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Abstract.  

Oxygen deficiency zones (ODZs) in coastal seas can become hazardous to organisms and may have severe ecological and 10 

economic consequences for the environment, the fisheries, and the tourism industries. A tight interaction between ventilation 

and respiration governs marine oxygen levels. Regions with high primary production and a thin water column below the 

seasonal mixed layer are particularly prone to the formation of oxygen deficiency. In the study of Große et al. (2016) the 

critical parameters of the oxygen deficiency index (ODI) were identified as stratification and primary production during the 

formation of oxygen deficiency in the seasonally stratified regions of the North Sea. In order to approach realistic spatio-15 

temporal distributions of ODZs, Große et al. (2016) formulated a depth index serving as a proxy for the thickness of the water 

column below the mixed layer depth (MLD). Here we propose the further developed ODI to represent two differing 

hydrographic regimes, the North and the Baltic Seas, by using a density-based criterion of the MLD and the vertical extension 

of the water column between the seafloor and the bottom layer of the MLD. Moreover, we define the stratification status of 

the water column using continuous stratification periods of 30 days as our reference period for higher risks of developing 20 

ODZs. Different to Große et al. (2016), net primary production is not cumulated over the entire growing season but only over 

this reference period. With these modifications, the revised ODI offers intuitive, short-term forecasts on the areas at risk of 

developing oxygen deficiency in high spatio-temporal resolution for the coastal zone of the North and Baltic Seas. This allows 

an operational forecasting of ODZs to inform responsible authorities and civil services in advance. We propose an economic 

solution to assess oxygen conditions of the past, the present and test for the risk to developing ODZs in the near future. We 25 

are able to run all necessary simulations and calculations for this research on a simple laptop. We mostly used free and open 

software products and Open Data products. Our data set up consists of: a) Free available netCDF output files of the operational 

HBM-ERGOM model and b) free available data from the MARNET monitoring network, both operated by the Federal 

Maritime and Hydrographic Agency (BSH). 

https://doi.org/10.5194/egusphere-2023-3092
Preprint. Discussion started: 17 January 2024
c© Author(s) 2024. CC BY 4.0 License.



2 

 

1 Introduction 30 

Oxygen (O2) concentration have drastically declined over the last five decades (Breitburg et al., 2018; Oschlies, 2021) caused 

by a number of effects including anthropogenic climate forcing (Oschlies et al., 2018; Oschlies et al., 2017). Low levels of 

oxygen are documented for an increasing number of areas including the North and Baltic Seas (Hansson and Viktorsson, 2023). 

To gain a better understanding of regional oxygen dynamics and their impacts on ecosystem services (Bassett et al., 2019), the 

oxygen deficiency index (ODI) blueprint can be applied as a first step to forecast the development of Oxygen Deficiency Zones 35 

(ODZs). Since biogeochemical and physical processes shape the environment of marine ecosystems, a disequilibrium amongst 

those processes, especially in coastal and shelf seas, may cause severe environmental threats and economic impacts to the 

fisheries and the tourism (Laffoley and Baxter, 2019). For example, potentially harmful events, such as excessive algae blooms 

followed by low oxygen conditions and/or hypoxia can cause fish-kills. Low bottom oxygen is also harmful to sedentary 

benthic and demersal organisms, since most of them cannot escape hypoxic areas (Pörtner and Knust, 2007; Levin and Gallo, 40 

2019). Although oxygen is essentially a “by-product” of plants’ photosynthesis, it is vital for oxygenic respiration and 

metabolic processes of living organisms on our planet, above and underwater (Pörtner and Knust, 2007). In 2003, the Oslo and 

Paris (OSPAR) Commission defined low oxygen (O2) conditions by O2 concentrations of 6 mg O2 L-1 (187.5 µmol L -1) or 

below. Pörtner and Knust (2007) suggested that even higher concentrations than the OSPAR threshold may harm marine 

organisms. It is thus necessary to gain a better understanding on the drivers and processes that determine the risks of  developing 45 

ODZs now and for a future (Oschlies et al., 2017; Breitburg et al., 2018; Oschlies et al., 2018) with decreased marine oxygen 

availability. 

Conditions that may lead to the development of ODZs in the North- and Baltic Seas are sluggish ventilation, stratification, and 

excessive sinking out of organic material to the seafloor due to enhanced primary production (Hansson and Viktorsson, 2023). 

Shallow coastal waters are often intermittently stratified, creating a vertical layering of the water column, as a result of the 50 

formation of vertical gradients in density (a function of temperature and salinity and/or stratification due to high load of organic 

matter  (Huthnance et al., 2022)). Especially in onshore and near-coastal regions, the low-oxygenated, denser offshore waters 

remain near the seafloor (Huthnance et al., 2022). Sediment respiration favours rapid oxygen depletion of this so-called 

‘hypoxic carpet’ (Carstensen and Conley (2019)). Very often, a persistent pycnocline limits the export of oxygen down to the 

bottom mixed layer (BML). As long as this condition is maintained, very limited/little exchange with the water-layers above 55 

will occur until stratification erodes. 

Große et al. (2016) first proposed an indicator for the risk of the formation of oxygen deficiency in the North Sea. They 

identified three key factors governing the formation: continuous water column stratification as a prerequisite preventing 

ventilation, autochthonous organic matter (i.e., from primary production) and its sinking as the main reason for O2 

consumption.  The authors determined the duration of the stratification period, primary production and bottom depth as the 60 
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key parameters to define an oxygen deficiency index (ODI) for the North Sea. Bottom depth served as a proxy for the thickness 

of the water column below the MLD. 

Here we adapt the formulation of these key parameters in order to represent the North and include the Baltic Seas which 

harbours distinct environmental characteristics. Circulation in North Sea to the north-western side of Germany is dominated 

by tides and has an open connection to the Atlantic Ocean via the English Channel and the Norwegian Seas. Temperature 65 

differences between the warm water from the English Channel meeting with the cold oceanic waters advected from the Nordic 

Seas, are the main cause for stratification. However, high salinity waters might flow inshore, whilst low salinity waters might 

flow offshore, generating also counter directed currents and influence hydrodynamics particularly where these two-ocean 

currents meet each other.  Conversely, the intra-continental character of the Baltic sea is rather non-tidal and connected to the 

North Sea only by narrow passages through the Danish sounds and Danish Strait (Zeiler et al., 2008). Moreover, the Baltic 70 

Sea shows salinity gradients from the North to the South and one from the West to the Eastern Baltic Proper. Those shifts in 

salinity are said to be the main reason there for stratification and prevent ventilation of the deep waters. (Hansson and 

Viktorsson, 2023). As stated by Hansson and Viktorsson (2023), Major Baltic Inflows (MBI) of oxygenated North Sea waters 

became rare in the last years. Only if the water volume and the density of the MBI is large enough to bypass the shallow sills 

of the several Baltic basins, oxygen-rich waters may sink to the bottom and (re-)supply O2 to the oxygen-depleted bottom 75 

waters (Hansson and Viktorsson, 2023).  

