::::
between

::::::::
midnight

::::
and

:::::
08:00

::::
UTC

:::::::
starting

::::
from

::::::::::::::
Novaya-Zemlya.

::::::::
Following

::
a
:::::::::::
consideration

::
of

:::::
input

:::
data

::::::::::
availability

:::
and

:::
ice

::::::
analyst

::::::::::
judgement,

::
we

:::::::
assume

:::
the

:::
ice

:::::
charts

::
to

:::::
reflect

:::
the

:::
sea

:::
ice

::::
state

::
at
:::::
12:00

:::::
UTC.

:

We use gridded SIC from the ice charts as both a predictor representing current
:::::
initial sea ice conditions and a target at 1 –

3 day lead time since the product captures daily (weekdays from Monday to Friday) observed SIC at a high
:::::::
(≤ 1km)

:
spatial

resolution. The ice charts are a categorical product, with SIC following the World Meteorological Organization (WMO) total80

concentration intervals (see colorbar of Fig. 1). For this study, the ice charts have been gridded
::::
from

::::::
vector

::::::::
polygons onto the

model domain with a 1km spatial resolution
:
1
:::
km

::::::
spatial

:::::::::
resolution

:::::
using

::::::
nearest

:::::::
neighbor

:::::::::::
interpolation. Moreover, we have

filtered out Baltic sea ice as the task of the deep learning system in this study is to predict sea ice in the Greenland and Barents

seas.

In addition to the ice charts, SIC observations from the Ocean and Sea Ice Satellite Application Facility (OSI SAF) Special85

Sensor Microwave Imager/Sounder (SSMIS) (OSI-401-d
:::::::
OSI-401) and AMSR2 observations processed with the ASI algorithm

from the University of Bremen (Spreen et al., 2008) are utilized. OSI SAF SSMIS is supplied on a 10km
::
10

::::
km

:
spatial

resolution, and will be used to compute a linear sea-ice concentration trend which will serve as both a predictor and as a

baseline-forecast for validation. Motivated by the lack of temporal awareness of the U-Net architecture (Ronneberger et al.,

2015), computing a linear trend from past sea-ice concentration fields will encode multiple previous time-steps into a single90

two dimensional field. Moreover, computing the linear trend from a different product than the ice charts will supply the model
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with correlated but not overlapping information. It is also noted that the ice charts are not produced every day, hence it would

not be possible to use the product to compute a local trend.

The AMSR2 observations are used for validation of the deep learning forecasting system only. The AMSR2 data utilized for

this work is the ASI sea-ice concentration product from the University of Bremen (Spreen et al., 2008). The dataset is provided95

on a 6.25 km grid. The AMSR2 observations are fully withheld from the data
:::
can

::
be

::::::::::
considered

::
as

:::
an

::::::::::
independent

:::::::
product

::::
from

:::
the

:::
ice

:::::
charts

::::::
which

:::
are

::::::::
primarily

:::::::
derived

::::
from

:::::
SAR

:::::::::::
observations,

::::
and

:::
are

:::
not

:
used to train the deep learning model.

Hence, the AMSR2 data are used as an external product for validation of forecast performance, providing an estimation of the

deep learning model’s ability to provide consistent forecasts beyond using the ice charts as validation.

2.2 Physical forecasting systems100

In addition to training the deep learning model on current and previous sea-ice concentration data, we also include atmospheric

predictors as it has been demonstrated that the inclusion of the present- and future state of the atmosphere can improve the sea-

ice predictions from deep learning (Grigoryev et al., 2022; Palerme et al., 2023)
::::::::::::::::::::::::::::::::::::
(Grigoryev et al., 2022; Palerme et al., 2024).

For this study, forecasts of 2-meter temperature and the 10-meter wind components adjusted to align with the x,y dimensions

of the model grid (x,y-wind) were taken from the AROME Arctic regional numerical weather prediction system developed for105

operations at the Norwegian Meteorological Institute (Müller et al., 2017). Although not a forecast field, the land-sea mask

used in AROME Arctic is also extracted as a predictor. We use AROME Arctic forecasts as predictors for this study due to its

high spatial resolution while also covering most of the ice chart domain
:::
and

::::::
regional

::::::::
coverage

::
of

:::
the

::::::::
European

::::::
Arctic. AROME

Arctic runs up to 66 hours lead time, is supplied on a 2.5 km resolution grid with 66 vertical levels, and a new forecast is

initiated every six hours. Near surface winds influence the sea ice drift following a non-linear relationship between wind speed,110

sea-ice drift speed, sea-ice concentration and sea-ice thickness (Yu et al., 2020). Moreover, near surface temperatures affects

the sea-ice through melting or growth. AROME Arctic has been in operation and continuous development since October 2015.

However due
::::
2015,

::::::::
routinely

::::::::
receiving

:::::::
updates

::::::
which

::::::::
introduce

:::::::::
permanent

::::
bias

:::::::
changes

:::
for

::::::::
predicted

:::::::::
variables.

::::
Due

:
to a

major change of
::
to the representation of snow over sea-ice in 2018, which significantly lowered a warm bias of

:
in
:
near-surface

temperatures above sea-ice
:::
was

:::::::::::
significantly

:::::::
reduced in the model (Batrak and Müller, 2019), the training dataset consists of115

dates starting from .
:::::
Thus

:::
we

::::
start

:::
our

::::::
training

:::::::
dataset

::
at 2019 in order to use a consistent dataset

::
to

:::::
avoid

::::::::
supplying

:::
our

:::::
deep

:::::::
learning

:::::
model

::::
with

:::::::
samples

:::::::::
containing

::::::::
different

::::::::::
temperature

::::::
biases,

:::::::::
especially

::::
close

:::
to

:::
the

:::::::
marginal

:::
ice

:::::
zone

:::::
(MIZ)

::::::
where

::
the

:::::::
greatest

::::::
model

:::::::
response

::
to

:::::::::
predictors

:::::
occurs.

Moreover, the two short-range sea-ice forecasting systems neXtSIM-F (Williams et al., 2021) and Barents-2.5 (Röhrs et al.,

2023) are used to validate the deep learning forecasts against high-resolution physical forecasting systems. neXtSIM-F is120

based on the neXtSIM sea-ice model which is a dynamical/thermodynamical sea-ice model using a brittle rheology (Rampal

et al., 2016). The version of neXtSIM used for this work uses the Brittle Bingham Maxwell rheology (Ólason et al., 2022),

and is .
:::::::::
NeXtSIM

:::::::
receives

:::::::
oceanic

::::::
forcing

:::::
from

::::::::
TOPAZ4

:::::::::::::::::
(Sakov et al., 2012)

:::
and

::::::::::
atmospheric

::::::
forcing

:::::
from

::::::::
ECMWF

::::
IFS

::::::::::::::::::::::
(Owens and Hewson, 2018)

:
.
:::
The

::::::::
forecasts

:::
are supplied on a pan-Arctic grid at 3 km resolution. Barents-2.5 is a regional ocean

and sea-ice ensemble forecasting system developed at the Norwegian Meteorological Institute (Röhrs et al., 2023), and is125
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produced on a 2.5 km spatial resolution and runs up to 66 hours lead time on the same grid as AROME Arctic. The sea-ice

model used in Barents-2.5 is CICE (Hunke et al., 2015). At prediction time, six members are initiated, with one member

receiving atmospheric forcing from AROME Arctic and the rest by atmospheric forecasts from ECMWF, however for this

study only the member forced by AROME Arctic has been considered. Finally, due to recent developments of the model, only

forecasts starting from June 2022 have been considered from Barents-2.5.130

3 Methodology

3.1 Dataset preprocessing and selection

We perform preliminary computations in order to ensure that the input data from different sources are on a common grid.

The data preprocessing is performed in two stages. Firstly data not matching the AROME Arctic projection are reprojected.

