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Abstract. To effectively guide agricultural management planning strategies and policy, it is important to simulate water
quantity and quality patterns and to quantify the impact of land use and climate change on soil functions, soil health
hydrological, and other underlying processes. Environmental models that depict alterations in surface and groundwater quality
and quantity at a catchment scale require substantial input, particularly concerning movement and retention in the unsaturated
zone. Over the past few decades, numerous soil information sources, containing structured data on diverse basic and advanced
soil parameters, alongside innovative solutions to estimate missing soil data, have become increasingly available. This study
aims to: i) catalogue open-source soil datasets and pedotransfer functions (PTFs) applicable in simulation studies across
European catchments, ii) evaluate the performance of selected PTFs and iii) present compiled R scripts proposing estimation
solutions to address soil physical, hydraulic, and chemical soil data needs and gaps in catchment-scale environmental
modelling in Europe. Our focus encompassed basic soil properties, bulk density, porosity, albedo, soil erodibility factor, field
capacity, wilting point, available water capacity, saturated hydraulic conductivity, and phosphorus content. We aim to
recommend widely supported data sources and pioneering prediction methods that maintain physical consistency, and present

them through streamlined workflows.

1 Introduction

The availability of raw and derived soil datasets, specifically soil hydraulic data, has increased significantly in Europe over
the last 10 years as a results of the Soil Strategy and Soil Monitoring Law proposed by the EU Commission. Both the collection

and harmonisation of soil datasets and the preparation of soil maps have intensified. Further to these improvements, the

derivation of prediction algorithms, which can compute specific soil properties from easily available soil or other
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environmental variables (the pedotransfer functions (PTFs)) has continued to be refined since the 1980s. The growing amount
of spatiotemporal environmental data opens up possibilities for different prediction approaches, which is reflected in the
terminology of the transfer functions, e.g. i) the classical PTFs mostly use only soil properties as input (Bouma, 1989), ii) those
PTFs that consider not only soil properties but other environmental variables as well, are called covariate-based geo transfer
functions (Gupta et al., 2021a), iii) spectral transfer functions predict non easily available soil properties from spectral data
(Babaeian et al., 2015), while machine-learning-based (ML-based) soil mapping fuses prediction algorithms with geostatistical
methods (Romano et al., 2023). All these improvements resulted in the emergent availability of soil maps at global, regional,
and local scales.

Mest-eftThe basic soil properties, e-gi.e., soil organic carbon content, particle size distribution, ete--in most cases are locally
available at high resolution (< 100 m), but information on bulk density, albedo, soil erodibility factor, soil hydraulic properties,
and soil nutrient content seil-hyerautic-properties-is often lacking. There are many PTFs available in the literature that can be
used to calculate soil physical (Abbaspour et al., 2019)_and hydrologicalphysical parameters-(Bouma and van Lanen, 1987;

Van Looy et al., 2017)_parameters from basic soil properties, but determining the most suitable one might not be obvious.

Parameter estimations derive the parameters of a model that describes either water retention, hydraulic conductivity, or both
across the entire matric potential range. These estimations aim to ensure a cohesive physical relationship between the computed
soil hydraulic properties.

Information on soil nutrient properties often essential for environmental modelling, such as plant-available soil phosphorus or

soil nitrate content, is seldom accessible at a catchment or regional scale. In the absence of measured data on nutrient content
estimating highly mobile nutrients like nitrate poses a challenge due to seasonal fluctuations influenced by factors such as

fertilizer application, rainfall, plant nutrient uptake, and microbial activity. Regarding plant-available phosphorus, its levels

typically exhibit minimal variation throughout a year. Therefore, approximating its quantity could rely on land use type and

area-specific phosphorus fertilization loads (Ballabio et al., 2019). Nevertheless, multiple methods are employed across Europe
to measure plant-available soil phosphorus content, potentially requiring conversions between these methods for broader-scale
applications. A comprehensive review on conversion equations is available specifically for European studies in Steinfurth et
al.(2021).

Often those soil properties are required as model input data as well, which are rarely available. OneAnether example is the

data on soil cracking, which is rarely readily available. Cracking intensity and number of cracks are determined by i) soil
mineralogy, specifically the amount and type of clay minerals, ii) type of strength that forms soil structure (Lal and Shukla,
2004) and iii) human activity, e.g. tillage, plant spacing. The aperture and closure of cracks can be dynamically related to soil
water content (Xing et al., 2023). The data that could describe the variability of cracking is also not easily available, therefore
prediction of this parameter is limited at catchment scale.

seH-nitrate-content—is-seld Hole-at-a-catehment-orregionalseale—tnthe-ab Feasured-data-on-nutrient-content:
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Dai et al. (2019b) provides an extensive review on global soil property maps applicable for Earth system models. Abbaspour
et al. (2019) collected both soil datasets and pedotransfer functions for global Soil and Water Assessment Tool (SWAT)
75 applications. From these global comprehensive review studies and a variety of soil datasets available among others from the
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European Soil Data Centre (Panagos et al., 2022) (https:/esdac.jrc.ec.europa.eu/) or ISRIC — World Soil Information

(https://www.isric.org/), it is not straightforward which data and/or pedotransfer functions could be used for the environmental
modelling in European case studies. Therefore, in this study we support soil data retrieval for environmental modelling across

Europe by i) systemizeing information on open access datasets and PTFs applicable for Europe, ii) demonstrateing and
quantifying the difference between some PTFs and prediction approaches to cover missing soil properties based on the point
data of EU-HYDI, and iii) provideing a comprehensive workflow and accompanying open-source R script and library for the
derivation of missing soil data. For the selection of the prediction approaches, three requirements had to be fulfilled: 1) the

prediction algorithm had to be trained on temperate soils and should not be specific to a particular soil reference group, 2) the

required predictors had to be available in most of the open access soil datasets, and 3) its ease of application. Hence, despite

certain published prediction methods specifying soil depth, texture, and organic matter as requirements, those reliant on, for

instance, artificial neural networks, lacking a user-friendly interface, or integration into accessible tools like R packages or

Python modules, were excluded from testing due to their challenging application. For ease of reference, all the equations

needed to calculate the most often required soil input parameters are given below.

2 Materials and methods

We distinguish and list soil physical and chemical parameters similarly to the terminology used by the Soil and Water
Assessment Tool model documentation (Neitsch et al., 2009). We include the prediction of soil porosity since this parameter
is frequently used in environmental models, e.g. MIKE SHE (DHI, 2023), HEC RAS (US Army Crops of Engineers, 2023),
PIHM (Li and Duffy, 2011). Noteworthy that some models and accompanying model setup tools have an internal built-in PTF
to compute porosity, e.g. SWAT+. The codes to compute the soil parameters were built based on the structure and terminology
used by the SWAT+ usersoil table (Arnold et al., 2012). Soil properties most frequently required by the environmental models
— e.q. (Abbaspour et al., 2019; Dam et al., 2008; Dang et al., 2022; DHI, 2023; Hansen et al., 2012; Simiinek et al., 2012; Yu
etal., 2020) — are:

- soil layering,

- maximum rooting depth,

= i © at-e O Sei €rae (- Qy

- effective bulk density,

- field capacity,

- wilting point,

- available water capacity,

- porosity,

- saturated hydraulic conductivity,

- organic carbon content,
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- sand, silt, and clay content,

- rock fragment content,

- moist soil albedo,

- Universal Soil Loss Equation (USLE) soil erodibility factor,

- hydrologic soil group, and

- nutrient content of the surface soil layer.
We summarised the-information about pessiblepotential open access sources for soil information applicable in Europe in Table
1, te-covering most of the above listed soil properties. The availability of datasets is continuously improving. The following

data sites include most of the updates:

- European Soil Data Centre, which includes soil datasets from Europe and information on EU Soil Observatory

(https://esdac.jrc.ec.europa.eu/),

- ISRIC Soil Data Hub, which hosts soil data from around the world (https://data.isric.org/geonetwork/

srv/eng/catalog.search#/home),

- soil related layers of the GAEZ Data Portal developed by the Food and Agriculture Organization of the United Nations
(FAQ) and the International Institute for Applied Systems Analysis (IIASA) (https://data.apps.fao.org)
- soil related layers of the OpenLandMap, which shares open geographical and geoscientific data

(https://openlandmap.org).

