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Abstract. This work proposes a hybrid approach that combines Physics and Artificial Intelligence (AI) for cloud cover now-

casting. It addresses the limitations of traditional deep learning methods in producing realistic and physically consistent results

that can generalize
::::::::
generalise

:
to unseen data. The proposed approach,

::::::
named

::::::::::
HyPhAICC,

:
enforces a physical behaviour. In the

first model, denoted HyPhAI-1
:::::::::::
HyPhAICC-1, a multi-level advection dynamics is considered as a hard constraint for a trained

U-Net model. Our experiments show that the hybrid formulation outperforms not only traditional deep learning methods, but5

also the EUMETSAT Extrapolated Imagery model (EXIM) in terms of both qualitative and quantitative results. In particular,

we illustrate that the hybrid model preserves more details and achieves higher scores based on similarity metrics in compari-

son to the U-Net. Remarkably, these improvements are achieved while using only one-third of the data required by the other

models. Another model, denoted HyPhAI-2
:::::::::::
HyPhAICC-2, adds a source term to the advection equation, it impaired the visual

rendering but displayed the best performance in terms of Accuracy. These results suggest that the proposed hybrid Physics-AI10

architecture provides a promising solution to overcome the limitations of classical AI methods, and contributes to open up new

possibilities for combining physical knowledge with deep learning models.

1 Introduction

Meteorological services are responsible for providing accurate and timely weather forecasts and warnings to ensure public

safety and mitigate damage to property caused by severe weather events. Traditionally, these forecasts have been based on nu-15

merical weather prediction (NWP) models, which provide predictions of atmospheric variables such as temperature, humidity,

and wind speed. However, NWP models have inherent limitations in their ability to capture small-scale weather phenomena

such as thunderstorms, tornadoes, and localised heavy rainfall events
:::::::::::::::::::::::::::::::::::::::::::::
(Schultz et al., 2021; Matte et al., 2022; Joe et al., 2022).

To address this limitation, the concept of nowcasting has emerged as a valuable tool in meteorology (Lin et al., 2005; Sun

et al., 2014). Nowcasting refers to the process of using recently acquired high-resolution observations to generate short-term20

forecasts of weather conditions, typically on a timescale of minutes to a few hours. Nowcasting techniques exploit various

observational data sources, including radar, satellite, lightning, and ground-based observations, to generate real-time estimates
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of weather conditions and can take advantage of these recent data to significantly outperform NWP on short lead times (Lin

et al., 2005; Sun et al., 2014).

Cloud cover nowcasting is a critical component of weather forecasting. It is used to predict the likelihood of precipita-25

tion, thunderstorms, and other hazardous weather events. Accurate cloud cover forecasts on a short timescale are particularly

important for weather-sensitive applications such as aviation, agriculture, and renewable energy production.

Traditionally, cloud cover forecasting has been done using physics-based methods, relying on the laws of physics to model

the evolution of cloud cover, e.g. cloud motion vectors as in Bechini and Chandrasekar (2017); García-Pereda et al. (2019),

optical flow (Wood-Bradley et al., 2012), or NWP-based Data Assimilation (Ballard et al., 2016). However, with the recent30

advances in Artificial Intelligence (AI) and Machine Learning (ML), data-driven methods have become increasingly popular

for this type of tasks (e.g. Espeholt et al., 2022; Ravuri et al., 2021; Trebing et al., 2021; Ayzel et al., 2020; Berthomier et al.,

2020; Shi et al., 2015).

Among these data-driven methods, Long Short-Term Memory (LSTM) networks, introduced by Hochreiter and Schmid-

huber (1997), stand out. LSTMs are a type of recurrent neural network capable of learning long-term dependencies,
:
; they35

are useful for time series predictions,
:
as they can learn from past entries to predict future values. In tasks involving multidi-

mensional data, they are commonly used with convolutional layers, forming what is known as a convolutional LSTM. This

network
:::::
neural

::::::::::
architecture

:
excels in capturing spatio-temporal correlations compared to fully-connected LSTMs (Shi et al.,

2015). Spatio-temporal LSTM (Wang et al., 2018) increases the number of memory connections within the network, allowing

an efficient flow of spatial information. This model was further optimised by adding stacked memory modules (Wang et al.,40

2019). U-Net is another popular architecture, it was initially
:
;
::
it

::::
was

::::::::
originally

:
designed by Ronneberger et al. (2015) for

biomedical image segmentation. Unlike LSTMs, U-Net has no explicit memory modelling, yet it has shown good performance

for a binary cloud cover nowcasting task as shown in Berthomier et al. (2020). Additionally
::::::::::
Furthermore, it has found appli-

cation in precipitation nowcasting as highlighted by Ayzel et al. (2020), and a modified version was used for a similar task in

Trebing et al. (2021).45

Machine learning models hold great promise for addressing scientific challenges associated with processes that cannot be

fully simulated, either due to lack of resources or complexity of the physical process. However, their application in scientific

domains had faced challenges, including constraints related to large data needs, difficulty in generating physically coherent

outcomes, limited generalisability, and issues related to explainability (Karpatne et al., 2017). To overcome these challenges,

incorporating physics into ML models is of paramount importance. It leverages the inherent structure and principles of physical50

laws to enhance model interpretability
::::::
improve

:::
the

:::::::::::::
interpretability

::
of

:::
the

::::::
model, handle limited labelled data, ensure consis-

tency with known scientific principles during optimisation, and ultimately improve the overall performance and applicability

of the models, making them more likely to be generalisable to out-of-sample scenarios. As discussed by Willard et al. (2022)

, the hybridisation available
:::
and

::::::::::::::::
Cheng et al. (2023)

:
,
:::
the

:::::::
available

:::::::::::
hybridisation

:
techniques leverage different aspects of ML

models, e.g. the cost function, the design of the architecture,
:
or the weights’ initialisation.55

A common method to ensure the consistency of ML models with physical laws is to embed physical constraints within the

model’s loss function (Karpatne et al., 2017). This involves incorporating a physics-based term weighted by a hyperparameter,
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Figure 1.
::::::::
Illustration

::
of

::::::
residual

:::::::::
modelling.

:::
The

:::::::::::
physics-based

:::::
model

:
is
::::
used

::
to

:::::
predict

:::
the

:::::
output

:::
and

:::
the

:::
ML

:::::
model

::
is

::::
used

::
to

:::::
predict

:::
the

:::::::
residuals.

::::::
Adapted

::::
from

::::::::::::::::::::::
Forssell and Lindskog (1997).

alongside the supervised error term. This addition enhances prediction accuracy and accommodates unlabelled data. It has

proven to be effective in addressing a range of problems, including uncertainty quantification, parameterisation, and inverse

problems (Daw et al., 2021; Jia et al., 2019; Raissi et al., 2019). However, one drawback lies in the challenge of appropriately60

tuning the hyperparameter.

Given the necessity for an initial choice of model parameters in many ML models, researchers explore ways to inform the

initial state of a model with physical insights. One possible way is transfer learning, where a pre-trained model is fine-tuned

with limited data (Jia et al., 2021). Additionally, simulated data from physics-based models can be employed for pre-training,

akin to methods used in computer vision. This technique has found application in diverse fields, including biophysics (Sultan65

et al., 2018), temperature modelling (Jia et al., 2019), and autonomous vehicle training (Shah et al., 2017). However, this

method requires the assumption that the underlying physics of the simulated data aligns with the real-world data.

To address imperfections in physics-based models, a common strategy is residual
::::
error modelling. Here, an ML model learns

to predict the errors (
:::
also

:::::
called

:
residuals) made by the physics-based model (Forssell and Lindskog, 1997). This approach

leverages learned biases to correct predictions . However, it does not have the ability to enforce
::::
(see Fig. 1

:
).
:::

A
::::
more

:::::::
general70

:::::::
approach

::::
that

::::
does

:::
not

::::
deal

::::
only

::::
with

:::::
errors

::
is

::
to

:::::
create

::::::
hybrid

::::::
models

:::::::
merging

:
physics-based constraints, as it primarily deals

with errors rather than physical states.

An advanced variation of residual modelling involves the integration of physics-based models and ML models. In
:::
For

:::::::
example,

::
in
:

scenarios where the dynamics of Physics
::::::
physics

:
are fully defined, a straightforward method involves using the

output of a physics-based model as an
:::
can

:::
be

::::
used

::
as

:
input to an ML model. This approach has demonstrated enhanced pre-75

dictions in tasks such as lake temperature modelling (Daw et al., 2021). However, in cases where a physical model contains

unknown elements requiring coupling with an ML model for joint resolution, a viable strategy involves substituting a segment

of a comprehensive physics-based model with a neural network. An illustrative example is found in sea surface temperature

prediction, where de Bezenac et al. (2018) employed a neural network to estimate the motion field. In alignment with this strat-

egy, our study proposes leveraging physical knowledge based on the advection equation to address the cloud cover nowcasting80
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task. This results in simulating the advection of clouds by winds while using a neural network to estimate unknown variables,

such as the two components of the velocity field.

Moreover, our study introduces an additional requirement- cloud type
:
,
:::::::::
cloud-type

:
classification. Specifically, our dataset

contains cloud cover observations with pre-existing categorical classifications based on cloud types (e.g. very low clouds, low

clouds). This necessitates adopting a probabilistic approach in our hybrid architecture, which, to the best of our knowledge,85

has not been explored in geophysics. Indeed, adopting a probabilistic approach with probability maps allows us to account for

the inherent variability and uncertainties associated with the model’s predictions. This also provides a more natural framework

for such a classification problem for further extensions of the modelling beyond the advection.

Rather than using the theoretical solution of the equation as proposed in de Bezenac et al. (2018), our hybrid approach solves

a system of Partial Differential Equations (PDEs) within a neural network, which make
:::::
makes

:
the architecture more flexible.90

However, it poses some implementation challenges, as explained in Sect. ??. Moving forward, we introduce
::::::::
Appendix.

:::
B.

::::
This

::::
paper

::
is
::::::::
organised

:::
as

::::::
follows;

:::::::
Section

:
2
:::::::::
introduces

:
the hybrid architecturein Sect. 2. Section 3 is dedicated to presenting results

and performance analysis compared to state-of-the-art models. Finally, in Sect. 4, we draw conclusions based on our findings.

2 Bridging neural networks and numerical modelling

2 Proposed HYPHAI model
:::::::::::
Methodology95

In this section, we introduce our hybrid architecture, denoted as HYPHAI (an abbreviation for Hybrid
::
In

:::
this

:::::
work,

:::
we

:::::::
address

::::::::::
applications

::::::::
involving

::::::::
dynamics

::::
with

::::::::
unknown

:::::::
variables

::::
that

::::::
require

:::::::::
estimation.

::::
For

:::::::
example,

:::
the

:::::
cloud

::::::
motion

::::
field

::
is
::::
one

::
of

::
the

::::::::
unknown

::::::::
variables

::
in

:::
the

:::::::::
application

::::::::::
considered.

::
In

::::
such

:::::
cases,

::
as

::::::::
discussed

::
in
:::
the

:::::::::::
introduction,

:
a
::::
joint

:::::::::
resolution

::::::::
approach

:
is
:::::
more

::::::::::
appropriate.

:::::
Here,

:::
the

:::::::
physical

::::::
model

::::::
utilizes

:::
the

::::::
neural

:::::::
network

::::::
outputs

:::
to

:::::::
compute

::::::::::
predictions,

:::::::::
integrating

:::
the

::::
two

::::::
models

::
as

:::::::
follows:100

y = ϕ ◦ fθ (x) ,
:::::::::::

:::::
where

::
x

::
is

:::
the

:::::
input,

:::
fθ :::::::::

represents
:::
the

:::::
neural

::::::::
network,

::
ϕ
:::::::
denotes

:::
the

:::::::
physical

:::::::
model,

:::
and

::
y
::
is

:::
the

::::::
output.

:::
In

:::
this

::::::
setup,

:
ϕ
:::::::::
implicitly

:::::::
imposes

:
a
::::
hard

:::::::::
constraint

:::
on

:::
the

:::::::
outputs,

:::::::::
potentially

::::::::::
accelerating

:::
the

:::::::::::
convergence

::
of

:::
the

::::::
neural

:::::::
network

::::::
during

:::::::
training.

::::
This

::::::
method

::::::
raises

:::::
some

:::::::::
trainability

::::::::::
challenges

::
as

:::
the

::::::::::::
physics-based

::::::
model

::
is
::::::::

involved
::
in
::::

the
:::::::
training

:::::::
process,

::::
and

::
it105

:::::
should

:::
be

::::::::::::
differentiable,

::
in

:::
the

:::::
sense

::
of

:::::::::
automatic

::::::::::::
differentiation,

:::
in

::::
order

:::
to

:::::
allow

:::
the

::::::::::::::
back-propagation

:::
of

::::::::
gradients

:::::
(refer

::
to

::::::::
Appendix

:::
B).