Secondly, for data available at a coarser resolution, nearest neighbor interpolation is performed in order to resample the data135

onto a 1 km grid. The U-Net architecture requires all predictors to have valid values in all grid cells, however both the
::::
input

::::
and

:::::
target ice charts and SIC trend do not consistently represent SIC for land covered grid cells due to their intended unavailability.

In order to avoid sharp gradients between sea-ice covered seas and land covered areas
:
in

:::
the

:::
ice

:::::
charts

:::
and

::::
SIC

:::::
trend, we apply

a nearest neighbor interpolation of the local sea-ice conditions to fill in the missing sea-ice concentration over land grid points

following Wang et al. (2017).140

Since all the datasets we use
:::
for

:::::::
training come from operational products, we have to take into account production- and

publishing time as well as forecast length when selecting predictors. A graphical summary of the operational schedule for

predictor selection is shown at the top of
:
in
:
Fig 2. The ice charts are published every workday at 15

::::
valid

::
at
:::
12:00 UTC, which

will be regarded as the initialization time for the deep learning forecasts. The OSI SAF linear trend is computed from the five

previous days, until the day before deep learning forecast initialization. Since we want the
::
We

:::::
want AROME Arctic forecasts145

to provide information regarding the future state of the atmosphere ,
:
to
:::
the

:::::
deep

:::::::
learning

:::::::
system,

:::::
which

:::
we

:::
set

::
to

::::
lead

:::::
times

::::::
beyond

::::
deep

:::::::
learning

:::::::::::
initialization

::::
time.

::::::
Hence it follows that the

::::::::::
atmospheric forecast should cover the time after an ice chart

has been published. Moreover, the ice charts are drawn based on data available until their publication time. This provides a

temporal limit for the atmospheric forecasts when an ice chart is used as target during training, since the lead time of the data

gathered from the atmospheric forecasts should not exceed the publication time of the
:::::::
between

:::::
input

:::
and target ice chart (15:00150

UTC)
::::
valid

::::
time.

We choose to use AROME Arctic forecasts initiated at 18:00 UTC on the same day as the ice chart publication. Furthermore,

we set the reference time of AROME Arctic forecasts
:::::::
AROME

::::::
Arctic

:::::::
forecast

::::::::
reference

::::
time

:
to be 12:00 UTC the day of

prediction
::
on

::::::::::::
prediction-day

:
regardless of model lead time of 1, 2 or 3-day. This way, we ensure that atmospheric forecast

:::::::
forecasts

:
cover the time period in between ice chart publication and intended target lead time. Moreover, AROME Arctic155

initiated at 18:00 UTC reaches 12:00 UTC for a 3-day target lead time after 66 hours
:::
(the

::::::
longest

::::
lead

::::
time

::::::::
available

:::::
from

:::::::
AROME

::::::
Arctic

::::::::
forecasts), which motivates the choice of having 12:00 UTC as reference time regardless of target lead time.

In addition, AROME Arctic has a timeliness of
::::::::
production

:::::
time

::
of

:::::
about 2.5 hours, which ensures that the forecast

:::::::
forecasts
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Figure 2. Overview diagrams
:::::

diagram
:
describing a) predictor publication scheduling, selection and preprocessing, and b) model initialization

for intercomparison. a) Description of when the different predictors are published in relation to a published ice chart when constructing a

single sample for a given date. The ice charts are published at 15:00 UTC, followed by AROME Arctic initialized 18:00 UTC (available

~ 20:30 UTC). The different colors refer to deep learning forecast lead time. b) Description of the forecast intercomparison setup between

physical forecasting systems with an hourly frequency and deep learning forecasts. The timestamps are given relative to 00:00 UTC the day

an ice chart is published. The color code above is reused.

initiated at 18:00 UTC allows
:::
are

:::::::
available

::::::
before

::::::::
midnight,

::::::::
allowing us to publish deep learning forecasts on the same day as

the input ice chart is published.160

Selecting atmospheric forecasts starting
:::::
When

::::::::
selecting

::::::::::
atmospheric

::::::::
forecasts

:::::::
initiated

:
at 18:00 UTCcauses atmospheric

development between 15:00 and 18,
:::
six

:::::
hours

:::
of

:::::
future

::::::::::
atmospheric

:::::::::::
development

::::::::
occurring

:::::
after

:::
ice

::::
chart

:::::
valid

::::
time

:::
(12:00

to be missed by the network
:::::
UTC)

::
is

:::
not

::::::::
included

::
in

:::
the

:::::::::::
atmospheric

::::::::
predictors. Although AROME Arctic is also initiated

at 12:00 UTC, the forecast initiated at 18:00 is more up to date, and as such is assumed to be more reliable especially at

longer lead times.
::::::::
Moreover,

::::
the

::::::
impact

::
of

:::::::::
appending

:::
six

:::::
hours

::
of

::::::::
AROME

::::::
Arctic

:::::::::
initialized

::
at

:::::
12:00

:::::
UTC

::
to

:::
the

:::::::
training165

:::
data

::::
has

::::
been

:::::
tested

::::
and

::::::
shown

::
to

::::
have

:::
an

::::::::::
insignificant

::::::
impact

::
to
::::::

model
:::::::::::
performance

::::
(see

:::
the

:::::::::::
Supplement).

:
Finally, the ice

charts do not represent the sea ice state at the timethey are published
::
any

:::::
given

::::
lead

::::
time, rather they are a mean representation

of previous observations accumulated over time ending at publication time. Hence we assume regardless of AROME Arctic

initialization time that there will be some irreducible timing difference between the sea ice state from the ice charts and the

initial atmospheric state from AROME Arctic, which also varies spatially.170

Instead of loading multiple high-resolution AROME Arctic fields as predictors, we have explored predictor reformulations

which
::::::
during

:::::::
training,

:::
we

:::::::::
preprocess

::::::::::
atmospheric

:::::::
variables

::::::
during

::::::
dataset

:::::::
creation

::
to

:
reduce the amount of memory needed to

load predictors
:::::
during

:::::::
training. We reduce the atmospheric forecast fields between start-date and 12:00 UTC at target date along

7



Table 2. Subset affiliation and number of samples for each year over the different target lead times.

year subset 1-day lead time 2-day lead time 3-day lead time

2022 test 196 147 142

2021 validation 198 147 142

2020 train 198 146 142

2019 train 192 143 144

the temporal dimension into a mean field. As well as reducing the memory footprint of each predictor, reducing the time steps

into a mean-value field also accumulates the temporal changes of each atmospheric variable into a single predictor. Supplying175

the predictors as single fields compared to time-series is also appropriate when considering that the U-Net architecture is not

designed to exploit structured sequences of data (Ronneberger et al., 2015). As a consequence,
::::::::::
Aggregating

::::::::
statistics

::
at

:::
an

::::::::
increasing

::::::::
temporal

:::::
range

::::::
causes

:::::::::::
atmospheric

::::::::
predictors

:::
to

::
be

:::::::::
dependent

:::
on

:::::
target

::::
lead

:::::
time.

::::::
Hence deep learning models

targeting different lead times are trained independently , and the atmospheric predictors cover an increasing temporal range as

a function of
::
for

::::
each

:::::
target

:
lead time.180

The main dataset we use covers the period between 2019 and 2022. We further split the data such that 2018 – 2019
:
–
:::::
2020 is

used for training, 2020
::::
2021

:
is used for validation and 2021

::::
2022

:
is the test dataset. Table 2 provides an overview of the number

of available samples for each year given each model target lead time. Moreover, the predictors are normalized according to the

min-max normalization equation. This normalization scheme ensures that the different predictors are in the same numerical

range [0,1] and that predictors can be drawn from non-normal distributions such as the ice charts. Finally, with this scheme we185

can combine categorical predictors from the ice charts with continuous predictors from AROME Arctic.

