
Response to first referee comments

We thank the reviewer for their useful comments on our manuscript. Our answers to the
comments and modifications to the manuscript are provided below.

The manuscript addresses the critical need for accurate sea ice forecasting in the
Arctic, driven by the increasing maritime activity due to sea ice retreat. A deep
learning approach is developed that leverages operational atmospheric forecasts,
ice charts, and satellite data to enhance short-term sea ice concentration
forecasts within a 1 to 3 days timeframe, aiming for a detailed 1km resolution.
The model’s performance, validated against various thresholds of sea ice
concentration contours, outperforms both baseline forecasts and two state-of-
the-art dynamical sea ice forecasting systems across all considered lead times
and seasons.

Nonetheless, the paper could stand to delve deeper into the model’s limitations.
Addressing potential biases from the training data and the effects of missing
or inaccurate data could enrich the study. Suggestions for improvement are
listed as below.

1. Place Table 1 within the ’Data’ section for better context.

The table-positioning parameters have been updated to ensure that Table 1 is placed
within the ’Data’ section.

2. On page 6, line 140, provide clarification regarding the significance of the
’timeliness of 2.5 hours’ for the AROME Arctic model, a detail omitted in
Section 2.2.

We have modified the following sentence in Section 3.1:

In addition, AROME Arctic has a production time of about 2.5 hours, which ensures that
the forecast initiated at 18:00 UTC are available before midnight, allowing us to publish
deep learning forecasts on the same day as the input ice chart is published.

3. Using operational atmospheric forecasts, ice charts, and Sea Ice Concen-
tration (SIC) from passive microwave observations as predictors is innovative.
However, the paper should consolidate potential biases in these data sources
and their impact on model performance in the discussion, making the article
more logical and complete.
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In the manuscript, when describing AROME Arctic we make sure to address that the
system is operational and thus routinely receive updates which impacts distributional
properties of predicted variables without retroactive effects. We also further described our
choice of limiting training data to 2019 and onward as a direct response to avoid training
on channels with differently distributed data. We have modified the following sentence in
Section 2.2:

AROME Arctic has been in operation and continuous development since October 2015,
routinely receiving updates which introduces permanent bias changes for predicted variables.
Due to a major change to the representation of snow over sea-ice in 2018, a warm bias
in near-surface temperatures above sea-ice was significantly reduced in the model (Batrak
and Müller, 2019). Thus we start our training dataset at 2019 to avoid supplying our deep
learning model with samples containing different temperature biases, especially close to the
marginal ice zone (MIZ) where the greatest model response to predictors occurs.

Although Norwegian ice charts have little documentation regarding uncertainty estimation,
we considered the comparison against AMSR2 as an analysis of the sensitivity to the sea
ice product used for the target. Figure 5 shows that ice charts and AMSR2 have different
occurrence frequency for different thresholds, and we show in our manuscript that initial
differences between sea ice products are inherited by our deep learning system. We have
modified Section 5 with the following to highlight this result:

However the analysis also suggests that inherent differences between sea ice products is
reflected by deep learning forecasts, and we can not expect the forecasts to improve beyond
that initial difference as the models are trained to only minimize the statistical error of
their target sea ice product.

Yet, we disagree that addressing biases will strengthen our analysis. Since deep learning
models learn to minimize the output error based on its input, as long as the data is
consistently distributed over time, any biases would not impact performance since the
model learn those as well. If distributional properties significantly changes in the training
data, samples may contribute negatively or be neglected during training overall reducing
the skill of the trained network. However as long as the data has a close to constant
bias, all samples will contribute positively to the training as the relationship between
output and the bias is part of what the model is being taught. We have modified the
discussion (Section 5) to address the need to validate deep learning model performance
for longer periods of time, since we believe that understanding how updates to physical
models supplying predictors to a deep learning system impacts performance is crucial
when considering operationalizing machine learning models.

Hence we recommend evaluating the forecasts with longer time series when they become
available. With respect to the development of the operational weather prediction system
AROME Arctic, a continued forecast evaluation can also facilitate understanding model
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response to continuously updated atmospheric predictors and the potential of fine-tuning
deep learning models.

4. On page 9, line 205, explain the rationale behind the selection of a specific
number of epochs for model training.

We have added the following line to Section 3.3 in the manuscript:

We chose to train for 25 epochs as the validation loss rarely improved beyond that
point.

