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Abstract. Accurate representation of the turbulent exchange of carbon, water, and heat between the land surface and the 40 

atmosphere is critical for modelling global energy, water, and carbon cycles, both in future climate projections and weather 

forecasts. Evaluation of models’ ability to do this is performed in a wide range of simulation environments, often without 

explicit consideration of the degree of observational constraint or uncertainty, and typically without quantification of 
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benchmark performance expectations. We describe a Model Intercomparison Project (MIP) that attempts to resolve these 

shortcomings, comparing the surface turbulent heat flux predictions of around 20 different land models provided with in-situ 45 

meteorological forcing, evaluated with measured surface fluxes using quality-controlled data from 170 eddy-covariance based 

flux tower sites. 

 

Predictions from 7 out-of-sample empirical models are used to quantify the information available to land models in their 

forcing data, and so the potential for land model performance improvement. Sites with unusual behaviour, complicated 50 

processes, poor data quality or uncommon flux magnitude are more difficult to predict for both mechanistic and empirical 

models, providing a means for fairer assessment of land model performance. When examining observational uncertainty, 

model performance does not appear to improve in low turbulence periods, or with energy-balance corrected flux tower data, 

and indeed some results raise questions about whether the energy-balance correction process itself is appropriate. In all cases 

results are broadly consistent, with simple out-of-sample empirical models, including linear regression, comfortably 55 

outperforming mechanistic land models.  

 

In all but two cases, latent heat flux and net ecosystem exchange of CO2 are better predicted by land models than sensible heat 

flux, despite seeming to have fewer physical controlling processes. Land models that are implemented in Earth System Models 

also appear to perform notably better than stand-alone ecosystem (including demographic) models, at least in terms of the 60 

fluxes examined here. The approach we outline enables isolation of the locations and conditions in which model developers 

can know that a land model can improve, allowing information pathways and discrete parametrisations in models to be 

identified and targeted for future model development. 

 

 65 

1 Introduction 

Land models (LMs) simulate terrestrial water, energy and biogeochemical cycles. They simulate the exchange of heat and 

moisture between the land and atmosphere inside weather forecast models (e.g. Bousetta et al., 2013; Bush et al., 2023), soil 

moisture and streamflow in hydrological and agricultural applications (e.g. Clark et al., 2015a, 2015b, Buechel, 2021), 

ecological dynamics and carbon exchange in ecosystem modelling (e.g. Knauer et al., 2023; Bennet et al., 2024), and most of 70 

these processes combined inside climate models (e.g. Lawrence et al., 2019; Vuichard et al., 2019; Bi et al., 2020). The fidelity 

of LM simulations is therefore consequential economically, socially and environmentally. 

 

This paper focuses on a relatively simple question: how should we fairly assess the fidelity of land models? We aim to develop 

an evaluation framework that gives us confidence that LM evaluation is not partial - not dependent upon a particular metric, 75 
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observational data choice, over-calibration or overfitting, a particular location or time, or subset of processes - that it is the 

closest we can reasonably expect to a summative understanding of the shortcomings or strengths of a particular model. This 

aim is the basis of a LM comparison experiment, PLUMBER2, and we use results from PLUMBER2 to illustrate the 

framework. It follows from the first Protocol for the Analysis of Land Surface Models (PALS) Land Surface Model 

Benchmarking Evaluation Project (PLUMBER; Best et al., 2015; Haughton et al., 2016), and addresses many of the 80 

shortcomings in its first iteration. 

 

Our question is intentionally methodological, since the consequence of getting the answer wrong is very real – we rely on LMs 

for a great deal of scientific inference and societally relevant predictions. We consider our aim in two parts. First, what kind 

of simulation environment allows for the best observational constraint of LMs, so that poor model performance might fairly 85 

be attributed to a LM? Second, how do we best structure an evaluation framework to give us confidence in this kind of 

attribution? We discuss these two questions in turn and highlight how the experimental framework of PLUMBER2 addresses 

them in a way that the original PLUMBER experiment could not. 

 

While most LMs are applied on regional or global grids, diagnostic evaluation of LMs (that is, understanding why they might 90 

be wrong) at these scales is difficult (Li et al., 2018; Wartenburger et al., 2018; Seiler et al., 2022). First, at this scale LMs 

need to be driven by reanalysis-based meteorology with unquantified uncertainty (Arora et al., 2023), making the attribution 

of model-observation mismatch inconclusive. Next, observationally based flux evaluation products at these scales, typically 

also without quantified uncertainty, are usually at a low time resolution (e.g. monthly; Pan et al., 2020), so assessment of 

process representation in LMs can only be done using emergent outcomes, rather than directly.  95 

 

Site-based LM simulations using observational data collected at flux towers offer a solution to some of these issues, but they 

come with their own challenges. On the positive side, meteorological variables that drive LMs are directly measured at tower 

sites, at a time resolution appropriate for LM simulation (typically 30 minutes), and uncertainties are relatively small and 

quantifiable (Schmidt et al., 2012). Vegetation properties are often documented at site locations, reducing parameter 100 

uncertainty in LM simulations (Falge et al., 2016). The fluxes to the atmosphere that LMs are evaluated against are also 

measured and aggregated to the same time step size as the meteorological driving data. For these reasons, both PLUMBER 

and PLUMBER2 involve the evaluation of LMs at flux tower sites, but PLUMBER2 examines a much broader range of 

environments (170 sites instead of 20). 

 105 

There are however several complicating factors that also make LM constraint using tower data incomplete. The spatial scale 

represented by a flux tower’s fetch – typically not larger than 1km2 – is at the very highest resolution of application scales for 

most LMs (Chu et al., 2021). However, all LMs are designed using leaf-scale or canopy-scale theories (Bonan et al., 2021), 

and do not contain an explicit length scale that modifies simulation characteristics for the size of the grid cell, so it is unclear 
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whether this represents a problem. Next, not all LM parameters are measured at sites, and indeed at some sites, little 110 

information is available beyond a broad indication of vegetation type (Falge et al., 2016). The available information is, 

however, likely closer to being representative than parameter values prescribed at the grid scale that cannot be directly 

observed. Finally, and most importantly, the measurement of turbulent fluxes comes with significant uncertainty. Site 

measurements regularly do not close the energy balance (Stoy et al., 2013; Mauder et al., 2020), in a way that LM are 

structurally required to do, and measurements are likely to have much greater uncertainty in periods of low turbulence (Goulden 115 

et al., 1996; Aubinet et al., 2012). These issues were both ignored in the first PLUMBER experiment, but are directly addressed 

in PLUMBER2, with evaluation involving both raw and energy-balance corrected site data, as well as filtering to remove 

periods of low turbulence.  

 

To address our second question, we outline three key aspects of an evaluation framework that will allow attribution of poor 120 

model-observation agreement to poor model performance. They are (a) an appropriate suite of metrics, (b) a mechanism to 

establish threshold values in these metrics that reasonably define “good” or “poor” performance, and (c) a summative indicator 

that can fairly synthesise information using (a) and (b) to provide a representative overall picture. 

 

For a given variable time series, there are of course many metrics one might use to assess model performance, and it is well 125 

recognised that using a single metric will generally not allow for holistic assessment of model performance (Collier et al., 

2018; Abramowitz et al., 2019). Both PLUMBER and PLUMBER2 focused on a broad collection of metrics that (i) assessed 

a wide range of aspects of model performance, and (ii) were independent, in the sense that a change to a model prediction 

might affect any one of these metrics without affecting others (see Gupta et al, 2009). 

 130 

Next, establishing a priori performance expectations in the form of thresholds in these metrics is key to defining “good” model 

performance. Models will never agree with observations exactly, but if we could understand how well a perfect model could 

simulate a given environment, given the information provided in its driving variables and observational uncertainty, it would 

tell us exactly which aspects of observed site behaviour were predictable, and which were not. This idea can be approximated 

by using out-of-sample empirical models to predict site fluxes, using the same meteorological driving variables as the LMs as 135 

predictors (e.g. Abramowitz, 2005; Best et al. 2015; Whitley et al., 2017). While the PLUMBER experiment investigated using 

simple out-of-sample empirical models to do this, here we offer a much more comprehensive range of empirical approaches. 

