
Supplementary Material for ‘Cenozoic pelagic accumulation

rates and biased sampling of the deep sea record’

Johan Renaudie1 David B. Lazarus1

1Museum für Naturkunde, Leibniz-Institut für Evolutions- und
Biodiversitätsforschung, Invalidenstrasse 43, 10115 Berlin, Germany.

December 18, 2023

Contents of the Supplementary Material

• Supplementary Text 1: The Drilling Bias Model.

• Supplementary Figures 1 and 2: Results similar to Figures 2 and 3 in the main text but
reporting mean rather than median value. Shown here only to allow direct comparison to
published literature.

• Supplementary Code 1: Python code for the drilling bias model.

• Supplementary Data 1: The full Neptune Database Age model Library.

• Supplementary Data 2: Table of LSR and SAR implied by the Neptune Database Age Model
Library.

• Supplementary Data 3: The output of the compilation and computations presented in the
paper.

1



Supplementary Text 1: The Drilling Bias Model

Our sediment accumulation rate bias analysis was inspired by our experience of creating age models
for the NSB database over three decades and thus what sedimentation history looks like in deep sea
sections, and as well our awareness that the recovered geologic record has been shown in other areas
of earth science research (e.g. paleobiology) to be strongly biased, both by the nature of geologic
sedimentation, and by human biases in sampling it. We decided therefore to model how deep
sea drilling sampling of a largely layer-cake sedimentary record would be biased by the sampling
process, and by geologic factors e.g. hiatuses, affecting the sedimentation history of the record
itself. The idea and initial version of the model was by dbl, and then slightly modified by jr, in
particular to create the final runs which included variation analyses.

The model is conceived to create a simulated record of deep-sea drilled sections that share, as
much as possible, the characteristics listed above: variation in sedimentation rate between sites;
and (for simplicity) constant accumulation rate for any given site. Each site has a total depth of
penetration drawn from the actual distribution of drilling depths achieved by the deep sea drilling
programs, and an initial sedimentation rate chosen at random from the distribution of sedimentation
rates seen in the NSB database for Pleistocene sediments (as these rates have not been subtantially
altered by compaction, or hiatus development that increasingly affect older parts of sections).
Calculating the distribution of sedimentation rates from NSB was chosen after a literature search
failed to find a robust global estimate for pelagic sedimentation rates - all studies found either
included non pelagic sedimentation, were only for smaller regions, or had other disqualifying issues.
Use of NSB data also insured our model parameter would be fixed to a value that is appropriate
for the sections used in the rest of the model. After creating initial versions of the code the actual
distributions of site depth penetration and sedimentation rates were replaced by fitted functions to
these data, to insure that minor variations/incompleteness in the actual NSB data did not create
anomalies in the model output. For site depths the fitted function was a gamma distribution of
shape κ = 2.93 and scale θ = 166.97, and for sedimentation rates (a translated Weibull distribution
of shape κ = 0.95, scale λ = 3.34 and location θ = 0.4). Similarly, hiatuses are added to sections
using a random generator based on the observed frequency and duration of hiatuses (in Myr) in
the NSB age models dataset.

The code works as follows: a results array (‘resar’), with the dimensions geologic age (e.g. 1 Myr
bins, 0-65 my) by number of simulated sections (as chosen for the run) is created and initialized
to null values. It is then filled, one section at a time, using the, for this section, randomly chosen
sedimentation rate (in m/Myr), randomly chosen total penetration (in meters) and a globally
averaged compaction vs depth curve - a simple linear fit derived from the IODP database - to
calculate how many 1 Myr time bins will have been penetrated. The resar time bins for each
section are filled incrementally, and each bin that is filled is assigned the adjusted sedimentation
rate for this section and time interval (the original sedimentation rate, adjusted to lower values
with increasing depth due to compaction). After filling the resar array with simulated sections and
their adjusted sedimentation rate values per time bin, the vectors representing each section are
conditionally adjusted by adding hiatuses (via the hiatus length random generator) that shift age
bins downwards by the duration of the hiatus, if a random number call returns a value greater than
the probability of hiatus initiation. The hiatus created gaps in sedimentation are filled with null
values.