::::
We

:::::
show

::
in

:::::::::
Appendix

::
B

::::
how

::::::
spatial

:::::::::
derivatives

:::
of

:::::
PDEs

::::
can

::
be

::::::::::::
approximated

::::::
within

::
a

:::::
neural

::::::::
network

::
in

:
a
::::::::::::
differentiable

::::
way

:::::
using

::::::::::
convolution

:::::::::
operations.

::::
This

::::::
allows

:::
us

::
to

::::::::
compute

::::::::
gradients

:::
and

:::::::::::::
back-propagate

:::::
them

::::::
during

::
the

:::::::
training

:::::::
process.

:::::
This

::::::::::
fundamental

::::::::::
knowledge

:::::
serves

::
as

::
a
:::::::::
foundation

:::
for

:::
our

:::::::::::
investigation

:::
of

:::::
novel

:::::
hybrid

:
Physics-AI ),

:::::::::::
architectures.

::::
With

:::::
these

:::::::::
established

:::::::::
principles,

:::
we

::::::
present

::
in

:::
this

::::::
section

:::
the

::::::::
proposed

::::::
hybrid

::::::::::
architecture,

::::::
which

:
is
:::::::
applied

::
to110

::::
cloud

:::::
cover

::::::::::
nowcasting.

:
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Figure 2. HYPHAI
::::::::::
HYPHAICC-1: The proposed hybrid model consists of a U-Net Xception-style model to estimate the velocity field from

the last observations, the estimated velocity field is smoothed using a Gaussian filter. The advection equation is numerically integrated using

the 4-th order
::::::
4th-order

:
Runge–Kutta method over multiple time steps. The initial condition (f0) is updated, after each time step, to the

current state, allowing the computation of the next state.

Equations
Time

Integration
Scheme

U-Net Xception-
style

=

U-Net

Equations

Pred.@2h

Pred.@15minObs.@-45min

Obs.@t=o

FrozenTrainable

Figure 3. HYPHAI
::::::::::
HYPHAICC-2: The second version of the proposed hybrid model. It consists of a U-Net Xception-style to estimate the

velocity field and a second U-Net to estimate the source term from the last observations.
:::
We

:::::::::
highlighted

::
the

::::::::
additional

::::
parts

::::::::
compared

::
to

Fig. 2
::
and

:::::
faded

::
the

:::::::::
unchanged

::::
ones.

::
In

:::
this

:::::::
section,

:::
we

::::::::
introduce

::::
our

::::::
hybrid

:::::::::
Physics-AI

:::::::::::
architecture,

:
detailed in Sect. 2.1. Section 2.2 explains the different

physical modelling approaches investigated in this study. Following that, Sect. 2.3, Sect. 2.4 and Sect. 2.5 sequentially present

the training procedure, evaluation metrics, and benchmarking procedure.

5



2.1 The HYPHAI
::::::::::
HyPhAICC architecture115

The proposed HYPHAI
:::::
hybrid

:
architecture, is a dual-component system (see Fig. 2). The first component is composed of

one or more classical deep learning models. These models process the most recent observations, yielding predictions for the

physical unknowns of interest. The second block takes as inputs the physical variables, whether known or predicted by the

neural networks, along with initial conditions. This second component time integrates one or multiple PDEs to generate the

subsequent state of the system. The fourth order
:::::::
4th-order Runge–Kutta (RK4) method is used for time integration. These120

PDEs encode essential physical knowledge. As already discussed in the previous Sect.
::::::::
Appendix B4, the spatial derivatives are

approximated using convolutional layers.

The parameters of the first component are trainable,
:
; they are optimised during training to estimate the unknown variables.

However, we froze the parameters of the second block, as it represents already-known operations. This ensures that the second

block maintains its fixed structure, representing the known physical knowledge encoded in the equations, while the trainable125

block focuses
:::::::
focusses

:
on learning and predicting the unknown aspects of the system. This architecture combines the physical

knowledge encoded in the equations with the pattern-extraction capabilities of neural networks.

In the following part, we employ this architecture for cloud cover nowcasting, with different models being implemented,

each using a different physical modelling approach.

2.2 Physical modelling130

Before delving into the details of the proposed models, let us first establish the essential characteristics of the data at hand.

In this work, we investigate cloud cover nowcasting over France, using cloud cover satellite images captured by the Meteosat

Second Generation (MSG) satellite at 0 degrees longitude. The data’s spatial resolution
:::::
spatial

:::::::::
resolution

::
of

:::
the

:::::
data over

France is ≈ 4.5 km and the time step is 15 minutes. These 256×256 satellite ,
::::

and
::::
each

::::::
image

::
is

::
of

::::
size

:::::::::
256× 256.

::::::
These

images have been processed by EUMETSAT (García-Pereda et al., 2019), classifying each pixel among sixteen
:::
into

::
16

:
distinct135

categories. We only considered cloud related categories, twelve
:::::::::::
cloud-related

:::::::::
categories,

::
12

:
in total.

In what follows, we introduce four models:
:::
two

:::::::
models: HYPHAI

::::::::::
HYPHAICC-1 uses an advection equation to capture

the motion of clouds .
:::
and HYPHAI

::::::::::
HYPHAICC-2

::::
which

:
extends this by incorporating a simple source term in the advec-

tion equation. HYPHAI-3 uses a more complete but costly source term based on markovian inter-class transitions. Finally,

HYPHAI-4 restricts the number of possible inter-class transitions to render HYPHAI-3 more tractable.140

2.2.1 Advection equation: HyPhAI-1
:::::::::::
HyPhAICC-1

To easily model the advection of these maps with different cloud types, we adopt a probabilistic approach, i.e. rather than

representing a single map showing assigned labels, we use twelve
::
12

:
maps, each representing the likelihood or probability of

a specific cloud type being present at a given location. These maps must satisfy the following properties:

1. Non-negativity: P (x, t)≥ 0 for all x and t, with x= (x,y), which ensures that the probabilities remain non-negative.145
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2. Bound preservation: P (x, t)≤ 1 for all x and t, which ensures that no probability exceeds 1.

3. Probability conservation:
∑C

i=1P
i
X(x, t) = 1 for all x and t, with C = 12 is the total number of cloud types. This

property guarantees that the sum of all probabilities is equal to 1.

This approach, known as “one-hot encoding”, is more natural to address classification tasks. It involves using twelve
::
12

:
distinct

advection equations, each corresponding to a specific cloud type, as described below:150

∂tPj +
−→
V ·

−→
∇Pj = 0 ∀j ∈ {1,2, . . . ,C} , (1)

where Pj(x) represents the classification probability of the j-th
:::
jth cloud type,

−→
V (x) is the velocity field and has two compo-

nent u(x) and v(x). Finally,
−→
∇ denotes the gradient operator.

While
:::::::
Although

:
one might initially perceive similarities between this modelling and a Fokker–Planck equation (Fokker,

1914; Pavliotis and Stuart, 2008, chap.6), the modelling approach presented here deviates significantly from the Fokker-Planck155

equation. In contrast, the Fokker-Planck equation is typically employed to depict the evolution of probability distributions for

time continuous
:::::::::::::
time-continuous

:
Markov processes over continuous states, e.g. Brownian motion. On the other hand, Eq. (1)

characterises the probability advection for each finite state.

Nevertheless, by employing equations in the following form:

∂tPj +L(Pj) = 0 ∀j ∈ {1,2, . . . ,C} , (2)160

where L represents a differential operator with non-zero positive derivative orders, we have demonstrated
:::::::::
demonstrate

:
in

Appendix D that the probability conservation property is maintained over time. This assertion holds even in scenarios where

the discretisation scheme introduces some diffusion or dispersion effects during the resolution process (see Appendix D2

and Appendix E). However, the non-negativity and bound preservation properties are compromised when a discretisation

scheme with dispersion effects is used, unlike the diffusive schemes. Consequently, we opt for the first-order upwind diffusive165

discretisation scheme (see Appendix E2 for details about the equivalent equation) along with the RK4 for time integration.

During the time integration process, we performed
:::::::
perform the integration by subdividing the time step ∆t= 1 (representing

15 minutes) into smaller steps δt= 0.1 to check
::::::
satisfy the Courant-Friedrichs-Lewy (CFL) condition (Courant et al., 1928),

this condition ensures the stability of the numerical solution.

In the first hybrid model, denoted HYPHAI
:::::::::::
HYPHAICC-1, we use a U-Net Xception-style model (Tamvakis et al., 2022)170

inspired from
::
by

:::
the

:
Xception architecture (Chollet, 2017). It takes previous observations ,

::
the

::::
last

::::
four

::::::::::
observations

:::::::
stacked

::
on

:::
the

:::::::
channel

::::
axis and estimates the velocity field (see Fig. 2). This model will be guided during training by the advection

equation to learn the cloud motion patterns.

2.2.2 Advection with source term: HyPhAI-2
::::::::::::
HyPhAICC-2

As the advection alone doesn’t
:::
does

:::
not

:
take into account other physical processes, especially, class change, appearance and175

disappearance of clouds, we propose to add a trainable source term to capture them. In this first attempt, we use a simple source
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term:

∂tPj = tanh(Sj) ∀j ∈ {1,2, . . . ,C} , (3)

where Sj is a 2D map. The hyperbolic tangent activation function (tanh) is used to keep the values of the source term in a

range of [−1,1], preventing it from exploding.180

The second version of the hybrid model, denoted HYPHAI
:::::::::::
HYPHAICC-2, adds this source term to the advection. This

modelling is described in the following equations:

∂tPj +
−→
V ·

−→
∇Pj = tanh(Sj) ∀j ∈ {1,2, . . . ,C} , (4)

where Sj is estimated using a second U-Net model (see ).

2.2.3 Advection with source term: HyPhAI-3185

Fig. 3
:
).

While the previous modelling describes the missing physical process in the advection, it doesn’t
::::
does

:::
not

:
satisfy the prob-

ability conservation property. Thus, this modelling does not conserve the probabilistic nature of P over time. To ensure the

appropriate dynamics of probability, a robust framework is provided by continuous-time Markov processes across finite states

(Pavliotis and Stuart, 2008, chap. 5). In this framework, the probability trend is controlled by a linear dynamics, ensuring the190

bound preservation, positivity,
:
and probability conservation. This dynamics is expressed using the following equations:

∂tPj =

C∑
i=1

Λj,iPi ∀j ∈ {1,2, . . . ,C} ,

where

Λ(x) =
Π(x)

⊺ − I

∆t
,

with Π(x) being a stochastic matrix, i.e. a non-negative square matrix where the sum of each row is equal to one. This195

constraint ensures that the probabilistic properties are maintained over time.

Physically, Λj,i(x) represents the transition rate from cloud type i to cloud type j at grid point x and ∆t represents the time

step, and I(x) denotes the identity matrix.

The third version of the hybrid model (see ), denoted HYPHAI-3, uses this source term combined with the advection as

showed in the following equations:200

∂tPj +
−→
V ·

−→
∇Pj =

C∑
i=1

Λj,iPi ∀j ∈ {1,2, . . . ,C} ,

where the stochastic property of Π is ensured by construction using the Softmax function as follows:

Πi,k = Softmax(Mi)k =
eMi,k∑C
j=1 e

Mi,j

,
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where the matrix M is generated using a U-Net
::::
Two

::::
other

::::::
models

:::::
based

:::
on

:::
this

:::::::::
framework,

::::::
named

:::::::::::
HyPhAICC-3

::::
and

::::::::::::
HyPhAICC-4,

::
are

:::::::::
presented

::
in

::::::::
Appendix

:::
A1

:::
and

:::::::::
Appendix

:::
A2.205

This representation of cloud cover dynamics offers a comprehensive description of cloud formation and dissipation. How-

ever, it increases the output dimension size of the U-Net, as a C2 transition matrix is generated for each pixel. This makes the

U-Net model poorly constrained. Furthermore, in our experiments, we noticed an increased memory usage during the training.

::::
these

::::::
models

:::
did

:::
not

:::::
show

::::
any

::::::::::
performance

:::::::::::
improvement

:::::::::
compared

::
to

:::
the

::::::
simpler

::::::::::::
HyPhAICC-1.

:

2.2.3 Advection with source term: HyPhAI-4210

To reduce the number of values output by the U-Net, we assume a limited number of transition regimes, each representing one

of the most frequent transitions. For instance, in the case of two regimes, the source term is described as follows:

∂tPj = α1 ·
C∑
i=1

Λ1
j,iP

i +α2 ·
C∑
i=1

Λ2
j,iP

i,

where Λ1
::::::
Indeed,

:::::::
beyond

:::
the

::::::::::
performance

::::::
aspect,

::::
this

:::::::::::
hybridisation

:::::::::
framework

::
is
:::::::
flexible,

:::
not

:::::
only

::::::
limited

::
to

:::
the

:::::::::
advection,

and Λ2 are the transition matrices, α1 and α2 are positive factors, these factors determine which regime to consider at each215

pixel, with the constraint that α1 +α2 ≤ 1
:::
can

::
be

::::::::
extended

::
to

::::
other

::::::::
physical

::::::::
processes.