As for the North Sea and for the Baltic Sea, the consequences of ODZs on the ecosystem should also take into account the 

frequency and the duration of ODZs. In addition, ODZs should also be considered in terms of their intensity and spatial extent. 

To determine latter ones, we need both, temporally and spatially highly resolved data. Although the observational data 

availability from environmental monitoring has improved over the last years, measurements still lack sufficient temporal and 80 

spatial coverage to fully represent variability across different temporal and spatial scales. A good and economic solution to 

address this limitation is the comparison of ecosystem model outputs with ‘real’ observational monitoring data. 

We apply the operational model system of the Federal Maritime and Hydrographic Agency (BSH; (Brüning et al., 2014; 

Brüning et al., 2021; Neumann, 2000) to display modelled bottom oxygen. We further developed for both regimes, the North 

Sea and the Baltic Sea, the ODI (Große et al. (2016) to determine the temporal and spatial distribution of ODZs. To validate 85 

our (forecasting/hindcasting) ODI output(s), we compare our ODI calculations against the near real time Marine Environmental 

monitoring network (MARNET) observational data on six stations in the North Sea and four stations in the Baltic Sea (Table 

1, Marnet (2018-2023). The accuracy of our ODI output may in future help to identify the area, spread and temporal evolution 

of ODZs, which may assist the planning of research cruises and periodical sampling.  

Our modified ODI addresses the following limitations of the HBM-ERGOM model: Foremost, the operational BSH model 90 

system is limited to 120-h-forecasts due to the limited forecast length of reliable meteorological forcing data. Besides that, we 

wanted a procedure, which is independent of specific model versions and types. Therefore, we developed an independent tool, 
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the ODI (blueprint) toolbox, that neither interfere with the model’s source code, nor required development as an additional 

compulsory module of HBM-ERGOM.  

Additionally, we were looking for a fast application and simple analyses, reproducing interpretable, reliable results. Within 95 

the framework of a broader application, we further aim for comparable results amongst different environmental regimes. As 

such, system insights can help to identify dynamic tendencies and critical tipping points, which as a result might help to choose 

points for action. Moreover, we see the potential of the ODI to forecasting the risk of developing ODZs in the near future in 

our seas, which are not covered yet by the current monitoring platforms. In addition, all this may mean that the parameter set-

up in ecosystem models can be better narrowed down and constrained in future. Just like the temporal and spatial dependencies 100 

and time scales of biogeochemical cycles, such as sinking out of organic matter and remineralisation at the seafloor. 

2 Methods 

2.1 Development of a common Mixed Layer Depth (MLD) formulation for the North and Baltic Seas 

Since salinity is a key control of stratification in the Baltic Sea, we had to adapt the ODI calculation of Große et al. (2016) by 

employing an MLD criterion accounting for both temperature and salinity, making it applicable to both the North and the 105 

Baltic Seas. Thus, we decided to use the density-based criterion after De Boyer Montégut et al. (2004). Their criterion is 

defined as a threshold value of temperature (∆T = 0.2 °C) or potential density (∆σθ = 0.03 kg m-3) from a near-surface value at 

a reference depth (Zref = 10 m). This means that the MLD is situated at the deepest water column layer, where the density 

difference between the local potential density and the potential density at 10 m water depth is less than 0.03 kg m-3. Moreover, 

we implemented the MLD formulation according to Millero and Huang (2009) by applying the corrected values in the 110 

corrigendum according to Millero and Huang (2010). 

 

2.2 Modification of the Oxygen Deficiency Index (ODI) 

All quantities for the ODI calculation are extracted from the operational HBM-ERGOM model output. The ODI stays within 

the range of 0 to 1, with values close to 1 indicating a high risk of oxygen deficiency formation, whilst values closer to 0 115 

indicate a low probability that an ODZ will form. 

The modified ODI equation for the forecast day for each grid cell, similar to the original one (Große et al. (2016), combines 

three core indices: the stratification Index ( 𝐼𝑠𝑡𝑟𝑎𝑡), the depth index ( 𝐼𝑑𝑒𝑝𝑡ℎ) and the net primary production index ( 𝐼𝑁𝑃𝑃) . 

The ODI assumes that stratification (represented by 𝐼𝑠𝑡𝑟𝑎𝑡  ) is the necessary prerequisite for an ODZ to form, while the 

combination of the water column thickness below the MLD (represented by 𝐼𝑑𝑒𝑝𝑡ℎ ) and the organic matter production 120 

https://doi.org/10.5194/egusphere-2023-3092
Preprint. Discussion started: 17 January 2024
c© Author(s) 2024. CC BY 4.0 License.



5 

 

(represented by 𝐼𝑁𝑃𝑃) eventually determine whether O2 deficiency occurs. We then apply 𝐼𝑠𝑡𝑟𝑎𝑡  to the weighted sum of 𝐼𝑑𝑒𝑝𝑡ℎ 

and 𝐼𝑁𝑃𝑃 which equals the numerical value 1.  

 

The formula of the ODI in its current version reads as 

 

𝑂𝐷𝐼(x, y, 𝑡0) = ∑(𝑤𝑑𝑒𝑝𝑡ℎ𝐼𝑑𝑒𝑝𝑡ℎ(𝑥, 𝑦, 𝑡0),  𝑤𝑁𝑃𝑃𝐼𝑁𝑃𝑃(𝑥, 𝑦, 𝑡0)) ∗ 𝐼𝑠𝑡𝑟𝑎𝑡(x, y, 𝑡0), 

 

(1) 

 125 

We choose one formulation within the overall highest correlation coefficients between the bottom-oxygen model output and 

the calculated ODI by considering the fine temporal resolution of the ODI. Like this we defined the weights of 1/3 for  𝐼𝑑𝑒𝑝𝑡ℎ 

and 2/3 for 𝐼𝑁𝑃𝑃 and obtained our ODI33rev configuration.  

This formulation is now applied to compare the observed sensor-based oxygen concentrations and the ODI: We considered 

time series ranging from 1st January 2018 until 31st December 2022, thus a total of five years for both regimes. Correlation 130 

coefficient values close to -1 indicate the highest agreement between deepest sensor oxygen saturation and the ODI at the 

platforms of Table 1 and Table 2. During the course of this research, we tested several set-ups, which are shown in the 

supplements section. The ODI33rev configuration is presented here as an example in this study. 