Due to the routinely
::::::
routine

:
lack of ice charts during weekends, there is a limited number of dates that can be used for

training and verification, and the sample size depends on lead time as shown in Table 2. Comparing the similarly sized 2 and

3-day lead time datasets against the number of samples at 1-day lead time reveals an approximate 25% reduction in the number

of available dates
:::
that

::
is

:
consistent for all considered years. This has implications when the ice charts are used to evaluate deep190

learning forecast performance because verification scores for models targeting different lead times get computed from different

sets of dates.

3.2
:::::::::

Cumulative
::::::::
contours

:::::::::
Norwegian

:::
ice

:::::
charts

::::::::
represent

:::
SIC

::
in
::::::::
unevenly

:::::
sized

:::::::::::
concentration

:::::::::
categories,

:::::
hence

:::
we

::::
treat

:::
the

:::::::::
prediction

::
of

::
an

:::
ice

:::::
chart

::
as

:
a
:::::::::::
classification

::::
task.

:::
For

:::::::::
automated

:::
ice

:::::::
charting,

::::::::::::::::::::::::
Kucik and Stokholm (2023)

:::
have

::::::::
reported

:::
that

:::
the

::::::::::
Categorical

::::::::::::
Cross-Entropy195

:::
loss

:::::::
function

::::::::
achieves

:::
the

::::::
highest

::::
rate

::
of

::::
true

:::::::
positive

::::::::::
predictions.

::::::::
However,

:::
ice

:::::
charts

:::
are

:::::::
heavily

::::::::::
imbalanced

:::::
fields

::::::
mostly

::::::::
populated

::::
with

:::::::
ice-free

:::::
open

:::::
water

::::
(0%)

::::
and

::::
very

:::::
close

::::
drift

:::
ice

::::::::
(≥ 90%),

:::
and

::::::
neural

::::::::
networks

::::::
trained

:::::
with

::::::::::
Categorical

8



::::::::::::
Cross-Entropy

::::
tend

::
to

::::::::
prioritize

::::::::
predicting

:::
the

::::
most

:::::::::
frequently

::::::::
occurring

::::::
classes

:::::
while

:::::::
making

:::::
fewer

::::
true

::::::
positive

::::::::::
predictions

::
for

:::::::::::
intermediate

:::
SIC

:::::::::
categories

:::::::::::::::::::::::
(Kucik and Stokholm, 2023)

:
.

Motivated by the skewed SIC category distribution between the categories which constitutes the marginal ice zone (MIZ)200

(10 – 30%, 40 – 60%, 70 – 80%) and the “very close drift ice” (90 – 100%) category (as visible in Fig. 1)
::::
MIZ, we reformulate

the target SIC such that each category is defined cumulatively and predicted independently
:::::
using

::
the

:::
six

::::
SIC

:::::::::
thresholds

::
0,

:::
10,

:::
40,

::
70,

:::::
90%

:::
and

:::
fast

:::
ice

::
(as

::::::
shown

::
in

:::
Fig.

:::
1). Cumulative contours are a novel reformulation of the SIC prediction task . Since

each sea ice category represents a range of SIC, each cumulative contour contains
:::::
which

::::
aims

::
to

:::::::
preserve

:::
the

:::
ice

::::
chart

::::::::
category

::::::::::
distribution.

:::
Our

::::::::
proposed

:::::
target

::::::::::::
reformulation

:::::::
redefines

::
a

:::::::::
categorical

:::
ice

::::
chart

::::
into

:::::::
separate

:::::
binary

:::::
fields

::::
each

:::::::::
containing

:
SIC205

equal to or greater than a given SIC contour (lowest boundary of the WMO SIC category). Hence each cumulative contour

represents a more balanced prediction task, than each individual category
::::::::
threshold.

::::
With

::::::::::
cumulative

::::::::
contours,

:::
we

:::::::
provide

:::
our

::::
deep

:::::::
learning

::::::
model

:::::
binary

::::::
targets

:::::
which

:::::::
resolve

::::
each

:::
SIC

::::::::
category

::::
with

:
a
::::::
greater

::::::
spatial

:::::::
balance

::::
than

:::
the

:::::::::
multi-class

:::
ice

::::
chart.

The cumulative contours are defined as follows. Let C ∈ R3 be a set representing (N > 2) contour elements with spatial210

indexes i, j and elements cni,j . Moreover, let S ∈ R2 represent a sea-ice chart, with xi,j being the sea-ice concentration values

between 0 and 1. Then, let kn ∈ [0,1] be thresholds

0≤ k1 < k2 < · · ·< kn ≤ 1.

Hence, each cumulative contouris defined as
:::
We

:::::
define

::
N

:::::::::
thresholds

:::::::::
kn ∈ [0,1]

:::::
which

:::
are

::::::
ordered

:::::
from

:::::
lowest

::
to
:::::::
highest

::::
with

::
N

:::::
being

:::
the

:::::::
number

::
of

::::::::
contours

:::
we

::::
want

::
to

:::::::::
threshold.

:::::
Each

::::::::
threshold

::
kn:::::::::

represents
::
a
:::
SIC

:::::
value

::::
and

::
is

::::
used

::
to
:::::::

classify
:::
an215

::
ice

:::::
chart

::
S

::::
into

:
a
::::::
binary

::::
field

::::
Cn,

:::::
which

:::
we

::::::
denote

:
a
::::::::::

cumulative
:::::::
contour.

:::::
Each

::::::
element

:::
in

:::
Cn

::
is

::::::
defined

::::
with

:::
the

:::::::::
following

:::::::
equation,

::::::
where

::
i,j

::::::
denotes

::::::
spatial

:::::::
indexes

cni,j =

1 if si,j ≥ kn

0 if si,j < kn

(1)

The target reformulation into cumulative contours reduce
::::::
reduces

:
the classification task into multiple independent bi-

nary predictions. Each cumulative contour has a spatial extent comparable to the sea ice extent, hence the
:::::::
includes

::::
SIC220

:::::
above

:
a
:::

set
:::::::::

threshold,
::::::::
ensuring

::::
that categories in the MIZ are not underrepresented in the dataset.

::::::::::::
underestimated

:::
due

:::
to

::::::::::::::::
underrepresentation

::
in

:::
the

:::::
target

:::::::
dataset.

:::
We

:::::::
assume

::::
each

:::::::::
cumulative

:::::::
contour

::
to

:::
be

:::::::
ordered

::::
such

:::
that

:::::::::::
Cn+1 ⊂ Cn,

::::::::
however

::
the

:::::
deep

:::::::
learning

:::::
model

:::::::
predicts

::::
each

:::::::::
cumulative

:::::::
contour

::::::::::::
independently

:::
and

:::
can

:::::::
deviate

::::
from

:::
this

::::::::::
assumption.

::::
We

:::::
ensure

::::
that

::
the

::::::::
predicted

::::::::::
cumulative

:::::::
contours

::
at

::::
each

::::
grid

:::
cell

:::::::
achieve

:::
the

::::::
desired

::::::::
ordering

::
by

::::::
setting

:::
all

:::::::::
cumulative

:::::::
contours

::::::::::
proceeding

:
a
:::
not

::::::::
predicted

::::::
contour

:::
to

:
0
:::::::::
regardless

::
of

:::
the

:::::::::
probability

:::::::
assigned

:::
by

:::
the

::::
deep

:::::::
learning

::::::
model.

:
225

Finally, the forecast SIC field
::::::::
forecasted

::::
SIC

::::
field

::
Ŝ is defined as the

::::::::::
element-wise

:
sum over all

::::::::
remaining

::::::::
predicted

:
cumu-

lative contours:

Forecasted sicŜi,j
:
=

∑
for all n

cĉi,j
:

n. (2)
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:::::
where

::::
each

:::::::
element

:::::::::::::
Ŝi,j ∈ [0, . . . ,N ]

::
is
::
a

:::::::::
categorical

::::::::::::
representation

::
of

::
ice

:::::
chart

:::
SIC

::
in
:::::::::
increasing

:::::
order.