At the end of each run a vector of the average adjusted sedimentation rate per time interval
across all simulated sections is calculated (ignoring null values) and saved. Other than this relatively

2



small decline in relative sedimentation rate due to compaction, the only other factor affecting the
apparent sedimentation rate per time interval is the non-uniform ability of high vs low sedimentation
rate sections to penetrate far enough back in time to create a filled resar time interval bin. Multiple
runs with adjusted values for various parameters were carried out to insure that the model worked
correctly and produced reasonable results. Final runs (by jr) added via additional loop variables
a systematic exploration of how key parameters affected results, providing thus an estimate of the
range of error in the simulated output. The mean and median values of relative sedimentation rate
decline with increasing geologic age - due to the bias in sampling older time intervals - was used as
a correction factor for the observed accumulation rate vs time in the actual NSB dataset.

The code is included as part of this SOM. It is written in Python v3.9 (Van Rossum and Drake,
2009) using the numpy and scipy modules (Virtanen et al., 2020), and is annotated to the extent
that it should be largely readable even to someone who does not know the Python language.

References

Van Rossum, G. and Drake, F. L. (2009). Python 3 Reference Manual. CreateSpace, Scotts Valley,
CA.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski,
E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman,
K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ.,
Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I.,
Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P.,
and SciPy 1.0 Contributors (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272.

3



Supplementary Figure 1

1

0.2

0.5

2

5

L
S

R
 (

c
m

/k
y
r)

1

0.2

0.5

2

5

S
A

R
 (

g
/c

m
2

/k
y
r)

0 10 20 30 40 50 60

Age (Ma)

Linear Sedimentation Rates (top; expressed in cm.kyr−1) and Accumulation Rates (bottom panel;
expressed in g.cm−2.kyr−1). Black: mean of the distribution as observed in our global dataset;
Red: mean sedimentation and accumulation rates corrected for drilling bias using the result of the
model). Rates are on a log-scale.

4



Supplementary Figure 2

5



0.2

0.5

1.0

2.0

5.0

10.0

Atlantic Ocean

0.2

0.5

1.0

2.0

5.0

10.0

Pacific Ocean

0.2

0.5

1.0

2.0

5.0

10.0

S
A

R

Indian Ocean

0.2

0.5

1.0

2.0

5.0

10.0

Southern Ocean

Age (Ma)

0 10 20 30 40 50 60

1

2

3

4

5

6

7

Global

Mean Sediment Accumulation Rates (expressed in g.cm−2.kyr−1) observed in each ocean basin
(black: mean; red: mean corrected for drilling bias using the result of the model), shown here
on a log-scale. Bottom panel show the weighted global composite based on each basin corrected
mean value (in red) compared to the corrected but area-unweighted global mean SAR shown in
Supplementary Figure 2.

6



Supplementary Code 1

# −∗− coding : ut f−8 −∗−
# Sampling b ias in est imat ing sedra tes from deep sea or other d r i l l e d sec t ions
# Uses d i s t r i b u t i on of maximum depths from compiled data in ex terna l f i l e ( s i tes maxdepth . t x t )
# I n i t i a l runs use a l l DSDP to IODP s i t e s ( other than ba sa l t s i t e s , l ogg ing or other t echn i ca l
# s i t e s , or s i t e s with no age in fo at SEDIS)
# Sedrate i s assumed constant over time at any s i t e .
# Sedrate value for s i t e chosen from p l au s i b l e random d i s t r i b u t i on
# ( here Weibul l f i t by JR to a l l NSB Ple i s tocene sedrates )

# Version 0.2 7.3 .22 − f i r s t vers ion that runs and creates apparent ly va l i d output
# v 0.21 15.3 − changed Rayleigh spread to 1 in sedrate generator to f i t NSB va lues
# v 0.30 7.5 − resar f i l l s ec t ion rep laced with new compaction honoring code
# v 0.40 25.5 − Rayleigh rep laced with Weibul l to generate sedrates
# ( a f t e r JR t e s t of be s t funct ion f i t s ) ,
# di rec tory path now user input not hardwired , metadata and
# timestamp added to output f i l e
# v 0.41 27.5 − added loc=.4 for Weibul l
# v 0.50 15.6 − added h ia tus code b lock
# v 0.51 16.6 − another attempt to get h ia tus indexing r i g h t
# v 0.52 17.6 − corrected missing 10x fac tor on sedrate − was there e a r l i e r but got l o s t in other ed i t i n g
# v 0.53 19.6 − rewrote h ia tus code b lock a f t e r examination of resar s t i l l shows errors . Now works
# v 0.54 22.6 − c leaning up . Remove unused/unneeded imports ( os , pandas ) . More comments
# v 0.55 22.6 − added break to h ia tus loop when base age w. sedrate reached : avoid unnecessary ca l c s
# v 0.60 26.7 − added outer loop to repeat the s imulat ion x times .
# added randomizer for maxdepth based on modelled d i s t r i b u t i on .
# made the f i n a l save f i l e a json dump of everyth ing . (JR)

