
Response to first referee comments

We thank the reviewer for their useful comments on our manuscript. Our answers to the
comments and modifications to the manuscript are provided below.

The manuscript addresses the critical need for accurate sea ice forecasting in the
Arctic, driven by the increasing maritime activity due to sea ice retreat. A deep
learning approach is developed that leverages operational atmospheric forecasts,
ice charts, and satellite data to enhance short-term sea ice concentration
forecasts within a 1 to 3 days timeframe, aiming for a detailed 1km resolution.
The model’s performance, validated against various thresholds of sea ice
concentration contours, outperforms both baseline forecasts and two state-of-
the-art dynamical sea ice forecasting systems across all considered lead times
and seasons.

Nonetheless, the paper could stand to delve deeper into the model’s limitations.
Addressing potential biases from the training data and the effects of missing
or inaccurate data could enrich the study. Suggestions for improvement are
listed as below.

1. Place Table 1 within the ’Data’ section for better context.

The table-positioning parameters have been updated to ensure that Table 1 is placed
within the ’Data’ section.

2. On page 6, line 140, provide clarification regarding the significance of the
’timeliness of 2.5 hours’ for the AROME Arctic model, a detail omitted in
Section 2.2.

We have modified the following sentence in Section 3.1:

In addition, AROME Arctic has a production time of about 2.5 hours, which ensures that
the forecast initiated at 18:00 UTC are available before midnight, allowing us to publish
deep learning forecasts on the same day as the input ice chart is published.

3. Using operational atmospheric forecasts, ice charts, and Sea Ice Concen-
tration (SIC) from passive microwave observations as predictors is innovative.
However, the paper should consolidate potential biases in these data sources
and their impact on model performance in the discussion, making the article
more logical and complete.
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In the manuscript, when describing AROME Arctic we make sure to address that the
system is operational and thus routinely receive updates which impacts distributional
properties of predicted variables without retroactive effects. We also further described our
choice of limiting training data to 2019 and onward as a direct response to avoid training
on channels with differently distributed data. We have modified the following sentence in
Section 2.2:

AROME Arctic has been in operation and continuous development since October 2015,
routinely receiving updates which introduces permanent bias changes for predicted variables.
Due to a major change to the representation of snow over sea-ice in 2018, a warm bias
in near-surface temperatures above sea-ice was significantly reduced in the model (Batrak
and Müller, 2019). Thus we start our training dataset at 2019 to avoid supplying our deep
learning model with samples containing different temperature biases, especially close to the
marginal ice zone (MIZ) where the greatest model response to predictors occurs.

Although Norwegian ice charts have little documentation regarding uncertainty estimation,
we considered the comparison against AMSR2 as an analysis of the sensitivity to the sea
ice product used for the target. Figure 5 shows that ice charts and AMSR2 have different
occurrence frequency for different thresholds, and we show in our manuscript that initial
differences between sea ice products are inherited by our deep learning system. We have
modified Section 5 with the following to highlight this result:

However the analysis also suggests that inherent differences between sea ice products is
reflected by deep learning forecasts, and we can not expect the forecasts to improve beyond
that initial difference as the models are trained to only minimize the statistical error of
their target sea ice product.

Yet, we disagree that addressing biases will strengthen our analysis. Since deep learning
models learn to minimize the output error based on its input, as long as the data is
consistently distributed over time, any biases would not impact performance since the
model learn those as well. If distributional properties significantly changes in the training
data, samples may contribute negatively or be neglected during training overall reducing
the skill of the trained network. However as long as the data has a close to constant
bias, all samples will contribute positively to the training as the relationship between
output and the bias is part of what the model is being taught. We have modified the
discussion (Section 5) to address the need to validate deep learning model performance
for longer periods of time, since we believe that understanding how updates to physical
models supplying predictors to a deep learning system impacts performance is crucial
when considering operationalizing machine learning models.

Hence we recommend evaluating the forecasts with longer time series when they become
available. With respect to the development of the operational weather prediction system
AROME Arctic, a continued forecast evaluation can also facilitate understanding model
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response to continuously updated atmospheric predictors and the potential of fine-tuning
deep learning models.

4. On page 9, line 205, explain the rationale behind the selection of a specific
number of epochs for model training.

We have added the following line to Section 3.3 in the manuscript:

We chose to train for 25 epochs as the validation loss rarely improved beyond that
point.

5. The impact of hyperparameter tuning on model performance should be
discussed. Were any automated hyperparameter optimization techniques like
grid search or Bayesian optimization used?

We have modified section 4.1 Training performance and data considerations with a
specification of what hyperparameters our grid search analysis was performed across.