:::
For

::::
this

:::::
work,

:::
we

::::
have

::::::
defined

:::
six

:::::::::
thresholds

:
k
:::::::::

following
:::
the

:::
six

::::::
WMO

:::
ice

:::::::::::
concentration

::::::::
intervals

::::
used

::
in

:::
the

:::
ice

::::::
charts.

:::::
Thus

:::::::
Ŝi,j = 0

::
is

:::::::
ice-free230

::::
open

:::::
water

:::
and

:::::::
Ŝi,j = 6

::
is
::::
fast

::
ice

:
.

3.3 Model implementation

The U-Net architecture was initially developed for computer vision tasks, specifically semantic image segmentation, and ex-

pands the fully convolutional architecture introduced in Long et al. (2015) by constructing a symmetric encoder-decoder

structure and adding skip-connections between the contracting and expansive paths (Ronneberger et al., 2015). Our U-Net235

implementation follows the original encoder-decoder structure, however the output layer has been modified in order to reflect

the reformulated target SIC cumulative contours. The encoder is initiated with 64 feature maps, and we
:
at
:::::
each

::::
stage

:::
we

::::::
double

::
the

:::::::
number

::
of

::::::
feature

:::::
maps.

:::
We

:
established through testing that the model performed optimally with a depth

::::::::
bottleneck

:
of 256

feature mapsin the bottleneck. This results
:
,
:::::::
resulting

:
in a three stage encoder, where the

:
.
:::
The

:
spatial resolution is lowered

by a factor of four at both steps due to the average pooling at the end of each stage
:::
each

:::::
stage

::::
due

::
to

:::::::
average

:::::::
pooling

::::
with240

:
a
:::::
4× 4

::::
filter. Note that the average pooling layer used here deviates from the max-pooling layer used in the original U-Net

architecture, as we found through tests that average pooling tended to increase model performance similar to the findings

from Palerme et al. (2023)
:::::::::::::::::
Palerme et al. (2024). We further note that in the original U-Net architecture the spatial resolution

of the feature maps are only lowered by a factor of 2 between each stage, however the current
::
our

:
implementation reaches the

bottleneck
::::::::
resolution faster which further reduces the size of the models.245

As a consequence of reformulating the target variables as cumulative contours
::::::
variable

::::
into

::
six

:::::::::
cumulative

::::::::
contours

::::::::
following

::
the

:::
ice

:::::
chart

:::
SIC

::::::
classes, the model contains as many output layers as there are cumulative contours, such that each

::
six

::::::
output

:::::
layers

:::::
which

:::
are

:::
all

::::::
located

::
at

:::
the

:::
end

::
of

:::
the

:::::
same

:::::::
decoder.

:::::
Each cumulative contour is predicted independently from a shared

signal,
::::
and

:
a
:::::::::

forecasted
:::

ice
:::::

chart
::
is
::::::::::
constructed

:::::
from

:::
Eq.

::
2. The pixelwise binary cross-entropy loss function is computed

individually for all layers
:::::
output

:::::
layer

:::::::
contours, and the resulting loss of the model is the sum over the individually computed250

losses. We initiate the model weights using HE-initialization (He et al., 2015) since the ReLU activation function (Nair and

Hinton, 2010) is used for all layers.

All models have been trained on a NVIDIA A100
:::::
80GB GPU using mixed precision training, which restricted the maximum

batch size to four samples to fit in the GPU RAM. Consequently, we replace all batch-normalization layers in the encoder and

decoder with group-normalization layers to mitigate the negative effects of using batch-normalization with small batch sizes255

(Wu and He, 2018). During training, we use the ADAM optimizer (Kingma and Ba, 2014) with an initial learning rate of 0.001

with a piecewise weight decay reducing the learning rate
:::::
which

:::
we

::::::
reduce

:
by a factor of 2 every 10 epochs. After training

is completed (25 epochs), the model which achieves the lowest loss on the entire validation set is selected.
::
We

:::::
chose

::
to
:::::

train

::
for

:::
25

::::::
epochs

::
as
::::

the
::::::::
validation

::::
loss

:::::
rarely

::::::::
improved

:::::::
beyond

::::
that

:::::
point.

:
The flow of data in relation to the developed model

is summarized in Figure
:::
Fig. 3. For further details regarding the implementation, we refer to the GitHub repository (see code260

availability section).
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Recent Ice Chart
OSI SAF SIC trend from

5 previous days
AROME Arctic

t2m and wind forecasts Land–Sea Mask

Sample

U–NET

Predictor variables

Predicted Ice ChartTarget Ice Chart

Target variable

Figure 3. Overview of the input and output to the deep learning forecasting system. The predictors are constructed from individually

preprocessed sources, and provided to the network together with an associated target ice chart.

3.4 Verification metrics

We chose to focus on sea ice edge based skill metrics when validating the performance of the deep learning forecasts as

such metrics are appropriate when the SIC is discretized as categorical contours. These metrics are also relevant for end

users (Melsom et al., 2019; Fritzner et al., 2020; Wagner et al., 2020). Specifically, we derive the length of the sea ice edge265

following the method introduced in Melsom et al. (2019), and assess forecast skill using the Integrated Ice Edge Error (IIEE)

(Goessling et al., 2016) normalized with the ice edge (or threshold SIC contour) length derived from the target SIC field

11



(nIIEE). The nIIEE is chosen since it is not particularly affected by isolated ice patches (Palerme et al., 2019). Moreover, the

nIIEE when normalized according to a SIC contour length, is independent to the sea ice seasonality (Goessling et al., 2016;

Palerme et al., 2019; Zampieri et al., 2019), which allows for a comparison of forecast-skill across seasons. Finally, the nIIEE270

can be interpreted as the SIC contour displacement error between two products, which is easy to interpret and relevant to

end-users (Melsom et al., 2019). To the knowledge of the authors, the nIIEE has only been assessed using coarse resolution

sea-ice concentration fields. However, we compared the nIIEE computed from ice charts at 1 km spatial resolution and 10 km

resolution between 2019 and 2022 and found the Pearson correlation to be 0.98, which ensures the validity of applying the

nIIEE also for high-resolution SIC. For further details, see the appendix.275

3.5 Baseline-forecasts

We compare the deep learning forecasts against two
::::
three baseline-forecasts, persistence of the observationsand a ,

:
linear trend

of sea-ice concentration from OSI SAF SSMIS
:::
and

:
a
::::::
purely

:::::::::::
wind-derived

:::
sea

:::
ice

::::::
motion

:::::::::
estimation

:::::
based

:::
on

::::::::
free-drift. The

baseline-forecasts serve as a lower threshold which the deep learning system must outperform in terms of nIIEE in order to be

considered skillful. A persistence forecast involves keeping the initial state of the system constant in time. The baseline-forecast280

based on the linear trend is created by computing a pixelwise linear trend from the previous 5 days which is used to advance

the system forward in time. For clarity, the computed values are bounded to match the valid value range [0,100]. The use of a

linear SIC trend as a baseline forecast has previously been assessed in Grigoryev et al. (2022), where the authors reported that

the linear trend consistently achieved a higher Mean Absolute Error than persistence.

:::
The

::::::::::
wind-driven

::::::::
free-drift

::::::::::::::
baseline-forecast

::
is

:::::::::::
implemented

::::::::
following

:::
the

::::::::::
description

::
in

::::::::::::::::
Zhang et al. (2024).

::::::
Hence

:::
sea

:::
ice285

::::::
motion

:
is
:::::::::
estimated

::
to

::
be

:::
2%

::
of

:::
the

::::::
surface

:::::
wind

:::::
speed

::
20

:::::::
degrees

::
to

:::
the

::::
right

::::::::::
(clockwise)

::
of

:::
the

::::::
surface

:::::
wind

::::::::
direction.