By varying the complexity of empirical models, and the number and type of predictors we provide it with, we create a hierarchy 

of benchmark levels of performance in any given metric that reflects different structural assumptions. For example, a LM 

should provide a more sophisticated prediction of evapotranspiration than a simple empirical model based on incoming 140 

shortwave radiation alone, since it contains information about soil moisture availability, soil temperature, vegetation and 

evaporative demand. By providing some empirical models with lagged variables, or using machine learning structures that 

allow internal states, we can begin to quantify how much predictive ability model states like soil moisture should provide.  
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Finally, with many variables, metrics, sites, empirical benchmarks and LMs, the importance of a summative indicator that 145 

appropriately synthesizes information and reduces the dimensionality of results should be clear. In PLUMBER, each LM was 

ranked against benchmark models from best to worst performing, and ranks were averaged over sites and metrics. However, 

it has since become clear that this can create misleading results. Consider the following example. A LM and three benchmarks 

have biases in latent heat flux at three sites of (32, 30, 31, 29), (48, 47, 45, 46) and (12, 52, 29, 85) Wm-2 respectively, translating 

to ranks of (4,2,3,1), (4,3,1,2) and (1,3,2,4) and an average rank of (3.3, 2.6, 2.3, 2.3). This summative indicator misleadingly 150 

suggests that the LM is comfortably the worst model of the four, when the actual site biases suggest that models were nearly 

indistinguishable in the first two sites, and the LM notably superior in the third. Using results from PLUMBER2, we examine 

two alternative summative indicators that resolve this issue. A summary of the main differences between PLUMBER and 

PLUMBER2 is shown in Table 1. 

 155 

Before detailing our methodology below, we reinforce that this experimental description paper does not investigate process 

representations or flaws of any particular model – given the number of models, sites and benchmarks doing so would 

necessarily present an incomplete picture. We instead focus on developing a fair, holistic framework for LM evaluation, 

comparison and quantification of performance expectations and present a high-level overview of PLUMBER2 results that will 

serve as the basis for future detailed, process level analyses that are already underway.  160 

 
Table 1: A summary of differences between the PLUMBER2 and PLUMBER experiments. 

PLUMBER2 PLUMBER 

170 (154) sites; 1040 site-years; 1-21 year record length 20 sites; 105 site-years; 1-10 year record length 

Site data quality control detailed in Ukkola et al., (2022) Ad-hoc site data quality control 

Sensitivity to energy balance correction or uncorrected fluxes Uncorrected fluxes only 

Sensitivity to night / low turbulence None  

Land surface, ecological and hydrological models Land surface models only 

Linear regression, 3 and 6-variable cluster+regression, random 

forest (RF), long short-term memory (LSTM) models 

Linear regression or 3-variable cluster+regression 

Dependent and independent normalised metric value as 

summative indicators 

Rank as only summative indicator 
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2 Methodology 

2.1 Flux tower data 165 

LMs completed simulations at 170 flux tower sites for PLUMBER2, forced with in-situ half-hourly or hourly meteorological 

variables. The aim was to maximise the number of sites that met variable availability and quality control requirements, as well 

as having open-access data. FLUXNET2015, FLUXNET La Thuile Free-Fair-Use, and OzFlux collections were used as the 

starting point, and after processing with the FluxnetLSM package (Ukkola et al., 2017), it was ensured that sites had: reference 

(measurement) height, canopy height and IGBP (International Geosphere–Biosphere Programme) vegetation type; whole years 170 

of data; and were not missing significant periods of key forcing variables (where gap-filling counted as missing), specifically 

incoming solar radiation (SWdown), air temperature (Tair), specific humidity (Qair) or precipitation (Rainf). Discerning 

thresholds in these variables was clearly subjective, but involved consideration of the proportion of time series with measured 

data, length of gaps, coincidence between variables, and ubiquity of site type - see Ukkola et al. (2022) for detail. Gap-filling 

(including allowing 100% synthesised data) of downwelling longwave radiation (LWdown) used the approach from 175 

Abramowitz et al. (2012). Surface air pressure (PSurf) was based on elevation and temperature, and ambient CO2 was based 

on global values (Ukkola et al., 2022).  

 

Since most sites had no publicly available leaf area index (LAI) data, and none had time evolving LAI data, we specified a 

remotely-sensed LAI time series for each site to try to minimise differences between LMs. LMs that predict LAI would clearly 180 

not utilise this (Table S3). The LAI time series were derived from either MODIS (8-daily MCD15A2H product, 2002-2019) 

or Copernicus Global Land Service (monthly, 1999-2017), with one of these chosen for each site based on a site-by-site 

analysis considering plausibility and some in-situ data, provided for each time step of meteorological forcing. Time-varying 

LAI was provided for the time period covered by the remotely-sensed products and otherwise a climatology was constructed 

from all available years. Some LMs utilised this LAI estimate for a single vegetation type simulation and others partitioned it 185 

in a mixed vegetation type representation. LAI estimates remain a key issue for observational constraint of LMs at the site and 

global scales. 

 

Energy balance closure in flux tower data is particularly relevant in the context of this experiment. At a range of time scales, 

most sites do not obey the assumed equality of net radiation with the sum of latent heat flux, sensible heat flux and ground 190 

heat flux (see Wilson et al., 2002; Stoy et al., 2013; Mauder et al., 2020; Moderow et al., 2021). We therefore need to be careful 

attributing model-observation mismatch to model error, since LMs are fundamentally constrained to conserve energy. Energy-

balance closure correction was part of the FLUXNET2015 release (the bulk of sites here) and we replicated this approach for 

sites from the other sources. Analyses below consider both uncorrected and corrected latent and sensible heat fluxes, were 

conducted only on flux time steps that were not gap-filled, and were also run separately filtered by time steps with wind speed 195 
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above 2 ms-1 so that potential concerns about measurement fidelity in low turbulence periods (typically night time) could be 

investigated. 

 

Forcing and evaluation files were produced in an updated version of ALMA NetCDF (Polcher et al., 1998; 2000), with CF-

NetCDF standard name attributes and CMIP equivalent names included where possible. A complete list of these variables, as 200 

well as those requested in LM output, are shown in Table S1. Table S2 shows a complete site and site property list. Each site 

has a page on modelevaluation.org with more detail, including additional references, meta data, photographs and time series 

plots. Site locations are shown by Ukkola et al. (2022). Site vegetation types and distribution in mean precipitation-temperature 

space are shown in Fig. S1. Their location on a Budyko style dryness index versus (water) evaporative fraction plot (Budyko, 

1974; Chen and Sivapalan, 2020) is shown in Fig. S2a. It is typically assumed that all sites will lie below 1 on the horizontal 205 

axis (i.e. evapotranspiration will be less than precipitation) and to the right of the 1-1 line (potential evapotranspiration > 

evapotranspiration), with drier, water limited sites close to 1 on the horizontal axis on the right hand side and wetter, energy 

limited sites towards the bottom left hand side close to the 1-1 line. 

 

This is however clearly not true for these site data. To understand why, we first examined cumulative precipitation at each site, 210 

compared to an in-situ based gridded precipitation product - REGEN (Contractor et al, 2020) - and identified those sites that 

appeared anomalous. Clearly there are many good reasons why site-based precipitation might disagree with a gridded product, 

even if it were perfect. A subset of the sites were nevertheless identified as having precipitation data that were a priori not 

realistic, either because missing data had not been gap-filled (and was not flagged as missing, so precipitation flat lined), units 

had been reported incorrectly (e.g. US-SP1 appears to use inches rather than mm) or winter snowfall was apparently not 215 

included in precipitation totals (see Fig. S3). 16 sites were removed from the analysis as a result. These issues were 

unfortunately only identified after all modelling groups had completed their 170 site simulations, so the LM analyses below 

are conducted on the remaining 154 sites. 

 

While removing these sites did lessen the extent of the problem, it did not by any means solve it (see Fig. S2b - the same as 220 

Fig. S2a but with 154 instead of 170 sites). Next, we examined if using the entire time series for each site, instead of filtering 

out gap-filled time steps (Fig. S2a has gap-filled data removed) resulted in any qualitative change - it did not (see Fig. S2c). 

Finally, we investigated whether using energy-balance corrected fluxes had an impact. Fig. S2d shows that it did indeed have 

a marked effect - but the proportion of sites where evapotranspiration exceeds precipitation increased.  

 225 

Figures S2a-d reinforce how complicated the simulation task is for LMs, with around 30% of sites showing an average 

evapotranspiration exceeding average precipitation. Despite posing this as a data quality problem above, there are many sound, 

physically plausible reasons for this, such as hillslope or preferential flow, irrigation or groundwater access by vegetation. 