Nevertheless, these sources do not include products from specific institutes, such as http://globalchange.bnu.edu.cn/

research. These datasets_included in Table 1 might be appropriate for regional and continental modelling. However, for
catchment scale and national studies, local and national spatially explicit modelled datasets provide more accurate input
information. When a certain local dataset is selected to be used as basic soil information, it is more consistent to compute the
non-easty-avatlablemissing soil properties from this local data source rather than;-instead-of using other data sources-ef-data.
This allows to maintain the—eerrelationconsistency between the different soil properties. For example, we—deit is not
recommended to combininge 166-m-+eselution-local soil basie-property maps_at 100 m resolution with soil hydraulic properties
derived-retrieved from 250-m-resetution-EU-SoilHydroGrids at 250 m resolutionwhich-was-computed-based-on-SeHGrids 2017
{Hengletal-—2017). H-Where local soil maps with soil layering, organic carbon content, clay, silt, and sand content areis
available, it is suggested that the-missing soil properties, e-g-such as bulk density, soil hydraulic properties, and albedo;-ete-

are estimated from these-the locally available basic soil properties to ensure consistency. The predictions are subject to

uncertainty, which depends on the similarity between the training data used for the selected prediction method and the target

area in terms of soil physical and chemical characteristics (Roman Dobarco et al., 2019; Tranter et al., 2009).-Retrieving-or
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2.1 Evaluation of methods

For soil physical and hydrological properties, the performance of the prediction algorithms was assessed using the European
Hydropedological Data Inventory (EU-HY DI), specifically focusing on soil parameters with available measured values in the
dataset. The EU-HYDI is one of the most comprehensive European soil hydraulic datasets, which has soil data of 18,682
samples from 6,014 profiles (Weynants et al., 2013). The number of measured values varies by soil properties. EU-HYDI
dataset was used to derive hydraulic PTFs, called euptfs. When comparing the performance of euptf with other methods found
in the literature, only the test sets from the EU-HYDI dataset, which were not utilized in euptf's training, were included. This
approach aimed to facilitate a more accurate and fair comparison among different PTFs, but decreased the number of samples

used for the analysis. The analysis of bulk density prediction was performed on both the EU-HYDI and the LUCAS Topsoil
dataset (Orgiazzi et al., 2018; Toth et al., 2013) of 2018. The LUCAS Topsoil dataset of 2009 (Féth-et-al;2043) was used for
the computation of nutrient content of the surface soil layer._For the assessment of the topsoil phosphorus maps, we used

locally measured data obtained from an agricultural company. This dataset includes soil phosphorus content measured at a

depth of 30 cm using the acid ammonium acetate lactate extraction (AL-P) method (Egnér et al., 1960) for 34 agricultural

parcels in the year 2009. As the phosphorus content was required according to the Olsen method (Olsen-P) (Olsen et al., 1954),

we applied the equation of Sardi et al. (2009) for converting AL-P into Olsen-P. Table 2 shows the descriptive statistics of this

database.

Table 2. Descriptive statistics of the locally measured phosphorus content, converted to Olsen-P, from 34 agricultural parcels.

Standard
Min Max Range Mean Median deviation

16



8.39 65.02 56.63 27.54 25.73 13.47

We compared the algorithms using the mean error (ME), mean absolute error (MAE), root mean squared error (RMSE), Nash-
Sutcliffe efficiency (NSE), and coefficient of determination (R?). The non-parametric Kruskal-Wallis test of the R package
agricolae (De Mendiburu, 2017) at the 5% significance level was applied on the squared error values to asses if there were

200 significant difference in performance. For soil parameters without measured data in the EU-HY DI dataset, descriptive statistics
and histograms of the computed parameters were compared with studies from peer-reviewed literature focused on European
applications. The statistical analysis was performed using R statistics library (R Core Team, 2022).

2.2 Analysed soil properties

We analysed soil physical, hydraulic, and chemical parameters. Under soil physical parameters, we addressed bulk density,

205 porosity, albedo, and soil erodibility factor. For soil hydraulic parameters, we examined water retention, saturated hydraulic

conductivity and hydrological soil groups. Regarding soil nutrient content, we focused on topsoil phosphorus content and

described the challenges of retrieving soil nitrate content. Hereinafter information about the analysis by soil properties is
provided.

2.2.1 Soil physical parameters
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per of-several-metheds—=Table 32 lists the
PTFs that were tested on point data in EU-HYDI and 2018 LUCAS Topsoil dataset. We selected the bulk density PTFs —
derived on soils of the temperate region — based on previous works (Casanova et al., 2016; Hossain et al., 2015; Palladino et

al., 2022; Xiangsheng et al., 2016) that tested the prediction performance of several methods.

Table 32. List of pedotransfer functions tested on point data in EU-HYDI for the prediction of bulk density.

Name of the PTF  Equation Reference Eq.
BD_Rawls BD = 100 (Rawls, 1983) (12
( oM ) : 100 — OM
0.224 1.27

BD_Alexander_ A BD = 1.72 — 0.294 - 0C°® (Alexander, 1980) (23)

BD_Alexander B BD = 1.66 — 0.308 - 0C°%° (Alexander, 1980) (34)

BD_MAN_J_A BD =1.510-0.113-0C (Manrique and Jones,  (45)
1991)

BD_MAnN_] B BD = 1.66 — 0318 - 0C°5 (Manrique and Jones, ~ (56)
1991)

BD_Hollis -for cultivated topsoils: (Hollis et al., 2012) 6%

BD = 0.80806 + (0.8238444 - (exp(—0.279938 - 0C)))
+0.0014065 - sand — 0.0010299 - clay
- for mineral subsoils:
BD = 0.69794 + (0.750636 - (exp(—0.230355 - 0C)))
+ 0.0008687 - sand — 0.0005164 - clay

- for organic horizons*:
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250

255

260

265

270

BD = 1.4903 + 0.33293 - log(0C)
BD_Bernoux BD = 1.398 — 0.042 - OC — 0.0047 - clay (Bernoux et al., 1998) (78)
BD_Hossain **  BD = 0.074 + 2.632 - exp(—0.076 - 0C) (Hossain et al., 2015)  (89)

* For histic and follic horizons, which have organic carbon content equal to or greater than 20 % (1USS Working Group WRB,

2022). **Applied only for organic soils with organic carbon content equal to or greater than 12 %. OM: organic matter content

(mass %); OC: organic carbon content (mass %); sand: sand content (0.05-2 mm fraction) (mass %); clay: clay content (<0.002
mm fraction) (mass %).
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Porosity can be computed based on the bulk density and particle density with the following equation:

BD

POR = (1 - (5)) -100 (912)
where POR is porosity (volume %), BD is dry bulk density (g cm™), PD is particle density (g cm™).

As seen in literature and in SWAT+ model default assumptions (Neitsch et al., 2009), the particle density is usually set as
equal to 2.65 g cm™® (Lal and Shukla, 2004). However, there are PTFs that calculate the porosity based on the particle size

distribution (sand, silt, clay content) and organic matter content. We selected the PTFs (Table 43) based on the findings of

Ruehlmann (2020) and analysed their prediction performance on the EU-HYDI dataset.

Table 43. List of pedotransfer functions tested on point data in EU-HYDI for the prediction of porosity.

Name of the PTF Equation Reference Eq.
—— oM —— -
POR_Schjonning_etal PDyy = 1241+ 0.173 - <ﬁ) (Schjenning et al., 2017)  (103)
PD. = 2.663 + 0.107 (clay)
SMS — &+ . 100
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(1-0My oM -
100 100
PDSMS PDOM

POR = <1 - <%)> +100

PD =

jonni l oM
POR_Schjonning_etal_recal PD = 2.654 + 0216 - clay 2237.9M (Ruehlmann, 2020) (114)
100 100
POR=|1 <BD) 100
B PD
POR_2_65 BD (Lal and Shukla, 2004) (152)

PDowm: particle density of the soil mineral substance; PDws: particle density of the soil organic matter; OM: organic matter

275 content (mass %); sand: sand content (0.05-2 mm fraction) (mass %); clay: clay content (<0.002 mm fraction) (mass %).
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2-2-4-Albedo ha [ formazott: Cimsor 4

Bare soil albedo mostly depends on soil moisture variations, surface roughness, soil texture and organic matter content (Carrer
et al., 2014). Time series of soil surface albedo could be retrieved e.g. from the MCD43A3 database or Copernicus Climate
Change Service (2018) (Table 1). If a single characteristic value of soil surface albedo is required for the entire modelling

285 period, such as e.g. in the case of the SWAT+ model, the study of Abbaspour et al. (2019) provides several formulas for its
computation and suggests to substitute the actual volumetric water content with field capacity. For European applications the
equation of Gascoin et al. (2009) could be used:

| ALB = 0.31-exp(—12.7 - 6) + 0.15 (163)
where ALB is soil albedo and 6 is volumetric water content (cm® cm®), which could be set to the value of field capacity.

|290 We computed the soil albedo with Eq. (163) for the EU-HYDI topsoil samples with setting the water content to saturation,
field capacity and wilting point. The EU-HYDI dataset does not include the measured soil albedo values at a certain moisture
content, therefore we extracted the median surface albedo for year 2022 from the MCD43A3 database
(https://doi.org/10.5067/MODIS/MCD43A3.061) for two cases: i) any surfaces in the entire year and ii) only dry bare soils.
We compared the descriptive statistics of computed and mapped values. We considered the visible broadband black-sky albedo

295  for the analysis. Dry bare soil pixels were selected using MOD09GA.061 dataset based on Normalized Difference Vegetation
Index (NDVI) and Normalized Burn Ratio 2 (NBR2) indices (Safanelli et al., 2020) in Google Earth Engine platform (Gorelick
et al., 2017) when NDVI values fell in the range of -0.05 and 0.30, and NBR2 values between -0.15 and 0.15. Pixels for dry

20


https://doi.org/10.5067/MODIS/MCD43A3.061

bare soils were selected to mask and compare the remote sensed soil albedo values to the albedo computed at different moisture
states.