# by Dave Lazarus

# Program l o g i c : create 2D array resar : age bins x number of v i r t u a l s i t e s to hold sedra tes r e s u l t
# For each v i r t u a l s i t e :
# Pick a random sedrate and maximum d r i l l e d depth
# F i l l array bins up to r e su l t an t max age reached with the sedrate value of each v i r t u a l s i t e , ad jus t ing for compaction
# Then when a l l v i r t u a l s i t e s done :
# Inser t h ia tuses in sec t ions
# Calcu late average sedrate for each age bin across a l l v i r t u a l s i t e s and output r e s u l t

# −− load needed l i b r a r i e s

import numpy as np
from s c ipy . s t a t s import weibul l min , gamma
import random as ran
from datet ime import datet ime
import o r j s on

ran . seed (20220726)
t imestampstr=datet ime . now ( ) . s t r f t ime ( ”%Y−%m−%d %Hh%Mm%Ss” )
output = 0 #0 saves parameters and averaged r e s u l t s ; 1 saves f u l l r e s u l t (might take up to 1h30 to save the ca . 7Gb f i l e )
# −− de f ine constants

s tep=1 # binning in t e rva l , e . g . 1 my
maxtime=65 # for Cenozoic , other number for d i f f e r e n t time range
nbins=int (maxtime/ step )
n t r i e s =10000 # number of v i r t u a l ho les in a simulat ion run
nsim=1000

# Bulk dens i ty increase as l inear funct ion of depth : bu lk dens i ty (d)=bulk (0)+ bulkd inc∗d
# s lope and in t e r cep t va lues from IODP db compilat ion provided by JR
bulkd0=1.0996
#bulkdinc=0.00079851
bulkdinc=0
# Sedimentation rate simulated curve , from JR b e s t f i t f ind of Weibul l curve to Ple i s tocene sedrates in NSB
# Weibul l curve parameters are shape , sca le , l oca t ion
wshape=.95
wsca le =3.34
wloc=.4
# hiatus parameters . Currently based on a l l NSB loc s w. qua l i t y G or b e t t e r
hiprob=.02278
hishape=.95
h i s c a l e=4
#Hole depths parameters . Gamma d i s t r i b u t i on .
dshape=2.93
d s ca l e =166.67

#−−def avesedrate , maxages vectors , s e t to NaN

avesedrate=np . empty ( ( nbins , nsim ) )
avesedrate [ : ]= np .NaN
maxages=np . empty ( ( n t r i e s , nsim ) ) # maximum age penetrat ion be fore h ia tus add i t ions
maxages [ : ]= np .NaN
holedepths=np . empty ( ( n t r i e s , nsim ) )

#−−def resar age bin x n v i r t u a l ho les array as f l o a t number with nbins , n t r i e s as ind ices .
# t h i s i s the r e s u l t array of sedra tes

r e s a r=np . empty ( ( nbins , n t r i e s , nsim ) )
r e s a r [ : ]= np .NaN

7



#−−de f ine s ed ra t ed i s t l i s t , n t r i e s long with mean and sd va lues
# note can ’ t have negat ive sedra tes
# in m/m. y . uni t s
# here use Weibul l funct ion as found by JR in t e s t s to g ive bes t f i t to ac tua l P l e i s t .

# ie non−compacted sedrate compilat ion from NSB
print ( ’ Step 1 − c a l c u l a t i n g sed imentat ion depths ’ )
# −− f i l l resar :
for s in range ( nsim ) :

s ed ra t e=10∗weibu l l min . rvs (wshape , s c a l e=wscale , l o c=wloc , s i z e=n t r i e s )
#10∗ to g ive m/my, not cm/kyr as from we i bu l l fn
print ( str ( s ) , end=”\ r ” )
for j in range ( n t r i e s ) :

#−− pick random value for maxdepth for each v i r t u a l sec t ion from maxdepths
#maxdepth=np . random . choice (maxdepths )
maxdepth=gamma. rvs ( dshape , s c a l e=dsca l e )
ho ledepths [ j , s ]=maxdepth

# incrementa l ly move downhole for ho le j by time bin i , adding depth in decreasing increments
# due to increased dens i ty shortening of sedrate via compaction
totdepth=0
for i in range ( nbins ) :