Needless to say, most LMs will simply be unable to reproduce this behaviour since these inputs and processes are usually not 
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included. We discuss more about this issue, its influence on results and implications for LM evaluation in the Results and 230 

Discussion. 

2.2 Land model simulations 

Mechanistic LMs ran offline in single-site mode (as opposed to gridded simulations), forced by observed meteorology from 

the 170 sites. Simulations were requested as “out-of-the-box”, using default (usually vegetation-type based) parameters for 

each site, as if the LMs were running a global simulation. Models used the IGBP vegetation type prescribed in each forcing 235 

file where possible, mapped to the PFT schemes used by each model. In addition, site canopy height and reference height 

(measurement / lowest atmospheric model layer height) were provided. No additional parameter information for sites was 

prescribed. 

 

The rationale for this setup was to understand the fidelity in flux prediction that LMs provide in a well-constructed global 240 

simulation noting that different LMs had to adapt their representation approaches in slightly different ways to achieve this (e.g. 

some use mixed vegetation types to describe a single location). While we might ideally additionally like to ensure that LMs 

used an appropriate soil type for each site, these are not universally measured or available for all sites, so LMs used their 

default global soil type grid. 

 245 

Models were not allowed to calibrate to site fluxes, as we are primarily interested in the insight LMs provide about the system, 

rather than their fitting ability, which might leave little to distinguish them from machine learning approaches that we already 

know will perform better (Abramowitz 2012; Beaudry and Renner, 2012; Best et al., 2015; Nearing et al., 2018). Out-of-

sample testing for any model, even if only partly empirical, is key to understanding its predictive ability (see Abramowitz et 

al., 2019), especially when it needs to be applied globally. 250 

 

Different LMs require different periods of spin-up until model states reach an equilibrium, depending on whether they include 

a dynamic carbon (C) and/or nitrogen (N) / phosphorus (P) cycle(s), vegetation or stand dynamics. For models where soil 

temperature and moisture spin-up is sufficient (e.g. if LAI is prescribed rather than predicted), we suggested that model spin-

up use the site forcing file and repeatedly simulate the entire period, for at least 10 years of simulation, before beginning a 255 

simulation on the first year of site data.  

 

For LMs with prognostic LAI and/or soil C, N, and P pools, the process was more complicated. LM simulations were initialised 

with a spin-up routine resulting in equilibrium conditions of C stocks (and N and P if available) representing the year 1850. 

Climatic forcing for the spin-up came from the site eddy-covariance forcing file, which was continuously repeated. 260 

Atmospheric CO2 and N deposition levels representing the year 1850 were set to 285 ppm and 0.79 kg N ha-1 yr-1, respectively. 

The transient phase covered the period 1851 to the year prior the first year in the site data. LMs were forced with historical 
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changes in atmospheric CO2 and N deposition, continually recycling the meteorological inputs. The meteorological time series 

was repeated intact rather than in a randomised way, to avoid splitting of the observed meteorological years at the end of each 

calendar year. This of course does not accurately replicate the land use history of different sites, but in most cases detailed site 265 

level histories were not available. 

 

All models participating in PLUMBER2 are shown in Table S3. While some simulation setup information is included in the 

Notes column, more detailed information is available on the Model Output profile page for each set of simulations submitted 

to modelevaluation.org. While modelling groups were requested to report as many variables as possible from Table S1, the 270 

breadth of contributions were highly variable, so in an attempt to include all participants, analyses here focus on latent heat 

flux (Qle), sensible heat flux (Qh) and Net Ecosystem Exchange of CO2 (NEE) only. 

 

In addition to the LMs, two ‘physical benchmarks’ were also included, as per Best et al. (2015) - an implementation of a 

Manabe bucket model (Manabe, 1969) and a Penman-Monteith model (Monteith and Unsworth, 1990) with a reference 275 

stomatal resistance and unrestricted water availability. 

 

2.3 Empirical machine learning based benchmarks 

As suggested above, empirical models are key to quantifying site predictability, and so setting benchmark levels of 

performance for LMs that reflect the varying difficulty or complexity of prediction at different sites, unknown issues with data 280 

quality at some sites and more broadly understanding the amount of information that LM inputs provide about fluxes. To do 

this meaningfully, all empirical models need to provide out-of-sample predictions. That is, every site simulation made by an 

empirical model here has not used that site’s data to build/train the empirical model, and so cannot be overfitted to the 

characteristics or noise from the site. If the site is unusual, or its data is poor, the empirical models will provide a poor 

simulation, thus setting a lower benchmark of performance for the LMs. 285 

 

A hierarchy of different empirical models was used. From the simplest, with lowest performance expectations, to highest, these 

are: 

 

● 1lin: a linear regression of each flux against downward shortwave radiation (SWdown), using half hourly data, 290 

training on 169 sites and predicting on one, repeated 170 times, as per Abramowitz (2012) and Best et al. (2015). 

Two versions were created - one trained to predict raw fluxes (1lin_raw) and one trained to predict energy-balance 

corrected fluxes (1lin_eb). 

● 2lin:  a multiple linear regression of each flux using SWdown and air temperature (Tair) as predictors, using half 

hourly data, training on 169 sites and predicting on one, as per Abramowitz (2012) and Best et al. (2015). 295 
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● 3km27: all site-timesteps of three predictors - SWdown, Tair and relative humidity (RH) - from 169 training sites are 

sorted into 27 clusters using k-means, and all site-timesteps in each cluster are used to establish multiple linear 

regression parameters against each flux for that cluster. Time steps at the prediction site are sorted into clusters based 

on proximity to cluster centres, and regression parameters for each cluster are then used to make predictions at the 

test site, as per Abramowitz (2012) and Best et al. (2015). 27 clusters were chosen to approximately allow each 300 

predictor high, medium and low clusters: 33=27. Two versions were created - one to predict raw fluxes (3km27_raw) 

and one to predict energy-balance corrected fluxes (3km27_eb). 

● 6km729: As per 3km27, but using six predictors - SWdown, Tair, RH, Wind, Precip, LWdown (see Table S1 for 

variable definitions) - and 729 k-means clusters, training on 169 sites and predicting on one, similar to Haughton et 

al. (2018). 729 clusters were chosen to approximately allow each predictor high, medium and low clusters: 36=729; 305 

● 6km729lag: As per 6km729, but with lagged Precip and Tair as additional predictors. These took the form of six 

additional predictors: mean Precip and Tair from the previous 1-7 days, 8-30 days and 31-90 days. Training on 169 

sites and predicting on one, similar to Haughton et al. (2018); 

● RF: A Random Forest model with Tair, SWdown, LWdown, Qair, Psurf, Wind, RH, CO2air, VPD, and LAI as 

predictors. These predictor variables are listed in order of variable importance. While Precip was originally included, 310 

it actually offered negative variable importance - suggesting that including Precip reliably degraded the empirical 

prediction out-of-sample. Training was on 169 sites and predicting on one out of sample, repeated 170 times. As a 

nominally more sophisticated empirical model than the cluster+regression approaches above, RF offers a lower bound 

estimate of predictability of fluxes from instantaneous conditions (no lags). Two versions were created - one each to 

predict raw (RF_raw) and energy-balance corrected fluxes (RF_eb). 315 

● LSTM: A Long Short-Term Memory model given as much information as the LMs. Two types of input features were 

used for training: dynamic features - CO2air, LWdown, Precip, Psurf, Qair, RH, SWdown, Tair, VPD, Wind and LAI 

- and static site attributes that are constant per site (MAT, range of annual MAT, MAP, mean LAI, range of annual 

LAI, elevation, canopy height, reference height, latitude, mean SWdown, PET and IGBP vegetation type). Training 

was on 167 sites and prediction was on the three remaining sites (randomly chosen), repeated to make out-of-sample 320 

predictions at all sites. A single LSTM was used to predict Qle, Qh and NEE simultaneously, to account for the fact 

that the three fluxes are all components of a highly coupled system. The LSTM provides a lower bound estimate of 

predictability of fluxes using both instantaneous and meteorological conditions and internal states based on them - a 

proxy for LM states. Two versions were created - one to predict raw (LSTM_raw) and one to predict energy-balance 

corrected fluxes (LSTM_eb). 325 

2.4 Analyses 

The dimensionality and complexity of the PLUMBER2 data obviously present many options to interrogate the performance 

of LMs. Our analysis focuses on a relatively high-level overview without any intention to be comprehensive - we anticipate 
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that analysis of PLUMBER2 simulations will extend well beyond this paper and will take some time. Results below consider 

mean fluxes, variable ratios such as evaporative fraction and water use efficiency, before examining the two summative 330 

indicators detailed. 