300 2:2.5-Soil erodibility factor “ [ formazott: Cimsor 4

The soil erodibility factor (K-factor) required for modelling soil erosion can be computed with several methods described e.g.
in Kinnell (2010) or Panagos et al. (2014). The most widely used equation_that can be readily applied to the most frequently
available soil properties was published by Sharpley and Williams (1990) (Eq. 14) and Renard et al. (Renard-etat-1997) (Eq.

15).; tThe advantage of which-these methods is that theyit requires only the sand, silt, clay, and organic carbon content of the
305 soil.:

K, =(02 + 03 0.0256 d-(1 silt ( sil )OlB
uste = | U- = exp| . san < 100) clay + silt

( 1— (e )) : ( 1- 71 55) \ (174)

(0C +exp(3.72 = 2.95:0C)) \ ((1 —Sf::) +eXp<—5.51 + 22.9-(1 —%))) /

log(Dg)+1659
0.7101

2
Krysip = 7.594 <0.0034 +0.0405 - exp <—0.5 . ( ) >> with D, = exp(0.01- X f; - Inm,) (15)

where Kysie is the Universal Soil Loss Equation (USLE), Krusie is the Revised Universal Soil Loss Equation (RUSLE) soil

t-arceh
hundreds of acre:foot—tonf-inch

310 erodibility factor ( ) , silt is silt content_(mass%, 0.002-0.05 mm), sand is sand content (mass %,

0.05-2 mm), OC is organic carbon content (mass %), Dy is the geometric mean particle diameter (mm), f; is the particle size

fraction (mass%), m; is the arithmetic mean of the particle size limits of the f; particle size fraction (mm) . If the unit is required

in (hatl’;:lm) , the Kusie-value of the soil erodibility factor computed with Eq. (174)_or Eq. (15) has to be multiplied with
0.1317 (Foster et al., 1981).

315 We computed the soil erodibilitykus.e factor for the EU-HYDI dataset. Similarly to the above mentioned albedo, there is no
measured soil erodibility Kusie-value in the EU-HYDI dataset, thus we compared the values computed for the topsoils of EU-

HYDI with the values extracted from the European map of Panagos et al. (2014).

2-3-2.2.2 Soil hydraulic parameters ha [ formazott: Cimsor 3

231+ Water retention and saturated hydraulic conductivity
320 itisrecommended-to-compute-the-sSoil water retention and hydraulic conductivity can be computed from the parameters of
the widely used van Genuchten model (VG) (van Genuchten, 1980):

o) =6, + 2

m with m=1-1/n (186)
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where 6; (cm® cm®) and s (cm® cm™) are the residual and saturated soil water contents, respectively, « (cm™) is a scale
parameter, m (-) and n (-) are shape parameters.

Alternative models, like the Kosugi model (Kosugi, 1996) exist for characterizing the water retention curve. However, the
availability of predictive tools for their parameters and equations to derive specific soil hydraulic properties (such as saturated
hydraulic conductivity and field capacity based on internal drainage dynamics) from these parameters is either limited or non-
existent (Zhang et al., 2018). Utilizing the VG model to compute all necessary soil hydraulic properties ensures self-
consistency of parameters and relies on a dynamic criterion based on soil internal drainage dynamics (Assouline and Or, 2014;
Nasta et al., 2021).

The-mest-frequently-used-pedotransferfuncti ~which-can-be-used-to-predictsoil-water tentand-hydraulic-conduetivity
from-easibyravailableseilinformation-were-tested-by-Nasta-etal {2021 ) -on-Eurepeandatasets- CRIZZLY _LIVDRES and ELL
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- 3 H H 15 3 P g g

Usually, the FC is considered as water content at a static soil matric potential. The -330 cm matric potential is widely used for

this approximation (Kutilek and Nielsen, 1994). Assouline and Or (2014) derived a physically-based analytical equation with
self-consistent static and dynamic criteria for the prediction of FC.-Fhis-appreach-is+ecommended-for the-computationof FC-

It requires the parameters of the van Genuchten model:

(1—2n)}(1;nn)

FC =6, + (6, - 6,) {1 +[=] (197)

where FC (cm® cm™®) is water content at field capacity, 6r (cm® cm®) and 65 (cm?® cm®) are the residual and saturated soil water
contents, respectively, a (cm™) is a scale parameter, and n (-) is the shape parameter of the van Genuchten model (van
Genuchten, 1980).

Computation of WP could be performed based on the VG parameters, using Eq. (18):

05—6,

WP =6, + [1+(a-15000™)]1~1/n

(2018)
AWC is defined by FC and WP with the following equation:

AWC = FC — WP (2219)
Physically, it is impossible to have AWC < 0, therefore its minimum value has to be set to 0.001 cm® cm™.

Computation of KS from parameters of the van Genuchten model can be performed by e.g. the equation of Guarracino (2007):
KS = 4.65 - 10*6,a> (220)
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355 where KS is expressed in units of cm d™. If a unit in mm h™ is required, the Eq. (220) has to be multiplied by 0.41667.

The most frequently used pedotransfer functions, which can be used to predict soil water content and hydraulic conductivity

from easily available soil information, were tested by Nasta et al. (2021) on European datasets: GRIZZLY, HYPRES and EU-
HYDI. Based on their results we selected the approaches that performed well on the European datasets. Using the selected
approaches, we then computed the field capacity (FC), wilting point (WP), plant available water capacity (AWC), and saturated
360 hydraulic conductivity (KS) for the EU-HYDI dataset. The selected approaches are listed under Table 54. We considered only

those approaches, which required the mean soil depth, sand, silt, clay content, organic carbon content, and bulk density as
input. When FC, WP, AWC and KS is computed from the measured or predicted parameters of the VG model, it secures that

all required soil hydraulic properties are derived from a physically based model, resulting in a physically plausible soil

hydraulic property combination.

365
Table 54. Approaches tested in the EU-HYDI for the prediction of field capacity (FC), wilting point (WP), available water
capacity (AWC) and saturated hydraulic conductivity (KS)

Soil Type of Description Abbreviation of the  Reference
hydraulic  the prediction
property prediction
FC direct FC at -100 cm matric potential with pred_FC_100 (Szabd et al., 2021)
PTFO03 of euptfv2
direct FC at -330 cm matric potential with pred_FC_330 (Szabo et al., 2021)
PTFO02 of euptfv2
from VG VG parameters predicted with PTFO7 of ~ pred_FC_VG_100 (van Genuchten, 1980;
parameters  euptfv2 for mineral soils and PTF18 of Szabo et al., 2021; Toth
euptfvl for organic soils, matric potential etal., 2015)

set to -100 cm
from VG VG parameters predicted with PTFO7 of ~ pred_FC_VG_330 (van Genuchten, 1980;
parameters  euptfv2 for mineral soils and PTF18 of Szabo et al., 2021; Toth
euptfvl for organic soils, matric potential etal., 2015)
set to -330 cm
from VG VG parameters predicted with PTFO7 of  pred_FC_VG_AO (Assouline and Or, 2014;

parameters  euptfv2 for mineral soils and PTF18 of Szabo et al., 2021; Toth
euptfvl for organic soils + equation of etal., 2015)
Assouline and Or (2014) based on s, 6,
and o
WP direct WP at -1500 kPa with PTF02 of euptfv2 ~ pred_WP (Szabo et al., 2021)
direct SWAT approach pred_WP_SWAT (Neitsch et al., 2009)
from VG VG parameters predicted with PTFO7 of  pred_WP_VG (van Genuchten, 1980;
parameters  euptfv2 for mineral soils and PTF18 of Szabo et al., 2021; Toth
euptfv1 for organic soils + van etal., 2015)
Genuchten function
AWC from VG AWC from pred_FC_VG_100 and pred_AWC_VG_100 (van Genuchten, 1980;
parameters  pred_WP_VG Szabo et al., 2021)
from VG AWC from pred_FC_VG_330 and pred_AWC_VG_330 (van Genuchten, 1980;
parameters pred_WP_VG Szabé et al., 2021)
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from VG AWC from pred_FC_VG_AO and pred_AWC_VG_AO (Assouline and Or, 2014;

parameters  pred_WP_VG van Genuchten, 1980;
Szabo et al., 2021)
KS from VG VG parameters predicted with PTFO7 of  pred_KS_VG (Guarracino, 2007;
parameters  euptfv2 + equation of Guarracino (2007) Szabo et al., 2021)

based on 0s and a

[ formazott: Cimsor 4
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2:4-2.2.3 Soil chemical parameters -3 [ formazott: Cimsor 3

For mapping soil phosphorus (P) content of the topsoil we present a simple approach based on mean statistics, which is suitable
for areas where data is scarce. Land use has the strongest influence on soil P content, with most agricultural areas exhibiting
390 higher P levels compared to regions with natural land cover (Ballabio et al., 2019). The available P level in agricultural soils
is_influenced by the P inputs — fertilizers, manure, atmospheric deposition, chemical weathering — and outputs — plant uptake

and erosion. primarity-influenced-byThe agricultural management practicesfertilization-practices (Toth et al., 2014); which-is

are determined by factors such as the country's economy, climate, tillage practices, and crop production characteristics._Based

on the relationships mentioned above, the geometric mean of soil P is computed by land use categories and assigned to the

395 local land use map using the mean statistics-based method. This approach comprises three main steps:
1) Selection of LUCAS Topsoil samples (EUROSTAT, 2015; Orgiazzi et al., 2018) from_the adequate year and an
agroclimatic zone (Ceglar et al., 2019) similar to the target area, preferably in the same country (NUTS region).