 

2.3 Three subindices of the ODI 135 

According to the key parameters to calculate the ODI defined by Große et al. (2016), we further extended the three subindices, 

given by the stratification index ( 𝐼𝑠𝑡𝑟𝑎𝑡), the depth index ( 𝐼𝑑𝑒𝑝𝑡ℎ)  and the net primary production index ( 𝐼𝑁𝑃𝑃). The  ODI by 

Große et al. (2016) was originally developed only for hindcasts and nowcasts.  In contrary to our modified ODI Toolbox, 

which is applied in the operational mode to forecasting the development of ODZs. Therefore, we had to adjust stratification 

index, depth index and net primary production index as outlined below.  140 

2.3.1 Stratification Index ( 𝑰𝒔𝒕𝒓𝒂𝒕)  

For each model grid and each day within the period [𝑡0 − ∆𝑡𝑟𝑒𝑓 , 𝑡0], where we define the length of  ∆𝑡𝑟𝑒𝑓 with 30 days and  𝑡0 

as our forecasting day, the stratification status of the water column is determined using the density-based criterion (to account 

for the effects of 𝑇 and 𝑆 on stratification), with 𝑡 ∈ [𝑡0 − ∆𝑡𝑟𝑒𝑓 , 𝑡0]. 

The stratification index over the reference period is calculated: 145 

𝐼𝑠𝑡𝑟𝑎𝑡(𝑡0, ∆𝑡𝑟𝑒𝑓) =  
1

∆𝑡𝑟𝑒𝑓
∫ 𝐼𝑠𝑡𝑟𝑎𝑡

∗ (𝑡) 𝑑𝑡
𝑡0

𝑡0−∆𝑡𝑟𝑒𝑓
 , (2) 
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We also define the water column as stratified (Istrat
∗ ), if, first of all more than one MLDs are present in the water column and 

additionally the index of the deepest MLD layer, hereafter called Bottom Mixed Layer Depth (BMLD) is smaller than the 

index of the modelled bathymetric bottom layer.  The BMLD corresponds to the bottom layer of the pycnocline. 

 

𝑰𝒔𝒕𝒓𝒂𝒕
∗ (𝒕) = {

𝟏      𝒊𝒇 𝒔𝒕𝒓𝒂𝒕𝒊𝒇𝒊𝒆𝒅 
𝟎     𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆       

,  (3) 

 150 

 

Equation (1) accounts only for the total number of days when the water column according to Equation (2) over the reference 

period is stratified. If an extended period of continuous stratification is replaced by a shorter period of continuous non-

stratification directly prior toa date within the forecast, the water-column might still be stratified, or, in the case sporadically 

extreme events, i.e., storm-surges, it might not. Thus, we also have a look into short-term events, prior to case sporadically 155 

extreme events, i.e., storm-surges, it might not. Thus, we also have a look into short-term events, prior to a date within the 

forecast, and we calculate the final stratification indexes over two different reference periods. We consider a shorter 

reference period given by 10 days prior to a specific date and a longer reference period represented by 30 days prior to that 

date. This approach might also help to consider the effects on water column stratification in the case of extreme mixing 

events, directly prior to a date within the forecast, especially in more dynamical and shallower water, which helps to prevent 160 

overestimation of  𝐼𝑠𝑡𝑟𝑎𝑡 . Combining these two indices, the stratification index for the forecast day is the minimum of both: 

 

𝐼𝑠𝑡𝑟𝑎𝑡(𝑡0) = 𝑚𝑖𝑛(𝐼𝑠𝑡𝑟𝑎𝑡(𝑡0, 10), 𝐼𝑠𝑡𝑟𝑎𝑡(𝑡0, 30)) , (4) 
 

2.3.2 Depth index ( 𝑰𝒅𝒆𝒑𝒕𝒉)  

For the calculation of the depth index (𝐼𝑑𝑒𝑝𝑡ℎ) we only include the stratified days when 𝐼𝑠𝑡𝑟𝑎𝑡
∗ (𝑡) = 1 in order to prevent 165 

(implicit) double-accounting of stratification in both 𝐼𝑠𝑡𝑟𝑎𝑡  and 𝐼𝑑𝑒𝑝𝑡ℎ. It should further be noted that this formulation also 

implies 0 ≤ 𝐼𝑠𝑡𝑟𝑎𝑡(𝑡0) < 1. Moreover, we point out that the occurrence of the MLD being smaller than the water column 

depth (H), implies 𝑀𝐿𝐷(𝑡) < 𝐻. 

To fulfil these conditions, we are introducing the critical thickness (𝐷𝑐𝑟𝑖𝑡), where 𝐼𝑠𝑡𝑟𝑎𝑡
∗ (𝑡) = 1 𝑎𝑛𝑑 𝐷𝑐𝑟𝑖𝑡 = 1 𝑚. The critical 

thickness only allows for a maximal depth index (𝐼𝑑𝑒𝑝𝑡ℎ = 1), if the difference between the bathymetric bottom depth and the 170 

BMLD is ≤ 𝐷𝑐𝑟𝑖𝑡 . 
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The depth index is given as 

𝐼𝑑𝑒𝑝𝑡ℎ
∗ (𝑡) =

𝑚𝑖𝑛(𝐻 −  𝐷𝑐𝑟𝑖𝑡 , 𝑀𝐿𝐷(𝑡))

𝐻 − 𝐷𝑐𝑟𝑖𝑡

∙ 𝐼𝑠𝑡𝑟𝑎𝑡
∗ (𝑡) , (5) 

 

The depth index for the forecast day within the reference period is given by: 

𝑰𝒅𝒆𝒑𝒕𝒉(𝒕𝟎, ∆𝒕𝒓𝒆𝒇) =  
𝟏

∆𝒕𝒓𝒆𝒇

∫ 𝑰𝒅𝒆𝒑𝒕𝒉
∗ (𝒕) 𝒅𝒕

𝒕𝟎

𝒕𝟎−∆𝒕𝒓𝒆𝒇

 , (6) 

2.3.3 Net primary production index ( 𝑰𝑵𝑷𝑷)  175 

In order to check for the potential to forecast the development of ODZs, we changed the formulation of 𝐼𝑁𝑃𝑃. The net primary 

production (NPP) index for the forecast day is derived from the time-averaged NPP 

𝑁𝑃𝑃 =  
1

∆𝑡𝑟𝑒𝑓

∫ 𝑁𝑃𝑃(𝑡) 𝑑𝑡,

𝑡0

𝑡0−∆𝑡𝑟𝑒𝑓

 (7) 

and the NPP integrated over the whole water column (z), 

𝑁𝑃𝑃(𝑡) =  ∫ 𝑁𝑃𝑃(𝑡, 𝑧)𝑑𝑧
0

−𝐻
, (8) 

 

then reads as: 180 

𝐼𝑁𝑃𝑃(𝑡0) =   𝑚𝑎𝑥 (0, 𝑚𝑖𝑛 (1,
𝑁𝑃𝑃 − 𝑁𝑃𝑃𝑚𝑖𝑛

𝑁𝑃𝑃𝑚𝑎𝑥 −  𝑁𝑃𝑃𝑚𝑖𝑛

)), (9) 

 

For 𝑁𝑃𝑃𝑚𝑖𝑛  and 𝑁𝑃𝑃𝑚𝑎𝑥 , we use the minimum and maximum over the reference period at each model grid. Variations of 

𝐼𝑁𝑃𝑃  calculations are in the Supplements. Variations were applied in different test suites for different needs to determine ODZs, 

e.g., hindcasts, seasonal hindcasts, special areal forecasts and similar. 