 

The set of metrics we use, shown in Table S4, is independent, in the sense that for a given observational time series, a change 

can be made to the model time series that will affect any one of these metrics without affecting the others. This is not true, for 

example, of RMSE and correlation. Metrics are calculated separately for each model at each site. 335 

 

Next, we examine our two summative indicators. To do this, we first set a reference group of benchmark empirical models, 

and compare all LMs to this reference group. Suppose we wish to compare a given LM against 1lin, 3km27 and LSTM, for 

example. Then, for each metric (m), at each site and for each variable, we have metric values for the LM, 1lin, 3km27 and 

LSTM. We then define the normalised metric value (NMV) for this LM at this site, for this variable and metric, in one of two 340 

ways.  

 

First, as with PLUMBER, we define LM performance relative to a range of metric values that includes the LM and empirical 

benchmarks. Instead of using ranks though, we normalise this range to define the dependent Normalised Metric Value as: 

 345 

𝑑𝑁𝑀𝑉!" = #!"	%	#&'(##$%&,#'()*+,	#!,-",#!")
#+,(##$%&,#'()*+,	#!,-",#!")	%		#&'(##$%&,#'()*+,	#!,-",#!")

     (1) 

 

So dependent NMV simply denotes where in the metric range of these 4 models the LM was, scaled to be between 0 and 1, 

with lower values representing better performance. This allows us to average NMV over metrics, sites, variables, vegetation 

types or other groupings to get an aggregate indication of performance. 350 

 

The second approach, independent NMV, defines the normalised metric range using only the reference benchmark models: 

 

𝑖𝑁𝑀𝑉!" = #!"	%	#&'(##$%&,#'()*+,	#!,-")
#+,(##$%&,#'()*+,	#!,-")	%		#&'(##$%&,#'()*+,	#!,-")

     (2) 

 355 

iNMV allows us to define lower and upper performance expectations to be independent of the LM being assessed. We might 

expect that 1lin as the simplest model will typically have a value of 1 and LSTM 0, and the LM, if its performance lies between 

these two, a value somewhere in this interval. It also allows the LM to score a much lower value than zero, if it performs much 

better than the empirical models, and conversely, a value much larger than 1 if it is much worse. 

 360 
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To illustrate why such a detailed approach to analysis is necessary, we now briefly show why some common heuristic measures 

of performance are inadequate. Figures S4, S5 and S6 (supplementary material) show the performance results of the 1lin model 

at the US-Me2 site, examining latent heat flux, sensible heat flux and NEE in three different common graphical performance 

measures. These are: the average diurnal cycle of NEE, shown for different seasons (Fig. S4); a smoothed time series of Qh 

(Fig. S5); and the average monthly values of Qle showing the evaporative seasonal cycle (Fig. S6). In most contexts, if these 365 

blue curves were plots of a LM’s performance, the reader would accept this as qualitative or even quantitative evidence of 

excellent LM performance. Yet these represent perhaps the simplest possible model - a simple linear regression against 

shortwave, out-of-sample (trained on other sites only). They illustrate just how much site variability can be simply driven by 

instantaneous shortwave radiation, and that visual closeness of curves, and an ability to capture seasonal variability, diurnal 

variability and even interannual variability should not a priori be accepted as evidence of good model performance. 370 

 

As noted above, all analyses were filtered to exclude time steps at each site where observational flux data was flagged as 

missing or gap-filled. Analyses were half-hourly or hourly, depending on the reported time step size at each site, except for 

models that only reported monthly outputs, which were then analysed with monthly averages. All data management and 

analyses were conducted through https://modelevaluation.org  (see Abramowitz, 2012), and can be repeated there. The analysis 375 

codebase used for PLUMBER2 within https://modelevaluation.org is available at https://gitlab.com/modelevaluation/me.org-

r-library. 

3. Results 

In examining results from the PLUMBER2 experiment, we reinforce that our aim here is to demonstrate that we have created 

a holistic environment and methodology that allows us to fairly attribute model-observation mismatch to LMs, where 380 

appropriate. We do provide a broad overview of the many dimensions of PLUMBER2 results, but do not investigate process 

representations or flaws of any model – doing so would necessarily present an incomplete picture, since these kinds of findings 

are specific to particular models, environments and circumstances. 

 

Figure 1 shows the average latent heat flux (Qle) versus sensible heat flux (Qh), averaged across all sites for participating 385 

models that reported both variables. Dashed lines show a proxy for observed available energy (around 69 Wm-2, defined as 

Qle+Qh, assuming mean ground heat flux on longer time scales is zero) and observed Bowen ratio (around 0.7). Perhaps 

unsurprisingly, models differ most in their partitioning of surface energy (spread along the available energy axis) rather than 

amount of available energy (spread along the Bowen ratio axis), supporting previous findings (see Haughton et al, 2016). 

Those LMs that do not operate in a coupled modelling system (i.e. are not coupled to an atmospheric model; EntTBM, LPJ-390 

GUESS, MuSICA, QUINCY, STEMMUS-SCOPE) also appear to have a much broader spread of estimates than those used 

in coupled models (they are furthest from the observed Bowen ratio in Fig. 1), and the unrestricted moisture store of the 

Penman-Monteith model makes it a clear outlier. 

http://www.modelevaluation.org/
http://www.modelevaluation.org/
http://www.modelevaluation.org/
http://www.modelevaluation.org/
https://gitlab.com/modelevaluation/me.org-r-library
https://gitlab.com/modelevaluation/me.org-r-library
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Figure 1: Latent heat flux (Qle) versus sensible heat flux (Qh) averaged over 154 sites, shown for models that submitted both 395 
quantities. Dashed lines show observed values of average available energy (Qle+Qh) and average Bowen ratio (Qh/Qle) across the 

sites, using raw (as opposed to energy balance corrected) flux data. Smaller light grey dots in the background represent individual 

site averages. 

 

When averaged across all sites, the LMs do not appear to show any clear systematic bias in energy partitioning relative to 400 

observations across the ensemble. Note that in Fig. 1 the observations do not have the Fluxnet2015 energy-balance correction 

applied (the equivalent figure using energy balance corrected fluxes is shown in Fig. S7a). Aside from showing a little more 

available energy (their mean is slightly offset from the observed available energy line, by less than 10%), the LMs are relatively 

evenly spread around the observational Bowen ratio. This lends little support to an argument of systematic observational bias 

in the partitioning of available energy leading to apparent poor LM performance.  405 

 

The empirical models trained to predict raw fluxes (those labelled *_raw) are tightly clustered around the observational 

crosshairs. While it is not surprising that regression-based models perform well on the mean, these models are entirely out-of-

sample, demonstrating forcing meteorology alone provides enough information to predict mean fluxes accurately out-of-

sample. The energy-balance corrected observations lie in amongst the empirical models trained to predict energy-balance 410 
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corrected fluxes (labelled *_eb; the cluster of grey points with higher available energy in Fig. 1 - see Fig. S7a). The average 

Bowen ratio increases slightly to 0.73 instead of 0.7 with energy-balance correction. Perhaps more interesting is that the 

corrected version of flux observations contains an average of 16 Wm-2 additional energy across these sites, about a 23% 

increase, and that this value sits much further outside the spread of the mechanistic modelled estimates of available energy 

than the observed value in Fig. 1. So in this simple metric at least (and indeed in more below), the LMs’ performance is not 415 

improved with energy-balance corrected flux data. While we present results comparing with raw fluxes in the main part of this 

manuscript, comparisons against energy-balance corrected data, where they qualitatively differ, are discussed and shown in 

Supplementary Material. Similarly, when we filter analyses to only include time steps with wind speed above 2 ms-1 (Fig. 

S7b), the scatter of models in Fig. 1 changes surprisingly little.  

 420 

 
Figure 2: Box plots of error in site mean energy evaporative fraction (Qle/(Qle+Qh)) over all sites, shown separately for each model, 

using raw flux data across 154 sites. 