Additional criteria for the data selection could be comparable soil types and fertilization systems.ane—with

comparable-fertilization-sehemes: If this information is not known, the NUTS2 phosphorus map of the European
400 cropland areas might be useful in the data selection (T6th et al., 2014).

2) Computation of the geometric mean of soil P for each land use category.
3) Assigning the mean values to the local land use map.
Further details about the mapping can be found in Szab6 and Kassai (2022) .
We prepared a soil P content map by applying the proposed method for a case study called Fels6-Valicka, located in Hungary
405 (Figure 1). The resulting map was then compared to i) the European topsoil phosphorus content map (Ballabio et al., 2019)
and ii) a locally measured independent dataset provided by an agricultural company. Limited availability of soil nutrient data
hampered the wider scale of comparison.
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410 Figure 1. Local land use map of the Fels6-Vilicka case study in Hungary.

Organic nitrogen can be estimated from soil organic carbon content (Amorim et al., 2022; Liu et al., 2016; Pu et al., 2012;

Zhai et al., 2019)_if measured data are not available. The concentration of inorganic nitrogenate in soil is highly variable in

space and time and the dynamic of its amount is significantly influenced by leaching, denitrification, volatilization, and

415 nitrogen fertilization (Zhu et al., 2021). Therefore, no general method is available for its prediction so far. However, when
simulating nitrogen uptake and losses on catchment-scale, information on the amount and timing of nitrogen fertilization is
often more crucial, than knowledge of the initial nitrate content of the soil (Krevh et al., 2023). The mineral and relatively
dynamic N pools are often considered to be initialized during the warmup period of the models (Yuan and Chiang, 2015). It is
especially important to have a proper parameterization of the agricultural management (e.g. fertilization, residue management)

420 setup in the model application with an appropriate length of the warmup period, where we recommend it to be no less than 4
years. Furthermore, it is beneficial to initialise the SOM levels accurately to define the large and rather slow pool of organic
nitrogen (Liang et al., 2023).
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3 Results and discussion
3.1 Bulk density

Table 6 shows the prediction performance of the selected PTFs. The performance varies depending on the texture classes, e.g.,
it is lower for clayey soils, sandy clay loams, sifts;-and sitey-loams_in the EU-HYDI dataset (Figure S1_a)._For the LUCAS
topsoil samples, the performance of all PTFs is lower compared to their performance on EU-HYDI in terms of RMSE.
Additionally, all analysed methods tend to overpredict bulk density. On-average-the- BB—-Alexander—A-PTF(E-g—3)-had-the
-The BD_Alexander A PTF (E.q.
3) ranks highest based on the sample-number-weighted average results of the Kruskal-Wallis test analysed on both the EU-
HYDI and LUCAS dataset (Table 6, weighted rank).

9%)-PFFs:The BD_Alexander_A_Hossain PTF shows the prediction-performance of the combined use of the BD_Alexander_ A

(for soils with organic carbon content less than 12 %) and BD_Hossain (for soils with organic carbon content equal to or higher
than 12 %) PTFs. This combined PTF performs similarly to the simple BD_Alexander_A method but helps to properly derive

bulk density for soils with high organic matter content. Figure 2 shows the scatterplot of measured versus predicted bulk

density values of the best performing PTF, where the predefined bulk density is capped at 1.72 g cm™ as product of the models
constraints.

27



Table 6. Prediction performance of bulk density (g cm®) computed by available pedotransfer functions on the point data of
EU-HYDI (N = 11,273) and LUCAS (N = 5821). ME: mean error, MAE: mean absolute error, RMSE: root mean squared
error, NSE: Nash-Sutcliffe efficiency, R?: coefficient of determination.

EU-HYDI (N=11273) LUCAS (N =5821)
& | weighted
wi w ° rank
o 4 9y 58 y989y .48
PTE Sl = o Z d"alo S = o zZ wala
BD_Alexander A 001 015 019 022 027 g 1/ -022 026 032 -001 049 b 6 2.70
BD_Alexander A Hossain  0.01 0.15 019 022 027 g 1] -024 027 033 -006 049 b 6 2.70
BD_Alexander B 008 016 021 005 027 e 4 -014 021 027 028 049 e 3 3.66
BD_MAn J A 007 016 0.21 -004 023 f 3/ -010 027 044 -090 039 ¢ 5 3.68
BD_MAn J B 009 017 0.21 -001 027 d 5/ -012 020 026 032 049 f 2 3.98
BD_Rawls 027 029 033 -140 027 a 8 003 018 023 047 051 g 1 5.62
BD_Bernoux 020 023 028 -072 022 b 7] -015 024 030 013 035 d 4 5.98
BD_Hollis 004 020 025 -045 010 c 6] -026 028 034 -017 047 a 8 6.68
Name-of PTF ME  MAE RMSE NSE ge  iffe
Fenee
*
BD-Alexander A
Hossain 0.009 0145 0.185 0222 0265 ¢
BD-Alexander—A 0010 0145 0.185 0220 0.269 g
BB—Hekis 0.000 0149 0189 0488 0277 f
BD-Alexander-B 0.084 0182 0205 0045 0269 d
BBD-MARIB 0094 0167 0241 -0.009 0269 ¢
BB-MARI-A 0069  0.159 0043 0229 e
BD_Bernoux 0.202 0233 0275 0718 0215 b
BD-Rawls R e e e

445 *Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared
error; for example, performance indicated with the letter c is significantly better than the one noted with letters b and a.

If only the soil's organic carbon content is known, the prediction accuracy is restricted. The RMSE value of
BD_Alexander_A_Hossain PTF on the EU-HYDI is comparable with the accuracy of an ML-based PTF built on a French
450 dataset (Chen et al., 2018), when computed on independent validation sets, which reported RMSE between 0.17 and 0.22 g
cm. This performance is better than the results of a model transferability test of a PTF derived on soils from Campania, Italy,
analysed on the EU-HYDI (Palladino et al., 2022), which had RMSE = 0.210 g cm™. Yi et al. (Xiangsheng et al., 2016) and
De Souza et al.(Souza et al., 2016) found RMSE values higher than 0.185 g cm when they applied PTFs trained on temperate
soils, available from the literature, on a Chinese permafrost region and Brazilian catchment, respectively. This outcome
455 underscores the significance of refraining from using a PTF that was trained on soils formed under different conditions — i.e.

with different soil forming factors —, making it inapplicable to the specific target area (Chen et al., 2018; Tranter et al., 2009).
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Effective bulk density is always higher than dry bulk density. Effective bulk density value computed for the EU-HYDI dataset
with Eq. (4022) and (123) was between 0.32 and 2.17 g cm™. Figure 3 shows the scatterplot of dry bulk density versus
computed effective bulk density based on the EU-HYDI dataset.

Based on the performance analysis on EU-HYDI (N = 11,273) the prediction of dry bulk density could be performed with i)
Eq. (23).(BD_Alexander_A) for soils with OC < 12% and ii) Eq. (89) (BD_Hossain) for soils with OC >= 12%.

3.2 Porosity

The porosity values computed based on the particle density predicted by Schjenning et al. PTF (POR_Schjonning_etal)
implemented in Eq. (103) were significantly more accurate on those EU-HYDI samples, which considered measured particle
density value for the computation of porosity (Table 7). If solely samples with low organic matter content, specifically less
than 1%, were considered for analysis, no notable differences between the methods were observed. In the case of soils with
organic matter content higher than 1 % the prediction of porosity significantly improved if particle density was computed
based on distinction between organic matter and mineral substrates. Figure 4 displays the scatterplot of measured versus Eq.

(103)_(POR_Schjonning_etal) predicted porosity values.

Table 7. Prediction performance of porosity (vol %) computed by available pedotransfer functions on the point data of EU-
HYDI results are structured by organic matter content. OM: organic matter content (mass %), N: number of samples, ME:
mean error, MAE: mean absolute error, RMSE: root mean squared error, NSE: Nash-Sutcliffe efficiency, R% coefficient of

determination.