The optimal U–Net width of 256 channels in the bottleneck was determined by performing
a grid search on the validation dataset across learning–rate (0.0001 - 0.01) and U-Net
depth (256 - 1024) (see Figure S2 in the supplement). To achieve consistent architectures
between the developed models, we considered only variations of the 2-day target lead time
model for the grid search and reused the results for models targeting all lead times.

We have also added the results from the grid search (Fig. R1) to the Supplement.

6. In section 4.2, the comparison with dynamical models should include a
discussion on the computational efficiency of the deep learning model. This is
particularly important for operational forecasting, where timely predictions
are crucial.

We agree with the reviewer, and have added the following to section 4.2 addressing
production time of Barents-2.5 in comparison with the deep learning forecasts:

Comparatively, a single member of Barents completes a 24-hour forecast in ≈1min, resulting
in a 90% speed up when running on comparable hardware.

7. It would be beneficial to conduct a more detailed analysis of the model’s
performance across various sea ice concentration ranges in Section 4.2.

We agree with this comment, and have modified Figure 6 to present the Mean annual
forecast error across different concentration thresholds (10, 40, 70 and 90%), similar to
Figure 8 and Figure 9. The description of Figure 6 in Section 4.2 of the manuscript has
also been updated to reflect this change:

We initially compare the deep learning forecasts against the baseline and dynamical forecasts
in 2022 across all target lead times where we consider the yearly mean of the nIIEE for
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Figure R1: Grid search across varying learning rates and bottleneck widths for a deep
learning model targeting 2-day lead time. The scores represent the minimum validational
loss achieved before terminating training at 25 epochs.

different sea ice edge contours defined by (10, 40, 70 and 90%) concentration thresholds
in Fig R2. For all considered lead times and concentration thresholds, the deep learning
forecasts achieves the lowest nIIEE. Similar to persistence, nIIEE for the deep learning
forecasts increases proportionally with lead time, although at a lower rate. Additionally,
neither neXtSIM, free-drift nor the linear trend forecast are able to outperform persistence,
on average for the 10% concentration contour scoring a factor of 1.57, 1.12, and 1.34
higher than persistence, respectively. Furthermore, the mean nIIEE between forecasts based
on ice charts (Deep learning, Persistence and free-drift) and NeXtSIM and the linear trend
whom are forced by a different sea ice concentration source is notably shifted from the 70%
concentration thresholds and above. The nIIEE does not increase much with lead time
especially for NeXtSIM when considering higher concentrations.
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Figure R2: Mean annual ice edge displacement error as function of lead time for different
sea ice concentration contours defined by 10, 40, 70 and 90% SIC. Only products with a
complete coverage of 2022 have been considered.

The deep learning forecasts improve upon persistence by reducing the nIIEE10% by a factor
of 0.82. In terms of error-growth as a function of lead-time, the linear trend forecast is the
only forecast where the slope of the error increases with increasing lead-time regardless of
concentration threshold. This indicates that the linear trend from past OSI SAF SSMIS
observations is unable to capture ice chart evolution especially for longer lead times.
Moreover, the neXtSIM forecasts have the lowest error-growth with lead-time for lower
concentrations, indicating that neXtSIM may provide more useful MIZ forecasts at longer
lead-times.

8. Certain figures, especially those illustrating the model’s performance com-
pared to baseline and dynamical models, could be enhanced for clarity and
aesthetics. For example, Figure 9 may require modifications to improve clar-
ity.

We agree that Figure 9 is difficult to interpret and requires modifications to enhance its
clarity. We have remade Figure 9 following the styles of Figure 6 and Figure 8, which
preserves the content of the figure.
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Figure R3: Model intercomparison for varying seasons, lead times and concentration
contours. The ice charts are considered as reference. The values reported represent the
integrated ice edge error normalized according to the length of the current SIC contour
from the reference ice chart in km. The OSI SAF linear trend is computed from the past
five days. Barents-2.5 results are only shown for summer and fall.

6



Response to second referee comments

We would like to thank the reviewer for their useful comments on our manuscript. In our
response we answer the comments made and highlight changes in our manuscript.

The authors propose a novel operational-like short-term sea-ice forecasting
system based on deep learning. Based on past sea-ice charts, satellite images,
and weather forecast data, neural networks are trained to predict sea-ice charts
for one to three days in advance. To train the neural networks and tackle the
issues of unbalances between the sea-ice concentration categories, the authors
introduce a new formulation for the categorical prediction. They show that
their proposed deep learning system can outperform baseline methods as well
as prediction systems based on geophysical sea-ice models.