:::::
Since

::
the

::::::::
free-drift

:::::::
forecast

:::::::::::
individually

::::::
advects

::::
sea

:::
ice

::::::
parcels

:::::
based

:::
on

:::::::
limited

::::
area

:::::::::::
wind-forcing,

:::
the

::::::::
free-drift

:::::::
forecast

::
is
::::

not

:::::::::
guaranteed

::
to

::
be

::::::::
spatially

::::::::
consistent

::
as

:::::
some

::::
grid

::::
cells

:::::
might

:::
not

:::
be

:::::::
covered

::
by

:::
sea

:::
ice

::::
after

:::::::::
advection

:::::
while

::::
they

:::
are

::::::
clearly

::
in

::
the

:::
sea

:::
ice

:::::
pack.

::::
Thus

:::
we

:::::::
perform

::::::
nearest

::::::::
neighbor

::::::::::
interpolation

:::::
after

::::::::
advecting

:::
the

::
ice

::
to
::::::
ensure

::::
that

::
the

::::::::
free-drift

::::::::
forecasts

::
are

::::::::
spatially

:::::::::
consistent.

::
In

:::::
order

::
to

::
be

:::::::::
consistent

::::
with

:::
the

::::
deep

:::::::
learning

:::::::
models,

::::
input

::::
SIC

::
is

:::::::
advected

:::::
with

::
the

:::::
same

::::::::
AROME290

:::::
Arctic

:::::
mean

::::::
surface

:::::
wind

::::
fields

::::
also

:::::::
supplied

:::
as

::::::::
predictors

::
to

:::
the

::::
deep

:::::::
learning

::::::
model.

:

3.6 Model intercomparison setup

The goal of the model intercomparison is to assess the predictive skill of the deep learning forecasts against the described

baseline-forecasts and physical forecasting system. In order to compare the different sea ice forecasts, all products were pro-

jected and interpolated onto the grid of the coarsest resolution product, which is neXtSIM (3 km) or AMSR2 (6.25 km)295

depending on which SIC product is used for evaluation. Both
:::
The

:
baseline-forecasts have a daily output frequency, which is

similar to the deep learning system, hence the comparison involves identifying the forecast with similar start- and target date.

However, both Barents-2.5 and neXtSIM forecasts have an hourly frequency. When comparing the deep learning forecasts

against both physical models, we use the physical forecasts initiated at 00:00 UTC the day following deep learning initializa-

tion. Furthermore, a daily mean is computed from the model timesteps which covers
::::::
physical

:::::::
models

:::
are

:::::::
averaged

::::::::
between300
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:::::
00:00

::::
UTC

:::
and

::::::
12:00

::::
UTC

:::
on the target date of the deep learning forecast

:::
due

::
to

:::
the

:::
ice

:::::
chart

:::::::::
production

::::::
process. This setup

is assumed to moderate the spatial variability induced by the lack of a temporal mean. The intercomparison setup is presented

lowermost in Fig. 2.

4 Results

4.1 Training performance and data considerations305

Training the deep learning system for 25 epochs takes approximately 3h30min on the A100 GPU, whereas performing a single

prediction takes 6 seconds on a workstation CPU (AMD EPYC 7282 16–Core) and 30 seconds on a laptop CPU (Intel (R)

Core (TM) i7–8565U 8–Core).
::::::::::::
Comparatively,

::
a
:::::
single

:::::::
member

::
of

:::::::
Barents

::::::::
completes

::
a
:::::::
24-hour

:::::::
forecast

::
in

:::::::
≈12min,

::::::::
resulting

::
in

:
a
::::
99%

:::::
speed

:::
up

:::::
when

::::::
running

:::
on

::::::::::
comparable

::::::::
hardware.

:
The optimal U–Net depth

:::::
width of 256 channels in the bottleneck

was determined by performing a gridsearch
:::
grid

::::::
search

::
on

:::
the

:::::::::
validation

::::::
dataset

:
across learning–rate

:::::::
(0.0001

:
-
:::::
0.01) and U-310

Net depth
::::::::
bottleneck

::::::
width

::::
(256

:
-
:::::
1024)

::::
(see

::::::
Figure

:::
S2

::
in

:::
the

:::::::::::
supplement).

:::
To

:::::::
achieve

::::::::
consistent

:::::::::::
architectures

::::::::
between

:::
the

::::::::
developed

:::::::
models,

:::
we

:::::::::
considered

::::
only

::::::::
variations

::
of

:::
the

:::::
2-day

:::::
target

::::
lead

::::
time

::::::
model

:::
for

:::
the

:::
grid

::::::
search

:::
and

::::::
reused

:::
the

::::::
results

::
for

:::::::
models

:::::::
targeting

:::
all

::::
lead

::::
times. The final model contains 2.4 million trainable parameters with 1.15 million of these being

located in the encoder and 1.25 million in the decoder. We compared model implementations without cumulative contours

(single output, multi–class segmentation
::::
with

:::::::::
categorical

:::::::::::
cross-entropy

::::
loss) against deep learning models reformulated with315

cumulative contours, and found that the prior did not predict the very open drift ice (10 – 30%) and open drift ice (40 –

60%) SIC categories for any samples in the test–dataset. This is probably due to the low number of pixels belonging to

these categories compared to the other classes
::
we

:::
got

::
a
:::::
better

::::::::::
preservation

::
of
:::::::::::

intermediate
:::::::
contours

:::::
with

:::
the

:::::
model

:::::::::
predicting

:::::::::
cumulative

::::::::
contours,

::::::::
especially

::
at

:::::
longer

::::
lead

:::::
times

::::
(see

::
the

:::::::::::
Supplement). Fig. 4 presents a forecast from a deep learning model

with cumulative contours targeting 2–day lead time, and shows that both very open drift ice and open drift ice
::::::::::
intermediate320

:::
SIC

:::::::::
categories have been resolved in the forecast. For the example presented in Fig. 4, the deep learning forecast achieved an

nIIEE of 7.5 km while persistence achieved an nIIEE of 13.4 km. We observe in Fig. 4 that the deep learning forecast is able to

reproduce the SIC increase in the Barents Sea, as well as the reduction of a polynya area north-east of Svalbard. An apparent

difference between the deep learning forecast and the ice charts is that the different contours include less structural details in

the deep learning forecasts, which results in a smoother appearance.325

Fig. 5 compares the ability of the deep learning system to resolve sea ice categories against ice charts and AMSR2 obser-

vations. In general, the deep learning system accurately resolves the concentration category distribution in accordance with

the ice charts regardless of lead time, with all categories being less than 1% different from the ice chart distribution when

considering the yearly average. When comparing against the AMSR2 observations, it is important to note the differences in the

occurrence frequency of the 100% SIC category. The ice charts consider fast-ice as a separate category representing land-fast330

ice, which is a distinction not made by the ASI retrieval algorithm. Although for consistency, 100% SIC from AMSR2 has been

considered as Fast ice for this study. However the normalized integrated ice edge error only consider the lower boundary of any

concentration category and as such this choice does not affect the results from the nIIEE skill score. This choice is reflected in
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Figure 4. Ice charts for the 23rd (a) and 25th (b) of March 2022, with a deep learning prediction for 25th of March 2022 initialized 23rd of

March 2022 in (c). The black line is the sea ice edge for the ice chart in (a) and the blue line is the sea ice edge for the ice chart in (b), both

plotted for a 10% concentration threshold. The < 10% SIC category is not shown.