 

Figure 2 shows boxplots of error in the average energy evaporative fraction (EF) across the same sites, shown separately for 425 

each participating model. Energy evaporative fraction is defined using average flux values at each site: Qle / (Qle+Qh). The 
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equivalent plots using energy balance corrected data and data filtered for wind speed are almost indistinguishable from Fig. 2, 

and so have not been included. Consistent with what we saw in Fig. 1, the mechanistic benchmarks and ecosystem models 

show the largest deviation from site observations, and empirical approaches are reliably zero-centred despite having no explicit 

mechanism to constrain the ratio between Qle and Qh. The more sophisticated empirical models (6km*, RF, LSTM), as well 430 

as being zero error centred, show less spread, meaning they have fewer large errors in energy evaporative fraction.  Once again, 

there does not appear to be any obvious reason to suspect a bias in partitioning in observations - some LMs (6) show a high 

EF bias, and others (11) a low bias. 

 

An equivalent version of this figure showing water evaporative fraction, Qle / Rainf, is shown in Fig. S8a and Fig. S8b (in 435 

supplementary material), using raw and energy-balance corrected fluxes, respectively. Once again, models are well scattered 

about the zero error line when raw fluxes are used, and almost all appear strongly negatively biased when compared to the 

energy balance corrected fluxes. The equivalent plots using wind speed filtered data are qualitatively the same as Figures S8a 

and S8b, and so are not included here. 

 440 

 
Figure 3: Latent heat flux (Qle) versus net ecosystem exchange of CO2 (NEE) averaged over 154 sites, shown for models that 

submitted both quantities. The observed value is shown in black with crosshairs. Light grey dots in the background represent 
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individual observed site averages, with the linear fit between them shown in bold dashed grey. Regression lines are also shown for 

LMs showing a stronger fit than in the observed case (R2=0.19). 445 
 

Figure 3 is similar to Fig. 1, but shows average latent heat flux (Qle) versus Net Ecosystem Exchange of CO2 (NEE) for LMs 

that reported both variables. Given the expectation that NEE is likely to be strongly dependent on site history, and that we 

could not reliably include this information in the modelling protocol or account for it in this plot, there is no a priori reason to 

expect a clear relationship across all sites here, beyond both fluxes being dependent on stomatal function. While we might 450 

broadly expect increasing carbon uptake with increasing Qle, as shown by the observed regression line in Fig. 3, the fit is 

relatively weak (R2 is 0.19). LM regressions are shown where their fit has higher R2 than observed, although we note that aside 

from ORCHIDEE2, CABLE-POP and NoahMP, only empirical models meet this criterion (unsurprising, since they effectively 

act as data smoothers). 

 455 

With the exception of Noah-MP, STEMMUS-SCOPE and some empirical models, all LMs predict less net carbon uptake than 

is observed. This may well be because the models were run without any site history. That is, the simulated ecosystems were 

closer to equilibrium than those in the real world. In equilibrium, vegetation and soil carbon stocks are high and thus respiration 

is also higher as it is generally simulated as a function of carbon stocks. Ecosystem models predict the least carbon uptake but 

a large range in Qle values (MuSICA, LPJ-GUESS, QUINCY, SDGVM). The equivalent plot with energy balance corrected 460 

Qle values (not shown) simply moves the ‘observed’ black square to the right, once again sitting amongst 1lin_eb, 3km27_eb, 

RF_eb and LSTM_eb. Once again, the energy-balance corrected data does not appear to match LM simulations better than 

raw flux data. 

 

We also note that while LMs’ spread might well be because of a lack of site history information, the empirical models show 465 

that missing this information does not actually reduce NEE predictability to a large degree (all empirical models are within 

0.35 μmol/m2/s of observations). The empirical models also do not have any site history, and indeed in most cases, do not even 

use any estimate of LAI. They are trained only at other sites, so they cannot infer any site history information from the 

meteorology-flux relationship. Despite this, they cluster quite tightly around the observations in Fig. 3, whether predicting raw 

Qle (cluster of grey points in the crosshairs) or energy-balance corrected Qle (cluster of grey points to the right of this). They 470 

all suggest a net uptake of C across these sites, within a narrow range spread around the observations. 

 

Figure 4 is similar to Fig. 2, but shows error in water-use efficiency (NEE/Qle), expressed in units of 𝜇mol of carbon gained 

per gram of water (left vertical axis) and error as a percentage of observed WUE (right vertical axis), with the heavy pink 

dashed lines representing +/- 100%. It shows that almost all LMs underestimate WUE, typically by about 50%, presumably 475 

related to the broad under-prediction of NEE by LMs evident in Fig. 3. At the other end of the spectrum, NoahMP shows a 

very high WUE bias, consistent with its overprediction of C uptake in Fig. 3 (due to a high dynamically predicted LAI). The 
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empirical models, without any explicit constraint on the ratios of predicted variables (they are predicted independently), are 

better spread around observed values. Note that this statement applies equally to those empirical models trained on raw flux 

tower data and those trained on energy balance corrected data. Only the simplest empirical model – 1lin – shows 25th or 75th 480 

percentiles (across sites) outside 100% error in WUE, whereas most (8/14) LM do.  The equivalent plot using energy balance 

corrected Qle data is shown in Fig. S9, and looks qualitatively similar to Fig. 4. For this metric, there are no discernible 

differences in performance across types of LM. 

 

 485 
Figure 4: Box plots of error in site mean ecosystem water use efficiency (-NEE/Qle) over all sites, shown separately for each model. 

WUE error is expressed both in units of umol of C gained per gram of water lost (left vertical axis, grey and multicoloured box plots) 

and error percentage of observed WUE (right vertical axis, pink box plots), with the heavy pink lines representing +/- 100%. 
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As noted above, a range of alternative versions of the plots above are available in supplementary material, examining sensitivity to energy-490 
balance corrected data and low turbulence periods. Additional analyses, such as water evaporative fraction box plots (Figs. 8a and 8b) and 

variable density estimates for each model (Figs. S10a and S10b) are also in supplementary material.  

 

 
Figure 5: The average performance across all 154 sites and 7 metrics for Qh, Qle and NEE (lower is better). Average performance 495 
is the mean of dependent normalised metric values (dNMV) within the range of metric values across models being compared in each 

panel (4 in total, the LM (blue) - shown in plot title - and three reference benchmarks: 1lin_raw (red), 3km27_raw (yellow) and 

LSTM_raw (green)). The first 10 panels (faded) show empirical or physical benchmark models. 
 
We now investigate a more direct comparison between LMs and empirical benchmarks by exploring results using our two summative 500 
indicators. Figure 5 shows modified ‘PLUMBER plots’, similar to Best et al. (2015), but here using the average of the dependent 

normalised metric values (dNMV) in the range of metric values across the four models being compared in each panel (one 
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LM, 1lin_raw, 3km27_raw and LSTM_raw). This is as opposed to the average rank of metric values used in Best et al. (2015), 

which can distort results when metric values are clustered, as noted in Section 1. Each panel in Fig. 5 shows the model in the 

panel title in blue, with benchmark empirical models in red (1lin_raw), yellow (3km27_raw) and green (LSTM_raw). Lower 505 

values represent better performance. LMs are shown alphabetically, with the first 10 panels, faded, showing the remaining 

empirical models and physical benchmarks against these three benchmark models. 

 

The out-of-sample LSTM_raw on average performs best across all fluxes, for these sites and metrics. The performance of LMs 

is highly variable, with half of them performing better than the 3km27_raw model for Qle, 15 of 18 worse than the out-of-510 

sample simple linear regression (1lin_raw) for Qh, and NEE typically between the 1lin_raw and 3km27_raw levels of 

performance (12 of 14 LM variants). Overall, it is clear that LMs tend to perform better against the benchmarks for Qle and 

NEE than Qh, typically falling within the range of these three benchmarks for Qle and NEE. CLM5, MATSIRO and NoahMP 

are the only LMs with Qh metrics within this range. The LMs falling outside the benchmark dNMV ranges for Qle and NEE 

are a mixture of LSMs and ecosystem models. The equivalent plot using energy balance corrected Qle and Qh observations is 515 

shown in Fig. S11a. The performance of the LMs against the benchmarks remains remarkably similar, with some LMs slightly 

better and others slightly worse against corrected data. Filtering for higher wind speed time steps (Fig. S11b, using raw flux 

data) also appears to make no qualitative difference, if anything making LM performance worse relative to these empirical 

benchmarks. While this may appear like a marked improvement in LM performance relative to results in Best et al (2015), 

these results are not directly comparable, something we explore further in the discussion section. 520 

 

When we look at the same set of figures using independent normalised metric value (iNMV) instead of dependent (dNMV), 

the picture is very different (Fig. 6). Recall that iNMV sets the normalised metric range (0,1) based on the three reference out-

of-sample empirical models (1lin, 3km27 and LSTM) only, rather than these three and the LM, and then compares the LM to 

this range. For example, if the three reference empirical models have a mean bias in Qle of 35Wm-2, 28Wm-2, and 25Wm-2 (a 525 

range of 10Wm-2), and the LM has a bias of only 10Wm-2, the iNMV of the reference models is 1, 0.3, and 0, respectively, and 

the LM has iNMV of -1.5 (remembering that lower is better). Alternatively, if the LM has a bias of 50Wm-2, its iNMV would 

be 2.5. So iNMV values are not constrained to be in the unit interval, as they are for dNMV.  