The fourth version of the hybrid model, denoted HYPHAI-4, uses this source term in addition to the advectionas described

in the following equations:

∂tPj +
−→
V ·

−−→
∇Pj = α1 ·

C∑
i=1

Λ1
j,iP

i +α2 ·
C∑
i=1

Λ2
j,iP

i,

where, α1 and α2 are estimated using a U-Net, and Λ1 and Λ2 are learned as model parameters (see ).220

2.3 Training procedure

The training was carried out on a dataset containing about three years of data from 2017 to 2019, with a total of approximately

100, 000 images.
::::::
105 120

:::::::
images.

::::
The

::::::
images

::::
with

::::
zero

:::::
cloud

:::::
cover

::::
were

::::::::
removed,

::::
then

:::
we

:::::::::
assembled

::
all

:::
the

:::::::::
sequences

::::
with

::
12

::::::::::
consecutive

::::::
images.

:::::
After

:::
this

::::::::
cleaning

::::
step,

:::
we

::::::::
randomly

::::
split

:::
the

::::::
dataset,

:::::
8 224

::::::::
sequences

:::::
were

::::
used

:::
for

:::::::
training,

:::
and

::::
432

::
for

:::::::::
validation.

::::
The

:::
test

:::
set

:::
was

:::::::::
performed

:::
on

:
a
:::::::
separate

::::::
dataset

:::::
from

:::
the

::::
same

::::::
region

:::
but

::::
from

:::::
2021.

:
225

To improve the diversity of the training set and take into account a possible overfitting on the typical movements of clouds

in the Western Europe region, we randomly applied simple transformations to the images, more precisely, rotations of 90, 180

and 270 degrees, which increased the dataset size and improved the model’s ability to learn various cloud motion patterns.

After cleaning, about 8000 sequences of 12 images were used for training and about 400 sequences for validation. The test set

was done on a separate dataset from the same region but from the year 2021.230
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We used the PyTorch framework
:::::::
PyTorch

:::::::::
framework

::
is
:::::

used to implement the models , and we employed
:::
and

:
the cross-

entropy loss function
::
is

::::::::
employed

:
for training. This function is given by:

l(Y,p) =− 1

N

N∑
i=1

C∑
j=1

Yi,j log(pi,j), (5)

where N represents the total number of pixels, C denotes the number of classes, pi,j is the predicted probability of the i-th
::
ith

pixel belonging to the j-th
::
jth

:
class, and Yi corresponds to the one-hot encoded ground truth at the i-th

::
ith pixel, i.e. Yi,j = 0235

except for the correspondent cloud type, where Yi,j = 1.

The training of the model parameters is achieved through gradient-based methods, which rely on computing the loss

gradients with respect to the model parameters. These gradients guide the update of the model’s weights during the training

process.
:
. Here, Adam optimiser (Kingma and Ba, 2017) is used with a learning rate of 10−3 and a batch size of 4 with 16

accumulation steps, which allows
:::::::
allowing

:
us to simulate a batch size of 64. The training was performed using a single Nvidia240

A100 GPU for 30 epochs.

You can find the source code for our project on GitHub at https://github.com/relmonta/hyphai.

2.4 Performance metrics

To evaluate the performance of competing models in this study, we employed various metrics. Firstly, standard classification

metrics are used to evaluate the statistical aspect, then the Hausdorff distance is introduced to evaluate the qualitative aspect of245

the results.

2.4.1 Classic classification metrics

The selected metrics include Accuracy, Precision, Recall, F1 score, and the Critical Success Index, or CSI (Gilbert, 1884), also

called Intersection over Union (IoU) or Jaccard Index. These metrics offer multiple insights into different aspects of model

performance. Accuracy measures the proportion of correct predictions, while Precision quantifies the proportion of correct250

positive predictions relative to the total number of positive predictions. Recall evaluates the proportion of correct positive

predictions relative to the total number of positive cases. The F1 score provides a balance between Precision and Recall. The

CSI measures the overlap between the prediction and ground truth, providing a measure of similarity.

To compute these metrics for the j-th
:::
jth class, we use the following formulas:

Accuracyj =
TPj +TNj

TPj +TNj +FPj +FNj
,255

Recallj =
TPj

TPj +FNj
,

Precisionj =
TPj

TPj +FPj
,

260

F1j =
2×Precisionj ×Recallj

Precisionj +Recallj
,

10
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CSIj =
TPj

TPj +FPj +FNj
.

These metrics are calculated separately for each class, where TP denotes instances correctly identified as positive cases, TN

refers to instances correctly identified as negative cases, FP represents cases miss-classified as positives, and FN is the number265

of positive cases that are classified as negative.

To obtain an overall performance evaluation of the Accuracy, we use the following formula:

Accuracy =

∑
j TPj

Total number of cases
.

For the remaining metrics, we can calculate two types of average: the macro-average and the micro-average. The macro-

average is the arithmetic mean of the metric scores computed for each class, while the micro-average considers all classes as a270

single entity (Takahashi et al., 2022). Given the highly imbalanced distribution of labels in our dataset, we adopted the macro-

average to evaluate the models’ performances
:::::::::::
performance (Fernandes et al., 2020; Wang et al., 2021). The macro-averaged F1

is defined as in Sokolova and Lapalme (2009) as follows:

F1macro =
2×Precisionmacro ×Recallmacro

Precisionmacro +Recallmacro
,

where the macro-averaged Precision and Recall are defined as:275

Precisionmacro =
1

C

C∑
j=1

Precisionj .

Recallmacro =
1

C

C∑
j=1

Recallj .

We define the macro-averaged CSI following the same method as follows:

CSImacro =
1

C

C∑
j=1

CSIj .280

These pixel-wise metrics are commonly used for evaluating image segmentation tasks or more generally classification tasks, but

it is important to note the limitations of these metrics and evaluation approaches. While the
::::::::
Although selected metrics provide

valuable insights, they do not capture all aspects of model performance, for instance, because they do not take into account

the spatial correspondence between predicted and ground-truth cloud structures. This means that a model can statistically

perform well using pixel-wise metrics, but still have poor performance in identifying the correct cloud structures or missing a285

significant amount of detail. As a result, evaluating cloud cover forecasting models based solely on pixel-wise metrics may not

be sufficient to ensure their effectiveness in real-world applications.

2.4.2 Hausdorff distance

The Hausdorff distance is a widely used metric for medical image segmentation (e.g. Karimi and Salcudean, 2019; Aydin et al.,

2021), this metric measures the similarity between the predicted region and the ground truth region, by comparing structures,290
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Figure 4. Illustration of the minp∈A d(p,q1) and minq∈B d(p1, q) quantities used to compute the Hausdorff distance; for each point, we look

for the closest point in the other region.

rather than just individual pixels. It can be expressed using either Eq. (6) or Eq. (7) described as follows:

h1(A,B) =
1

|A|
∑
p∈A

min
q∈B

d(p,q), (6)

h2(A,B) = max
p∈A

min
q∈B

d(p,q), (7)

where d(p,q) is the Euclidean distance between p and q. The former computes the mean distance between each point A and the295

closest point in B, providing an overall measure of similarity. The latter measures the maximum distance between a point in

A and the closest point in B (Fig. 4), this formulation is a more conservative measure that focuses on the largest discrepancies

between the sets. Both formulations exhibit sensitivity to the loss of small structures. Specifically, when small regions in

the ground truth are non-empty while their corresponding regions in the prediction are empty, the search area expands, which

increases the overall distance. We opt to limit this search region to the maximum distance traversable by a cloud. Consequently,300

we introduce the restricted Hausdorff distance (rHD) defined as follows:

h3(A,B) =
1

|A|
∑
p∈A

min
q∈Br(p)

d(p,q), (8)

where Br(p) is the ball of radius r centred at p. In our experiments, we set r to 10 pixels, which corresponds to a radius of

approximately 45-50 km, corresponding to the maximum distance crossed by clouds in one time step, considering 200 km

12
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Obs.@-45min
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Pred.@30min

. . .

Outputs
Context

Figure 5. The U-Net architecture considered in the comparison. The U-Net is iteratively used to predict the next state given the previous

ones.

h−1 as the cloud’s maximum speed. This means that for each pixel in the first set, we compute the distance to the closest pixel305

in the second set, but only if it is within a radius of 10 pixels. This allows us to reduce the impact of small regions in the ground

truth that are not present in the prediction, while still rewarding the model if it correctly predicts them.

The Hausdorff distance is a directed metric, i.e. hp(A,B) ̸= hp(B,A), thus, we consider the maximum of the two directed

distances as follows:

H(S,Ŝ) = max
(
h3(S,Ŝ),h3(Ŝ,S)

)
(9)310

where S and Ŝ are the coordinates of positive pixels in the ground truth and prediction, respectively.

2.5 Benchmarking procedure

To assess the performance of the proposed models, we consider established benchmarks. In the comparative evaluation, we in-

cluded the widely used
::::::::::
well-known U-Net (Ayzel et al., 2020; Berthomier et al., 2020; Trebing et al., 2021, e.g.)

::::::::::::::::::::::
(Ronneberger et al., 2015)

:
.
::::
This

:::::::
classical

:::::
U-Net

::
is
:::::::
different

:::::
from

:::
the

:::
one

::::
used

::
to
::::::::
estimate

::
the

:::::::
velocity

::
in
:::
the

::::::::
proposed

::::::
hybrid

::::::
models

:::::
(refer

::
to

:
Fig. 2

:::
and315

Fig. 3
:
).

:::
The

::::::
choice

::
of

::::
this

:::::::
classical

:::::
U-Net

:::
for

::::::::::
comparison

::
is

:::::::
justified

::
by

:::
the

::::
fact

:::
that

::
it

::
is

:::
the

::::
most

::::::
widely

::::
used

::
in

:::
the

::::::::
literature

::
for

:::
the

:::::
same

::::
task

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Ayzel et al., 2020; Berthomier et al., 2020; Trebing et al., 2021). U-Net architecture is structured with a

contracting path and an expansive path, connected by a bottleneck layer. The contracting path comprises four levels of convolu-

tional layers, each followed by a max-pooling layer. The number of filters we used in these convolutional layers progressively

increases from 32 to 64, 128, and finally 256. On the other hand, the expansive path consists of four sets of convolutional320

layers, each followed by an upsampling layer. These layers help in the reconstruction and expansion of the feature maps to
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Figure 6. Performance comparison between our HyPhAI-1, U-Net, EXIM, and the Persistence baseline. Using five metrics including

averaged F1 score(%), precision(%), recall(%), accuracy(%), CSI(%) and Hausdorff distance (defined in Eq. (9)). These scores were com-

puted over 1000 random samples covering France in 2021. The
:::
See Fig. A3

::
for confidence intervalswere estimated using Bootstrapping.

match the original input size. We iterate over the U-Net, as illustrated in Fig. 5, to generate predictions for multiple future time

steps.

In addition to U-Net, we consider in our comparison, a product based on kinematic extrapolation techniques, called EXIM

(for Extrapolated Imagery), developed by EUMETSAT as part of their NWCSAF/GEO products (García-Pereda et al., 2019).325

We also included a commonly used meteorological baseline method known as "Persistence". This method predicts future

time steps by simply using the last observation, a relevant approach in nowcasting, since weather changes occur slowly, making

the last observation a strong prediction, which makes the Persistence baseline challenging to outperform.

We tested the competing models using 1000 satellite images samples captured over France from January 2021 to October

2021.330
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Ground truth | T+30min HyPhAI-1 | T+30min HyPhAI-2 | T+30min Unet | T+30min EXIM | T+30min

Ground truth | T+60min HyPhAI-1 | T+60min HyPhAI-2 | T+60min Unet | T+60min EXIM | T+60min

Ground truth | T+120min HyPhAI-1 | T+120min HyPhAI-2 | T+120min Unet | T+120min EXIM | T+120min

Figure 7. Case study of different models’ forecasts. Left column: ground truth at different time steps; middle columns:

HyPhAI-1
::::::::::
HyPhAICC-1, HyPhAI-2

:::::::::
HyPhAICC-2

:
and the U-Net’s predictions, respectively; right column: EXIM’s predictions.

:::
The

::::
light

::::
beige

:::::
colour

:::::::::
corresponds

::
to

:::
the

:::
land

:::::
areas,

:::
and

::::
’ST’

:::::::::
abbreviation

::
in

::
the

::::::
legend

:::::
stands

::
for

:::::
’semi

:::::::::
transparent’.

3 Experiments and results

Table 1. Score comparison at the 120-minute lead time (↑: higher is better, ↓: lower is better)
:
.
:::
The

:::
best

:::::
scores

:::
are

:::::::
indicated

::
in

::::
bold

:::
font.