Generally, the approach is sounding and the manuscript follows a logical order.
However, the readability of the manuscript can be improved, please see also
my minor comments. Additionally, I have a few general comments that should
be addressed, before I can recommend an acceptation of the manuscript::

1. The proposed method performs better than the second-best method, a
Eulerian persistence forecast. Additionally, the two different employed feature
importance metrics indicate that the initial sea-ice chart is the most important
predictor. From my experience, the shown difference between the deep learning
method and persistence could be explained by advection of the sea ice. So, one
could wonder how an advection-based (Lagrangian persistence) model would
perform in these settings. Based on the wind velocities given by the AROME
forecasts, the free-drift equations can be applied to obtain sea-ice velocities,
then useable to advect the sea-ice concentration. My feeling says that this
might work similarly well as the deep learning method.

Even if such a free-drift model would perform similarly to deep learning, this
wouldn’t mean a shortcoming of deep learning: it would suggest that deep
learning can learn such advective behavior without ever seeing any physical
relationship. Additionally, deep learning has the potential to exceed this
performance with further technological advancements, while the potential for
improvements in a free-drift model might be very incremental.

An implementation of this might be outside the scope of the article. Never-
theless, I would like to see a discussion of this point in the manuscript and a
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further reasoning why deep learning outperforms persistence.

We appreciate the suggestion and agree with this comment that it is of interest to compare
our deep learning approach to an advection-based forecast where the sea ice motion is
calculated as a response to the atmospheric forcing. As a result, we have included a third
baseline forecast based on wind-driven free-drift to our model intercomparison analysis.
The wind-driven sea ice motion estimations follow the approach described in Zhang et al.
(2024), and uses the same AROME Arctic wind fields as supplied to the neural network.
Consequently, Figure 6, Figure 8 and Figure 9 have been updated with the free-drift
baseline, where Figure 6 and Figure 9 includes free-drift of the ice charts whereas Figure 8
includes free-drift of AMSR2.

We have modified section 3.5 Baseline-forecasts to also include a description of the free-drift
baseline-forecast

We compare the deep learning forecasts against three baseline-forecasts, persistence of the
observations, linear trend of sea-ice concentration from OSI SAF SSMIS and a purely
wind-derived sea ice motion estimation based on free-drift. The baseline-forecasts serve as
a lower threshold which the deep learning system must outperform in terms of nIIEE in
order to be considered skillful. A persistence forecast involves keeping the initial state of
the system constant in time. The baseline-forecast based on the linear trend is created by
computing a pixelwise linear trend from the previous 5 days which is used to advance the
system forward in time. For clarity, the computed values are bounded to match the valid
value range [0, 100]. The use of a linear SIC trend as a baseline forecast has previously
been assessed in Grigoryev et al. (2022), where the authors reported that the linear trend
consistently achieved a higher Mean Absolute Error than persistence.

The wind-driven free-drift baseline-forecast is implemented following the description in
Zhang et al. (2024). Hence sea ice motion is estimated to be 2% of the surface wind speed
20% to the right (clockwise) of the surface wind direction. Since the free-drift forecast
individually advects sea ice parcels based on limited area wind-forcing, the free-drift forecast
is not guaranteed to be spatially consistent as some grid cells might not be covered by sea
ice after advection while they are clearly in the sea ice pack. Thus we perform nearest
neighbor interpolation after advecting the ice to ensure that the free-drift forecasts are
spatially consistent. In order to be consistent with the deep learning models, input SIC is
advected with the same AROME Arctic mean surface wind fields also supplied as predictors
to the deep learning model.

We have also detailed the performance of the free-drift baseline in section 4.2 Forecast
performance and model intercomparison

Additionally, neither neXtSIM, free-drift nor the linear trend forecast are able to outperform
persistence, on average for the 10% concentration contour scoring a factor of 1.57, 1.12,
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and 1.34 higher than persistence, respectively.

For the contours higher than 10% SIC, Fig.8 shows that AMSR2 persistence, AMSR2 free-
drift and the deep learning forecasts on average gradually improve against both neXtSIM
and the linear trend, with the deep learning forecast increasing its improvement against
neXtSIM for higher contours. The difference between AMSR2 free-drift and AMSR2
persistence can also be seen decreasing for increasing concentration contours, yet AMSR2
free-drift achieves a higher nIIEE than the AMSR2 linear trend considering the 10% and
40% concentration contours.