 

Figure 6 shows the same data as Fig. 5, but using iNMV instead of dNMV. The values of iNMV for the three reference models 530 

are now identical across all LM panels, so the values of iNMV for each LM are directly comparable. Note however that the 

vertical axis scale is different in each panel, so we can see the range for each LM. LM performance in iNMV clearly looks a 

lot worse. It tells us that when LMs perform worse than the out-of-sample linear response to shortwave, 1lin, they often perform 

a lot worse (at least a lot worse relative to the range between 1lin and LSTM_raw). While some LMs (CABLE, CABLE-POP, 

CHTESSEL, CLM, JULES, NoahMP and ORCHIDEE) perform within the range of the three empirical models for some 535 

variables, averaged over all variables, no LM outperforms the out-of-sample linear regression against SWdown. This is a 
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sobering result. LM performance is particularly poor relative to the benchmarks for Qh with no models within the range of the 

benchmarks (compared to 40% of them for Qle and 29% for NEE). 

 

Equivalent plots to Fig. 6 using energy-balance corrected fluxes (Fig. S11c) and time steps with wind speed > 2ms-2 (Fig. 540 

S11d) are shown in supplementary material. Again, LM performance appears remarkably similar despite the significant 

changes made with the target energy-balance corrected data (Fig. 1). It remains true that no LMs outperform the 1lin averaged 

over all fluxes. Note that in this comparison, where energy-balance corrected data are the reference target, the versions of 

empirical models trained for this target are used for comparison (i.e. 1lin_eb, 3km27_eb and LSTM_eb). 

 545 

We also note that despite this result, some LMs do perform better than the empirical benchmarks for a subset of the metrics in 

Table S4, for some variables. Figs S11e – S11k are versions of Fig. 6 constructed with only one metric at a time. LMs tend to 

perform better in the 5th percentile and PDF overlap metrics, and worst in temporal correlation and NME. It is also apparent 

that RF, 6km729 and 6km729lag all outperform the LSTM in quite a few of these metrics. Despite this, we did not investigate 

alternatives to the LSTM as the high level empirical benchmark. 550 
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Figure 6: As per Fig. 5, but using the average of independent normalised metric values (iNMV) defined by the range of metric values 

across the three reference models (1lin_raw, 3km27_raw and LSTM_raw). Note that different panels have different y-axes. 
 555 

We now examine the discrepancy between our best performing out-of-sample empirical models and a given mechanistic model 

in more detail. This defines an amount by which we know that the mechanistic model can improve by. This also allows us to 

define model performance in a way that accounts for site complexity / peculiarity / predictability, as well as observational 

errors particular to each site, and avoids some misleading statistics, like large RMSE values at sites that simply have larger 

fluxes. For this purpose, we use one of the best performing empirical model as the reference model, LSTM_raw. While it is 560 

the best performing models in this collection, it provides a lower bound estimate of predictability of fluxes at each site, since 

we can almost certainly produce better empirical models. 
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Figure 7: Independent normalised metric discrepancy between each model and LSTM_raw for latent heat flux (Qle), sorted by 565 
vegetation type. The average of all LMs for each vegetation type is shown by the bold dark grey line, and the zero line is in light 

grey. Lower scores are better. 
 

In Fig. 7, we look at the discrepancy in iNMV between each mechanistic model and LSTM_raw for latent heat flux predictions. 

Results are shown in a separate panel for each IGBP vegetation type, and each model as a boxplot within each panel. Only the 570 

interquartile range and median estimates are shown for each boxplot. The observed vegetation types are used for each site, 

noting that some LMs with dynamic vegetation might represent these sites differently. Values below zero show that the LM 

performed better than the three benchmark empirical models (1lin, 3km27, LSTM). Values between zero and one mean that 

the LM performed within the range of the benchmark models (shaded grey background), and above one means that the LM 

was worse than 1lin. The average of all mechanistic LMs for each vegetation type is shown by the dark grey horizontal line, 575 
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with the zero line in light grey. Each box plot represents the difference in independent normalised metric values across all 

metrics in Table S4. 

 

There are clearly variations in performance across vegetation types, and while mean LM performance is worst for open 

shrubland (OSH), evergreen broadleaf forest (EBF) and mixed forest (MF), results across different LMs vary significantly. 580 

Overall, LM performance appears better for grass-dominated vegetation types (grassland and savannas) than tree ecosystems. 

The equivalent plots for Qh (Fig. S12b), using energy-balance-corrected data (Fig. S12a for Qle; S12c for Qh) and NEE (Fig. 

S12d) suggest that there is no clear differentiation of performance by vegetation type – no particular vegetation types is 

consistently anomalous. While some of the LM means (dark grey line) appear to change markedly for Qle after energy-balance 

correction (most notably for grassland sites), this seems at least partially because of significant changes to outlier LMs, rather 585 

than a change in aggregate behaviour. Some LMs show improved performance using energy balance corrected data, others 

show degradation, although more appear to improve. There is definitely less of a change for Qh as a result of energy-balance 

correction. Also note that in all of these figures, the LM mean is often well above most of the 25th-75th percentile box plots. 

This simply reinforces the point made above that when LMs are worse than the reference benchmarks, they are often much 

worse (the smallest and largest 25% of values do not contribute to these box plots, obviously). Figures 13a – 13e show the 590 

same information, but sorted my model rather than vegetation type. 

 

Finally, we examine LM performance in the context of the issue we raised in Section 2.2. A significant proportion of sites had 

Qle fluxes larger than incident rainfall, and since this is something that most LMs will be structurally prohibited from 

replicating (with the possible exception of wetlands), we explore why this might be the case, and whether the issue has biased 595 

our overall conclusions about LM performance.  Figure 8 once again shows the iNMV improvement offered by the LSTM 

over LMs, on a per-site basis, with the median difference for all LMs plotted (shown by colours). Each site’s location is shown 

on axes of observed water evaporative fraction versus dryness index, as per Figures S2a-d. Note that the location of the 1-1 

line relative to the sites is very much dependent upon our estimate of potential evapotranspiration (PET), which here is given 

by the Penman-Monteith model described above, so it is entirely plausible that a different estimate would see all sites (with 600 

the exception of US-Bkg) lying to the right of the 1-1 line. We might also wish to plot a curve on this figure illustrating the 

Budyko hypothesis (Budyko, 1974; although there is no single accepted derivation of an equation that describes the asymptotic 

behaviour it suggests; see Sposito, 2017; Mianabadi, 2019), but the spread of sites should make it clear why this is not 

particularly useful. Many sites have a water evaporative fraction above 1. This reinforces that the conceptual idealisation of 

the Budyko hypothesis applies only at very large spatial scales and/or in idealised circumstances of water availability. 605 

Irrigation, or landscape features like topography/hillslope, sub surface bedrock bathymetry or groundwater can mean it is 

entirely physically reasonable for a location to exhibit a water evaporative fraction above 1, as around 30% of these sites do. 

These factors are likely to still be relevant at scales of 10s of kilometres, so it seems unreasonable to suggest these effects are 

not also relevant for gridded simulations. 
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 610 
Figure 8: Independent normalised metric value (iNMV) improvement offered by LSTM over the median iNMV value of all LMs 

(excluding empirical and physical benchmarks), shown by colour for latent heat flux (Qle). Each site’s location is shown on axes of 

observed water evaporative fraction versus dryness index. The prevalence of particular colour values is shown by the violin plot to 

the left of the colour legend. Values within [-0.1,0.1] are shown in pink, and values above 2 have constant, dark blue colour. Dot sizes 

indicate the length of site data, ranging from 1 (smallest) to 21 years (largest) - see Table S2 for site details. 615 
 

Of the sites in Fig. 8 with water evaporative fraction greater than 1, only one is irrigated (ES-ES2) and none are wetland sites. 