Model ↑ F1 score ↑ Precision ↑ Recall ↑Accuracy ↑ CSI ↓ Hausdorff distance (H)

HYPHAI
:::::::::
HYPHAICC-1 26.6 % 27.5 % 25.9 % 55.4 % 17.2 % 6.23

HYPHAI
:::::::::
HYPHAICC-2 26.5 % 27.6 % 25.7 % 57.3 % 17.1 % 6.54

U-Net 24.9 % 25.6 % 24.5 % 56.0 % 16.1 % 6.90

EXIM 23.5 % 23.5 % 23.6 % 49.4 % 14.9 % 5.08

Persistence 21.8 % 21.9 % 21.8 % 47.9 % 13.8 % 5.53
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Figure 8. Estimated velocity field by the U-Net Xception-style used in the HyPhAI-1
::::::::::
HyPhAICC-1 model
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Figure 9. Per epoch validation F1 score comparison between HyPhAI-1 and the U-Net
::
Per

::::::
epoch

::::::::
validation

:::
F1

::::
score

::::::::::
comparison

::::::
between

::::::::::::
HyPhAICC-1

:::
and

::::
the

:::::
U-Net. Scores were calculated from 100 random samples covering France (averaged over all the

leadtimes
:::
lead

::::
times).

16



0 20 40 60 80

32

34

36

More expensiveM
or

e
ac

cu
ra

te

10%

30%50%70% All data

10%

30%

50%

70%
All data

Total Training Time (min)
F1

sc
or

e

HyPhAICC-1 U-Net
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::::::::::
HyPhAICC-1

:
using

different training data sizes (averaged over all the lead times).

We trained the hybrid models, in addition to the U-Net used for comparison, on three years of data. The models were designed

to predict a 2-hour forecast at 15-minute intervals. In what follows, our attention will be directed only towards HyPhAI-1 and

HyPhAI-2. This choice is made as HyPhAI-3 and HyPhAI-4 demonstrated performance levels identical to that of HyPhAI-1.

Indeed, the Λ matrices in and are consistently estimated as zeros. In other words, no inter-class transitions were captured.335

3.1 Quantitative analysis

Diving into the numerical evaluations, here we present a comparative analysis based on standard metrics used in image clas-

sification tasks. Figure 6 shows a score comparison using different metrics over multiple lead time, up to two hours. The

confidence intervals, indicating statistical significance, are computed using a resampling method, called bootstrap, which is a

statistical technique that involves repeatedly sampling from a single dataset to generate numerous simulated samples (Efron,340

1979). Through this method, standard errors, confidence intervals, and hypothesis testing can be computed. Table 1 and Fig. 6

show that HyPhAI-2
:::::::::::
HyPhAICC-2 is slightly better in terms of precision and accuracy than the model using advection equation

without source term (HyPhAI-1
:::::::::::
HyPhAICC-1), and both of these hybrid models significantly outperform the U-Net in terms

of F1 score, precision, and CSI, and perform similarly in terms of accuracy and recall. This is because the U-Net tends to give

more weight to the dominant classes at the expense of the other classes, resulting in a higher false positive rate.345

While
::::::::
Although quantitative performance metrics offer a numerical assessment of a model’s ability to predict weather states,

providing crucial insights into the reliability and precision of forecasts, they are not sufficient on their own. Qualitative aspects

also play a significant role, including the visual interpretation of model predictions and an assessment of its capability to

capture complex atmospheric patterns and phenomena.
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3.2 Qualitative analysis350

Figure 7 presents a case study involving multiple models, highlighting that HyPhAI-1
:::::::::::
HyPhAICC-1

:
produces more realistic

and less blurry forecasts compared to the U-Net. To substantiate this claim, we used the restricted Hausdorff distance (rHD),

described in Eq. (8), to assess the sharpness of predicted cloud boundaries. Both models HyPhAI-1, HyPhAI-2
:::::::::::
HyPhAICC-1

:::
and

:::::::::::
HyPhAICC-2

:::::::
models outperformed the U-Net in this metric, as shown in Fig. 6. EXIM and the Persistence baseline exhibit

superior results in terms of the Hausdorff metric, and the gap between them and the other models increases with the lead355

time, which is visually expected. The reason behind this result is that the hybrid models, especially HyPhAI-1
:::::::::::
HyPhAICC-1,

preserve more details compared to the U-Net, the
:
.
:::
The

:
lost details in HyPhAI-1

:::::::::::
HyPhAICC-1’s predictions are only due to

the diffusion added numerically by the discretisation scheme used
::::::::
numerical

:::::::
scheme,

::
in

::::
ideal

::::::::::
conditions,

:::
the

::::::::::::
HyPhAICC-1

:::::
should

::::::::
preserve

:::
the

::::
same

::::::
details

::::::
during

:::
the

::::::::
advection

:::::::
process,

:::
and

:::::
there

::
is

::
no

:::::
other

::::::::
trainable

:::
part

::
in

:::::::
between

::::
that

:::
can

:::::::
smooth

::
the

::::::::::
predictions;

::::::::
however,

:::
the

:::::::
upwind

:::::::::::
discretisation

::::
used

::::::
scheme

:::::
adds

:
a
::::::::
numerical

::::::::
diffusion

:::
and

::::::::
crushing

:::
the

:::::
small

:::::
cloud

::::
cells360

(refer to
::::::::
Appendix

:
E for more details). Whereas the U-Net focuses more on dominant structures and labels, which are more

likely to persist over time, which is statistically relevant. Nonetheless
::::::::::
Nevertheless, EXIM and the Persistence baseline still

outperform the other models in this regard. This observation aligns with the fact that the Persistence uses the last observation

as its predictions, and EXIM is advecting the last observation while keeping the same level of details. However, EXIM is

slightly more accurate, compared to Persistence, in terms of predicted cloud positions.365

In Figure 8, we present the estimated velocity field generated by the HyPhAI-1
:::::::::::
HyPhAICC-1

:
model, illustrated in Fig. 2.

This field exhibits a high level of coherence with the observed cloud cover displacements, with exceptions in cloud-free areas,

as expected. It is important to emphasize that this velocity field is derived exclusively from cloud cover images, without relying

on external wind data or similar sources. This aspect adds a layer of interest, especially in the context of other applications

beyond the cloud cover nowcasting.370

3.3 Time efficiency

In what follows, we focus only on the HyPhAI-1
:::::::::::
HyPhAICC-1

:
model. By including physical constraints into these hybrid

models, we expect a decrease in training time compared to that of the U-Net. Indeed, Fig. 9 illustrates the evolution of the vali-

dation F1 score for both the U-Net and the HyPhAI-1
:::::::::::
HyPhAICC-1

:
model across epochs. HyPhAI-1

:::::::::::
HyPhAICC-1

:
converges

faster than the U-Net, indeed, its convergence occurs after just about 10–15 epochs. Each epoch of the HyPhAI-1
:::::::::::
HyPhAICC-1375

training takes approximately 55 minutes using a single Nvidia A100 GPU, the entire training over 30 epochs takes 27h. On

the other hand, the U-Net necessitates up to 200 epochs for achieving similar performance, with each epoch taking around 23

minutes using the same hardware, which corresponds to thereabout three days of training. This difference implies that training

the U-Net is significantly more expensive compared to the HyPhAI-1
:::::::::::
HyPhAICC-1.

In inference mode, the HyPhAI
:::::
hybrid

:
models and the U-Net generate predictions within a few seconds, while EXIM’s380

predictions are produced within 20 minutes (Berthomier et al., 2020), which is one of the main drawbacks of this product.
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Figure 11. Full disk cloud cover nowcasting predictions. Zoomed-in views of the 120-minute observation and prediction.

3.4 Data efficiency

To delve deeper into the efficiency of the proposed HyPhAI-1
:::::::::::
HyPhAICC-1

:
model, we conducted various experiments using

different training data sizes. In each experiment, both HyPhAI-1
:::::::::::
HyPhAICC-1

:
and the U-Net were trained with 70 %, 50 %,

30 % and 10 % of the available training data (Fig. 9, Fig. 10). Notably, we observed a more significant decline in performance385

::::::::::
performance

::::
drop

:
for the U-Net compared to HyPhAI-1

:::::::::::
HyPhAICC-1. Interestingly, the hybrid model exhibited similar per-

formance with only 30 % of the training data as it did with the entire dataset (Fig. 9). This finding indicates that this hybrid

model is remarkably data-efficient, capable of delivering satisfactory performance even with limited training data,
:::::
which

::::
has

::::
been

:::::::::
highlighted

:::
by

:::::
other

::::::
studies

:::::::::::::::::::::::::::::::::::::::
(Schweidtmann et al., 2024; Cheng et al., 2023). This quality is very important, particularly

for tasks with insufficient provided data.390

3.5 Application on earth
:::::
Earth’s full disk

To check HyPhAI-1’
::::::::::::
HyPhAICC-1’s capabilities on broader scales after training it on a small region, we tested it on a much

larger domain, the full earth’s disk
::
an

:::::
entire

::::::::::
hemisphere

:::
of

:::
the

:::::
Earth

:
-
::::
also

::::::
called

:
a
::::
full

::::
disk

:
-
:
centred at 0 degrees longi-

tude. This expansive full disk domain is 14 times
:::
The

:::::::
satellite

:::::::::::
observations

::
of

::::
this

::::::::
expansive

::::::::
full-disk

::::::
domain

::::
are

::
of

::::
size

:::::::::::
3712× 3712,

:::::
which

::
is
:::::::

210.25
:::::
times

:::::
larger

::::
than

:
the size of the training area

::::
ones. It has diverse meteorological conditions395

and includes projection deformations when mapped onto a two-dimensional plane. Therefore, it provides an ideal
:
,
:::::
while

:::
the

::::::
extreme

::::::::::::
deformations

::
at

:::
the

::::
edge

::
of

:::
the

::::
disk

:::::
make

:::
this

::::
data

::::
less

:::::
useful

:::
for

::::::::
operation

:::::::::
purposes,

:
it
::::
still

:::::::
provides

:::
an

:::::::::
interesting

testing ground for HyPhAI-1
:::::::::::
HyPhAICC-1’s generalisation ability.

::
In

::::
this

:::::::
analysis,

:::
we

:::::
focus

::::
only

:::
on

:::::
visual

:::::::
aspects.

:
Despite

the significant differences between the training domain and the full disk, we observed a remarkable adaptation of the HyPhAI-1

model to this new context
::::
good

:::::::::
qualitative

:::::::
forecasts

:::
of

::
the

::::::::::::
HyPhAICC-1

:::::
model

:::
on

:::
this

::::
new

::::::
domain

:
without any specific train-400
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ing on it (see Fig. 11
::
and

:
Fig. A4). The cloud motion estimation on the full disk was found to be accurate and reliable, this

::::::
visually

:::::::::
consistent,

::
a
:::::
video

:::::::::
supplement

::
is
::::::::
provided

::
in

:::
the

::::::::::::
supplementary

::::::::
material.

::::
This successful transferability of the model highlights its

:::::::
potential robustness and suggests that the underlying principles of

cloud motion captured during training are applicable across different domain sizes, and different projections (see Appendix C

for a formal explanation). Note that the model requires a data size divisible by 2d, where d is the number of the encoder blocks405

within the U-Net-Xception model. Indeed, the possibility to run a model using different data sizes is one of the advantages of

Fully Convolutional Networks (FCN) as the convolution operation is independent of the input size.

Overall, HyPhAI-1
:::::::::::
HyPhAICC-1 offers an effective and cheaper approach compared to EXIM, with higher efficiency, requir-

ing fewer data compared to the U-Net, with the potential to outperform existing models and enable more accurate and efficient

weather forecasting. The ability of the HyPhAI-1
:::::::::::
HyPhAICC-1

:
to adapt and perform well on the full-disk data, despite being410

trained on a smaller domain, demonstrates the generalisation capabilities of this hybrid model. This is an important property

for weather forecasting models, as it is not always possible to train a model on full-disk data due to the high computational

cost.

4 Conclusions

In this study, we introduced a hybrid Physics-AI framework that combines the insights from partial differential equations, rep-415

resenting physical knowledge, with the pattern-extraction capabilities of neural networks. Our primary focus was on applying

this hybrid approach to the task of cloud cover nowcasting, also involving cloud type classification. To leverage continuous

physical advection phenomena for this discrete classification task, we proposed a probabilistic modelling strategy based on the

advection of probability maps. This flexible approach was easy to adapt to include the prediction of source terms, demonstrating

its versatility.420

The first model, HyPhAI-1
:::::::::::
HyPhAICC-1, leverages the advection equation and slightly outperforms the widely used U-

Net in the quantitative metrics, while showing a significantly better performance in the qualitative aspect. This hybrid model

requires significantly less amount of data and converges faster, cutting down the training time, which is expected as the physical

modelling implicitly imposes a constraint on the trainable component. Notably, the estimated velocity field demonstrated high

accuracy compared to actual cloud displacements. This accuracy suggests that this architecture could find utility in diverse425

tasks, such as wind speed estimation using only satellite observations. The second version, HyPhAI-2
:::::::::::
HyPhAICC-2, adds a

source term to the advection equation. This model impaired the visual rendering but displayed the best performance in terms

of Accuracy.