And finally in section 5 Discussion and conclusions

Additionally the comparison made against free-drift SIC forecasts suggests that the deep
learning model have learned a relationship between the input predictors and target ice chart
which is beyond a sea ice motion estimation linearly proportional to the near surface winds.
Although it is unknown how the deep learning model respond to individual predictors, the
comparison suggests that the models’ ability to learn non-linear relationships in the input
data aid in predicting SIC. Moreover, the comparison suggests that inferring thermody-
namical properties that allow the model to grow and melt sea ice aids when predicting short
term SIC beyond that of advection.

2. The comparison to numerical systems is nice and shows the potential of deep
learning compared to those systems based on geophysical equations. However,
the comparison seems not entirely fair:

deep learning starts from perfect initial conditions, while the forecasting
systems start from an analysis. In Fig. 6, it can be seen that the neXtSIM-F
has a very large initialization error and suffers very much from double penalty
effects. Hence, I would like to see an experiment, where the deep learning
system is initialized with the sea-ice concentration as seen in neXtSIM-F.
This way, both forecasts would have the same initialization error, leading
to a fairer comparison. In addition, the comparison to the “perfect” initial
conditions case could reveal interesting discussion points, e.g., on the stability
of the deep learning system or the impact of worse initial conditions in the
neXtSIM system, possibly signifying the importance of an improved analysis
product.

Thank you for this comment regarding comparison against neXtSIM-F. We have further
specified details about forcings used in neXtSIM-F, as requested in a following comment,
which we hope aid to provide a clearer context to the behaviour of neXtSIM-F. However,
we do not agree that initializing our deep learning model trained on ice charts with
neXtSIM-F sea ice leads to a fairer comparison as we can not expect the deep learning
model to make meaningful predictions under such a framework. We also consider a further
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analysis of neXtSIM-F performance to be beyond the scope of our paper.

We would also argue that our comparison is still fair in the sense that we compare
neXtSIM-F forecasts with deep learning predictions in a operational-like framework. Hence
neXtSIM-F performance is not in our control, and from an operational use perspective we
use the best neXtSIM-F data available.

We still found that the reviewer raised an interesting point nonetheless, and have further
investigated our deep learning model performance with a different sea ice concentration
initialization. We propose an alternative experiment which we consider satisfactory in
terms of analyzing the effect of initializing the deep learning system with “unoptimal”
initial conditions which are in close agreement with the initial conditions of neXtSIM-F.
Given that neXtSIM-F is forced by passive microwave observations, we have created a
alternative dataset where the input ice charts are replaced by AMSR2 passive microwave
observations, yet the ice chart target are kept intact. We have subsequently trained deep
learning models on this new dataset, and measured how it performs in terms of predicting
the ice charts. The result of this analysis can be seen in the following Figure, which we
have also included in the supplement

Fig. R1 will be included in the Supplement. We have also added the following to Section
4.2 in the manuscript:

However we also trained deep learning models on AMSR2 passive microwave observations
with ice charts as target, and deep learning predictions retained sufficient skill comparable
to ice chart persistence yet achieving somewhat higher nIIEE (see the Supplement).

3. The writing in the methods part is from time to time ambiguous and the
reader can easily lose the thread:

We appreciate the comment on manuscript readability, and we have addressed all sugges-
tions individually

Dataset pre-processing and selection:

Dataset pre-processing and selection: General description of predictors and
times needs several times reading and is still partially unclear.

We hope that the general readability of section 3.1 Dataset preprocessing and selection have
been improved following our manuscript modification based on the comments below.

l. 133ff: “Lead time ... should not exceed the publication time of the target
ice chart (15:00 UTC).” Contradiction to the use of AROME initialized at
18:00 UTC?

We would like to address our choice of using AROME Arctic initialized at 18:00 UTC, six
hours later than ice chart valid time which we in the revised manuscript have specified
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Figure R1: Same as Figure 6 in the manuscript, but using deep learning models trained
with AMSR2 passive microwave observations as input (ice chart cumulative contours are
still used as target). Mean annual ice edge displacement error as function of lead time for
different sea ice concentration contours defined by 10, 40, 70 and 90% SIC. Only products
with a complete coverage of 2022 has been considered. Ice charts are used as reference
product.

to consider as 12:00 UTC. We performed an additional experiment, where we appended
six hours of AROME Arctic forecasts starting at 12:00 (ice chart valid time) to AROME
Arctic runs starting at 18:00 UTC (these are separate model runs, the data is simply
appended). Further processing and training is then performed similarly to the manuscript.
With the appended AROME Arctic data, we have covered the missing atmospheric
development occurring between the ice charts are valid and AROME Arctic at 18:00 UTC
is initialized. The result of this analysis can be seen in Fig. R2 which we have included in
the supplement.