2.4 Operational Model HBM-ERGOM 185 

This study is based on the physical HIROMB-BOOS (HBM) model coupled to the biogeochemical ERGOM model (Ecological 

ReGional Ocean Model, (Neumann, 2000)) at the Federal Maritime and Hydrographic Agency (BSH). The setup and validation 

of the (free-run) operational model system has been published by Brüning et al. (2021) and on the BSH website 

(https://www.bsh.de/DE/THEMEN/Modelle/modelle_node.html). The BSH model system consists of two two-way nested 

grids. The coarse grid with up to 36 vertical layers and a horizontal resolution of 3 nautical miles covers the North Sea and 190 

Baltic Sea from approximately 4°W to about 30°E, with the North Sea from approximately 49.5°N to about 61°N and the 
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Baltic Sea from approximately 53°N to about 65.5°N. The fine grid with up to 25 vertical layers and a horizontal resolution of 

0.5 nautical miles covers the German coastal waters, defined as area roughly between 6°E to 15°E and 53°N to 56.5°N. 

Although the total number of the vertical layers differs, the vertical resolution of both grids is identical (Brüning et al., 2014; 

Brüning et al., 2021). Thus, for simplicity and performance speed we merged the fine and the coarse resolution grids into one 195 

common grid, resulting in 25 common depth levels. The ERGOM model was originally developed by Neumann (2000) for the 

Baltic Sea but has been adapted for the application to the North Sea (Maar et al., 2011). In its current version at the BSH, 

ERGOM runs with 15 prognostic state variables and calculates diagnostically chlorophyll a, Secchi depth, pH and pCO2 

(Doron et al., 2011; Doron et al., 2013; Neumann et al., 2015). ERGOM also contains a module for carbon and total alkalinity 

after (Schwichtenberg et al., 2020). The operational bio-geochemical model output also includes the oxygen concentration. 200 

Oxygen saturation as well as the extracted bottom oxygen saturation and bottom oxygen concentration are derived via 

postprocessing routines. We used the bottom oxygen tracers to estimate the overall performance and dynamics of the ODI 

formulations. We fed the ODI calculations with netCDF output files of HBM-ERGOM, where we extracted vertical profiles 

of salinity and temperature to calculate the MLD. Moreover, we used simulated net primary production that feeds into 𝐼𝑁𝑃𝑃 

index. 205 

 

2.5 MARNET monitoring data  

For our analysis presented here, we compare near-bottom oxygen saturation of six sensor-based measurement platforms in the 

North Sea and four in the Baltic Sea, shown in Figure1 and Table 1. Datasets (Marnet, 2018-2023) in netCDF format were 

downloaded from MARNET (https://www.bsh.de/DE/DATEN/Klima-und-Meer/Meeresumweltmessnetz/messnetz-210 

marnet_node.html) and missing observational data might be due to maintenance, and/or malfunction of the platform and/or 

the sensor. Thus, for processing the dataset we filtered each station for potential outliers and unreasonable data. In the 

following, we only consider oxygen saturation data with a quality flag = 1 (good date) and quality flag = 2 (probably good 

data). We chose the deepest sensor measurement point in accordance with this data selection (Table 1). Since the datasets come 

in hourly measurements, observations were condensed to daily means beforehand. Unfortunately, none of the stations covered 215 

all days within the whole timeseries period, 1st January 2018 until 31st December 2022, although Kiel Lighthouse (KielLH) 

delivered good data coverage over five years. Furthermore, we chose the stations, that hinted at three seasonal events. 

Preselection and data aggregation was done with CDO (Climate Data Operators version 2.0.4; https://mpimet.mpg.de/cdo) and 

Python (versions 3.10 and 3.11.).   

220 
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Table 1: Marine Environmental monitoring network (MARNET) operated by the BSH used for validation. Five stations for the 

Baltic Sea and six stations for the North Sea; sensor 1 depth is deepest depth with evaluable oxygen concentration data. 

Observational Data (Marnet, 2018-2023) have been collected from the (https://www.bsh.de/DE/DATEN/Klima-und-

Meer/Meeresumweltmessnetz/messnetz-marnet_node.html).  

Station Latitude Longitude Platform Name Region 
Depth s1 
(sensor 1) 

MePDS 12.7°E 54.7°N Measuring Pile Darss Sill Baltic Sea 19 m 

ArkBB 13.867°E 54.883°N Arkona Basin Buoy Baltic Sea 40 m 

FehBB 11.15°E 54.6°N Fehmarn Belt Buoy Baltic Sea 24 m 

KielLH 10.267°E 54.5°N  Kiel Lighthouse Baltic Sea 13 m 

FinoPF1 6.583°E 54°N FINO1 Platform  North Sea 25 m 

FinoPF3 7.158°E 55.195°N FINO3 Platform North Sea 18 m 

NSBII 6.333°E 55°N North Sea Buoy II North Sea 35 m 

NSBIII 6.783°E 54.683°N North Sea Buoy III North Sea 35 m 

TWEms 6.35°E 54.167°N Unmanned Lightship TW Ems North Sea 30 m 

GB 7.45°E 54.1667°N Unmanned Lightship German Bight North Sea 30 m 
 225 
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Figure 1: Map of the study region. The greyish area, is showing approximately the whole model domain of the HBM-ERGOM, 

ranging from the North Sea to the Baltic Sea; framed yellow box with arrow zooming approximately into the area, to show the 

location of the six platforms/stations in the North Sea and four stations in the Baltic-Sea used for validation (Table 1). Graphics were 

made using QGIS, basemap; credits to ESRI Satellite (ArcGIS/World_Imagery). 230 

 

2.6 Data analyses and statistics 

Pre-calibration of the ODI calculations and validation therein was done with the HBM-ERGOM model products of bottom 

oxygen saturation (boxy_sat, Figure 2) and bottom oxygen concentration (not shown here), as well as net primary production 

(NPP; Figure 3) and calculated mixed layer depth (MLD; Figure 4). We calculated the correlation coefficients between the 235 

ODI and the modelled bottom oxygen saturation at three stations in the North Sea (NSBII, NSBIII and TWEms, Figure 2a-c) 

in the period between 1st October 2018 and 30st September 2019. The bottom oxygen saturation calculated with HBM-ERGOM 
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shows the low and high oxygen values in a proximity to the bottom layer, which is defined as the last depth level at each grid 

cell according to the bathymetry of the model (Figure 2d). Overall, the calculated ODI corresponds well with the Oxygen 

zones, where low ODI values toward 0 correspond to higher bottom saturation values indicating a lower risk for developing 240 