The HyPhAI architecture demonstrated an effective path towards uniting the strengths of a continuous physics-informed

phenomenon with a data-driven approach, in the context of a discrete classification task.430

Despite these successes, the models still exhibit some diffusiveness. However, in the case of HyPhAI-1
:::::::::::
HyPhAICC-1, it is

only attributed to the use of the first-order upwind discretisation scheme. Exploring less diffusive schemes could potentially

mitigate this effect, especially in inference mode, where there is no differentiability constraint.
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The CFL condition is designed to guarantee stability by imposing a restriction on the time step
::::::::
time-step size relative to the

maximum velocity in the system. However, in our scenario, where the maximum velocity of the cloud is unknown, setting the435

time step becomes challenging. This uncertainty may lead to stability issues if the time step is not small enough, particularly if

the predicted velocity turns out to be unexpectedly high, highlighting the importance of carefully considering and addressing

potential instability concerns in such cases.

While HyPhAI-3 and HyPhAI-4
:::::::::::
HyPhAICC-3

::::
(see

::::::::
Appendix

::::
A1)

:::
and

::::::::::::
HyPhAICC-4

::::
(see

::::::::
Appendix

::::
A2) presented interest-

ing modelling variations, the study acknowledges limitations in not obtaining the desired variables. We suggest that modifying440

the approach to estimate these variables may lead to improved results, e.g. penalising the dominant classes.

As we move forward, the integration of green computing principles into AI research becomes crucial. The success of the

HyPhAI models in achieving these results with low data requirement and rapid convergence encourages further exploration

of energy-efficient AI models and methodologies. This emphasises the importance of balancing computational power with

environmental responsibility in the pursuit of scientific advancements.445

Code and data availability. The code used in this study is available at https://github.com/relmonta/hyphai (last access: 7 June 2024) and

at https://doi.org/10.5281/zenodo.11518540. The weights of the pre-trained HyPhAICC-1, HyPhAICC-2 and the U-Net are available at

https://doi.org/10.5281/zenodo.10393415. The training data are not provided as they are proprietary data from EUMETSAT. However, data

can be obtained from EUMETSAT for research purposes. A sample of the test data used in this study is available on the GitHub repository

and a sample of the training data is available at https://doi.org/10.5281/zenodo.10642094.450

Video supplement. A video supplement of a 2-hour forecast is available at https://doi.org/10.5281/zenodo.10375284.

Appendix A: Additional resources

A1 Architectures
:::::::::
Advection

::::
with

::::::
source

:::::
term:

::::::::::::
HyPhAICC-3

The HyPhAI-3 model using transitions matrices as
::
We

:::::::::
introduced

:::::::
another

::::::
version

::
of
:::

the
:::::::::::

HYPHAICC
::::::
models

:::::
using a source

term (described in ) is shown in . In the , we show a diagram presenting the HyPhAI-4 model (described in ), which is using455

a limited number of transitions regimes.
::::
based

:::
on

:::::::::
markovian

::::::::
inter-class

::::::::::
transitions.

::::
This

::::::::
preserves

:::
the

::::::::::
probabilistic

:::::::::
properties

::
as

::::::::
discussed

::
in

::::::
Section

:::::
2.2.2.

::::
This

:::::::::
dynamics

:
is
:::::::::
expressed

:::::
using

:::
the

::::::::
following

:::::::::
equations:

∂tPj =

C∑
i=1

Λj,iPi ∀j ∈ {1,2, . . . ,C} ,
::::::::::::::::::::::::::::::::
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Figure A1. HYPHAI-3: The third version of the proposed hybrid model. It consists of a U-Net Xception-style to estimate the velocity field

and a second U-Net to estimate the per-pixel transition matrices from the last observations

:::::
where

Λ(x) =
Π(x)

⊺ − I

∆t
,

::::::::::::::::

460

::::
with

:::::
Π(x)

:::::
being

::
a
::::::::
stochastic

:::::::
matrix,

:::
i.e.

::
a
:::::::::::
non-negative

::::::
square

::::::
matrix

::::::
where

:::
the

::::
sum

::
of

:::::
each

::::
row

::
is

:::::
equal

::
to

::::
one.

:::::
This

::::::::
constraint

::::::
ensures

::::
that

:::
the

::::::::::
probabilistic

:::::::::
properties

:::
are

:::::::::
maintained

::::
over

:::::
time.

:::::::::
Physically,

::::::
Λj,i(x):::::::::

represents
:::
the

::::::::
transition

:::
rate

:::::
from

:::::
cloud

::::
type

:
i
::
to

:::::
cloud

::::
type

:
j
::
at

::::
grid

::::
point

::
x

:::
and

:::
∆t

:::::::::
represents

:::
the

::::
time

::::
step,

:::
and

::::
I(x)

:::::::
denotes

:::
the

:::::::
identity

::::::
matrix.

:::
The

::::
third

:::::::
version

::
of

:::
the

:::::
hybrid

::::::
model

::::
(see Fig. A1

:
),
:::::::
denoted

:::::::::::
HYPHAICC

::
-3,

::::
uses

:::
this

::::::
source

::::
term

::::::::
combined

::::
with

:::
the

::::::::
advection

:::
as

::::::
showed

::
in

:::
the

::::::::
following

:::::::::
equations:

:
465

∂tPj +
−→
V ·

−→
∇Pj =

C∑
i=1

Λj,iPi ∀j ∈ {1,2, . . . ,C} ,
:::::::::::::::::::::::::::::::::::::::::

(A1)

:::::
where

:::
the

::::::::
stochastic

:::::::
property

:::
of

::
Π

::
is

:::::::
ensured

::
by

::::::::::
construction

:::::
using

:::
the

:::::::
Softmax

::::::
function

::
as

:::::::
follows:

:

Πi,k = Softmax(Mi)k =
eMi,k∑C
j=1 e

Mi,j

,

:::::::::::::::::::::::::::::::

:::::
where

:::
the

::::::
matrix

::
M

::
is

::::::::
generated

:::::
using

::
a

::::::
U-Net.

::::
This

:::::::::::
representation

::
of

:::::
cloud

:::::
cover

::::::::
dynamics

:::::
offers

:
a
:::::::::::::
comprehensive

:::::::::
description

::
of

:::::
cloud

::::::::
formation

:::
and

::::::::::
dissipation.

::::::::
However,470

:
it
::::::::
increases

:::
the

::::::
output

:::::::::
dimension

:::
size

:::
of

:::
the

::::::
U-Net,

::
as

:
a
::::::
C ×C

:::::::::
transition

:::::
matrix

::
is
:::::::::
generated

:::
for

::::
each

:::::
pixel.

::::
This

::::::
makes

:::
the

:::::
U-Net

:::::
model

::::::
poorly

::::::::::
constrained.

:::::::::::
Furthermore,

::
in

:::
our

:::::::::::
experiments,

:::
we

::::::
noticed

:::
an

::::::::
increased

:::::::
memory

:::::
usage

::::::
during

:::
the

:::::::
training.

A2
:::::::::
Advection

::::
with

::::::
source

::::::
term:

::::::::::::
HyPhAICC-4
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Figure A2. HYPHAI-4: The fourth version of the proposed hybrid model. It consists of a U-Net Xception-style to estimate the velocity field

and a second U-Net to estimate the α factors from the last observations, these factors are used to choose which transition regime to consider

for each pixel.

::
To

::::::
reduce

:::
the

::::::
number

:::
of

:::::
values

::::::
output

::
by

:::
the

::::::
U-Net,

:::
we

::::::
assume

::
a

::::::
limited

::::::
number

:::
of

::::::::
transition

:::::::
regimes,

::::
each

::::::::::
representing

::::
one475

::
of

:::
the

::::
most

:::::::
frequent

:::::::::
transitions.

::::
For

:::::::
instance,

::
in

:::
the

::::
case

::
of

::::
two

:::::::
regimes,

:::
the

::::::
source

::::
term

::
is

::::::::
described

::
as

:::::::
follows:

:

∂tPj = α1 ·
C∑
i=1

Λ1
j,iP

i +α2 ·
C∑
i=1

Λ2
j,iP

i,

::::::::::::::::::::::::::::::::

:::::
where

:::
Λ1

:::
and

:::
Λ2

:::
are

:::
the

::::::::
transition

::::::::
matrices,

::
α1

::::
and

:::
α2

:::
are

::::::
positive

:::::::
factors,

::::
these

::::::
factors

:::::::::
determine

:::::
which

::::::
regime

::
to
::::::::
consider

:
at
:::::
each

:::::
pixel,

::::
with

:::
the

::::::::
constraint

:::
that

:::::::::::
α1 +α2 ≤ 1.

:::::
The

:::::
fourth

::::::
version

::
of

:::
the

::::::
hybrid

::::::
model,

:::::::
denoted

:::::::::::
HYPHAICC

::
-4,

::::
uses

::::
this

:::::
source

::::
term

::
in
:::::::
addition

:::
to

::
the

:::::::::
advection

::
as

::::::::
described

::
in

:::
the

::::::::
following

:::::::::
equations:

:
480

∂tPj +
−→
V ·

−−→
∇Pj = α1 ·

C∑
i=1

Λ1
j,iP

i +α2 ·
C∑
i=1

Λ2
j,iP

i,

::::::::::::::::::::::::::::::::::::::::::

(A2)

:::::
where,

:::
α1

:::
and

:::
α2

:::
are

::::::::
estimated

:::::
using

:
a
::::::
U-Net,

::::
and

:::
Λ1

:::
and

:::
Λ2

:::
are

::::::
learned

::
as

::::::
model

:::::::::
parameters

::::
(see Fig. A2

::
).

:::::::::::
HyPhAICC-3

:::
and

::::::::::::
HyPhAICC-3

::
are

::::::
trained

:::::
using

:::
the

::::
same

::::::
dataset

::::
and

::::::
training

:::::::::
procedure,

::
as

:::
for

:::::::::::
HyPhAICC-1

::::
and

:::::::::::
HyPhAICC-2.

::::::::
However,

::::::
during

:::::::
training,

:::
the

::
Λ

::::::::
matrices

::
in

:
Eq. (A1)

:::
and

:
Eq. (A2)

::
are

:::::::::::
consistently

::::::::
estimated

::
as

::::::
zeros.

::
In

:::::
other

::::::
words,

:::
no

::::::::
inter-class

:::::::::
transitions

::::
were

::::::::
captured.

:
485

A3
::::::
Scores

:::
The

:
Fig. A3

::::::::
represents

:::
the

:::::
score

::::::::::
comparison

:::::::
showed

::
in

:::
the Fig. 6,

::::
but

::::
with

::::::::
additional

:::::::::
confidence

::::::::
intervals.

::::::
These

:::::::::
confidence

:::::::
intervals

::::
were

::::::::
estimated

:::::
using

:::::::::::::
Bootstrapping,

::::
with

:
a
::::::::
threshold

::
of

:::::
99%.

A4 Full disk predictions

The Fig. A4 shows predictions of the HyPhAI-1
:::::::::::
HyPhAICC-1

:
model on the earth full disk centred at 0 degrees longitude.490
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Figure A3.
:::::::::
Performance

::::::::::
comparison

:::::::
between

:::
our

:::::::::
HyPhAI-1,

:::::
U-Net,

::::::
EXIM,

:::
and

:::
the

:::::::::
Persistence

:::::::
baseline.

:::::
Using

:::
five

:::::
metrics

::::::::
including

::::::
averaged

:::
F1

::::::::
score(%),

::::::::::
precision(%),

::::::::
recall(%),

:::::::::::
accuracy(%),

::::::
CSI(%)

:::
and

::::::::
Hausdorff

:::::::
distance

:::::::
(defined

::
in

:
Eq. (9)

:
).
:::::
These

:::::
scores

:::::
were

:::::::
computed

::::
over

::::
1000

::::::
random

::::::
samples

::::::
covering

::::::
France

:
in
:::::
2021.

:::
The

::::::::
confidence

:::::::
intervals

::::
were

:::::::
estimated

::::
using

:::::::::::
Bootstrapping

:::
with

::
a
:::::::
threshold

:
of
:::::

99%.
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Figure A4. Full disk cloud cover nowcasting predictions. The predictions were generated by our model without any specific training on

the full disk data (of size 3712× 3712).
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Appendix B:
:::::::
Bridging

::::::
neural

:::::::::
networks

:::
and

::::::::::
numerical

:::::::::
modelling

::
In

:::
this

:::::::
section,

::
we

:::::::
present

::::::::::
fundamental

::::::::::
components

:::
for

::::::::::::
implementing

::
the

::::::::
proposed

::::::
hybrid

::::::::::
architecture.

::
In

:::::
Sect.

:::
B1

::
we

:::::::
explore

::
the

::::::::::
integration

::
of

::::::
physics

::::::
within

:
a
::::::
neural

:::::::
network.

:::
We

::::
then

:::::::
explain

::
the

::::::::::
trainability

:::::::::
challenges

::::::::
associated

::::
with

::::
this

::::::::::
architecture

::
in

::::
Sect.

::::
B2.

::::::::
Following

::::
that,

:::
in

::::
Sect.