We have also added the following line to Section 3.1:

Moreover, the impact of appending six hours of AROME Arctic initialized at 12:00 UTC
to the training data have been tested and shown to have an insignificant impact to model
performance (see the Supplement).
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We have also rewritten the following for clarity in Section 3.1:

We want AROME Arctic forecasts to provide the future state of the atmosphere to the deep
learning system, which we set to lead times beyond deep learning initialization time. Hence
it follows that the atmospheric forecast should cover the time between input and target ice
chart valid time.

l. 143ff: Why is the temporal development of the atmosphere between 15:00
to 18:00 UTC missed if AROME is initialized for 18:00 UTC?

See the above comment regarding appending six hours of AROME Arctic (12:00 UTC) data.
We have also rewritten this sentence in Section 3.1 to improve clarity and intentions

When selecting atmospheric forecasts initiated at 18:00 UTC, six hours of future atmospheric
development occurring after ice chart valid time (12:00 UTC) is not included in the
atmospheric predictors.

Fig. 2: Why not imitating how the sea-ice chart is produced by averaging
00:00 UTC to 15:00 UTC with the numerical systems?

We agree with this comment, and have redone our model intercomparison analysis with
physical systems averaged between 00:00 UTC and 12:00 UTC.

We have modified Section 3.5 Model intercomparison setup to:

When comparing the deep learning forecasts against both physical models, we use the physical
forecasts initiated at 00:00 UTC the day following deep learning initialization. Furthermore,
physical models are averaged between 00:00 UTC and 12:00 UTC on the target date of the
deep learning forecast. This setup is assumed to moderate spatial variability induced by the
lack of a temporal mean.

l. 150f: I get the argument that it needs less memory during the prediction,
but to estimate mean fields, the data has nevertheless to be loaded.

Rewritten the following in Section 3.1 for clarity:

Instead of loading multiple high-resolution AROME Arctic fields during training, we
preprocess atmospheric variables during dataset creation to reduce the amount of memory
needed to load predictors during training.

l. 154f: It doesn’t matter if the NN takes temporal structures or not into
account. You could provide different timesteps as independent channels to
the NN and the NN could extract the needed quantities itself. A stronger
argument would be that you do feature engineering by using already aggregated
statistics.

We have modified the sentence in Section 3.1 as follows:
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As well as reducing the memory footprint of each predictor, reducing the time steps into a
mean-value field also accumulates the temporal changes of each atmospheric variable into a
single predictor. Aggregating statistics at an increasing temporal range causes atmospheric
predictors to be dependent on target lead time. Hence deep learning models are trained
independently for each target lead time.

Land-covered grid points (Page 6, l. 125): Unclear if used within the loss
function? Do you use zero padding for U-Net? If yes, why not for the land
grid points?

We have removed the use of “input” before data to better specify that the section describes
data preprocessing, and not input data to the neural network. We also specify that nearest
neighbor land-masking is performed for both input and target ice charts. See the modified
paragraph in Section 3.1 below:

We perform preliminary computations in order to ensure that the data from different sources
are on a common grid. The data preprocessing is performed in two stages. Firstly data
not matching the AROME Arctic projection are reprojected. Secondly, for data available
at a coarser resolution, nearest neighbor interpolation is performed in order to resample
the data onto a 1 km grid. The U-Net architecture requires all predictors to have valid
values in all grid cells, however both the input and target ice charts and SIC trend do not
consistently represent SIC for land covered grid cells due to their intended unavailability.
In order to avoid sharp gradients between sea-ice covered seas and land covered areas in
the ice charts and SIC trend, we apply a nearest neighbor interpolation of the local sea-ice
conditions to fill in the missing sea-ice concentration over land grid points following Wang
et al. (2017).

It seems like the treatment of the sea-ice concentration by the use of cumulative
contours is novel. It deserves its own subsection, which would improve the
readability. Nevertheless, remains a bit ambiguous:

We agree with the comment made by the reviewer, and have added a new subsection
which specifically details the implementation on cumulative contours. The parts in the
manuscript detailing cumulative contours have been rewritten into a new subsection
(Section 3.2 Cumulative contours):

Motivated by the skewed SIC distribution between the categories which constitutes the MIZ,
we reformulate the target SIC such that each category is defined cumulatively and predicted
independently using the six SIC thresholds 0, 10, 40, 70, 90% and fast ice (as shown in
Fig.1). Cumulative contours are a novel reformulation of the SIC prediction task which
aims to preserve the ice chart category distribution. Our proposed target reformulation
redefines a categorical ice chart into separate binary fields each containing SIC equal to
or greater than a given SIC threshold. With cumulative contours, we provide our deep
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learning model binary targets which resolve each SIC category with a greater spatial balance
than the multi-class ice chart.