Name of PTF OM (mass %) N ME MAE RMSE NSE R? 3;]9],”,;
POR_Schjonning_etal any 2290 0.19 1.38 2.53 0.882  0.889 c
POR_Schjonning_etal_recal 2290 1.05 1.81 2.84 0.852 0.878 a
POR_2_65 2290 0.23 1.67 2.71 0.866  0.883 b
POR_Schjonning_etal 0=<0M<10 2246 020 1.38 255  0.860 0.869 c
POR_Schjonning_etal_recal 2246 1.06 181 286 0.824 0.855 a
POR_2_65 2246 0.29 1.64 2.70 0.843 0.861 b
POR_Schjonning_etal 0=<OM<5 1943 0.23 1.34 2.48 0.841 0.849 c
POR_Schjonning_etal_recal 1943 1.01 1.76 2.78 0.801 0.834 a
POR_2_65 1943 052 157 261  0.824 0.840 b
POR_Schjonning_etal 0=<0OM<1 492 -0.22 1.32 1.84 0.879 0.881 a
POR_Schjonning_etal_recal 492 -0.01 1.25 1.69 0.898 0.898 a
POR_2_65 492 023 1.23 1.63  0.905 0.907 a
POR_Schjonning_etal 10 =< OM 44 -0.24 141 1.94 0.968 0.969 b
POR_Schjonning_etal_recal 44 0.92 1.49 191 0.969 0.980 b
POR_2_65 44 -2.85 2.86 3.29 0.909 0.977 a

*Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared
error; for example, performance indicated with the letter c is significantly better than the one noted with letters b and a.

30



485

490

495

500

N = 2290

100 I
a0 R?=0D.889 .
80
70
80

50

Predicted porosity (vol %)

10 20 30 40 50 60 70 80 80 100
Measured porosity (vol %)

Figure 4. Scatterplot of measured versus predicted porosity values of the best performing PTF, POR_Schjonning_etal (Eq.
103) analysed based on the EU-HYDI subset with measured particle density values. Count: the number of cases in each

quadrangle.

When data on porosity is missing, some studies use the saturated water content as its approximation, although based on the

literature the saturated water content is usually equal or less than the total porosity (Lal and Shukla, 2004). Figure 5 shows the

relationship between porosity and saturated water content for 391 EU-HYDI samples with measured values of both parameters.
Among these samples, in-the- EU-HY-Dl-dataset-56.5% i i
have a total porosity larger or equal to the saturated water content. a-the—case-efFor the samples where_the saturated water

content is higher than the total porosity, the reason mayean be the uncertainties in the measurement of both parameters. It is

possible that ureertainty-of-the-saturated-water-content-measurement-e—free water could have pounded on top of the sample

when its saturated weight was measured, and errors in the measurement of particle density used to compute porosity may have

also contributed (Kutilek and Nielsen, 1994; Nimmo, 2004), resulting in a lower porosity.
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Figure 5. Scatterplot of measured porosity values versus measured saturated water content and boxplot of the difference

between the two values tested on point data in EU-HYDI dataset.

Based on the study performed in EU_HYDI, prediction of porosity could be performed with the Schjenning et al. PTF Eq.
(2310) instead of defining particle density as 2.65 g cm™ in Eq. (12).

3.2 Albedo

The range of soil albedo computed with Eq. (163) for the topsoil layers of the EU-HYDI dataset with different moisture states
(Table 8) is within the range of the values available from the literature, which is 0.10-0.43 in the case of ECOCLIMAP-U
dataset (Carrer et al., 2014). The median dry, bare soil albedo and surface albedo values of year 2022 extracted from the
MCDA43A3 database to the EU-HYDI topsoil layers are significantly lower than the computed values (Figure 6). The histogram
of the monthly surface albedo and dry, bare soil albedo values extracted to the EU-HYDI topsoil samples are show on Figure
S2a and b. It's crucial to specify the moisture condition for which the albedo value is needed in the modelling process.

Table 8. Descriptive statistics of soil albedo values computed with the simplified Gascoin et al. (2009) equation on the topsoil
samples of EU-HYDI dataset (N = 7,537) at different moisture states: based on saturation (ALB_comp_THS), field capacity
(ALB_comp_FC), wilting point (ALB_comp_WP).

Albedo at different moisture state  Minimum Maximum Range Mean Median Standard deviation

ALB_comp_THS 0.15 0.17 0.02 0.15 0.15 0.00
ALB_comp_FC 0.15 0.31 016  0.17 0.16 0.02
ALB_comp_WP 0.15 0.46 031 0.22 0.19 0.08
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Figure 6. Histograms of the soil albedo computed with the Gascoin et al. (2009) equation for the topsoil layers of the EU-
HYDI dataset in the case of three moisture states: at saturation (ALB_comp_THS) (a), internal drainage dynamics-based field
capacity (ALB_comp_FC) (b) and wilting point (ALB_comp_WP) (c) (N = 2408), and median surface (d) and dry, bare soil
albedo (e) of year 2022 (ALB_median_2022_dry_soil, ALB_median_2022_surface) extracted from the MCD43A3 global

database for the EU-HYDI topsoil layers. Vertical dashed lines indicate the median values.

3.3 Soil erodibility factor

The soil erodibility factor (K-factor) computed on the topsoil samples of the EU-HYDI dataset with Eq. (174) are comparable
with the values of the European 500 m resolution soil erodibility map published by Panagos et al. (Panagos et al., 2014) in
terms of range, mean and density of the values (Table 9 and Figure 7), although the relationship between the computed and

mapped values was weak (Figure 8). For the computation of the European map soil organic matter content, soil texture, coarse

fragments content, soil structure and stoniness were considered. The Renard et al. (Eqg. 15) equation resulted in a higher median
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value but lower possible maximum value because the computed soil erodibility factor is capped at 0.044 (—-"“"_) due to the

ha-Mj-mm.

constraints of the model. The relationship between the soil erodibility factors derived by different methods is strongest between

the values computed using the Sharpley and Williams (1990) method and the Renard et al. (1997) method. This is logical

because both methods consider the particle size distribution of the soil as input information.

Both approaches, whether directly applying the equationsEg- (Eq. 147 or 15) or extracting values, generate predicted soil
erodibility values. While both can be used for environmental modelling, i) European soil erodibility map could be linked with

LUCAS topsoil dataset and maps, ii) employing Eq. (147) or (15) might offer greater consistency with the other local basic
and physical soil data, aligning more seamlessly with the modelling process. Given the scarcity of measured K-factor values,

our suggestion is to initially utilize these predicted values as preliminary approximations. However, we recommend fine-tuning

this factor during the model calibration process.

Table 9. Descriptive statistics of soil erodibility factor values computed with the Sharpley and Williams (1990) and Renard et
al. (1997) equations on the topsoil samples of the EU-HYDI dataset (N = 11,287) provided in two different units.

Method USLE K factor Minimy  Maxim Range Mean Median Standard <«
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(K_Sharpley_Williams, N = 3276) (a) and Renard et al. (1997) (K_Renard, N = 3276) (b) equations on the topsoil samples of
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550 the EU-HYDI dataset-(K—computed-N-=23276)(a), and extracted from the soil erodibility map of Europe for the EU-HYDI
topsoil layers without (K_ESDAC, N = 3100) (cb) and considering stoniness (K_st_ESDAC, N = 3190) (de). Vertical dashed

lines indicate the median values.
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dataset,( ) Plot (e) shows the relationship between the values computed by the Sharpley and Williams (1990) and
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560 3.4 Field capacity

The FC defined_(see abbreviations in Table 5) based on soil internal drainage dynamics (FC_VG_AO) differed from the field
capacity measured at -100 cm, or -330 cm matric potential (FC_100 and FC_330 respectively) or computed from VG
parameters at -100 cm, or -330 cm matric potential (FC_VG_100 and FC__VG_330 respectively) (Figure 9), as was expected.
The scale of difference depends on i) the predefined soil matric potential value, which we consider using as measured field

565 capacity, and ii) characteristics soil properties that influence soil hydraulic behaviour, such as soil texture, organic matter
content, bulk density, clay mineralogy, structure, etc. Figures S3 and S4 show that for soils with low sand content (< 25 %)
and high silt content (> 50 %) or low bulk density (< 0.7 g cm™) the FC_VG_AO is lower than water content measured at -
100 cm or -330 cm matric potential (FC_VG_AO vs. FC_100 and FC_VG_AO vs. FC_330).
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Figure 9. Scatterplot of internal drainage dynamics-based field capacity (FC_VG_AO) versus field capacity at -100 cm matric
potential (a), at -330 cm matric potential (b), computed based on VG model with parameter h (head) set at -100 cm matric
potential (c) and -330 cm matric potential (d).
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If FC at a single matric potential value is computed from the fitted VG parameters (FC_VG_100, FC_VG_330) their Pearson
correlation with the FC_VG_AQ is higher than in the case of FC measured at -100 or -330 cm matric potential (Figure S5).
This is logical because in the case of FC_VG_100 and FC_VG_300 the same VG parameters are used for the computation as
for FC_VG_AQO. In the case of EU-HYDI the FC_VG_330 is the closest to the FC_VG_AO. The only exception are sands
where FC measured at -330 cm matric potential has the highest correspondence with FC_VG_AO (Figure S6).