::::
B3,

:::
we

::::::
provide

::
a
::::
brief

:::::::::::
introduction

::
to

::::::::
numerical

::::::::
methods

:::
for

::::::
solving

::::::
PDEs.

:::::::
Finally,

::
in

::
the

:::::
Sect.

:::
B4

:::
and

::::
Sect.

::::
B5,

:::
we

::::::
present

:::
the

::::::
method

::::
used

::
to
:::::::::::
approximate

:::::::::
derivatives

:::
and

:::::::
perform

::::
time

:::::::::
integration

::::::
within

:
a
::::::
neural495

:::::::
network.

:

B1
::::::::::
Combining

::::::
neural

::::::::
networks

::::
and

:::::::
Physics

::
An

::::::::
artificial

::::::
neural

:::::::
network

::
is

::
a

:::::::
function

:::
fθ ::::::::::::

parameterised
::
by

::
a
:::
set

::
of

::::::::::
parameters

::
θ.

::
It
::::::
results

:::::
from

:::
the

:::::::::::
composition

::
of

::
a

:::::::
sequence

:::
of

:::::::::
elementary

:::::::::
non-linear

::::::::::::
parameterised

::::::::
functions

:::::
called

::::::
layers,

::::
that

::::::
process

::::
and

::::::::
transform

:::::
input

::::
data

:
x
::::
into

::::::
output

:::::::::
predictions

:
y
:::
as

:::::::
follows:500

y = fθ (x) .
:::::::::

(B1)

:::::::::::
Physics-based

:::::::
models

::::
aim

::
to

::::::::
represent

:::
the

::::::::::
underlying

:::::::
physical

:::::::::
processes,

:::
or

:::::::::
equations,

:::
that

:::::::
govern

:::
the

:::::::::
behaviour

::
of

::
a

::::::
system.

:::
To

:::::::::
incorporate

:::::::
physics

:::
into

:::
the

:::::
neural

::::::::
network,

:::
one

:::::::
possible

::::::::
approach

:::::::
involves

:::::::
feeding

::
the

::::::
output

::
of

:::
the

::::::::::::
physics-based

:::::
model

:::
as

:::
an

::::
input

::
to

:::
the

::::::
neural

:::::::
network

::
as

:::::::
follows:

y = fθ (x,ϕ(xPhy)) ,
::::::::::::::::

(B2)505

:::::
where

::::
xPhy:::

are
:::
the

::::::
inputs

::
of

:::
the

::::::::::::
physics-based

::::::
model

:::
ϕ.

::::
This

::::::
method

::::::
could

::
be

::::::::
effective

:::::
when

:::
the

::::::::::::
physics-based

::::::
model

::
is

::::::::::::
self-contained,

:::
and

::
its

:::::::::::
components

::
are

::::::::
explicitly

:::::::
known.

::::::::
However,

:
it
::::::::
becomes

:::::::::
impractical

::
in

::::::::
scenarios

:::::
where

:::
the

::::::::::::
physics-based

:::::
model

:::::::
presents

::::::::
unknown

::::::::
variables

:::
that

::::
need

::
to
:::
be

::::::::
estimated.

:::::
This

:
is
:::
the

::::
case

::
in

:::
the

::::::::::
application

:::::::::
considered

::
in

:::
this

:::::
work,

::::::
where

::
the

:::::
cloud

::::::
motion

::::
field

::
is
::::::::
unknown.

:::
In

::::
such

::::::::
instances,

:
a
:::::
more

::::::
suitable

::::::::
approach

::
is

::
to

::::::
pursue

:
a
::::
joint

:::::::::
resolution.

:::::
Here,

:::
the

:::::::
physical

:::::
model

:::::
takes

::
the

:::::::
outputs

::
of

:::
the

:::::
neural

:::::::
network

::::
and

::::::::
computes

:::
the

::::::::::
predictions,

:::::::
resulting

::
in

:
a
:::::::::::
composition

::
of

::
fθ::::

and
:
ϕ
::
as

:::::::
follows:

:
510

y = ϕ ◦ fθ (x,xPhy) .
::::::::::::::::

(B3)

::
In

:::
this

::::::::
approach,

::
ϕ
::::::::
implicitly

:::::::
applies

:
a
::::
hard

::::::::
constraint

:::
on

:::::
these

::::::
outputs,

::::
this

:::::
might

:::::::::
contribute

::
to

::::::::
accelerate

:::
the

:::::::::::
convergence

::
of

::
the

::::::
neural

:::::::
network

::::::
during

:::
the

::::::
training

:::::::
process.

:

:::::
Unlike

:::
the

::::
first

:::::::
method

:
(Eq. (B2)

:
),
:::::
where

:::
the

::::::::::::
physics-based

::::::
model

::
ϕ

:
is
:::::::
passive

:::
and

:::
not

::::::::
involved

::
in

:::
the

:::::::
training

:::::::::
procedure,

::
the

::::::
second

:::::::
method

:::::
raises

:::::
some

:::::::::
challenges

:::::::::
concerning

:::
the

:::::::::
trainability

::
of
:::
the

:::::::::::
architecture.515

B2
::::::::
Training

:
a
::::::
neural

::::::::
network

:::::
Neural

::::::::
networks

:::::
learn

::
to

:::::::
minimise

::
a
:::
loss

:::::::
function

:::
Lθ::

by
::::::::
adjusting

::
its

:::
set

::
of

:::::::::
parameters

::
θ

:::::
using

::::
data.

:::
The

::::
loss

:::::::
function

::::::::
measures

::
the

:::::
error

:::::::
between

:::
the

::::::::
predicted

::::::::
outcomes

::̂
y

:::
and

:::
the

::::::
ground

::::
truth

::
y.
::
It
::
is

::::::::
expressed

:::
as

Lθ =
1

N

N∑
k=1

l(yk,fθ (xk)),

:::::::::::::::::::::

(B4)
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:::::
where

::
N

::
is
::::

the
::::::
sample

::::
size

:::
and

::
l
::
is

:
a
:::::::
measure

:::
of

:::
the

::::::::::
discrepancy

:::::::
between

::::
the

::::::
ground

::::
truth

:::
yi :::

and
:::
the

:::::::
model’s

::::::::::
production520

::::::::
associated

::::
with

:::
the

:::::
input

::
xi,::::

i.e.,
:::::::::
fθ ◦ϕ (xi).:::

For
::::::::
instance,

:::::
using

:::::::::::::::
l(a,b) = ∥a− b∥2

:
is
:::
the

:::::::
measure

::::
used

::
to
::::::::
calibrate

:
a
:::::::::
regression

:::::
model

::::
and

:::
Lθ::

is
::::
then

:::
the

::::::::
so-called

::::
mean

:::::::
squared

:::::
error

::::::
(MSE).

::::::
During

:::
this

:::::::
training

:::::::
process,

:::
an

::::::::
algorithm

:::::
called

::::::::::::::
backpropagation

::
is

::::
used

:::
to

:::::::
optimise

::::::
model

:::::::::
parameters.

:::::::::::::::
Backpropagation

:::::::
involves

:::::::::
computing

:::
the

:::::::
gradient

:::
of

:::
the

::::
loss

:::::::
function

::::
with

:::::::
respect

::
to

:::
the

::::::::
network’s

::::::::::
parameters.

::
It
::::::::

indicates
::::
how

:::::
much

:::::
each

:::::
weight

::::::::::
contributed

::
to

:::
the

::::
error.

::::
This

:::::::
gradient

::
is
::::
then

::::
used

::
to

::::::
update

:::
the

:::::::::
parameters

::
in

:::
the

:::::::
direction

::::
that

::::::::
minimises

::::
Lθ,

::::::::
following525

:
a
::::::::
sequential

:::::::::::
optimisation

::::::::
algorithm

::::
such

:::
as

:::::::
gradient

:::::::
descent,

::
as

::::::::
described

::::::
below:

θupdated = θold − γ∇Lθold ,
:::::::::::::::::::

(B5)

:::::
where

::
γ

::
is

:::
the

::::::::::
magnitude

::
of

::::
the

:::::::
descent.

::
In
::::::

order
::
to

:::::::
perform

::::
the

::::::::::::::
backpropagation,

::::
we

::::::
assume

::::
that

:::
the

::::::::
gradient

::
of

::::
the

:::
loss

::::::::
function

::::
with

::::::
respect

:::
to

:::
the

:::::::
model’s

::::::::::
parameters

:::::
could

:::
be

:::::::::
calculated

:::::
using

:::
the

:::::
chain

:::::
rule.

::::
This

::::::::::
assumption

::
is

::::::
called

:::::::::::::
differentiability.

:::::::
Indeed,

::::::
neural

::::::::
networks

::::
rely

:::
on

::::::::
activation

::::::::
functions

::::
and

:::::::::
operations

::::
that

::::
are

::::::::::::
differentiable,

:::::::
allowing

::::
the530

:::::::
gradients

::
to
:::
be

:::::::::
propagated

::::::::
backward

:::::::
through

:::
the

:::::::
network

::::::
layers.

::
In

:::
this

::::::::
proposed

:::::
hybrid

::::::::
approach,

:::::
PDEs

:::
are

::::::
solved

::
to

:::::::
produce

:::::
model

::::::::::
predictions.

:
If
:::
the

::::
PDE

::::::
solver

:::::::
includes

::::::::::::::
non-differentiable

::::
steps,

::::
the

::::
chain

::::
rule

::::::
breaks

:::::
down,

:::::::
making

::
it

:::::::::
impossible

::
to

::::::::
compute

::::::::
gradients

:::::
within

:::
the

::::::::
standard

::::
deep

:::::::
learning

:::::::::::
frameworks.

::
In

::::
what

:::::::
follows,

:::
we

::::::::
describe

:::
our

:::::::
strategy

:::
for

:::::::::
modelling

:::
and

:::::::
solving

:::::
PDEs

:::::
using

:::::
basic

:::::::::::
differentiable

:::::::::
operations

::::::::::
commonly

::::::::
employed

::
in

:::::
neural

:::::::::
networks.535

B3
:::::::::
Numerical

::::::::
methods

:::
for

::::::
partial

::::::::::
differential

:::::::::
equations

::::::::
Numerical

:::::::
weather

:::::::::
prediction

:::::::
involves

:::::::::
addressing

::::::::
equations

::
of

:::
the

:::::
form

∂tf = F
(
f,∂xf,∂

2
xf, . . .

)
,

::::::::::::::::::::::
(B6)

::::::::
governing

:::
the

::::::::
evolution

::
of

::
a

::::::::
univariate

::
or

::::::::::
multivariate

::::
field

::
f

::::
over

::::
time.

::::::::::
Computers

::::::
cannot

::::::
directly

:::::
solve

::::::::
symbolic

:::::
PDEs,

::::
and

:
a
::::::::
common

::::::::
approach

:::::::
involves

::
a

::::::::
two-stage

:::::::
process

::
to

::::::::
transform

::::
the

::::
PDE

::::
into

:
a
::::::::::::

mathematical
::::::::::
formulation

:::::
more

:::::::
suitable

:::
for540

:::::::::::
computational

::::::::
handling.

::::
This

:::::::
process

::::::
begins

::
by

::::::::::
discretising

:::
the

:::::
partial

:::::::::
derivatives

::::
with

::::::
respect

::
to
::::::
spatial

::::::::::
coordinates,

::::::::
resulting

::
in

::
an

:::::::
ordinary

::::::::::
differential

:::::::
equation.

::::::::::::
Subsequently,

:
a
::::::::
temporal

:::::::::
integration

::::::::
describes

:::
the

::::::::
evolution

::
of

:::
the

::::::
system

::::
over

:::::
time.

::::::
Spatial

:::::::::::
discretisation

:::
can

:::
be

:::::::::
performed

:::::
using

:::::::
several

::::::::
methods,

:::
e.g.

:::::
finite

::::::::
volumes,

:::::
finite

::::::::
elements,

:::
or

:::::::
spectral

::::::::
methods.

::::::::
However,

:::
the

:::::::
simplest

::::
one,

::::
the

:::::::::::::
finite-difference

:::::::
method,

::::::::
consists

::
in

::::::::
replacing

::::::
spatial

:::::::::
derivatives

:::
of

::
f

:::
by

::::::::
quantities

::::::
which

:::::::
depends

::
on

:::
the

:::::
values

:::
of

:
f
:::
on

:
a
::::
grid.

::::
For

:::::::
example,

:::
on

:
a
:::
1D

:::::::
periodic

::::::
domain

:::::
[0,L]

::
of

:::::::::
coordinate

::
x,

:::::::::
discretised

::
in
:::
N

:::
grid

::::::
points545

:::::::::
(xi)[0,n−1] :::::::::

(xn = x0),
:::
the

::::::
central

::::::::
difference

:::::::
method

::
of

:::
the

::::::::
first-order

::::::
spatial

::::::::
derivative

:::::
reads

:

∂xf(t,xi)≈
f(t,xi+1)− f(t,xi−1)

2δx
,

::::::::::::::::::::::::::::::

(B7)
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:::::
where

:::::::::::::
δx= xi+1 −xi:::::::::

represents
:::
the

:::
grid

::::::::::
resolution.