The cumulative contours are defined as follows. We define N thresholds kn ∈ [0, 1] which
are ordered from lowest to highest with N being the number of contours we want to predict.
Each threshold kn represents a SIC value and is used to classify an ice chart S into a
binary field Cn, which we denote a cumulative contour. Each element in Cn is defined
with the following equation, where i,j denotes spatial indexes

cni,j =

{
1 if si,j ≥ kn

0 if si,j < kn
(1)

The target reformulation into cumulative contours reduces the classification task into mul-
tiple independent binary predictions. Each cumulative contour includes SIC above a set
threshold, ensuring that categories in the MIZ are not underestimated due to underrepre-
sentation in the target dataset. We assume each cumulative contour to be ordered such
that Cn+1 ⊂ Cn, however the deep learning model predicts each cumulative contour inde-
pendently and can deviate from this assumption. We ensure that the predicted cumulative
contours at each grid cell achieve the desired ordering by setting all cumulative contours
proceeding a not predicted contour to 0 regardless of the probability assigned by the deep
learning model.

Finally, the forecasted SIC field Ŝ is defined as the element wise sum over all remaining
predicted cumulative contours:

Ŝi,j =
∑

for all n

ĉni,j. (2)

where each element Ŝi,j ∈ [0, . . . , N ] is a categorical representation of ice chart SIC in
increasing order. For this work, we have defined six thresholds k following the six WMO
ice concentration intervals used in the ice charts. Thus Ŝi,j = 0 is “ice free open water”

and Ŝi,j = 6 is ”fast ice“.

How do you estimate the forecasted sea-ice concentration? L. 185 presents
the forecasted SIC as sum over all contours. If the contours are between 0
and 1, the sum can be over 1. Do you mean instead the mean? If yes, how
do you ensure that the neural network is continuous, meaning what do you
do if threshold 50% is predicted and 30% is predicted but 40% has a very low
probability? Can happen because of independent predictions.

The point raised by the reviewer about continuity of the output is good, and we have
taken care to describe it in the manuscript in the cumulative contours subsection. See the
answer to the comment posted above.
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Important citation about different loss functions for the sea-ice concentration
is missing (Kucik and Stokholm, 2022). How does the present study fit into
their results?

We appreciate the suggestion to expand our analysis in light of the achievements in Kucik
and Stokholm (2023). We have added the following sentences to Section 3.2:

Norwegian ice charts represent SIC in unevenly sized concentration categories, hence we
treat the prediction of an ice chart as a classification task. For automated ice charting,
Kucik and Stokholm (2023) have reported that the Categorical Cross-Entropy loss function
achieves the highest rate of true positive predictions. However, ice charts are heavily
imbalanced fields mostly populated with ice free open water (0%) and very close drift ice
(≥ 90%), and neural networks trained with Categorical Cross-Entropy tend to prioritize
predicting the most frequently occurring classes while making fewer true positive predictions
for intermediate SIC categories (Kucik and Stokholm, 2023).

Model implementation:

Although many details are given, some details remain unknown, e.g., how have
you tested different architectures? Have you used the validation dataset for
that? For which lead time? If multiple, what happens if you had different
results for different lead times?

We have added the following to section 4.1 Training performance and data considerations
to specify how we achieved the current architecture.

The optimal U–Net width of 256 channels in the bottleneck was determined by performing
a grid search on the validation dataset across learning–rate (0.0001 - 0.01) and U-Net
bottleneck width (256 - 1024) (see Figure S2 in the supplement). To achieve consistent
architectures between the developed models, we considered only variations of the 2-day
target lead time model for the grid search and reused the results for models targeting all
lead times.

We have not tested different architectures at different lead times, since we wanted to have
comparable and consistent models across multiple lead times which we believe is achieved
by sharing hyperparameters between all models regardless of lead time. We assume
that performing grid search on the 2-day lead time model provides the most balanced
hyperparameters in terms of predicting also 1-day and 3-day lead time. Another way we
could have approached hyperparameter selection was to perform grid search on the model
with the longest lead-time, with an assumption that the hyperparameters optimizing the
model performing the “most difficult” prediction task also are suitable for short lead time
models.

l. 191f: How do you go from 64 to 256: by 64→128→256?
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We have taken care to specify that we double the amount of feature maps at each stage.
The manuscript has been modified as follows:

The encoder is initiated with 64 feature maps, and at each stage we double the number of
feature maps.

l. 192: The network has at its bottleneck a width of 256 feature maps. The
depth of the U-Net is 2, because of three stages. The depth of the whole
network is the number of layers.