ODZs (Figure 2e). 
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Figure 2: Panel a-c: Comparison of modelled bottom oxygen saturation with the ODI33rev showing Pearsons Correlation 

Coefficients in the period of 1st October 2018 to 30th September 2019); Panel d: HBM-ERGOM modelled bottom oxygen saturation 

– the results are rounded down to the next lower integer value; with panel e: Oxygen Deficiency Index (ODI), values close to 1 show 250 
higher probability of developing an ODZ and vice versa; (simulation day: 8th August 2021). 
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Figure 3: Comparison of - top panel: HBM-ERGOM modelled net primary production (NPP [mg m-3 d-1]) – values are vertically 255 
integrated over the whole water-column at each grid-cell and the results are rounded down to the next lower integer value; with 

bottom panel: net primary production index (INPP), values close to 1 show higher probability of higher NPP and vice versa; 

(simulation day: 8th August 2021). 
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Figure 4: Comparison of - top panel: calculated mixed layer depth (MLD) – the results are rounded down to the next lower integer 

value; middle panel: stratification index (Istrat), values close to 1 show higher probability of developing stratification and vice versa; 

bottom panel: the depth index (Idepth) represents the water column thickness below the MLD and is given inter alia by the product 

of the MLD and Istrat; (simulation day: 8th August 2021).  265 

 

After the pre-calibration we started to calibrate different ODI configurations over a 5 years timeseries and compared the 

calibrations to the modelled bottom oxygen saturation and near real time data of the MARNET stations shown in Table 1. We 

calculated the Pearson’s Correlation Coefficient over the complete timeseries, by considering only the prefiltered available 

data points. This has been done for simplicity due to the scarcity of data, we run the statistic if we had at least 10% of valid 270 

datapoints regarding to the whole timespan of the timeseries (1st January 2018 until 31st December 2022). In the supplement 

we show the correlation coefficients of both sensors over the whole range of ODI setups at all monitoring stations (Supplement 

Tables 2,3, 5,6 and Figures therein) according to Supplement Table 1.  

Nevertheless, calculating statistics for shorter time periods within the one-year period has a significant impact on the 

correlation coefficients. In the supplement we show the effect of annual statistics on the different ODI configurations at KielLH 275 

platform considering all time-lags (Supplement Figure 2,3 and Supplement Table 4) and smaller sampling sizes, i.e., just one 

summer season per year, can rise significantly the relationship between the parameters in question (not shown here, Marki in 

prep.). Here we mainly focus on the agreement of 2 seasonal patterns, for simplicity hereafter called winter- and summer 

season. The winter (November to February) and the summer (March to October) season and/or cyclic patterns between the 
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ODI and the sensor based near bottom oxygen saturation measurements. Both seasonal trends, in the winter with low and in 280 

the summer with high oxygen saturation values shown in the observations can be found in the ODI at all stations ( Figure 5a-

f). ODI values close to 0 indicate a low risk, whilst ODI values close to 1 indicate a high risk of developing an ODZ ( Figure 

5a-f). A negative correlation coefficient (r) between the ODI and the observations significate that, with declining measured 

oxygen saturations the ODI values will raise and the risk of developing a ODZ becomes higher, and vice versa. In contrary, a 

positive correlation coefficient indicates that with declining oxygen saturations, the ODI values will also decline. The further 285 

away the correlation value (r) between the ODI and the measurements, the stronger is the relationship between these two 

parameters. 

Data statistics and data visualisation was performed in Python (v 3.11.x) using the Python packages numpy (v 1.25.x) and 

pandas (v 2.0.x) 

3 Results 290 

3.1 North Sea 

At each of the six MARNET stations in the North Sea, the ODI clearly displays two main seasonal patterns. In winter season, 

at each station the oxygen saturation is higher than in summer. Summer season oxygen deficiency can reach levels below 30%, 

as on platform NSBII and FinoPF1. The ODI displays very well the pattern of both seasons ( Figure 5a-f), except at FinoPF1 

with ODI values barely reaching 0.2 ( Figure 5d), and a very weak negative correlation coefficient between the ODI and the 295 

observed oxygen saturation (r = -0.058; Table 2: lag0). Moreover, the lowest oxygen saturation in the year 2020 was not 

captured by the ODI. In contrary, the ODI seems to capture quite well the Oxygen dynamics at FinoPF3  Figure 5e), although 

the measurements are rather scarce Oxygen saturation at NSBII and NSBIII, is reproduced by the ODI very well ( Figure 5a,b), 

especially the lowest oxygen concentration at the end of the summer season in 2022 at station NSBII ( Figure 5a). Moreover, 

platform NSBII has a good negative correlation coefficient (r = -0.636; Table 2: lag0) whilst NSBIII owns a moderate 300 

correlation coefficient (r=-0.475; Table 2: lag0). At platform GB the ODI seems to overestimate the risk of developing an ODZ 

( Figure 5f), although the negative correlation coefficient is moderate (r=-0.483; Table 2: lag0). Platform TWEms has the 

fewest measurements of all platforms, however, the seasonality is reproduced with the ODI and peaks of lowest Oxygen 

saturation measurements can still be identified ( Figure 5c). Generally, at first sight it looks like that the seasonal and/or cyclic 

ODI timeseries always seems to be ahead of the measurement timeseries ( Figure 5a-f). 305 
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310 

 
Figure 5: Comparison of daily averaged oxygen saturations at deepest sensor depths (sensor1) and modelled bottom oxygen 

saturation (at the deepest depth layer of the model) with the Oxygen Deficiency Index (ODI) over five years; Timeseries starts at 

1st January 2018 and ends 31st December 2022; North Sea stations (a) NSBII, (b), NSBIII, (c) TWEms, (d) FinoPF1, (e) FinoPF3,  

(f) GB according to Table 1;  all data for observations taken from MARNET (https://www.bsh.de/DE/DATEN/Klima-und-315 
Meer/Meeresumweltmessnetz/messnetz-marnet_node.html); all model simulations from the operational HBM-ERGOM model at 

the BSH (https://www.bsh.de/EN/TOPICS/Operational_modelling/Ecosystem/ecosystem_node.html); lack of data might be due to 

maintenance and/or malfunction of the platform and/or sensor.  

3.2 Baltic Sea 

The seasonal trends clearly shown in the observations at station FehBB and MePDS, are reproduced by the ODI rather as 320 

cyclic trends, but both showing also lowest values towards the end of each year ( Figure 6a, b, respectively).  Both stations 
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exhibit a rather low but negative correlation, FehBB: r=-0.35 and MePDS: r=-0.32, between the observations and the ODI 

(Table 2: lag0). ODI levels around -0.7, indicating a rather high risk of developing an ODZ. 