::::::::
Following

::::::
spatial

::::::::::::
discretisation, Eq. (B6)

:::
can

::
be

:::::::
written

::
as

::
an

::::::::
ordinary

:::::::::
differential

:::::::
equation

::
as

:::::::
follows:

:

df
dt

= F̂ (f),
:::::::::

(B8)550

:::::
where

::::
f(t)

::
is

:::
the

::::::::::
discretised

::::
form

:::
of

::
f

::::
over

::::
the

::::::
spatial

:::::::
domain,

::::
e.g.

:::
the

::::::
vector

::
of

:::::::::
grid-point

::::::
values

:::
of

::
f

::
at

::::
time

::
t,
::::

i.e.

::::::::::::::
f(t) = (f(t,xi))i ::

in
:::
the

:::
1D

::::::
domain

:::::::::
mentioned

::::::
above.

:::
For

:::
the

::::
time

:::::::::
integration,

:::::::
various

:::::::
methods

:::
can

::::
also

::
be

:::::::::
employed,

::::
e.g.

::::::
Euler’s

::::::
method

:::
or

:
a
:::::
fourth

:::::
order

:::::::::::
Runge–Kutta

:::::::
method

:::::
(RK4)

:::::::::::::::::::::::
(Runge, 1895; Kutta, 1901).

:::::
These

::::::::
methods

:::::
differ

::
in

::::
their

::::::::
accuracy,

:::::::
stability,

:::
and

::::::::::::
computational

:::::
cost.

::
An

:::::::
explicit

:::::
Euler

::::
time

:::::::::
integration

::
of Eq. (B8)

::::
reads555

fq+1 = fq + δtF̂ (fq),
::::::::::::::::

(B9)

:::::
where

:::::::::
fq = f(tq), ::::

with
:::::::
tq = qδt

:::
the

:::::::::
discretised

::::
time

::
of

::::
time

::::
step

:::
δt.

:::
For

:::
the

::::
sake

::
of

:::::::::
illustration,

:::
we

:::::::
consider

:::
the

::::::::
advection

::::
over

:::
the

:::::::::::::::
above-mentioned

::
1D

:::::::
periodic

:::::::
domain,

:::::
given

:::
by

:::
the

::::::::
following

:::::::
equation:

:

∂tf +u∂xf = 0,
:::::::::::::

(B10)560

:::::
where

::
u

::
is

:
a
:::::::
velocity

:::::
field

:::::
whose

::::::
values

:::
on

:::
the

::::
grid

:::
are

:::::::
denotes

::
as

::::::::::::
(ui)i∈[0,n−1]. ::::::::

Applying
::::::
central

:::::::::
difference

:::
and

:::
an

:::::
Euler

::::::
scheme

:::::::::::
discretisation

:::::
yields

:::
the

:::::::::
sequential

:::::::::
evolution:

fq+1,i = fq,i −
δt

2δx
ui (fi+1 − fi−1) .

::::::::::::::::::::::::::::::

(B11)

::::
This

:::::::
example

::::::::
illustrates

:::
the

:::::::::
integration

::
of

:::
the

::::::::
advection

:::::::
equation

::::
over

::::
time

:::::
using

:
a
::::::
simple

::::::
explicit

:::::::
method.

::::::::
However,

:::::::::
depending

::
on

:::
the

:::::::
problem

::::::::::::
characteristics

:::
and

::::::::::::
requirements,

::::
other

:::::
time

:::::::::
integration

:::::::
schemes

::::
may

::
be

:::::
more

:::::::
suitable.

:
565

::
In

:::
this

::::::
study,

:::
we

:::::::
propose

::
to

:::::
model

::::
and

:::::
solve

:::::
PDEs

::::::
within

:
a
::::::
neural

::::::::
network,

:::
e.g.

::::::::
equations

:::
of

:::
the

::::
form

:
Eq. (B6)

:
.
::::
This

::
is

:::::::
achieved

:::
by

:::::::::
describing

:::
the

::::::::
equivalent

:::
of

:::::
spatial

::::
and

::::::::
temporal

:::::::::::
discretisation

::
in

:::
the

:::::
frame

::
of
::::::

neural
:::::::
network

::::::
layers,

:::
i.e.

::::
how

::
it

:::
can

::
be

:::::::::::
implemented

::
in

::
a

::::
deep

:::::::
learning

::::
(DL)

::::::::::
framework

::
as

::::::::::
TensorFlow

::::::::::::::::
(Abadi et al., 2016)

::
or

:::::::
PyTorch

:::::::::::::::::
(Paszke et al., 2019).

:

B4
:::::::::::::::
Finite-difference

:::::::
methods

::::
and

::::::::::::
convolutional

::::::
layers

::
To

:::::::::
implement

::
a

:::::::::::::
finite-difference

::::::::::::
discretisation,

:::
one

::::::
viable

::::::::
approach

:
is
:::

to
::::::
employ

:::
the

::::::::::
convolution

:::::::::
operation.

:::
For

::::::::
instance,

:::
the570

::
1D

::::::::::
convolution

:::::::::
associated

::::
with

:
Eq. (B7)

:::
can

::
be

:::::::::::::
mathematically

::::::
written

:::
as:

(K1 ∗ f) [i] =
M−1∑
m=0

K1 [i]f [m+ i] ,

::::::::::::::::::::::::::::

(B12)

:::::
where

:::
K1

::
is

:::
the

:::::
kernel

:::
or

::::
filter

::::
used

:::
for

:::
the

::::::::::
convolution

:::
and

::::::::
expressed

:::
as

K1 =
[

−1
2δx 0 1

2δx

]
,

::::::::::::::::::::
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Figure B1.
:
In

:::::
order

::
to

:::::::
calculate

::
the

::::::::
numerical

::::::::
derivative

::
of

::
f ,

:
a
:::::

kernel
::::
K1

:
is
::::

used
::
to
::::
slide

:::::
across

:::
an

::::
input

:::::
vector,

:::::
which

::
is
:
a
:::::::::

discretised

:::::
version

::
of
::
f
::::
with

::
N

:::::::
elements,

:::::::::::
element-wise

:::::::::
multiplying

:::::
values

:::::
within

::
its

::::::
window

::::
and

:::::::
summing

:::
the

:::::
results

::
to

:::::::::
approximate

:::
the

::::::::
derivative

:
at
::::

each
:::::::
position.

:::
The

:::::
result

::
is

:
a
::::
new

:::::
vector

::
of

:::
size

::::::
N − 2

::::::::
containing

:::
the

:::::::
numerical

::::::::
derivative

::
of

::
f
:::::::
(padding

::
at

:::
the

:::::
bounds

::::
with

:::::
zeros

::
or

:::::::
duplicated

::::::
values

:
in
:::
the

::::
input

:::::
vector

:::
can

::
be

::::::
applied

::
to

::::::
produce

::
an

::::::
output

::::
vector

::
of
::::

size
:::
N ).

::::
This

:
is
::::::::
equivalent

::
to

:
a
:::::::::
convolution

:::::::
between

:::
K1

:::
and

::
f ,

:::
and

:::
can

::
be

::::::::
reproduced

:::::
using

:
a
:::
1D

::::::::::
convolutional

::::
layer

:::
with

:::
K1

::
as
::
a
:::::
kernel.

:::
and

::
f

:::::::::
represents

:::
the

:::::
input

::::
data.

::::
The

:::::::
variable

:::
M

::::::::::
corresponds

::
to
::::

the
:::
size

:::
of

:::
the

::::::
kernel.

::
It

::
is

:::
the

:::::::
number

::
of

::::::::::::::
finite-difference575

::::::::::
coefficients,

::::
also

:::::
called

::::::
stencil

::::
size.

:::
In

:::
this

:::::
case,

::
a
:::::::::
three-point

::::::
stencil

::
is
::::::::::
considered

::::::::
(M = 3).

:::::::
Finally,

:
∗
::

is
::::

the
::::::::::
convolution

:::::::
operator.

:

::::
This

::::
leads

:::
to

::
an

:::::::::
interesting

::::::::::
interaction

::::
with

:::
DL

:::::::::::
frameworks.

:::::::
Indeed,

:::::::::::
convolutional

::::::
neural

::::::::
networks

:::::::
(CNNs)

::::
rely

:::
on

:::
the

::::::::
operation

ConvLayer(f) [i] = σ

(
M−1∑
m=0

K [m]f [m+ i] + b

)
,

::::::::::::::::::::::::::::::::::::::::

580

:::::
where

::
σ

::
is

:::::
called

:::::::::
activation

:::::::
function

:::
and

::
b

::
is

:
a
:::::::::
parameter

::::::::::
representing

:::
the

::::
bias

:
.
::::::::
Observing

::::
that

:::::
using

::::::::::
σ = identity

::::
and

:::::
b = 0

::::
leads

::
to

:::
the

:::::
same

::::::::
operation

:::
as

::
in

:
Eq. (B12),

::::
one

:::
can

::::::::
leverage

::::
deep

:::::::
learning

::::::::::
frameworks

:::
to

::::::::::
approximate

::::::::::
derivatives,

::::::
which

::::::
enables

::::::::::::::
derivative-based

:::::::::
operations

::
in

:::::
neural

:::::::::
networks,

::
as

::::::
shown

::
in Fig. B1.

::::
The

::::
same

::::::::
principle

::::::
applies

:::
to

:::::
higher

:::::::::
derivative

:::::
orders.

::::
For

:::
any

:::::::
positive

::::::
integer

::
α,

:::
we

:::
can

:::::
write

:::
the

::::::::::::
approximation

::
of

:::
the

::::
α-th

::::::::
derivative

:::
of

:
f
::
as

:

∂αf ≈Kα ∗ f,
::::::::::::

(B13)585

:::::
where

:::
Kα

:::
are

:::
the

:::::
finite

::::::::
difference

::::::::::
coefficients

:::
for

:::
the

::::
α-th

:::::::::
derivative.

::::::
Finally,

:::::
using

:::::::::::
convolutions

:
is
::
a
:::::::::::::
straightforward

::::::
method

::
to

::::::
model

::
the

::::::
spatial

::::
term

:::
of

:
a
:::::
PDE,

:::
also

::::::
called

:::
the

:::::
trend,

::
as

::::::
follows

:

F̂ (f) =N (f).
:::::::::::

(B14)

::::
This

:::::
results

::
in

::
a
:::::
neural

:::::::
network

::::
that

:::
can

::
be

:::::
used

::
for

::::
time

::::::::::
integration.

:
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Figure B2.
:::::::

Illustration
::
of
::
a
::::::
residual

::::
block

B5
:::::::::
Temporal

:::::::
schemes

::::
and

:::::::
residual

:::::::::
networks590

:::
The

::::
time

:::::::::
integration

:::::::::
expressed

::
in

:::
the Eq. (B9)

::
can

:::
be

::::::
written

::
by

:::::
using

:::
the

::::::
neural

:::::::
network

:::::::::::::
implementation

::
N

::
of

:::
the

:::::
trend

::
as

:

fn+1 = fn +∆tN (fn).
:::::::::::::::::::

(B15)

::::::::::
Interestingly,

::::
this

::::::::::
formulation

::
is
:::::

very
::::::
similar

::
to

::::
that

::
of

::
a
:::::::
building

:::::
block

::::::::::
commonly

::::
used

::
in

:::::
deep

::::::
neural

::::::::
networks

:::::
called

::
a

::::::
residual

:::::
block

:::
(see Fig. B2

::
),

:::::::
proposed

:::
in

::
the

:::::::
ResNet

::::::::::
architecture

:::::::::::::
(He et al., 2016)

:
.
::
It

:
is
::::::::::
formulated

::
as

:::::::
follows:

y = x+F(x),
:::::::::::

(B16)595

:::::
where

::
x

::
is

:::
the

:::::
input

::
to

:::
the

::::::
block,

::
y

::
is

:::
the

::::::
output,

::::
and

::
F

::
is
::::::

called
:
a
::::::::

residual
:::::::
function,

:::::
made

:::
up

:::
of

:::::::
multiple

::::::
neural

::::::
layers.

:::::
These

:::::
layers

::::::::
represent

:::
the

::::::::
difference

:::::::
between

:::
the

:::::
input

:::
and

::::::
output.

::::
This

::::::::
function

::::
aims

::
to

::::::
capture

:::
the

:::::::::
additional

::::::::::
information

::
or

::::::::::
adjustments

::::::
needed

::
to

::::::::
transform

:::
the

:::::
input

::::
into

:::
the

::::::
desired

::::::
output.