Fig. 5 where the resolved fraction of Very close drift ice is 20% in AMSR2 compared to 31% in the ice charts. Comparatively,

the fraction of resolved Fast ice in AMSR2 is 8% whereas for the ice charts this category constitutes < 1% of the area.335

Another difference between AMSR2 observations and the ice charts presented in Fig. 5 is how Ice free
::::::
ice-free open wa-

ter and Open
::::
open water are resolved. On a yearly average, Ice free

::::::
ice-free open water constitutes about 62% of the AMSR2

pixels, and 55% for the ice charts. Furthermore, Open
::::
open water is more represented in the ice charts constituting about 5%

of the pixels, while for the AMSR2 observations this category covers only 1%. This is because the ice charts consider SAR

and optical satellite retrievals with higher sensitivity to low ice concentrations to resolve Open water, compared to passive340

microwave sensors which have a low sensitivity to SIC below 15%.

4.2 Forecast performance and model intercomparison

We initially compare the deep learning forecasts against the baseline and dynamical forecasts in 2022 across all target lead

times where we consider the yearly mean of the nIIEE for a
:::::::
different sea ice edge defined with the

:::::::
contours

::::::
defined

:::
by

:
(10%

SIC contour
:
,
:::
40,

:::
70

:::
and

:::::
90%)

:::::::::::
concentration

:::::::::
thresholds

:
in Fig 6. For all considered lead times

:::
and

:::::::::::
concentration

:::::::::
thresholds,345

the deep learning forecasts achieves the lowest nIIEE. Similar to persistence, nIIEE for the deep learning forecasts increases

proportionally with lead time, although at a lower rate. Additionally, neither neXtSIM
:
,
::::::::
free-drift nor the linear trend forecast

are able to outperform persistence, on average
::
for

::::
the

::::
10%

::::::::::::
concentration

::::::
contour

:
scoring a factor of 1.57,

:::::
1.12,

:
and 1.34

worse
:::::
higher

:
than persistence, respectively. Comparatively, the

:::::::::::
Furthermore,

:::
the

:::::
mean

:::::
nIIEE

:::::::
between

::::::::
forecasts

:::::
based

:::
on

:::
ice

:::::
charts

:::::
(Deep

::::::::
learning,

::::::::::
Persistence

:::
and

:::::::::
free-drift)

:::
and

:::::::::
NeXtSIM

:::
and

:::
the

::::::
linear

::::
trend

::::::
whom

:::
are

::::::
forced

:::
by

:
a
::::::::
different

:::
sea

:::
ice350
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Figure 5. Seasonal distribution of each SIC category for 2022 as respective fraction of the total mean SIC area for AMSR2, ice charts and

the deep learning system at 1 – 3 day lead time. The AMSR2 data have been projected onto the deep learning model domain.

:::::::::::
concentration

::::::
source

::
is

:::::::
notably

::::::
shifted

:::::
from

:::
the

::::
70%

::::::::::::
concentration

:::::::::
thresholds

::::
and

::::::
above.

::::::::
However

:::
we

::::
also

::::::
trained

:::::
deep

:::::::
learning

::::::
models

:::
on

:::::
input

:::::::
AMSR2

:::::::
passive

:::::::::
microwave

:::::::::::
observations

::::
with

:::
ice

::::::
charts

::
as

::::::
target,

:::
and

:::::
deep

:::::::
learning

::::::::::
predictions

::::::
retained

::::::::
sufficient

::::
skill

::::::::::
comparable

:::
to

:::
ice

::::
chart

::::::::::
persistence

:::
yet

::::::::
achieving

:::::::::
somewhat

:::::
higher

::::::
nIIEE

::::
than

::::
deep

:::::::
learning

:::::::
models

::::::
trained

::
on

:::::
input

::
ice

::::::
charts

:::
(see

:::
the

::::::::::::
Supplement).

:::
The

:
deep learning forecasts improve upon persistence by reducing the nIIEE

::::::::
nIIEE10%:

by a factor of 0.82. In terms of355

error-growth as a function of lead-time, the linear trend forecast is the only forecast where the slope of the error increases

with increasing lead-time
::::::::
regardless

::
of

:::::::::::
concentration

::::::::
threshold. This indicates that the linear trend from past OSI SAF SSMIS

observations is unable to capture ice chart evolution especially for longer lead times. Moreover, the
:::::
though

:
neXtSIM forecasts

have the lowest
::
an

::::::::::::
comparatively

:::::
high

:::::
nIIEE

:::::::
initially,

::::
the error-growth with lead-time

:
is

:::
the

::::::
lowest

:::
for

:::
all

::::::::::::
concentrations,

indicating that neXtSIM may provide more useful forecasts at longer lead-times
::::::::
especially

:::
for

:::::
lower

::::::::::::
concentrations.360

Fig. 7 shows how the deep learning system resolves the seasonal variation of the sea ice edge length for different lead times.

The predicted sea ice edge follows a similar seasonal pattern to the ice edge length from the target ice charts. Each monthly

mean predicted sea ice edge length has a negative bias compared to the ice charts, which increases for longer lead times. Given

that the deep learning forecasts resolve the different categories akin to the ice charts, we attribute the apparent negative bias of

the length to the lack of details along the forecast contour edges. Hence SIC contour smoothness is somewhat proportional to365

forecast lead time.
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Figure 6. Mean annual ice edge displacement error as function of lead time . The
::
for

:::::::
different sea ice edge has been

::::::::::
concentration

:::::::
contours

defined by the 10,
:::
40,

::
70

::::
and

::
90% concentration contour

:::
SIC. Only products with a complete coverage of 2022 have been considered.

::
Ice

::::
charts

:::
are

::::
used

::
as

:::::::
reference

::::::
product.

In order to assess the consistency of the deep learning forecasts trained on ice charts, we evaluate the performance by

replacing the ice charts with AMSR2 observations as reference dataset in Fig. 8. When utilizing AMSR2 observations as

reference, the number of samples used to evaluate the forecasts is consistently 247 across all lead times. We see in Fig. 8 that the

deep learning forecasts on average achieves the highest nIIEE when considering a 10% concentration contour, achieving a mean370

nIIEE of 16.5
::::::::
nIIEE10% ::

of
::::
16.7 km across the lead times. The displacement is consistent with the inherent nIIEE difference

between the AMSR2 observations and the ice charts (Fig. 5), which we found to be 13.3 km for the 10% concentration contour

when compared across the test dataset. Furthermore, AMSR2 persistence forecasts achieves the lowest nIIEE on average for the

same contour. When considering SIC contours defined by ≥ 40% SIC, the deep learning forecasts perform closer to AMSR2

persistence, albeit achieving a slightly higher nIIEE on average. neXtSIM on average outperforms the deep learning forecasts375

for the 10% concentration contour, however this is not the case for the 40%, 70 % or 90% concentration contours
:::::
where

:::
the

::::::::::
performance

::
is

::::
close

::
to
:::
the

::::::
initial

::::
error

:::
for

::
all

::::
lead

:::::
times

::::::
similar

:::
the

::::::::
behaviour

::
in

::::
Fig.

:
6. For the contours higher than 10% SIC,

Fig. 8 shows that both AMSR2 persistence,
::::::::
AMSR2

:::::::
free-drift

:
and the deep learning forecasts on average gradually improve

against both neXtSIM and the linear trend, with the deep learning forecast increasing its improvement against neXtSIM for
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Figure 7. Mean monthly sea ice edge length for 2022, with the sea ice edge defined by a 10% concentration threshold. The considered

products are the ice charts and deep learning system for 1 – 3 day lead times.

higher contours.
::::
The

::::::::
difference

:::::::
between

:::::::
AMSR2

::::::::
free-drift

:::
and

::::::::
AMSR2

:::::::::
persistence

:::
can

::::
also

::
be

::::
seen

:::::::::
decreasing

:::
for

:::::::::
increasing380

:::::::::::
concentration

::::::::
contours,

:::
yet

:::::::
AMSR2

::::::::
free-drift

::::::::
achieves

:
a
::::::
higher

:::::
nIIEE

::::
than

:::
the

::::::::
AMSR2

:::::
linear

:::::
trend

::::::::::
considering

:::
the

::
10

::::
and

::::
40%

:::::::::::
concentration

::::::::
contours.