We thank the reviewer for the clarifications, and have edited the manuscript to ensure
that the correct terminology is used.

l. 198: The explanation of the shared network can be improved. Have
I understood it correctly that the network extracts common features and
then the last (output) layer combines the features to the prediction of the
contours?

Added a clarification, based on modified cumulative contours subsection

Each cumulative contour is predicted independently from a shared signal, and a forecasted
ice chart is constructed from Eq.2.

l. 200: Should be corrected to “The loss function is computed individually for
all contours”. For “all layers” can be misleading as it could also mean that
the loss function is estimated for each layer within the NN.

We agree, and have modified the sentence for clarity

The pixelwise binary cross-entropy loss function is computed individually for all output
layer contours, and the resulting loss of the model is the sum over the individually computed
losses.

l. 203: How much memory has the A100 GPU? There are two version with
40GB or with 80GB.

We have specified that the A100 GPU version used has 80GB.

l. 206: Learning rate and weight decay are two separate things. The learning
rate determines how much of the gradient is added to the weights, and weight
decay specifies the amount of normalization each weight experiences. Conse-
quently, the learning rate cannot be weight decayed but just decayed.

We appreciate the clarification, and have removed the mention of “decay” as it was
improperly used in our manuscript. We have modified the manuscript to state that we
divide the learning rate by 2 every 10 epoch.
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During training, we use the ADAM optimizer (Kingma and Ba, 2014) with an initial
learning rate of 0.001 which we reduce by a factor of 2 every 10 epochs.

Since you mention weight decay, was any regularization used for the training
of the neural network? If yes, please specify.

No regularization techniques were explored in this work.

The section could profit from splitting into several paragraphs, e.g., splitting
at line 198 and 202.

We agree with this comment, and have split the subsection at the specified lines.

Figure 3: I guess that the target ice chart is only used during training to
estimate the loss function and not as input for the U-Net. The figure can be
misleading such that the predictors and the target ice chart appear as input
into the U-Net? Does the U-Net refine the target ice chart?

We have remade Figure 3 to highlight that the target ice chart is compared against a
predicted ice chart, not the U-Net. We agree that the previous iteration of Figure 3
could cause confusion regarding how the target ice chart was treated by the U-Net. See
Fig. R3.

Minor comments:

Abstract: A bit unclear what the target of this study this? Sea-ice charts
or continuous sea-ice concentration? The abstract could profit from slight
restructuring, e.g., what makes this study important?

We have specified that the target of this study is to predict sea ice charts at 1 km resolution
and 1 – 3 day lead time.

Abstract, l. 5: with (future) ice charts as ground truth.

We agree and have implemented this comment.

Introduction: Many citations about past deep-learning-based approaches are
given, however, be careful about what was forecasted. Some of the studies
predict sea-ice concentration categories, others the sea-ice extent, while some
also predict the sea-ice concentration directly. The introduction could profit
from focusing on the mist important approaches, e.g., how much are they
comparable to the here presented study? My suggestion would be to make it
either clearer what has been forecasted in those studies or to concentrate only
on studies that have the highest similarity to the task of predicting sea-ice
charts.

We want our introduction to cover a wide range of the different deep learning sea ice
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forecasting approaches available in the literature, to highlight that there are multiple
viable approaches to predicting Arctic SIC. We do not see major discrepancies between
regressional and classification approaches when it comes to model behaviour, and such
would not like to limit the introduction to only classification networks. Rather, we wanted
to frame the introduction by what type of data is used to predict SIC, starting from
approaches utilizing reanalysis data targeting seasonal to monthly timescales and then
focussing on networks with a short-term objective utilizing forecasting-data. The latter
being our approach.

We agree with the comment to clarify what different models have predicted, and have
updated the introduction thereafter.

l. 73: what means high spatial resolution?

We have specified that we mean (< 1km) as high spatial resolution.

l. 75: how are the ice charts gridded? also how are other products interpolated
to the target resolution?

We have modified the sentence detailing gridded ice charts in Section 2.1:

For this study, the ice charts have been gridded from vector polygons onto the model domain
with a 1km spatial resolution using nearest neighbor.

Preprocessing of the other products are detailed in Section 3.1 Dataset preprocessing and
selection

We perform preliminary computations in order to ensure that the data from different sources
are on a common grid. The data preprocessing is performed in two stages. Firstly data
not matching the AROME Arctic projection are reprojected. Secondly, for data available
at a coarser resolution, nearest neighbor interpolation is performed in order to resample
the data onto a 1 km grid.

l. 100: AROME covers most of the ice chart domain? What happens for grid
points without AROME cover?