In contrast, the seasonal cycle of KielLH is very prominent and appears clearly in the observations, as well as in the ODI ( 

Figure 6d). Highest ODI values close to -0.8 (high risk) and values close to 0 (low risk), correspond to low and high oxygen 325 

saturation levels in the observations, respectively ( Figure 6d), whilst showing a moderate negative correlation of r = -0.39 

between the ODI and the observations (Table 2: lag0). Although the Arkona Basin Buoy (ArkBB) measurement show seasonal 

trends, the ODI shows rather cyclic trends, that are the strongest amongst all platforms with almost four - winter, spring, 

summer, autumn - seasonal peaks/year ( Figure 6c). Therefore, the correlation coefficient is also weak (r = - 0.16; Table 2: 

lag0). Moreover, ArkBB is the only platform having a positive correlation between the ODI and the observations (Table 2: 330 

lag0). Moreover, at ArkBB the ODI never reaches 0 and seldom reaches 0 at MePDS, FehBB, pointing towards permanent 

Oxygen depletion at the bottom layers ( Figure 6a,b,c). Also in the Baltic Sea, it looks like that the seasonal and/or cyclic ODI 

dynamics seem always be ahead when compared to the measurements ( Figure 6a-d). 
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Figure 6: Comparison of daily averaged oxygen saturations at deepest sensor depths (sensor1) and the Oxygen Deficiency Index 

(ODI) over five years; Timeseries starts at 1st January 2018 and ends 31st December 2022; Baltic Sea stations (a) FehBB, (b), 

MePDS, (c) ArkBB, (d) KielLH, according to Table 1;  all data for observations taken from MARNET 340 
(https://www.bsh.de/DE/DATEN/Klima-und-Meer/Meeresumweltmessnetz/messnetz-marnet_node.html); lack of data might be 

due to maintenance and/or malfunction of the platform and/or sensor.  

3.3 Forecasting potential of the ODI? 

When plotting both timeseries, the ODI and the observational data over the five years’ time span, apparently, we can already 

visually see seasonality and/or cycles in the observations, as well as in the ODI ( Figure 5 and  Figure 6). In order to test for 345 

the potential of the ODI to forecasting the development of ODZs we applied so called ‘lags’, which are given by a fixed amount 

of passing time, in our case days. We plotted the ODI against the lagged observational data and tested lags between 5 and 120 

days (Table2: lag5 to lag120). Lagging the observational data means that we shifted the timeseries backwards for the lag 

amount of the passed days. Like this we plot observational data that happened later in time against the ODI, whose start date 

we kept static to the 1st January of each corresponding year. In the supplement we exemplarily show each annual timeseries of 350 

all 5 years at KielLH. We could identify well defined time-window regarding the ODI33rev configuration between 45 and 75 

days, where the probability of forecasting ODZs is significantly higher when compared to lag 120 (Supplement Figure 2 and 

Supplement Table 4, ODI33rev configuration). After that, we applied the same procedures to the penta-year time series., and 

results show, that lag60 at KielLH, followed by lag75 and lag45 indicate the highest probability to develop and ODZ ( Figure 

6d and Table 2). This is in agreement with the annual timeseries at KielLH exemplarily shown in the supplement 120 355 

(Supplement Figure 2 and Supplement Table 4, ODI33rev configuration).  

All correlation coefficients improve when lagging the observations against the ODI, but improvements are generally slightly 

higher at the Baltic Sea, than at the North Sea platforms, except FinoPF1 which increased at lag90 more than 400%, when 
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compared to lag0 (Table 2). Moreover, in contrary to the North Sea, the highest improvement of the relationship between the 

ODI and the observational data timeseries in the Baltic Sea are rather seen in the later lags (Table 2: respectively), starting at 360 

60 days (KielBB and FehBB,), 75 days (MePDS) up to 105 days (ArkBB). Moreover, at platform ArkBB the positive 

correlation turned negative after lag10, but is still considered as weak (r = -0.29; Table2: lag105). Moderate negative correlation 

coefficients show MePDS (r = -0.51; Table2: lag75) and FehBB (r = -0.54; Table 2: lag60), whilst KielBB has the highest 

negative correlation coefficient (r = -0.70; Table 2: lag60) in the Baltic regime which we consider as good. Whilst FinoPF1 

has its highest negative correlation coefficient at lag90, it is still the lowest amongst the North Sea platforms. In contrary, 365 

TWEms has its highest moderate negative correlation coefficient at lag5 (r = -0.41; Table 2), but barely increased when 

compared to lag0 (r = -0.35; Table 2). A special situation can be seen at NSBIII, which shows two equally moderate negative 

correlation coefficients, one at lag30 and the other one at lag60 (r = -0.58; Table 2) with a slightly decline in-between at lag45 

(r = -0.57; Table 2). Also, moderate negative coefficients have FinoPF3 (r = -0.40; Table 2: lag45) and GB (r =-0.53; Table 2: 

lag30). The highest negative correlation coefficient amongst all platforms is given by NSBII at lag30 (r = -0.72; Table 2). 370 

Panels a-j of Figure 7 show the graphical output to this paragraph. 
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Figure 7: Highest correlation coefficients between the lagged (shifted) daily averaged oxygen saturation timeseries at deepest sensor 

depths (sensor1) and the Oxygen Deficiency Index (ODI) over five years; ODI timeseries starts always at 1st January 2018; North 

Sea stations (a) NSBII, (b), NSBIII, (c) TWEms, (d) FinoPF1, (e) FinoPF3,  (f) GB and Baltic Sea and Baltic Sea stations (g) FehBB, 

(h), MePDS, (i) ArkBB, (j) KielLH, according to Table 1;  all data for observations taken from MARNET 385 
(https://www.bsh.de/DE/DATEN/Klima-und-Meer/Meeresumweltmessnetz/messnetz-marnet_node.html); lack of data might be due 

to maintenance and/or malfunction of the platform and/or sensor. 

 

Table 2: Pearson’s Correlation Coefficients (Corr Coef) between Oxygen Deficiency Index (ODI33rev) and the observed oxygen 

saturation of sensor 1 at each station the ODI Lag values display the number of days by which the observations were shifted forward 390 
in time, see exemplary  Figure 5,6 and 7. 