::::
This

::::::::
similarity

::::::::
between

:::::::
residual

:::::
blocks

::::
and

::::
time

::::::::
schemes,

:::
also

::::::::
observed

::
in

::::::::::::::::::::::::::::::::::::::::::::::::::::::
Ruthotto and Haber (2020); Chen et al. (2018); Fablet et al. (2017),

:::::::
suggests

::::
that

:::
the

::::
time

:::::::::
integration

:::
step

::::
can

::
be

::::
done

:::::
inside

::
a

:::::
neural

:::::::
network,

:::
all

::
we

:::::
need

:
is
:::
the

:::::::
residual

:::::::
function,

::::::
which

:::
can

::
be

::::::::
modelled

:::::
using

:::::::::::
convolutional

:::::
layers

::
as

::::::
shown600

:::::::::
previously.

::::::::::::::::::::::::::
Pannekoucke and Fablet (2020)

:::::::
proposed

::
a

::::::
general

:::::::::
framework

::::::
(called

:::::::::::::::::::::::::::::::::::
https://github.com/opannekoucke/pdenetgen

::
),

::
to

:::::
model

::
a

::::
PDE

::
in

::
a
:::::
neural

:::::::
network

:::::
form

:::::
using

:::
this

::::::::
method.

:::::::
Residual

::::::
blocks

::::
were

:::::::::
originally

::::::::
designed

::
to

::::::
address

:::::::::
vanishing

:::::::
gradient

:::::
issues

::
in

:::::
image

:::::::::::
classification

:::::
tasks.

::::::::::
Intriguingly,

:::::
these

:::::
blocks

::::::
proved

::
to

:::::::
function

::::::::
similarly

::
to

::::
time

::::::::
schemes,

:::::
where

::::
they

::::::::
introduce

::::
small

:::::::
changes

::::
over

::::::::::
incremental

::::
time

::::::
steps.

::::
This

:::::::::
challenges

:::
the

::::::::
traditional

:::::
black

::::
box

:::::::::
perception

::
of

:::::
neural

:::::::::
networks,

:::::::
although

::::
full

:::::::::::::
interpretability

:
is
:::::::::
remaining

:
a
::::::
distant

:::::
goal.605

Appendix C: Robustness of hybrid formulation to change of coordinates

In a given coordinate system x= (xi), the advection of a passive scalar c(t,x) by a velocity field u= (ui) reads as

∂tc+ui∂xi
c= 0. (C1)

A change of coordinate system from the coordinate system x to the coordinate system y = (yj) related by x= x(y), remains

to the dynamics610

∂tC + vj∂yj
C = 0, (C2)
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0.0 50.0 100.0 150.0 200.0 250.0 300
Velocity (km h 1)

Figure C1. Estimated velocity field by the U-Net Xception-style used in the HyPhAI-1
::::::::::
HyPhAICC-1

:
model.

where C(t,y) = c(t,x(y)) and where the velocity v = (vj) is deduced from the chain rule

vj = ui∂xiyj , (C3)

(using Einstein’’s summation convention).

Since HyPhAI architecture estimates a velocity field from the data, that is either u or v, depending on the choice of the615

coordinate system, it implicitly accounts for the chain rule Eq. (C3). As a result, the HyPhAI architecture is not sensitive to the

coordinate system and can apply to regional domain as well as global projections. However, numerical effects due to the finite

spatio-temporal resolution associated with the discretisation, can lead to abnormal distortion of signals after several time steps

of integration, e.g. the disk resulting from an orthographic projection of the Earth may be deformed by the advection near its

boundaries unless the velocity field is close to zero, meaning that the apparent displacement is small.620

Note that this relative invariance of HyPhAI to the choice of coordinate is because it only concerns the advection of a scalar

field. Covariant transport of vector or tensor fields would imply additional terms (Christoffel symbols, e.g. Nakahara (2003))

that would break the invariance of HyPhAI as it is formulated here.
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Appendix D: Probability advection

In this section, we are considering a three-class problem where we have a discrete random variable X with values in the set625

1,2,3, and we denote by X(t,x) the value of X at time t and space x, with t ∈ [0,T ] and x ∈ [0,L]. We are interested in

studying the evolution of the state probabilities of X with respect to t and x. For this purpose, we define a vector P as

P =


P 1
X

P 2
X

P 3
X

 ,
here, P c

X(t,x) represents the probability of the c-th
:::
cth class;

P c
X(t,x) = P (X(t,x) = c)630

.

For the sake of simplicity, a 1D problem is considered, but the same analysis applies to the 2D case and for N -class problems

with N ≥ 2. Let’s consider the following partial differential equation governing the evolution of P(x,t):

∂tP(x,t)+L(P(x,t)) = 0, (D1)

where L is a differential operator. This equation can be written component-wise as:635 
∂tP

1
X(x,t)+L

(
P 1
X(x,t)

)
= 0

∂tP
2
X(x,t)+L

(
P 2
X(x,t)

)
= 0

∂tP
3
X(x,t)+L

(
P 3
X(x,t)

)
= 0

(D2)

As already discussed in the Sect. 2.2.1, three properties should be checked in order to ensure the probabilistic nature of P .

1. Non-negativity: P (x, t)≥ 0 for all x and t, with x= (x,y), which ensures that the probabilities remain non-negative.

2. Bound preservation: P (x, t)≤ 1 for all x and t, which ensures that no probability exceeds 1.

3. Probability conservation:
∑C

i=1P
i
X(x, t) = 1 for all x and t, with C = 12 is the total number of cloud types. This640

property guarantees that the sum of all probabilities is equal to 1.

D1 Probability conservation

Property .The probability conservation property is ensured if L is a linear differential operator with non-zero positive spatial

derivative orders.

Proof. Let’s sum the three equations in Eq. (D2):645

3∑
i=1

∂tP
i
X(x,t)+L

(
P i
X(x,t)

)
= 0

∂t

3∑
i=1

P i
X(x,t) =−

3∑
i

L
(
P i
X(x,t)

)
,
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For the specific case where L is a linear differential operator with non-zero positive spatial derivative orders. Assuming∑3
i=1P

i
X(x,t0) = 1, the linearity property of L allows us to interchange the summation and the operator, resulting as fol-

lows:
3∑
i

L
(
P i
X(x,t0)

)
=−L

(
3∑

i=1

P i
X(x,t0)

)
=−L(1)

= 0

650

L(1) = 0 as L have only derivatives with positive non-zero orders.

Applying and summing the first order Taylor expansion at t0 on each of the time derivatives of Eq. (D2) give

3∑
i

Pi(x,t0 + δt)−Pi(x,t0)

δt
+O(1) =−

3∑
i

L
(
P i
X(x,t)

)
= 0

3∑
i

Pi(x,t0 + δt) =

3∑
i

Pi(x,t0)+O(δt),655

when δt is small enough,
∑3

i Pi(x,t0 + δt) = 1.

Iteratively, starting from t0, ∀t
3∑
i

Pi(x,t) =

3∑
i

Pi(x,t0) = 1

In this study, we consider the advection equation using the same velocity field for all probability maps, where the operator660

L is written as follows:

L(Pi) = u · ∂xPi, i ∈ {1,2, ·,12}.

This differential operator is linear and have non-zero positive derivative order. Therefore, the sum of probabilities is conserved

over time and remains equal to the initial value. This property is illustrated numerically in Fig. D2 and Fig. D4, and it is

maintained independently of the discretization scheme.665

D2 Non-negativity and bound preservation

In order to check the two other properties, we need to study the discretisation schemes.

Out of the four numerical schemes studied (central finite differences, Semi-Lagrangian, first and second order upwind),

only the Semi-Lagrangian and the first-order upwind discretisation satisfy the first and second properties. The remaining two

schemes exhibit some form of dispersion.670

Details about central finite difference and first-order upwind scheme are given in the Sect. E.
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Figure D1. The advection of probabilities using central finite differences discretisation presents a dispersion effect
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Figure D2. The probability conservation property is maintained even in presence of dispersion effects.

Appendix E: discretisation schemes

In this appendix section, we will derive the equivalent equation of central differences and upwind scheme applied to the

following advection equation:

∂F (x,t)

∂t
+u

∂F (x,t)

∂x
= 0 (E1)675
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Figure D3. The advection of probabilities using first order upwind discretisation presents a diffusion effect
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Figure D4. The probability conservation property is maintained even in presence of diffusion effects

E1 Central Differences - Equivalent equation

We consider the second-order central discretisation in space and a first-order explicit forward difference in time applied to the

advection equation.

Fn+1
i −Fn

i

∆t
+ui

Fi+1 −Fi−1

2∆x
= 0 (E2)

Using the Taylor formulas in the Eq. (E2), we get:680

∂tF +
∆t

2
∂2
t F +O(∆t2) =−u

(
∂xF − ∆x2

6
∂3
xF +O(∆x2)

)
(E3)
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Whereas we require just a first-order expansion in time, we can replace the second-order time derivative by another term

coming from a Taylor first order expansion of the Eq. (E2) :

∂t(∂tF )+O(∆t) =−∂t(u∂xF )+O(∆x) (E4)

Then,685

∂2
t F =−∂tu∂xF −u∂2

xtF +O(∆t,∆x)

Using the same approach, as in the Eq. (E4), the derivative ∂2
xtF can be computed as follows :

∂x(∂tF ) =−∂xu∂xF −u∂2
xF +O(∆t,∆x)

We replace the derivative ∂2
xtF in the last formula :

∂2
t F =−∂tu∂xF −u

(
−∂xu∂xF −u∂2

xF
)
+O(∆t,∆x) (E5)690

Finally, we replace the second-order derivative in the Eq. (E3) by the expression in Eq. (E5) :

∂tF +
∆t

2

(
−∂tu∂xF −u

(
−∂xu∂xF −u∂2

xF
))

=−u

(
∂xF − ∆x2

6
∂3
xF

)
+O

(
∆t2,∆x2

)
Hence,

∂tF + ũ∂xF =−∆t

2
u2∂2

xF +
∆x2

6
u∂3

xF +O
(
∆t2,∆x2

)
, (E6)

where ũ= u− ∆t
2 ∂tu+

∆t
2 u∂xu.695

E2 First order upwind scheme - Equivalent equation

Now let’s consider the first-order upwind discretisation of the spatial term, given by:
Fn+1
i −Fn

i

∆t
+u

Fi −Fi−1

∆x
= 0 if u≥ 0

Fn+1
i −Fn

i

∆t
+u

Fi+1 −Fi

∆x
= 0 if u < 0

These two equations can be written as:

Fn+1
i −Fn

i

∆t
+

(
u+
i

Fi −Fi−1

∆x
+u−

i

Fi+1 −Fi

∆x

)
= 0, (E7)700

where u+
i =max(ui,0) and u−

i =min(ui,0).

Considering the case of u≥ 0 of Eq. (E7), using the Taylor formulas, we get:

∂tF +
∆t

2
∂2
t F +O

(
∆t2

)
=−u

(
∂xF − ∆x

2
∂2
xF +O

(
∆x2

))
(E8)
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As in the case of the central differences, we replace the second-order derivative ∂2
t F in the Eq. (E8) by the expression in

Eq. (E5). :705

∂tF +
∆t

2

(
−∂tu∂xF −u

(
−∂xu∂xF −u∂2

xF
))

=−u

(
∂xF − ∆x

2
∂2
xF

)
+O

(
∆t2,∆x2

)
Hence,

∂tF + ũ∂xF = vnum∂2
xF +O

(
∆t2,∆x2

)
, (E9)

where ũ= u− ∆t
2 ∂tu+

∆t
2 u∂xu, and vnum = u

2 (∆x−u∆t) the introduced numerical viscosity/diffusion.

The equivalent equation of the second case of Eq. (E7) (case u≤ 0) is written as:710

∂tF + ũ∂xF = vnum∂2
xF +O

(
∆t2,∆x2

)
, (E10)

where vnum = u
2 (−∆x−u∆t)

From Eq. (E9) and Eq. (E10) we can write the equivalent equation as:

∂tF + ũ∂xF = vnum∂2
xF +O

(
∆t2,∆x2

)
, (E11)

where ũ= u− ∆t
2 ∂tu+

∆t
2 u∂xu, and vnum = u

2 (sign(u)∆x−u∆t) the introduced numerical viscosity/diffusion.715

E3 Conclusion

It should be noted that the finite central difference scheme exhibits instability due to the presence of negative diffusion in the

second term in the Eq. (E6). However, by using a temporal scheme of higher order than 2, the negative diffusion term in ∆t

can be eliminated, rendering the scheme stable. Nevertheless, the scheme becomes dispersive due to the third-order spatial

derivative term, resulting in oscillations during the propagation of non-smooth
:::::
sharp

:
signals, such as a front or Heaviside720

function.

Alternatively, the first-order upwind scheme offers stability but introduces numerical diffusion, affecting the accuracy of the

solution, this diffusion is due to the second order derivative term in Eq. (E11).

Finally, the choice of the numerical scheme depends on the specific requirements of the problem, such as the desired accuracy

and stability of the solution. To respect the properties described above, we use the first-order upwind scheme, as it doesn’t
::::
does725

:::
not introduce oscillations in the solution. The first-order upwind scheme is also easy to implement in a differentiable mode.

Despite the limitation on the time step linked to the CFL condition, we consider it as a more appropriate scheme to integrate

probability advection in a neural network.
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