Table 10. Prediction performance of internal drainage dynamics-based field capacity (cm® cm) computed by pedotransfer
functions on the FC and VG test sets of the EU-HYDI dataset. N: number of samples, ME: mean error, MAE: mean absolute

error, RMSE: root mean squared error, NSE: Nash-Sutcliffe efficiency, R?: coefficient of determination.

Approach to predict FC* N ME MAE RMSE NSE R?

pred_FC_VG_AO 1591 0.005 0.043 0.058 0.514 0.519
pred_FC_100 1413 -0.071 0.083 0.106 -0.779 0.297
pred_FC_330 782 -0.010 0.047 0.061 0.210 0.395
pred_FC_VG_100 1591 -0.015 0.070 0.090 -0.184 0.320
pred_FC_VG_330 1591 0.045 0.073 0.091 -0.198 0.339

*pred_FC_VG_AQ: predicted internal drainage dynamics-based field capacity based on VG parameters predicted from basic
soil properties; pred_FC_100, pred_FC_330: field capacity at -100 and -330 cm matric potential directly predicted from basic
soil properties; pred_FC_VG_100, pred_FC_VG_330: field capacity at -100 and -330 cm matric potential based on VG
parameters predicted from basic soil properties.
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Figure 10. Scatterplot of internal drainage dynamics-based FC (FC_VG_AO) computed from fitted and predicted VG
parameters analysed on the VG test set of the EU-HYDI dataset. Count: the number of cases in each quadrangle.

Table 10 illustrates the prediction performance of the FC_VG_AO for various approaches. If the FC_VG_AO was computed
based on VG parameters predicted by the PTF07 of euptfv2, the RMSE value was 0.058 cm® cm, which is comparable with
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595 the literature values (Roman Dobarco et al., 2019; Zhang and Schaap, 2017). Its correlation with the FC computed based on
predicted VG parameters at -100 or -330 cm matric potential is weaker (with RMSE 0.090 and 0.091 cm® cm'®), aligning with
the results drawn from the FC computed from fitted VG parameters (Figure 9 ) and d)).
Figure 10 shows the scatterplot of FC_VG_AO computed from fitted and predicted VG parameters analysed only on those
samples of the EU-HYDI which were not used for training of the VG PTF07. Performance of VG PTF07 was published in
600 Szabd et al. (2021) with 0.054 cm® cm RMSE on the test set.
Thus FC_VG_AO could be used as FC and computed with Eq. (179) based on VG parameters predicted with i) euptfv2 (Szabo
et al., 2021) for mineral soils and ii) euptfvl (Téth et al., 2015) class PTF (PTF18) for organic soils.

3.5 Wilting point

Calculating WP _(see abbreviations in Table 5) from predicted VG parameters yields greater accuracy compared to using the
605 equation provided by SWAT+ model (Figure 11, Table 11). Predicting WP directly from soil properties instead of deriving it
from predicted VG parameters tends to yield greater accuracy (Bergesen and Schaap, 2005; Szabd et al., 2021; Tomasella et
al., 2003) (Table 12). When multiple soil hydraulic parameters are needed, deriving all from a model encompassing the entire

matric potential range secures the physical relationship between them (Weber et al., 2023).
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Figure 11. Scatterplot of wilting point computed from fitted VG parameters (Fitted WP_VG) versus a) wilting point computed
from VG parameters predicted with euptfv2 (Predicted WP_VG) and b) wilting point predicted with the SWAT+ approach
(Predicted WP_SWAT), analysed on the VG test set of the EU-HYDI dataset. Count: the number of cases in each quadrangle.
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Table 11. Prediction performance of wilting point (cm® cm) derived with the VG model, computed by pedotransfer functions
on the VG test set of the EU-HYDI dataset. Observed variable is the WP value computed based on the fitted parameters of the

VG model. N: number of samples, ME: mean error, MAE: mean absolute error, RMSE: root mean squared error, NSE: Nash-
Sutcliffe efficiency, R?: coefficient of determination.

Approach to

2
predict WP* N ME MAE RMSE NSE R

pred_WP_VG 1591 0.016 0.045 0.065 0.382 0.420
pred_WP_SWAT 1591 -0.001 0.062 0.093 -0.239 0.197

*pred_WP_VG: wilting point computed based on VG parameters predicted from basic soil properties; pred_WP_SWAT:
wilting point predicted with the equation built in the SWAT model.
Table 12. Prediction performance of wilting point (cm® cm®) computed by pedotransfer functions on the WP test set of the

EU-HYDI dataset. Observed variable is the measured WP value. N: number of samples, ME: mean error, MAE: mean absolute

error, RMSE: root mean squared error, NSE: Nash-Sutcliffe efficiency, R?: coefficient of determination.

Approach to

2
predict WP* N ME MAE RMSE NSE R

pred_WP_VG 2088 0.052 0.060 0.087 0.105 0.431
pred_WP_SWAT 2088 0.028 0.046 0.066 0.490 0.630
pred_WP 2088 0.000 0.033 0.046 0.755 0.755

*pred_WP_VG: wilting point computed based on VG parameters predicted from basic soil properties; pred_WP_SWAT:
wilting point predicted with the equation built in the SWAT model; pred_WP: wilting point directly predicted from basic soil
properties.

WP could be computed with Eq. (2018) based on VG parameters predicted with i) euptfv2 (Szabo et al., 2021) for mineral
soils and ii) euptfvl (Toth et al., 2015) class PTF (PTF18) for organic soils.

3.6 Available water capacity

If only AWC (see abbreviations in Table 5) is required as input for a model, i.e., without FC and WP, a feasible option could
involve direct prediction using a PTF like euptfv2. However, its estimation is more accurate if the internal drainage dynamics-
based FC is considered for its computation (Gupta et al., 2023). Figure 12 and S9 show that coefficient of determination is low
between the internal drainage dynamics-based AWC (AWC_VG_AO) and AWC based on FC at fixed matric potential
(AWC_100, AWC_300, AWC_VG_100, AWC_VG_330). Which approach is the closest to the AWC_VG_AO varies based
on texture classes (Figure S10).

The available water capacity based on field capacity measured at -100 cm head (AWC_100) is higher than the AWC_VG_AO,
especially in the case of low sand content (< 25 %) and high silt content (> 50 %) (Figure 12c and S7). The available water
capacity based on field capacity measured at -330 cm head (AWC_330) is higher than AWC_AO_VG when sand content is
low (< 25 %) and silt content is high (> 50 %) and lower than AWC_AO_VG when sand content is higher than 25 % and silt
content is less than 50 % (Figure 12d and S8).
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Figure 12. Scatterplot of available water capacity computed from internal drainage dynamics-based field capacity and wilting
point derived based on VG parameters predicted from basic soil properties (AWC_VG_AO) versus (a, b) available water
capacity computed from measured field capacity at -100 and -330 cm matric potential and wilting point, (c, d) available water
capacity computed from field capacity at -100 and -330 cm matric potential and wilting point based on VG parameters

predicted from basic soil properties.

Table 13. Prediction performance of available water capacity (cm® cm™®) computed by pedotransfer functions on the VG test
set of the EU-HYDI dataset. N: number of samples, ME: mean error, MAE: mean absolute error, RMSE: root mean squared
error, NSE: Nash-Sutcliffe efficiency, R?: coefficient of determination.

Approach to predict AWC* N ME MAE RMSE NSE R?

pred_AWC_VG_AO 1591 -0.011 0.034 0.048 0.339 0.372
pred_AWC_VG_100 1591 -0.031 0.071 0.090 -1.325 0.072
pred AWC_VG_330 1591 0.029 0.061 0.078 -0.725 0.044

*pred_AWC_VG_AQO: available water capacity computed from internal drainage dynamics-based field capacity and wilting
point derived based on VG parameters predicted from basic soil properties; pred_ AWC_VG_100, pred_AWC_VG_330:
available water capacity computed from field capacity at -100 and -330 cm matric potential and wilting point based on VG
parameters predicted from basic soil properties.
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Figure 13. Scatterplot of internal drainage dynamics-based AWC (AWC_VG_AO) computed from fitted and predicted VG
parameters analysed on the VG test set of the EU-HYDI dataset. Count: the number of cases in each quadrangle.

Table 13 shows the prediction performance of internal drainage dynamics-based AWC (AWC_VG_AO). As expected, the
predicted internal drainage dynamics-based AWC had the lowest RMSE and highest R? value. The AWC computed based on
the FC at 100 cm matric head derived with the predicted VG parameters (pred_AWC_VG_100) had the lowest performance.
This approach yielded over-prediction of the AWC_VG_AO values when AWC_VG_AO is lower than 0.10 cm® cm and
under-prediction when AWC_VG_AO is higher than 0.25 cm® cm™ (Figure 13).