5. The impact of hyperparameter tuning on model performance should be
discussed. Were any automated hyperparameter optimization techniques like
grid search or Bayesian optimization used?

We have modified section 4.1 Training performance and data considerations with a
specification of what hyperparameters our grid search analysis was performed across.

The optimal U–Net width of 256 channels in the bottleneck was determined by performing
a grid search on the validation dataset across learning–rate (0.0001 - 0.01) and U-Net
depth (256 - 1024) (see Figure S2 in the supplement). To achieve consistent architectures
between the developed models, we considered only variations of the 2-day target lead time
model for the grid search and reused the results for models targeting all lead times.

We have also added the results from the grid search (Fig. R1) to the Supplement.

6. In section 4.2, the comparison with dynamical models should include a
discussion on the computational efficiency of the deep learning model. This is
particularly important for operational forecasting, where timely predictions
are crucial.

We agree with the reviewer, and have added the following to section 4.2 addressing
production time of Barents-2.5 in comparison with the deep learning forecasts:

Comparatively, a single member of Barents completes a 24-hour forecast in ≈1min, resulting
in a 90% speed up when running on comparable hardware.

7. It would be beneficial to conduct a more detailed analysis of the model’s
performance across various sea ice concentration ranges in Section 4.2.

We agree with this comment, and have modified Figure 6 to present the Mean annual
forecast error across different concentration thresholds (10, 40, 70 and 90%), similar to
Figure 8 and Figure 9. The description of Figure 6 in Section 4.2 of the manuscript has
also been updated to reflect this change:

We initially compare the deep learning forecasts against the baseline and dynamical forecasts
in 2022 across all target lead times where we consider the yearly mean of the nIIEE for
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Figure R1: Grid search across varying learning rates and bottleneck widths for a deep
learning model targeting 2-day lead time. The scores represent the minimum validational
loss achieved before terminating training at 25 epochs.

different sea ice edge contours defined by (10, 40, 70 and 90%) concentration thresholds
in Fig R2. For all considered lead times and concentration thresholds, the deep learning
forecasts achieves the lowest nIIEE. Similar to persistence, nIIEE for the deep learning
forecasts increases proportionally with lead time, although at a lower rate. Additionally,
neither neXtSIM, free-drift nor the linear trend forecast are able to outperform persistence,
on average for the 10% concentration contour scoring a factor of 1.57, 1.12, and 1.34
higher than persistence, respectively. Furthermore, the mean nIIEE between forecasts based
on ice charts (Deep learning, Persistence and free-drift) and NeXtSIM and the linear trend
whom are forced by a different sea ice concentration source is notably shifted from the 70%
concentration thresholds and above. The nIIEE does not increase much with lead time
especially for NeXtSIM when considering higher concentrations.
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Figure R2: Mean annual ice edge displacement error as function of lead time for different
sea ice concentration contours defined by 10, 40, 70 and 90% SIC. Only products with a
complete coverage of 2022 have been considered.

The deep learning forecasts improve upon persistence by reducing the nIIEE10% by a factor
of 0.82. In terms of error-growth as a function of lead-time, the linear trend forecast is the
only forecast where the slope of the error increases with increasing lead-time regardless of
concentration threshold. This indicates that the linear trend from past OSI SAF SSMIS
observations is unable to capture ice chart evolution especially for longer lead times.
Moreover, the neXtSIM forecasts have the lowest error-growth with lead-time for lower
concentrations, indicating that neXtSIM may provide more useful MIZ forecasts at longer
lead-times.

8. Certain figures, especially those illustrating the model’s performance com-
pared to baseline and dynamical models, could be enhanced for clarity and
aesthetics. For example, Figure 9 may require modifications to improve clar-
ity.

We agree that Figure 9 is difficult to interpret and requires modifications to enhance its
clarity. We have remade Figure 9 following the styles of Figure 6 and Figure 8, which
preserves the content of the figure.
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Figure R3: Model intercomparison for varying seasons, lead times and concentration
contours. The ice charts are considered as reference. The values reported represent the
integrated ice edge error normalized according to the length of the current SIC contour
from the reference ice chart in km. The OSI SAF linear trend is computed from the past
five days. Barents-2.5 results are only shown for summer and fall.
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