Station 

(sensor 1) ODI lag0 lag5 lag10 lag15 lag30 lag45 lag60 lag75 lag90 lag105 lag120 

MePDS ODI33rev -0.32  -0.31  -0.30  -0.32  -0.36  -0.47  -0.50  -0.51  -0.44  -0.32  -0.12  

ArkBB ODI33rev 0.16  0.09  0.03  -0.02  -0.06  -0.06  -0.09  -0.18  -0.28  -0.29  -0.20  

FehBB ODI33rev -0.35  -0.36  -0.37  -0.38  -0.43  -0.48  -0.54  -0.53  -0.50  -0.43  -0.32  

KielLH ODI33rev -0.39  -0.45  -0.51  -0.55  -0.62  -0.66  -0.70  -0.69  -0.57  -0.40  -0.23  

FinoPF1 ODI33rev -0.06  -0.12  -0.12  -0.16  -0.11  -0.13  -0.11  -0.09  -0.23  -0.13  0.01  

FinoPF3 ODI33rev -0.32  -0.30  -0.28  -0.25  -0.33  -0.40  -0.35  -0.24  -0.05  0.13  0.20  

NSBII ODI33rev -0.64  -0.66  -0.70  -0.71  -0.73  -0.72  -0.61  -0.49  -0.35  -0.17  0.03  

NSBIII ODI33rev -0.47  -0.50  -0.52  -0.52  -0.58  -0.57  -0.58  -0.53  -0.38  -0.23  -0.08  

TWEms ODI33rev -0.35  -0.39  -0.38  -0.35  -0.33  -0.39  -0.41  -0.39  -0.35  -0.14  0.01  

GB ODI33rev -0.48  -0.49  -0.49  -0.50  -0.53  -0.51  -0.48  -0.38  -0.17  0.06  0.18  
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4 Discussion 

In the contrary to a recent study by Piehl et al. (2023), whose using MOM3-ERGOM Model output to assess Oxygen deficiency 

in the Baltic Sea, by running a postprocessing correction function over modelled oxygen values, our primary goal in this study 

was not to assess oxygen deficiency in the North and Baltic Seas via the direct outputs of the oxygen parameters from the 395 

operational HBM-ERGOM model simulations. Neither, will our current study in first place validate the general HBM-ERGOM 

model-performance against MARNET observational data. the Oxygen Deficiency Index (ODI) is treated as an independent 

entity and valuable tool instead that is further used to determine ODZs.  

So why we just don’t just do something similar with the HBM-ERGOM, which covers the North and Baltic Seas and also 

includes oxygen dynamics?  400 

Models need calculation and machine time and in the case of complex calculations the model very often has to run on High 

processing clusters (Piehl et al., 2023). Although, nowadays it is not as difficult as some years ago to get machine time on a 

high processing cluster to run the model, it is not only pretty expensive in time, but also very often in monetary value. And 

this exponentially increases with increasing model resolution, parameterization and/or number of days of model forecasts. 

Moreover, not everybody has the financial support, the expertise and/or the access or even hardware to run a model. Especially 405 

in countries with low income these criteria are still a major bottleneck. In the worst case, access to high computing servers 

might be restricted, denied due to non-complying data policies between the country of origin and the country hosting the 

servers. Luckily international portals that comply to the Open Data policy, sharing observational and modelling data for free, 

increased over the last years. This allows to apply postprocessing tools to calculate environmental indicators and make them 

available to a broader publicity. In our case, we used MARNET near real time data of oxygen saturation monitoring at the 10 410 

stations shown in Table 1. 

Here we successfully developed an economic blueprint of the ODI toolbox to identify, scan and forecast oxygen minimum 

zones, in the North and Baltic Seas. We designed our blueprint, so that the ODI is easily interpretable and usable by several 

entities, such as Federal Agencies, NGOs and engineers. We discuss briefly the development and pitfalls of the modified ODI.  

The most striking point during the modification of the ODI are its calculations itself: At no point in this modified ODI 415 

formulation, nor in its original formulation after Große et al. (2016), the ODI uses Oxygen to determine ODZs. The ODI is a 

result of physical and biogeochemical interactions defined in a coupled physical-biogeochemical model, which aims to 

describe quantitatively and/or qualitatively the interplay between the ‘Physics’ and the ‘Biology’. The better a model is 

constrained, the better the desired outcome will be (Anderson et al., 2001; Breitburg et al., 2018; Oschlies, 2021; Oschlies et 

al., 2018; Ward et al., 2019). The better the quality of the data, the longer the time-series, the more reliable the ODI will be. 420 

However, if we considered averaged values of NPP and/or fixed values of NPP over a longer period ranging from 1 st April to 

30th September, a total of 184 days, the performance of the ODI seems to be better (see Tables and Figures in the supplement). 

However, this improvement comes with a side effect, since the average and/or fixed values of the NPP mimic the finer, noisier 
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ODI fluctuations compared to ODI simulation on a smaller timescale, i.e., our 30 days reference period. We also decided not 

to cleanse the data in this study, such as flattening and extrapolating seasonal trends or similar, since the data are scarce and 425 

do have seasonality. We are also aware, that just a good correlation does not explain the causality of the data.  Here we only 

tested for 10 platforms close to the German shore, in the North and Baltic Seas. Therefore, we want to point out, that the ODI 

is still subject of further testing. Thus, we strongly recommend that this blueprint of the ODI tool must not be used alone to 

make reliable decisions about the development of upcoming ODZs. Since the data for calculation of the ODI all derived from 

model output, one might assume that the responsiveness of the unweighted ODI to environmental changes is generally only as 430 

good as the physical and biogeochemical dynamics of the model. However, that the annual fluctuations of low and high oxygen 

trends are captured quite well with the ODI, whereas the HBM-ERGOM model strongly underestimates the bottom oxygen 

saturation at each station. This might be due to misleading bathymetry data and implementation and/or parametrization of 

oxygen fluxes in the HBM-ERGOM model. Nevertheless, we firstly used the modelled bottom oxygen saturation along with 

modelled bottom oxygen concentration (not shown) at the NSBII, the NSBIII and the TWEms platform to calibrate our 435 

different approaches of the ODI calculation (Figure 2). This gave us a first hint of the behaviour of the ODI in a more dynamic 

oxygen regime with tidal variations and strong hydrodynamics.  

Although several hundred stations, frequently monitored in the Baltic Sea 

(https://maps.helcom.fi/website/mapservice/?datasetID=49a98419-f049-47b5-a2e3-ce850fbe2f31), the oxygen dynamics are 

very difficult to capture in biogeochemical ecosystem models. For this blueprint we tested the ODI dynamics on a limited 440 

number of platforms. In order to deploy the ODI to different regimes we need to calibrate the ODI with more physical and 

biogeochemical data. This will help to strengthen its predictability and forecast ability and to minimize uncertainties for 

developing a more robust ODI toolbox. For instance, as it is done with ocean models, the pre-calibration of the ODI can be 

done by comparing several model outputs at once, or to use already precompiled multi ensemble model data. These approaches 

will take into account the seasonal and regional fluctuations, ocean dynamics and ecological constraints. Moreover, we can 445 

use near real time data, or data of cruises, etc. to estimate the ODIs potential to forecast ODZs. A similar approach is used in 

the work of Chesapeake Bay (Chesapeake Bay Hypoxia Forecast | Virginia Institute of Marine Science (vims.edu)). Our 

modified ODI after Große et al. (2016) has been kept simple and uses the same three controlling parameters. However, our 

modified ODI toolbox has been designed for operational use and forecasting ODZs, just as its ‘Grandfather’ -  the more 

complex EUTRISK index - developed by Druon et al. (2004). 450 

Nevertheless, even though in the scarcity of observational data from the ten stations in the Baltic and North Seas, our ODI 

captures seasonal dynamics in the observations and in overall we can see, that the ODI displays very well both seasonal 

dynamics, winter and spring, in the North and in the Baltic Sea. Its dynamic is in good agreement with the early spring- late 

summer phytoplankton blooms, where peaks disappear in the winter months. In contrary at station FehBB, AnkBB and MePDS 

the ODI levels barely reached the null line, indication of a permanent Oxygen disbalance in those sills (Carstensen and Conley, 455 
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2019; Hansson and Viktorsson, 2023). We can see that the ODI in   Figure 5 and  Figure 6  is somewhat always ahead compared 

to the observations. Moreover, the ODI also shows clearer seasonal cycles, winter and summer, in the North Sea, than in the 