We have modified this sentence in Section 2.2 and removed the used of “most” since
AROME Arctic covers the entire model domain (which is constructed as the intersection
between AROME Arctic and the ice charts) and thus all grid points are covered by
AROME Arctic.

We use AROME Arctic forecasts as predictors for this study due to its high spatial resolution
and regional coverage of the European Arctic

Page 5: Has neXtSIM-F been running with Arome as atmospheric forcing? If
not, what is the forcing for neXtSIM-F? Information missing.
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We have added missing information on neXtSIM-F forcing

NeXtSIM receives oceanic forcing from TOPAZ4 (Sakov et.al., 2012) and atmospheric
forcing from ECMWF IFS (Owens and Hewson, 2018)

l. 158f: Years are wrong compared to the data period (2019-2022) and Table
2, wouldn’t it be rather: “We further split the data such that 2019 and 2020 is
used for training, 2021 for validation, and 2022 as test dataset.”?

We thank the reviewer for noticing the mistake in the text. Table 2 is correct, and the
manuscript have been corrected accordingly.

l. 240f: Why not averaging the physical models like the ice chart is created,
by taking 00:00 UTC up to 15:00 UTC into account?

We agree with this comment, and have edited the manuscript to specify that average
physicals models between 00:00 UTC and 12:00 UTC, to better match the period covered by
the ice charts. We also re-did the model intercomparison analysis with these changes.

l. 248: Width and not depth of the neural network.

This has been corrected.

l. 250ff: Please specify that this information is not shown in the paper. Why
not putting a proper ablation study into the Appendix of the paper?

We have modified section 4.1 Training performance and data considerations to specify
that this can be seen in the appendix:

We compared model implementations without cumulative contours (single output, multi–class
segmentation with categorical cross-entropy loss) against deep learning models reformu-
lated with cumulative contours, and we got a better preservation of intermediate contours
with the model predicting cumulative contours, especially at longer lead times (see the
Supplement).

And we have also added the following figure to the supplement

Figure 7: please use different colors than for Fig. 6, otherwise might be a bit
misleading.

We agree with the reviewer, and have updated Figure 7 to use a distinct colormap.

Figure 7: Check if really because of smoothing: You could for example show
the impact of smoothing in the true data on the ice edge length.

We appreciate the comment, and we wanted to confirm this statement based on the
suggestion made by the reviewer.
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To confirm that smoothing causes a smoother ice edge, we measured the impact of applying
a mean-value filter successively to an ice chart by calculating the ice edge length at each
smoothing iteration. The mean-value filter is of size 7 × 7 km. We see in Fig. R5 that
the ice chart has a lower ice edge length after applying the mean-value filter twice. This
Figure will be included in the supplement.

References

Kucik, A. and Stokholm, A.: AI4SeaIce: selecting loss functions for automated
SAR sea ice concentration charting, Scientific Reports, 13, https://doi.org/10.1038/
s41598-023-32467-x, 2023.
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Figure R2: Same as Figure 6 in the manuscript, but using deep learning model trained with
additional AROME Arctic data initialized at 12:00 UTC appended to the dataset (data
between 12:00 and 18:00 appended). For the 10% concentration contour, the deep learning
model with additionally appended AROME Arctic data achieves (5.127, 6.839, 8.371)
nIIEE10% for each lead time (For reference, the deep learning system considered in the
manuscript achieved (5.307, 6.820, 8.112) at the same contour). Mean annual ice edge
displacement error as function of lead time for different sea ice concentration contours
defined by 10, 40, 70 and 90% SIC. Only products with a complete coverage of 2022 has
been considered. Ice charts are used as reference product.
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Figure R3: Overview of the input and output to the deep learning forecasting system. The
predictors are constructed from individually preprocessed sources, and provided to the
network together with an associated target ice chart.
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Figure R4: Same figure as Figure 5 of the manuscript, but using deep learning models
with a single output layer (and not cumulative contours). Seasonal distribution of each
SIC category for 2022 as fraction of total mean SIC area for AMSR2, ice charts and single
output layer deep learning models at 1 –3 day lead time. The single output layer models
are fitted with the same input data and hyper parameters as the deep learning models
predicting cumulative contours, however instead of predicting cumulative contours the
models predict ice charts directly and compute the categorical cross entropy loss function
directly.
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Figure R5: Impact to ice edge length when an ice chart (03-01-2022) is successively
smoothed by a mean-value filter. A reference deep learning ice chart edge for a 1-day lead
time model is shown horizontally as reference
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