Based on the findings, we recommend to compute the AWC based on the internal drainage dynamics-based FC (FC_VG_AO)
and VG parameters-based WP (WP_VG) in Eq. (2219).

3.7 Saturated hydraulic conductivity

Figure 14 shows the relationship between measured KS and computed with Eq. (202) based on the fitted VG parameters
(KS_VG) (see abbreviation in Table 5). The coefficient of determination between the measured and computed values is low,
however fitted (not predicted) VG parameters were used for the computation. Prediction performance of KS_VG is comparable
with the published widely used PTFs (Nasta et al., 2021) (Figure 15, Table 14).

Prediction of saturated hydraulic conductivity (KS) has the highest uncertainty among the soil hydraulic properties. This
uncertainty originates from the differences in the measurement methods applied to measure KS, in terms of sampling volume,
sample dimensions, difference between in-situ and laboratory methods (Ghanbarian et al., 2017). Due to the uncertainty of the
measurements, uncertainty of the prediction is minimum one order of magnitude during the application of a PTF (Nasta et al.,
2021). Estimation of KS by traditional PTFs that use basic soil properties as input is rather limited, because KS of a sample is
largely determined by its structural properties and pore network characteristics, of which we lack quantitative descriptors and
data (Lilly et al., 2008). There is also at least one order of magnitude difference between replicated measurements on samples
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coming from the same soil horizon due to the extreme spatial variability of this particular soil property. Hence, it's important

to note that while we might improve individual sample predictions for KS, the representativeness of these samples within their

specific fields remains constrained. We suggest initializing this soil property using the VG parameters with Eq. (202), but

keeping in mind that it should be adjusted during model calibration as a variable.
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Figure 14. Scatterplot of measured saturated hydraulic conductivity (KS) versus saturated hydraulic conductivity computed
from fitted VG parameters (KS_VG).
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690 Figure 15. Scatterplot of saturated hydraulic conductivity computed from fitted and predicted VG parameters (KS_VG)
analysed on the VG test set of the EU-HYDI dataset. Count: the number of cases in each quadrangle.
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Table 14. Prediction performance of saturated hydraulic conductivity (cm day™*) computed by pedotransfer function on the
VG test set of the EU-HYDI dataset. N: number of samples, ME: mean error, MAE: mean absolute error, RMSE: root mean
695 squared error, NSE: Nash-Sutcliffe efficiency, R?: coefficient of determination.

Approach to predict KS* N ME MAE RMSE NSE R?
log10pred_KS_VG 1591 -0.06 1.07 1.48 0.303 0.307
*log10pred_KS_VG: logarithmic 10 based saturated hydraulic conductivity computed based on VG parameters predicted from

basic soil properties.

3.8 Phosphorus content of the topsoil

Figure 16 shows the European P map (Ballabio et al., 2019) clipped for the area of the Fels6-Valicka study site (A) and the P
700 map created with the mean statistics-based method using the local land use map (B) and the map of the hydrological response
units (HRU) defined in the SWAT+ model (C). The spatial pattern of the two phosphorus maps is similar, but the map created

with our proposed method has a higher resolution and follows the polygons of the HRU map.

B

705 Figure 16. European topsoil P content map (Ballabio et al., 2019) (A), region-specific mean statistics-based P content map
(B), hydrological response units with indication of agricultural parcels with measured P values (C) in the Fels6-Vilicka case
study.
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Figure 17 shows the geometric mean P values of the HRUs by land use categories of the European soil P map and the region-
specific mean statistics-based P map in the area of Fels¢-Valicka. Comparing the results of the geometric mean P values, we
can see that the European topsoil P map on average has a higher P concentration, with no significant differences observed
between the land use categories. Based on the region specific LUCAS Topsoil dataset, artificial land use areas (urban fabric
and industrial, commercial and transport units), forests and pastures are expected to have lower P concentration values. The
mean statistics-based P map is more suitable at identifying differences resulting from local land use variation in the analysed
case study. The P monitoring data measured on the 34 agricultural parcels, classified as arable land and-previded-by-atoeal
agricultural-company;-shows that the geometric mean of Olsen P in the area is 24 mg kg, which is slightly higher than
predicted by the mean statistics-based method (19.78 mg kg).

Data source: pean map [l Region-specific mean statistics-based map
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Figure 17. Geometric mean values of Olsen P across CORINE Level 2 land cover categories in the Fels§-Valicka case study
for both the European topsoil P content map and the region-specific mean statistics-based P content map with number of

samples by categories indicated.

Ballabio et al. (2019) found that land use was the most important predictor for computing the topsoil phosphorus content map
for Europe. This underscores that a soil P content map derived based on a local, fine-resolution, field-boundary-based land use

map can provide more accurate results than one based on continental land use maps.+a-summary;-a-P-map-based-on-lecaH-and
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For regional or local studies, it is more plausible to use a local land use map and compute the geometric mean soil P values by

land use categories based on the LUCAS Topsoil dataset, which is relevant for the target area from a fertilization point of view.
H-Where available, it is recommended to_use measured data to overwrite the geometric mean values, with-the-measured
datacreating a multi-data source solution; that reflectings the spatial pattern of nutrient content within arable land areas. For

continental-scale studies, the European topsoil P map (Ballabio et al., 2019) could be used.

3.9 Suggested workflow to derive soil input parameters
. .

Based on the above results, we describe the most efficient workflow to retrieve the soil input parameters for European

environmental modelling.

Initially, the data source of the most relevant soil basic properties, such as soil layering, rooting depth, organic carbon content,
clay, silt, and sand content, must be selected. Local data can describe the spatial variability of soil properties the best. Even if

only soil basic properties are available locally, this data source could have priority against the more inclusive continental or

global datasets, i.e. containing information on both soil physical, chemical, and hydraulic properties, because local datasets
aim to capture the area-specific variability of soil properties as accurately as possible. If no local or national soil basic data is

available with the resolution required to study a target environmental process, possible input source for soil profile data or 3D
soil dataset can be found in Table 1.

Different countries and institutions measure sand, silt, and clay content using different ISO protocols and_methods by
recognizing different cutoff limits and classification standards. It is important to check which particle size limits are required

by the environmental model. As an example, in the widely used SWAT/SWAT+ model, the sand, silt and clay content are
assumed to be classified according to the USDA system, which defines particle size limit < 0.002 mm for clay, 0.002-0.05 mm

for silt and 0.05-2 mm for sand fraction. When conversions between different classifications are required to bring the local

technique’), which results in less uncertainty, smaller bias and shrinkage of resulting texture range compared to the simpler

loglinear interpolation (Nemes et al., 1999).

In other cases, such as soil organic material, it is important to distinguish if soil organic carbon or soil organic matter is required
by the model, and which of the two is available from the data source. The following most frequently used equation describes
the relationship between those:

OM =0C -1.724 (21)
where OM is the organic matter content (mass %) and OC is organic carbon content (mass %). The 1.724 conversion factor
was defined by Van Bemmelen (1890), but can vary between 1.4 and 2.5 depending on the method used to measure organic

48



760

765

770

775

780

785

carbon content, composition of organic matter, degree of decomposition and clay content (Minasny et al., 2020; Pribyl, 2010).

Pribyl (2010) recommends using the value 2 as a general conversion factor if no specific value is available.

When specifying bulk density, it is important to clarify whether the dry or effective value is required. If a measured value of

neither is available, the dry bulk density can be computed from organic carbon content and particle size distribution. Further
predictors, such as taxonomical information, soil structure, soil management parameters, environmental covariates are
important as well (Hollis et al., 2012; Ramcharan et al., 2017) and can significantly improve the prediction performance.

However, PTFs including these variables are not always possible to apply to a data scarce region.
If effective bulk density is required, it can be derived from the dry bulk density with the method of Wessolek et al. (2009):

- for soils with organic carbon content higher than 0.58 mass %:

BD,ss = BDyyy + 0.009 - clay (4022)
- for soils with organic carbon content less than or equal to 0.58 mass %:
BD,¢s = BDgy, + 0.005 - clay + 0.001 - silt (3223)

where BD,, (g.cm™) is effective bulk density, BDy,, (9 cm™) is the dry bulk density, clay is clay content (< 0.002 mm, mass
%), silt is silt content (0.002-0.063 mm, mass %). It is important to note that Eq. (3123) requires the silt content with 0.002-
0.063 mm limit. It can be predicted from the clay (< 0.002 mm), silt (0.002 — 0.05 mm) and sand (0.05 — 2 mm) content with

the TT.text.trans function of the soiltexture R package (Moeys, 2018). This method meets the accuracy required for computing

BD, s, however, for other applications the transformation methods discussed by Nemes et. al. (1999) should be considered.