# calc r e l a t i v e bu lk dens i ty for t h i s i n t e r v a l
bulkdchange=(bulkd0 + bulkdinc ∗ totdepth )/ bulkd0

# calc depth down for t h i s i n t e r v a l i as
depthdown=step ∗ s ed ra t e [ j ] / bulkdchange

# add depthdown to t o t a l cumulative depth , e x i t loop i f maxdepth hole reached
totdepth=totdepth+depthdown
i f totdepth>maxdepth :

totdepth=maxdepth
break

# assign apparent ( compacted ) sedrate to resar bin
r e s a r [ i , j , s ]= sedra t e [ j ] / bulkdchange
maxages [ j , s ]= i ∗ s tep

#−− add h ia tuses to resar
print ( ’ Step 2 − adding h ia tus ’ )
for sim in range ( nsim ) :

# for each column ’ co l ’ in resar
print ( str ( sim ) , end=”\ r ” )
for c o l in range ( n t r i e s ) :

# i t e r a t e thru column by ’ bin ’ .
for bin in range ( nbins ) :

i f (np . i snan ( r e s a r [ bin , co l , sim])==True ) : # reached maxage of ho le penetration , e x i t to next ho le
break

i f ( ran . random()<hiprob ) : #random number p r o b a b i l i t y thresho ld for h ia tus exceeded

# get h ia tus l eng th from hiatus l eng th generator funct ion .
h i l e n a r=weibu l l min . rvs ( hishape , s c a l e=h i s c a l e , s i z e =1)
i f h i l e n a r [0]> s tep /2 :

hlen=round( h i l e n a r . item (0 ) ) # convert 1 element numpy array to sca lar

i f (bin+hlen>=nbins −1): # hiatus extends below base hole , j u s t s e t b ins to NaN
for j in range (bin , nbins ) :

r e s a r [ j , co l , sim]=np .NaN
bin=nbins

else :
s ou r c e c o l=np . copy ( r e s a r [ : , co l , sim ] ) #create separate o ld ho le source for copy
movlen=nbins−(bin+hlen )
for i in range (0 , movlen ) : # move column below hia tus down

r e s a r [ bin+hlen+i , co l , sim]= sou r c e c o l [ bin+i ]
for j in range (bin , bin+hlen ) : # f i l l gap with NaN

r e s a r [ j , co l , sim]=np .NaN
bin=bin+hlen # move bin pos i t i on below gap

else :
break

avesedrate = np . nanmedian ( re sar , ax i s =1).round (3 )
g l oba l ave s ed ra t e = np . nanmedian ( avesedrate , ax i s=1)

#−− For mean output ins tead of median : uncomment the f o l l ow ing two l i n e s
# avesedrate = np .nanmean( resar , ax i s =1).round (3)
# g loba lave sedra t e = np .nanmean( avesedrate , ax i s=1)

#−− Save to f i l e s
data = { ’ avesedrate ’ : avesedrate . t o l i s t ( ) , ’ g l oba l ave s ed ra t e ’ : g l oba l av e s ed ra t e . t o l i s t ( )}
params={ ’ ho ledepths ’ : ho ledepths . t o l i s t ( ) , ’maxages ’ : maxages . t o l i s t ( ) ,

’ params ’ : { ’ bulkd0 ’ : bulkd0 ,
’ bulkdinc ’ : bulkdinc ,
’ wshape ’ : wshape ,
’ wsca le ’ : wscale ,
’ wloc ’ : wloc ,
’maxtime ’ : maxtime ,
’ s t ep s ’ : step ,
’ nsim ’ : nsim ,

8



’ n t r i e s ’ : n t r i e s ,
}}

print ( ”Output r e s u l t to a f i l e ” )
f i l ename = ’ r e s u l t %s . j son ’ % timestampstr
with open( f i l ename , ’wb ’ ) as f :

f . wr i t e ( o r j s on . dumps( data ) )

print ( ”Output parameters used to a f i l e ” )
f i l ename2 = ’ params %s . j son ’ % timestampstr
with open( f i l ename2 , ’wb ’ ) as f :

f . wr i t e ( o r j s on . dumps( params ) )

i f output >0:
print ( ”Output f u l l data used to a f i l e ” )
f i l ename3 = ’ r e s a r %s . j son ’ % timestampstr
with open( f i l ename3 , ’wb ’ ) as f :

f . wr i t e ( o r j s on . dumps({ ’ r e s a r ’ : r e s a r . t o l i s t ( )} ) )

9