Hillslope factors are quite plausibly important in four others (CN-Dan, DK-ZaH, US-SRG, US-SRM). One is affected by fire 

prior to the measurement period, which might mean that accumulated water was available (US-Me6). Others are sites from the 

La Thuile release not included in Fluxnet2015, which raises the possibility of data quality concerns (BW-Ma1, ES-ES1, RU-620 

Zot, US-Bkg, US-SP3). But for the majority there is no immediately obvious explanation (AR-SLu, AU-Cpr, AU-Cum, AU-

Gin, AU-Otw, AU-Tum, CN-Cha, CN-Cng, CN-Du2, DE-Seh, FR-Fon, US-AR1, US-AR2, US-Me2, ZM-Mon). While the 
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data used in Fig. 8 is filtered for gap-filled and other quality control flags, we can confirm that using the entire time series for 

each site does not result in any qualitative change to site locations on this figure (see Fig. S2c).  

 625 

The equivalent plots to Fig. 8 for corrected-Qle, Qh, corrected-Qh and NEE are shown in Figures S14a-d, respectively. None 

of these show a markedly higher density of poor LM performance (green-blue dots) above the 1.0 line where Qle exceeds 

precipitation on average. So despite there being a structural impediment to LMs simulating these sites, that impediment is 

clearly not the major cause of LM’s poor performance.  These figures also do not appear to support the community’s heuristic 

expectation that LMs’ performance decreases with dryness. While there is a cluster of energy-limited sites where LMs 630 

consistently outperform LSTM_raw (red-orange-yellow dots), there are also several water-limited sites where LMs do well, 

and the worst simulated sites by LMs, shown in blue, seem evenly spread throughout the figures.  

 

While it is clear that LSTM_raw broadly outperforms LMs at most sites, there are clearly some sites (red-orange-yellow) 

where LMs on aggregate outperform the LSTM. This does not appear to be the case consistently across all three fluxes for any 635 

particular site, however, or indeed any clear signal about the type of sites (in terms of vegetation type, dryness or available 

energy) that are better simulated. This probably suggests that these outcomes may be more stochastic than the result of any 

structural advantage the LMs might have. 

 

4 Discussion and conclusions 640 

In addressing our overall goal of fairly assessing the fidelity of land models, we aimed to create an evaluation framework that 

met two criteria: (1) a simulation environment that offered enough observational constraint to attribute model-observation 

mismatch to a model, where appropriate, and (2) a benchmarking approach within that environment that could ensure this 

attribution was fair by quantifying reasonable expectations of performance. Below we discuss the extent to which this was 

achieved, what we learned from applying the framework to the PLUMBER2 experimental results, caveats, and implications 645 

for future research. 

 

Simulation environment, observational constraint and data quality 

There are several important findings in terms of observational constraint. The first is that we can conclusively say that this 

simulation environment does offer enough observational constraint to diagnose model performance. The fact that a broad range 650 

of empirical models, trained at sites other than where they are tested, can reliably outperform LMs tells us that enough 

information is available to LMs to do better. What is less clear is whether the lack of constraint on LM parameter specification 

is causing poor LM performance – something we discuss in more detail below. 
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In terms of observational data quality, despite raw and energy-balance corrected fluxes clearly being very different, our 655 

conclusions about model performance are relatively similar with or without the correction. This qualitative similarity is only 

clear because of the ability to define performance expectations using empirical benchmarks separately in each case. Similarly, 

restricting analyses to low turbulence periods does not result in a qualitative change to the performance assessment of LMs, 

so it is clear that while there may well be issues with night time flux tower data, they are not the primary cause of the poor 

agreement between LMs and tower fluxes. 660 

 

Next, the use of empirical benchmarks trained separately to predict raw and energy-balance corrected fluxes also gives us 

some insight into how appropriate the Fluxnet2015 energy balance correction process might be. Figure 1 and its equivalents 

in the supplementary material show that in general, available energy in LMs is indeed higher than in raw observations (noting 

that a priori this is not evidence that the observations are wrong). However, the energy balance corrected versions of this plot 665 

show an even larger discrepancy. Similarly, the differences between corrected and uncorrected water evaporative fraction 

(Figures S8a and S8b) show that corrected Qle fluxes look markedly different to almost all models. The plots based on iNMV 

do seem to show that the correction process helps improve overall performance for several LMs. There is, however, more 

subtle evidence in the performance of the empirical models that gives us other, contradictory information. LSTM_raw is the 

best performing reference model in Fig. 6, and as expected, LSTM_eb, trained to match qualitatively different (energy-balance 670 

corrected) target data, does not perform as well against raw flux data as LSTM_raw. This is what we would expect. However, 

when we look at the reverse situation, using LSTM_eb as the reference model, and energy-balance corrected fluxes as the 

target data (shown in Fig. S11c), the situation is quite different. LSTM_raw performs worse for Qh, as expected, but it performs 

better than LSTM_eb for Qle. This tells us that unlike for Qh, a sophisticated ML model trained on the corrected Qle flux has 

no advantage predicting corrected Qle than the same ML model trained on raw fluxes - in fact it has a disadvantage. A similar 675 

result can be seen for 6km729lag. It is less sophisticated than LSTM_eb, and trained to predict the raw fluxes, yet it outperforms 

LSTM_eb. This suggests that the correction to Qle makes these fluxes less predictable. This suggests that the correction to Qle 

is categorically incorrect, whereas the correction to Qh may well add some value. This may suggest that the missing energy in 

uncorrected fluxes might be more likely to be in Qh fluxes (agreeing with other proposed correction approaches - see 

Charuchittipan et al., 2014). 680 

 

Finally, we discuss the structural assumption in most LMs that horizontal transport of water between grid cells is negligible. 

A significant number of sites show a water evaporative fraction greater than 1, which, despite being entirely physically 

plausible, is simply not possible for most current LM process representations to replicate. It tells us that either (a) access to 

groundwater beyond gravity drainage is common, (b) below surface bedrock structure has a significant local hydrological 685 

effect, and/or (c) horizontal advection of moisture in soil (and locally on the surface) plays a significant role in moisture 

availability at the ~1km2 spatial scale (i.e. flux tower fetch). Very few global coupled models include any of these effects. It is 

very likely that almost all sites and indeed much larger spatial scales are affected by this same issue to varying degrees, even 
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if their water evaporative fractions do not appear to be anomalously high. This may well include all spatial scales below river 

and groundwater basin scales. Despite this revelation, it is remarkable that LM performance is apparently not any worse for 690 

sites where evapotranspiration exceeds precipitation (Figures 8, S14a-d). It suggests that despite this structural assumption 

being violated in the LMs here, other aspects of process representation are more detrimental to overall LM performance.  

 

Benchmarking methodology 

It should be clear that choices made in how we assess model performance can result in markedly different conclusions. The 695 

difference in apparent LM performance between dNMV and iNMV as a summative indicator is stark. By excluding the LM 

we are evaluating from the criteria that define good or bad performance (the set of the three empirical models) we define 

benchmark levels of performance that are independent of the LM being evaluated. It means that when the LM is much better, 

or much worse than a priori expectations, it will get a score that is proportionally much better or much worse. Using metric 

ranks or dNMV instead limits the cost of poor performance in the cumulative metrics shown in PLUMBER style plots (Best 700 

et al, 2015), and so gives an artificially positive indication of LM performance relative to the reference benchmark models. 

 

We suggest that the framework we present provides a way to assess the significance of proposed improvements to LM 

performance that is relatively insensitive to metric choice, and critically, is based on demonstrated capacity for improvement. 

That is, when a LM is worse than an out-of-sample empirical model given the same predictors, we know that there is enough 705 

information provided to the LM to do better. We suggest that the summative analysis we present here using iNMV is a fairer, 

more comprehensive representation of LM performance than either the original PLUMBER paper or the dNMV versions of 

the same analyses.  