The hydrologic soil groups (HSG) are based on the infiltration characteristic of the soil and include four groups having similar

runoff potential. The groups are defined based on the saturated hydraulic conductivity, depth to high water table and depth to

water_impermeable layer (Table 15). More details can be found in U.S. Department of Agriculture Natural Resources

Conservation Service (2009).

For modelling purposes, it is important if tile drainage is present in the modelled area, because tile drainage systems influence

the soil infiltration rate and runoff potential. Derivation of HSG requires local input data. If local datasets are not available

and SoilGrids 2017 (Hengl et al., 2017) was chosen as the source for the basic soil data, HSG can be retrieved from the global
HYSOGs250m (Ross et al., 2018) database.
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Table 15. Definition of soil hydrologic groups based on U.S. Department of Agriculture Natural Resources Conservation

Service (2009). KS: saturated hydraulic conductivity (um s™).

Depth to water Depth to high KS of least transmissive layer in
impermeable layer*  water table** depth range (um s*) KS depth range HsG—
<50 cm — — — D
50t0 100 cm <60 cm >40.0 010 60 cm AID
>10.0 to <40.0 0to 60 cm B/D
>1.0 t0 <10.0 0to 60 cm C/D
<1.0 0to 60 cm D
>60 cm >40.0 0to50cm A
>10.0 to <40.0 0to 50 cm B
>1.0t0<10.0 0to50cm C
<1.0 0to 50 cm D
>100 cm <60 cm >10.0 0t0 100 cm A/D
>4.0 t0 <10.0 0to 100 cm B/D
>0.40 to <4.0 0t0 100 cm C/D
<0.40 0to 100 cm D
60 to 100 cm >40.0 0to50cm A
>10.0 to <40.0 0to 50 cm B
>1.0 t0 <10.0 0to50cm C
<1.0 0to 50 cm D
>100 cm >10.0 0to 100 cm A
>4.0 t0 < 10.0 010100 cm B
>0.40 to <4.0 010 100 cm C
<0.40 0to 100 cm D

*An impermeable layer has a KS less than 0.01 um s™ [0.0014 in h™] or a component restriction of fragrgan; duripan;

petrocalcic; orstein; petrogypsic; cemented horizon; densic material; placic; bedrock, paralithic; bedrock, lithic; bedrock,

densic; or permafrost. **High water table during any month during the year. ***Dual HSG classes are applied only for wet

soils (water table less than 60 cm [24 in]). If these soils can be drained, a less restrictive HSG can be assigned, depending on
the KS.

Figures 18-212 summarize the workflows to derive soil physical, hydraulic, and chemical parameters covered in this study.
The workflows highlight the target soil property, necessary input, computation approach with suggested order of the
computations. Indirect initialization of soil mineral N is recommended via proper management data and model warm-up period.
It is important to highlight that prediction approaches trained on local data are expected to be more accurate; therefore, those
could replace the indicated methods where possible.
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Figure 18. Prediction of soil physical properties. BDary: dry bulk density; clay: clay content (0-0.002 mm); silt: silt content
(0.002-0.05 mm); sand: sand content (0.05-2 mm); silt_63: silt content (0.002-0.063 mm) OC: organic carbon content; BDes:
effective bulk density; PD: particle density; POR: porosity.
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Figure 19. Prediction of soil hydraulic properties and moist soil albedo. Soil depth: mean soil depth of the soil sample; clay:
clay content (0-0.002 mm); silt: silt content (0.002-0.05 mm); sand: sand content (0.05-2 mm); BDary: dry bulk density; OC:

810 organic carbon content; 0; : residual water content; 6s: saturated soil water content; o : scale parameter; n: shape parameter;

FC: water content at field capacity; WP: water content at wilting point; KS: saturated hydraulic conductivity; AWC: available

water capacity; ALB: soil albedo.
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Figure 20. Prediction of soil erodibility factor (K-factor). clay content (0-0.002 mm); silt: silt content (0.002-0.05 mm); sand:
sand content (0.05-2 mm); OC: organic carbon content.
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Figure 261. Prediction of hydraulic soil groups (HSG). KS: saturated hydraulic conductivity.
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Figure 212. Prediction of Olsen phosphorus (P) content of the topsoil.

4 Conclusions

This study presents particular techniques and resources for extracting region-specific soil characteristics from national and
global databases. While these databases might contain segments of soil information, they often lack comprehensive data
required by various environmental models, such as the SWAT+ model. Through evaluation and recommendation of selected
PTFs, as well as the provision of compiled R scripts for estimation solutions addressing soil data gaps, the study aims to
streamline input data preparation procedures for soil physical, hydraulic, and chemical properties in environmental modelling.

Local data tend to retain finer soil details, hence it is recommended that users prioritise the utilisation of local (national) soil
databases when it is deemed representative and reliablewhenever—pessible. Even if these databases only offer basic soil
properties, they should take precedence over broader continental or global datasets. The study demonstrated that missing soil

properties could be estimated effectively from a basic set of soil parameters using appropriate PTFs developed for specific
pedoclimatic regions, ensuring consistency in computed properties.

-We prepared a set of workflows to derive soil input parameters for usage in various modelling studies. In cases where this
approach is not viable, we offer comprehensive guidance on alternative soil databases, outlining strategies to derive the absent
soil properties effectively.

When using any available soil dataset, it is important to check the detailed description (metadata) of the dataset to avoid

misinterpretation and errors in the models. Considerations such as consistent size limits for clay, silt, and sand content

classification as per the model's requirements, distinction between organic carbon and organic matter, the need for dry or moist
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bulk density, and similar details are vital. Understanding whether the model derives soil properties that already exist in the

dataset is essential, aiding in selecting the most precise parameters for the model's application.

When retrieving or deriving missing soil input data, it is crucial to consider: i) which dataset and prediction approaches can
offer physically plausible soil input data, and ii) the uncertainty associated with the derived soil input data for their appropriate
use in the environmental model. For computing physically consistent soil hydraulic property values, namely FC, WP, AWC,
and KS, it is plausible to use parameters of a model that describes soil water retention across the entire matric potential range.
The parameters of the VG model have been widely employed to derive water retention at specific matric potential values or
KS, hence can be used to derive physically plausible soil hydraulic properties. The static definition of FC could be replaced
with a dynamic one that considers a soil-specific matric potential at which the continuity of soil water is reduced or disrupted.
For the computation of the drainage dynamics-based AWC, the use of the VG model parameters is required for deriving both
FC and WP. When computing FC, WP, AWC, and KS using the predicted VG parameters, we maintain the physical
relationships among them, which is highly relevant in process-based modelling applications. Misuse of these parameters could
lead to flawed model outcomes, impacting policy-making and agricultural management decisions.

It is important to note that soil parameter uncertainty encompasses not only the uncertainty of the PTF but also that stemming
from the fitting of the VG model. The prediction uncertainty of soil properties varies significantly. It is essential to tailor its
treatment based on the specificities of the target environmental model, particularly when it is utilized as an initial static value,
in model calibration, or as a fixed input parameter.

The research emphasized the challenge of selecting suitable datasets and PTFs due to their abundance, providing quantitative
performance metrics to aid potential environmental modellers. The workflows and findings presented in the study offer
practical guidance for model setup and data preprocessing in various modelling endeavours across Europe, such as

hydrological simulations, assessment of soil health, land evaluation, crop modelling, and analysis of soil erosion risk among

others. The study’s methodology can be replicated-applied for soil databases not only in Europe but also in other regions or
global datasets, highlighting its potential for broader applicability in multiple modelling contexts worldwide. We encourage
the wider scientific and modelling community to use and adopt our recommended workflows to derive soil input parameters,

bridging gaps in data for broader utilisation in diverse modelling studies. The presented workflows could be further improved

by using a multi-model approach and applying geostatistical methods. The open-source library is available (see Code

availability section) for use and adoption to meet the user-specific need.

Code availability

The “get_usersoil_table()" function in the R package SWATprepR (Plunge, 2023) was developed for this study. It facilitates
the calculation of multiple soil parameters using PTF methods presented in the article. The functionality requires information
on soil depth, sand, silt, clay, and organic matter content. The functions use the input information and calculates other soil

parameters required for the SWAT+ model. The derivation of HSG is optional based on the KS of the least transmissive layer,
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depth to water impermeable layer, depth to high water table and information on the existence of any tile drains. The entire
package, source code, documentation, and installation instructions are openly accessible on the GitHub repository:
https://github.com/biopsichas/SWATprepR/ .

Data availability

6,583 samples of 1999 soil profiles, summing up to 35 % of the EU-HYDI dataset, are available upon request from the

European Soil Data Centre (ESDAC) at the European Commission Joint Research Centre. The entire dataset cannot be made

publicly available due to its legal restrictions.
restrietions: LUCAS TOPSOIL data can be accessed through ESDAC (European Commission Joint Research Centre, 2024;
Panagos etal., 2012, 2022). Local measured topsoil phosphorus data is private, only results of analysis and derived information
can be published.

Supplement link

Supplement is attached, the link will be added by Copernicus.
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