Baltic Sea ( Figure 5 and  Figure 6). Especially at AnkBB the seasons seem to follow rather the canonical calendar seasons, 

winter, spring, summer and autumn. The winter season is also captured well at NSBIII and at FehBB and KielBB, the values 

of the ODI are highest and although NSBIII lacks data, all low oxygen peaks are hit by higher ODI values ( Figure 5 and  460 

Figure 6).  

Once we apply lags to compare the oxygen measurements with the ODI, all correlation-coefficients get better (Table 2). In 

overall the probability of forecasting ODZs in the Baltic Sea more or less doubled, even exceeding 70 % at KielLH. The North 

Sea improvements are around 10-20% at the monitoring stations (Table 2). FinoPF with its ~400% improvement and TWEms 

with basically no improvement, are our outliers. For simplicity we decided to ‘manually’ shifting data forward or backward in 465 

time, instead of using a built-in autocorrelation function. Nevertheless, our investigation provided valuable insights for 

achieving the best performance of our ODI including an estimate of the number of days in advance for identifying the highest 

probability/risk of developing ODZs. This kind of low-level forecasts, are pretty constant as shown in the case of KielLH in 

the supplements. Annual timeseries analyses at KielLH showed the highest probability of developing and ODZ around the 60 

to 75 days benchmark, followed by a 45 to 60 days benchmark. Which is confirmed by the 60 days benchmark, when 470 

considering the penta-year timeseries ( Figure 7).  

Also, the improvements of the correlation coefficients in the North Sea are circulated around 30 days, whilst in the Baltic Sea 

they kick in later (60 days or more) (Table 2). We assume that this might be due to the different hydrographic condition and 

different time scales of water-masses exchanges with the layers above. Also, we think that the sinking out and decomposition 

of organic matter at the bottom layers takes some time. Since extreme events, such as storm surges with excessive water 475 

movement, would have an immediate effect on the sensor based bottom oxygen saturation, and could be detected due to 

extreme peaks in the measurements, mixing might be not represented by the calculation of the stratification index when the 

reference periods are too long, and vice versa. Moreover, Oxygen might drift along the pycnocline with the water movements 

if velocities or shears inside the stratified layer(s) might be different and therefore the Oxygen might be transported less far 

away.  We assume that, the thinner the layer below the BMLD towards the bottom is, the quicker the Oxygen is consumed and 480 

Turbulences might also be less, as they will not be created, due to the limited space.  This agrees also with the ability to break 

the speed of the water transport and limit the exchange of particles and planktonic organisms between denser and less dense 

water. 

We partially deployed graphically our preliminary results of the fixODI33ref together with a visualized estimation of modelled 

Chlorophyll a data compared to satellite derived Chlorophyll a at the BSH 485 

(https://www.bsh.de/DE/THEMEN/Modelle/InfoWas/infowas_node.html). The operational information system at the BSH, 

regarding the fixODI33rev configuration, only shows areas in proximity around the German coasts of the North and Baltic 
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Seas to provide more details for the German coastal region. However, we recommend to use these daily outputs with caution 

and we suggest to evaluate the results of the actual oxygen situation whenever possible with monitoring entities ad loco. 

Moreover, we found that when employing the different ODI formulations to different regions, the results might get better or 490 

worsen. For some regions such as the Baltic Sea, this may reflect that the probabilities of forecasting the developing ODZs 

become more accurate, whilst for other regions this might not be the case. This also shows, that the ODI blueprint can be easily 

adapted and modified according to the region-specific needs. In fact, the ODI serves as a blueprint, which should be calibrated 

for each region and is also subject to personal preferences of the experts (Moriarty et al., 2018). 

5 Conclusion 495 

We conclude that the ODI represents the situation of ODZs in the North and the Baltic Seas. Since the ODI valuation is defined 

for both regimes, which are based on the model output of the operational HBM-ERGOM model of the BSH, we suggest to 

further test it with other model-configurations (in prep: Marki et al.). We also conducted preliminary tests with the operational 

HBM-ERGOM model coupled to the PDAF framework, where preliminary results have shown that data assimilation improves 

the correlation coefficients between the bottom oxygen saturation/concentration and the ODI, up to 0.9 (not shown here, in 500 

prep: Marki et al. 2023/2024. Moreover, we assume that separating spatially the geographical calculation areas of the ODI 

calculation, and distinguishing the weighting of the single indexes according to the local ecosystems will help to further 

improve the accuracy and potential of the ODI to forecasting ODZs. This will drive the ODI towards becoming a more robust 

index that allows for comparison amongst different ecological regimes and over a variety of environmental gradients (Borja 

and Dauer, 2008).  We have shown, that with minimal economic resources it is possible to run the ODI and to forecast the 505 

probability of developing an ODZs within a well-defined time-frame, especially to forecasting environmental oxygen 

conditions that are subject to seasonal transient times at the bottom layers. 

Since not every entity whose involved into monitoring oxygen (and/or other environmental parameters) has a scientist at hand 

who can use a model, we developed a calculation tool, written in Python, which can be applied to several operating systems. 

Each single module of the Tool can be run independently and uses standard Python packages. There is no need for super-510 

storage or super computing power, although the latter one speeds up the calculations. As long as the input data, of the model 

or the observations, are Python-edible, we can use other formats than input netCDF files. The code can be easily adapted and 

publication of the Python based ODI toolbox is intended (Marki et al in prep). Since the output of the ODI is a netCDF File, it 

can be used with several applications to visualize the output, such as QGIS or other viewers.  This will help to strengthen the 

ODIs forecasting ability, by testing different model outcomes worldwide and in different regimes. Furthermore, this will help 515 

to apply automated AI methods to detect environmental threads in advance. 
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6 Data availability 

The monitoring time series data of MARNET stations can be retrieved upon request after registration from the INSITU portal 

(https://www.bsh.de/EN/DATA/Climate-and-

Sea/Marine_environment_monitoring_network/marine_environment_monitoring_network_node.html) and/or upon request 520 

via E-Mail from the German Oceanographic Data Center (DOD, dod@bsh.de). HBM-ERGOM operational model outputs can 

be obtained upon request from the Operational Modelling department at the BSH via E-Mail (opmod@bsh.de).   
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