:
Overall, AMSR2 persistence mostly achieve

:::::::
achieves

:
the lowest nIIEE, although surpassed by

the deep learning forecasts when higher concentration contours >= 90% and >= 2-day lead time are considered. Moreover,

the deep learning forecasts achieve the lowest nIIEE scores when targeting
::::::::
predicting

:
the 40% concentration contour from

the AMSR2 observations, in good agreement with the average nIIEE difference between AMSR2 and the ice charts which we385

found to be 9.7 km for the same concentration contour.

The model intercomparison experiment which compares the deep learning system against baseline- and dynamical sea ice

forecasts
::
for

:::
all

:::::::
seasons

:
is presented in Fig. 9 using the ice charts as reference. For all considered lead-times and target

contours, the deep learning forecasts achieve the lowest seasonal mean nIIEE. The seasonal axis of Fig. 9 shows that both ice

chart persistence
:
,
::::::::
free-drift and the deep learning forecasts achieve higher nIIEE values during winter and spring, associating390
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Figure 8. Mean annual ice edge displacement error as a function of lead time. The ice edge displacement error for the different products has

been computed considering AMSR2 observations as reference.

the errors to the periods of freeze-up and sea ice maximum extent. When the nIIEE is computed from the 70 % or 90%

concentration contours, Fig. 9 shows that the forecasts not utilizing ice chart information (i.e. linear trend, neXtSIM and

Barents-2.5) attain considerably higher values, especially during summer. This pattern might indicate a discrepancy between

the ice charts, the dynamical forecasts and linear trend with regards to how higher SIC is resolved, further influenced by

seasonal conditions.395

4.3 Feature importance

To better understand the importance of the different predictors used, as well as the sensitivity of the deep learning system to the

predictors, we measured how the model responds to modified predictors. In order to measure the impact of each predictor, we

first conducted an experiment where the nIIEE was computed from deep learning models fitted to different predictor subsets.

The effect of including different predictors on deep learning forecast performance is shown in Fig. 10. In general, removing400

predictors tends to decrease the predictive skill of the deep learning system, except for 2 meter temperature for 2-day lead

time and the past trend for 3-day lead time. Removing the current ice chart has the highest impact on performance (mean

+7.14 km on average for all lead times), reducing the skill of the model below that of persistence. However the impact of
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Figure 9. Model intercomparison for varying seasons, lead times and concentration contours. The ice charts are considered as reference. The

values reported represent the integrated ice edge error normalized according to the length of the current SIC contour from the reference ice

chart in km. The OSI SAF linear trend is computed from the past five days. Barents-2.5 results are only shown for summer and fall.

removing ice charts is reduced for increasing lead times. Contrarily, the loss of skill associated with removing all AROME

Arctic predictors increases with lead time. Although no other combination of held-back predictors decreases the skill of the405

deep learning forecasts below persistence, removing all atmospheric forecasts has a consistent negative impact to forecast skill

(+1.31 km on average) more than any other removed set, except SIC
::::
from

:::
ice

::::::
charts. Comparing the impact of the different

predictors originating from AROME Arctic shows that removing both wind components simultaneously has a greater effect on

forecast skill (+0.86 km) on average than removing 2-meter temperature (+0.08 km). Models trained without the past sea ice

trend perform comparably to default deep learning models (+0.06 km).410

We also conducted a permutation feature importance analysis to quantify the importance of each predictor for a deep learning

model trained on all predictors. Permutation feature importance involves randomly shuffling the input sequence of a single

predictor, and analysing how much this alters the predictive skill of the model. To minimize the potential impact of a seasonal

cycle appearing in the reordered predictors, the experiment was run 10 times for each predictor. Permutation feature importance

is model specific, and does not provide insight into the predictive capabilities of the analysed predictors. Fig. 11 shows the415

predictor importance evolution over increasing lead times as the difference in ice edge displacement error from the reference
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Figure 10. Yearly mean nIIEE when a subset of the predictors is withheld during training. The black dashed line denotes yearly mean nIIEE

for deep learning forecasts from a model with all predictors, and the red dashed line denotes the skill of persistence. Arome refers to the

removal of all atmospheric predictors during training. Winds is similar but for the two wind components.

deep learning forecasts. Although the importance of each predictor varies with lead time, the order of importance is consistent

between all lead times with the recent ice chart being the most important predictor, near surface temperature ranking second

and finally the two wind components ranking about equal as the third most important predictors. Only permuted ice charts and

near surface temperature significantly decrease deep learning forecast score below the benchmark skill of persistence. Only ice420

charts and 2 meter temperature at 3-day lead time attained a noticeable standard deviation (≥ 0.1 km) from inputting predictors

from different dates. There is an inverse proportional relationship between the importance of the recent ice chart (decreasing)

and the importance of the atmospheric forecasts (increasing) when targeting longer lead times, indicating that the model is

more reliant on the future state of the predicted system (atmospheric forecasts) rather than the initial state (recent ice chart)

for longer lead times. Hence Fig. 11 suggests the existence of a limit to the predictive capability gained from providing only425

current sea ice conditions, similar to how persistence and linear trend forecasts inherently lose skill at longer lead times. The

skill difference from past sea ice information encoded in the OSI SAF linear trend is indistinguishable (+0.01 km) from the

performance of un-permuted deep learning forecasts, hence the deep learning forecasts are not dependent on the past state of

sea ice regardless of target lead time.
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Figure 11. Yearly mean nIIEE where the sequence of a predictor in the test dataset has been shuffled, repeated 10 times for all predictors.

Each line represents a permuted predictor sequence. Unaltered Persistence forecasts are included as benchmark references. The land-sea

mask predictor was excluded from the analysis, as it is static regardless of forecast start-date.

5 Discussion and conclusions430

This study presents the development of a deep learning forecasting system targeting high resolution (1km) and short lead times

(1 – 3 days) taking into account operational constraints related to the real time availability of data. In order to adequately resolve

the skewed distribution of SIC classes in the ice charts (especially in the MIZ which is crucial for skillful forecasts ensuring

maritime safety (Wagner et al., 2020)), we present a novel reformulation of the
::::
target

::::
data

::::
and decoder from the original U-Net

architecture of Ronneberger et al. (2015) which we name cumulative contours (Eq. 1). The cumulative contours demonstrate435

how combining architectural design from Multi-Task learning (Zhang et al., 2014) with task specific additive properties of SIC

intervals positively benefit to deep learning forecasting skill, especially for resolving the intermediate SIC intervals constituting

the MIZ. With this reformulation of the U-Net, the deep learning forecasts are able to consistently outperform both
:::
the baseline

forecasts as well as operational short-range dynamical sea ice forecasting systems (neXtSIM-F and Barents-2.5) in terms of

achieving the lowest ice edge displacement error when considering the ice charts as reference.440

Despite training deep learning models to predict SIC conditions from the ice charts only, the deep learning forecasts behave

similarly to baseline-forecasts when validated against independent AMSR2 SIC observations (Spreen et al., 2008) for concen-
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tration contours ≥ 40%. The increase in deep learning performance seen between the 10% and 40% concentration contours

may be indicative of a shift in SIC distribution for lower concentration values between the two products, as further indicated by

the decreased displacement difference
::::::::
increased

::::::::
similarity

::
in

:::::::::
occurrence

:::::::::
frequency between AMSR2 and the ice charts when445

considering the 40% compared to the 10% concentration contour
::::
open

:::
and

:::::
close

::::
drift

:::
ice

:::::::
reported

::
in

::::
Fig.