 

Beyond a lower bound estimate of potential improvement, the hierarchy of empirical models we examined also provides more 710 

nuanced information about performance expectations. The difference in performance between 6km729 and 6km729lag, for 

example, quantifies the improvements in flux simulation we should expect from adding in model states such as soil moisture 

and temperature, rather than simply having an instantaneous response to meteorology (see Figures S13a-S13e). The same is 

also true of the RF and LSTM, although they had slightly different predictor sets and architectures. The simplest model, 1lin, 

also makes it clear that much of what we might heuristically regard as high model fidelity is a simple linear response to 715 

shortwave forcing (Figures S4, S5, S6 and perhaps most importantly Fig. 6). It should be abundantly clear that simple 

diagnostics can be very misleading and that defining ‘good’ model performance is inherently complicated. Without the 

empirical model hierarchy detailed here, judgements about LM performance would almost certainly be susceptible to 

confirmation bias. 

 720 

PLUMBER,  PLUMBER2 and implications for LMs 
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It might appear from Fig. 5 that many LMs (CABLE, CHTESSEL, CLM, JULES, MATSIRO, MuSICA, ORCHIDEE, 

NoahMP) perform better than the 3km27 model here for Qle, something that could represent progress since the original 

PLUMBER experiment (where no models outperformed the 3km27 model for standard metrics - see Best et al, 2015). There 

are however some differences here that mean PLUMBER and PLUMBER2 results are not directly comparable. First, the single 725 

set of metrics we are using here is a combination of the ‘standard’, ‘distribution’ and ‘extremes’ based metrics used in 

PLUMBER, and the worst LM performance in PLUMBER was for the standard metrics set alone. Next, Fig. 5 uses (dependent) 

normalised metric range, rather than ranks. We also have fewer models, and different models, in each panel that is used to 

calculate the metric range, and results are calculated over 154 instead of 20 sites. It nevertheless remains true that Qh is much 

more poorly predicted than Qle.  730 

 

While of a similar performance standard to Qle prediction overall, NEE was notably underpredicted by LMs in a way that Qle 

was not. While it seems obvious that a lack of site history in LM setup (noting that this information was not available) is the 

cause for this, it is intriguing to see that empirical models (also not given this information) were able to predict NEE without 

this bias, in most cases without any LAI information at all (Figs. 3, 4). These empirical models were out-of-sample (they did 735 

not use any data from the sites they predicted in their training). This is an indication that importance of site history and leaf 

area is overstated in our LMs, and not as important as we may believe for flux prediction. 

 

These results raise the question of whether LMs are too complex for the level of fidelity they provide. It is at least theoretically 

possible, for example, that an LM is perfect, but because we are unable to precisely prescribe its parameters for these site 740 

simulations (and global simulations) we are actively hindering its ability to get the right result. What the out-of-sample 

empirical models show is that the information available in LMs’ meteorological variables alone - without any description of 

what type of vegetation or soil might be at a given site, or indeed the reference height of the measurements - is enough to 

outperform all of the LMs. This is not to say that LMs could not perform better if more detailed site-specific information were 

available, but the way that they were run here was designed to mimic their application at global scales, and for that job they 745 

are considerably more complicated than is justified by their performance. A more detailed examination of how well LMs 

perform when given detailed site information would not simply require showing that metric scores for LMs improved when 

given this information, it would require that LMs come closer to outperforming ML approaches also provided with similar 

site-specific information. 

 750 

There are of course other reasons why we might want complexity in a LM beyond improved performance, like the ability to 

infer the impacts of particular decisions on a broader range of processes within the land system.  But it is nevertheless important 

to know the degree of predictability that’s possible with the increasing amount of information that our models are provided 

with - what we’re missing out on that is categorically achievable. The fact that it has been found that increasing model 

complexity shows little relationship to performance in some circumstances, even when additional site information is provided, 755 
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should be concerning (Lipson et al, 2023). We also need to recognise that the many increases in sophistication that we might 

want to include to improve the representativeness of LMs (see Fisher and Koven, 2020) may come at a significant cost. The 

more degrees of freedom we have in a model, the more and broader range of observational data we need to effectively constrain 

it, the less able we are to pinpoint model shortcomings, and the more susceptible we become to getting the right answer for the 

wrong reasons (see Lenhard and Winsberg, 2010). A very crude statistical analogy might be that if we have a model with one 760 

process that is right 90% of the time, the model is 90% accurate. But if we have a model with 10 serial processes that are right 

90% of the time, the model is 0.910 = 35% accurate (although only if errors are independent).  

 

This of course does not mean that LMs will always appear to perform badly in global scale studies, especially if performance 

expectations are not quantified the way we have done here. Figures S4, S5 and S6 show that we can explain a considerable 765 

amount of observed variability with very simple models, and examining results at longer timescales as is typically the case in 

global studies will not change this. We are only able to draw the conclusions we have here because we have clearly defined 

performance expectations in terms of the amount of information available to LMs about surface flux prediction, and examined 

this close to the process scale, rather than averaged over longer periods and spatial scales.  

 770 

Next steps 

As with most model comparisons, the summary statistics presented in this paper do not give us any categorical indications 

about how to start improving models. They nevertheless allow, perhaps for the first time, to fairly account for some of the 

inevitable difficulties and eccentricities associated with using observed data. By evaluating performance relative to out-of-

sample empirical estimates we can quantify expectations of achievable LM improvement, and isolate the circumstances in 775 

which this potential for improvement is most apparent. We did not actively explore these circumstances in detail here, since 

they are particular to each LM, but have nevertheless provided an approach to achieve this. Some clear indications are already 

evident from the sites shown in green and particularly blue in Figures 8, S14a,b,c,d. These are sites where we know that LM 

model prediction can be substantially improved, since an out-of-sample empirical model offers substantial performance 

improvements using the same predictors as the LMs. These are of course the average discrepancy across all LMs, so the 780 

capacity for improvement at a particular site is likely to vary for different models. Equivalent figures for each individual model 

and variable can be found on modelevaluation.org in the PLUMBER2 workspace via the profile page for each submitted model 

output. Data and analysis code from this experiment are also available and we openly invite further analyses and contributions 

from the community. 

 785 

The next steps for the community towards building LMs that better utilise the information available to them seem reasonably 

clear. Understanding the shortcomings of an LM is not a simple process, so moving away from in-house, ad-hoc model 

evaluation towards more comprehensive, community built evaluation tools, where the efforts of those invested in model 

evaluation are available to everyone will be key. This will allow results to be comparable across institutions and routine 
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automated testing to become part of the model development cycle. This will need to cover both global scales (e.g. ILAMB; 790 

Hoffman et al., 2016; Collier et al, 2018) and site-based process evaluation (e.g. modelevaluation.org; Abramowitz, 2012). In 

both cases, inclusion of empirical performance estimates, such as those shown here, will be key to distinguishing incremental 

improvements from qualitative improvements in LM performance. 

 

Finally, there is obviously much, much more to explore in the PLUMBER2 dataset. Most participants submitted many more 795 

variables than were examined in this paper (and several came close to the list in Table S2). The vast majority of submissions 

to PLUMBER2, as well the forcing and evaluation data, are publicly available on https://modelevaluation.org as a community 

resource for further analyses, and we actively invite further collaborations to utilise the data set that this experiment has 

produced. This paper nevertheless provides the community with a benchmarking framework that is relatively insensitive to 

observational errors, choices in evaluation metrics, and defines model performance in terms of demonstrated capacity for 800 

improvement, rather than model-observation mismatch alone. 

 

 

Code and data availability 

Flux tower data used here are available at http://dx.doi.org/10.25914/5fdb0902607e1 as per Ukkola et al. (2022), and use data 805 

acquired and shared by the FLUXNET community, including these networks: AmeriFlux, AfriFlux, AsiaFlux, CarboAfrica, 

CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada, GreenGrass, ICOS, KoFlux, LBA, NECC, OzFlux-

TERN, TCOS-Siberia and USCCC. The ERA- Interim reanalysis data are provided by ECMWF and processed by LSCE. The 

FLUXNET eddy covariance data processing and harmonisation was carried out by the European Fluxes Database Cluster, 

AmeriFlux Management Project and Fluxdata project of FLUXNET, with the support of CDIAC and ICOS Ecosystem 810 

Thematic Center, and the OzFlux, ChinaFlux and AsiaFlux offices. All land model simulations in this experiment are hosted 

in modelevaluation.org, and to the extent that participants had no legal barriers to sharing these, are available after registering 

with modelevaluation.org. The analyses shown here were also performed on modelevaluation.org, using the codebase publicly 

available at https://gitlab.com/modelevaluation/me.org-r-library. 
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