:
5. It is noted that the

ASI sea ice retrieval algorithm exerts larger uncertainties for lower concentrations (Spreen et al., 2008), whereas SIC < 10%

is visible in SAR and optical satellite images used by the ice analysts
::::::
drawing

:::
ice

:::::
charts. However ice charts are influenced by

human decision-making especially in the medium concentrations (40 – 70%) of the MIZ (Dinessen et al., 2020), which may be

sources for ice edge location discrepancy between the two products. The overall performance regardless of reference product450

suggests a degree of consistency for the developed forecasts between the two reference products. However the analysis also

suggests that inherent differences between sea ice products is reflected by deep learning forecasts,
:::
and

::
we

::::
can

:::
not

::::::
expect

:::
the

:::::::
forecasts

::
to

::::::::
improve

::::::
beyond

::::
that

:::::
initial

:::::::::
difference as the models are trained only to

:
to

::::
only

:
minimize the statistical error of

their target sea ice product.

The results from the forecast intercomparison analysis demonstrates that the deep learning forecasts meet the requirements455

for forecast accuracy, while considerably reducing the computing time. However, the results from the analysis could be influ-

enced by the uneven sample sizes used for verification at different lead times. Hence we recommend evaluating the forecasts

with longer time series when they become available. Due
:::
With

:::::::
respect to the development of the operational weather prediction

system AROME Arctic, the importance of atmospheric predictors could be reduced without
:
a
::::::::
continued

:::::::
forecast

:::::::::
evaluation

:::
can

:::
also

::::::::
facilitate

::::::::::::
understanding

:::::
model

::::::::
response

::
to

:::::::::::
continuously

:::::::
updated

::::::::::
atmospheric

:::::::::
predictors

:::
and

:::
the

::::::::
potential

::
of

:
fine-tuning460

of the deep learning models. With regards to operationalization, the input data supplied to the deep learning forecasting system

have been chosen with considerations of publishing time, with a special constraint for AROME Arctic being the 66 hour fore-

cast length. The current setup allows three day forecasts to be published every weekday, sent to maritime operators in advance

of their valid date and cover Saturdays and Sundays when
:::::::::
Norwegian ice charts are not produced.

The predictor importance analysis suggests that the deep learning models benefit from an increased and diversified dataset465

by increasing the precision of the predicted sea ice edge by 1.31 km when atmospheric forecasts from AROME Arctic (Müller

et al., 2017) are included as predictors. The inclusion of forecast predictors from weather forecasts has previously been shown to

increase predictive skill (Grigoryev et al., 2022; Palerme et al., 2023)
::::::::::::::::::::::::::::::::::::
(Grigoryev et al., 2022; Palerme et al., 2024), which fur-

ther motivates the inclusion of other forecasted physical forcings affecting the sea ice as predictors. We recommend further

work to investigate currently unexplored metocean forcings such as ice-wave interactions (Williams et al., 2013) by including470

fields such as forecasted wave height and wave direction. However, expanding the dataset towards past temporal regimes by

including a
::::::
coarse

::::::::
resolution

:
linear SIC trend derived from OSI SAF observations was shown to have a marginal effect on the

forecast skill, indicating that the deep learning models were unable to infer sea ice growth / decline from past observations

(Fig. 11), in line with the results of Palerme et al. (2023)
:::::::::::::::::
Palerme et al. (2024).

When all predictors were provided as inputs to the deep learning models, the skill of the forecasts was particularly sensitive475

to the initialization date of the inputted ice chart (Fig. 11). This suggests that a large part of the inferred physics and seasonality

originates from the ice charts, which can also explain why the atmospheric predictors are
::::
were

:
not essential to outperform
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persistence. Moreover when
::::::::::
Additionally

:::
the

::::::::::
comparison

:::::
made

::::::
against

::::::::
free-drift

:::
SIC

::::::::
forecasts

:::::::
suggests

:::
that

:::
the

:::::
deep

:::::::
learning

:::::
model

:::
has

:::::::
learned

:
a
::::::::::
relationship

:::::::
between

:::
the

:::::
input

::::::::
predictors

::::
and

:::::
target

::
ice

:::::
chart

:::::
which

::
is

::::::
beyond

::
a
:::
sea

:::
ice

::::::
motion

:::::::::
estimation

::::::
linearly

:::::::::::
proportional

::
to

:::
the

::::
near

::::::
surface

::::::
winds.

:::::::::
Although

:
it
::

is
::::::::
unknown

::::
how

::::
the

::::
deep

:::::::
learning

::::::
model

:::::::
respond

::
to

:::::::::
individual480

::::::::
predictors,

:::
the

::::::::::
comparison

:::::::
suggests

::::
that

:::
the

::::::
models’

::::::
ability

::
to

::::
learn

:::::::::
non-linear

:::::::::::
relationships

:
in
:::
the

:::::
input

::::
data

::::
helps

::
in

:::::::::
predicting

::::
SIC.

::::::::
Moreover,

:::
the

::::::::::
comparison

:::::::
suggests

::::
that

::::::::
inferring

::::::::::::::
thermodynamical

:::::::::
properties

:::
that

:::::
allow

:::
the

::::::
model

::
to

::::
grow

::::
and

::::
melt

:::
sea

::
ice

::::
aids

:::::
when

::::::::
predicting

:::::
short

::::
term

::::
SIC

::::::
beyond

::::
that

::
of

:::::::::
advection.

:::::
When considering the initialization time of the AROME Arctic predictors, the lessened impact of the atmospheric predictors

could also be associated with AROME Arctic not covering the beginning of the forecast period, especially for shorter lead485

times. Nevertheless as the model sensitivity to the current ice chart tends to decrease for longer lead times, understanding

how the model utilizes the increasingly important forecast predictors should be considered, especially when targeting longer

lead times. Other works have investigated the use of explainable artificial intelligence methodologies for interpreting climate-

science deep neural networks models and results (e.g. Toms et al., 2020; Ebert-Uphoff and Hilburn, 2020; Bommer et al., 2023).

This should be given more attention as they present an opportunity to develop new tools for diagnosing machine learning sea490

ice forecasting systems.

Code and data availability. All code necessary to deploy the developed deep learning models, as well as pretrained weights, are available on

the following GitHub repository: https://github.com/AreFrode/Developing_ice_chart_deep_learning_predictions. AROME Arctic (https://

thredds.met.no/thredds/catalog/aromearcticarchive/catalog.html) and Barents-2.5 (https://thredds.met.no/thredds/catalog/barents25km_files/

catalog.html) forecasts, as well as OSI SAF SSMIS sea ice concentration observations (https://thredds.met.no/thredds/catalog/osisaf/met.495

no/ice/conc/catalog.html) can be downloaded from the MET Norway thredds Data Server (missing Barents-2.5 data can be provided upon

request). The ASI AMSR2 sea ice concentration observations are available on the University of Bremen Sea Ice Remote Sensing data

archive (https://data.seaice.uni-bremen.de/amsr2/asi_daygrid_swath/n6250/). Gridded Norwegian Ice Service ice charts and neXtSIM data

can be provided upon request.

Appendix A: Comparing nIIEE for high- and low resolution sea ice concentration500

In order to evaluate 1 km resolution sea ice forecasts using the ice edge displacement error as derived by Melsom et al. (2019),

we assess the validity of applying the metric for high resolution sea ice forecasts by comparing against a coarse resolution (10

km) reference case. We compute nIIEE from the ice charts at 2-day lead time persistence, with ice charts at 1 km resolution as

well as downsampled onto a 10 km grid covering the period 2019 – 2020. Mean monthly nIIEE for both forecasts are shown

in Fig. A1. The correlation coefficient between both nIIEE curves in Fig. A1 is 0.98. The strong correlation indicates that the505

nIIEE is preserved when used in a 1 km resolution environment.
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Figure A1. nIIEE computed across the entirety of the training dataset (2019 – 2022) for 2-day lead time ice chart persistence with the ice

charts as reference. The sea ice edge length used to divide the compute IIEE was derived from the same resolution as the respective forecast.
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