1	High frequency, continuous measurements reveal strong diel and seasonal cycling of <i>p</i> CO ₂ and CO ₂ flux in a mesohaline reach of the Chesapeake Bay
3 4 5 6	A. Whitman Miller ^{1*} , Jim R. Muirhead ¹ , Amanda C. Reynolds ¹ , Mark S. Minton ¹ and Karl J. Klug ¹
7	¹ Smithsonian Environmental Research Center, Edgewater, MD USA

9 Corresponding author: A. Whitman Miller (millerw@si.edu)

†Additional author notes should be indicated with symbols (current addresses, for example).

11 Key Points:

8

12

13

14 15

16

17

18 19 20

- Automated pCO₂ measurements capture daily cycles and anomalous events in estuaries where pCO₂ changes rapidly and across a wide range.
- Rhode River is net autotrophic (Dec-May), net heterotrophic (Jun-Nov), NEP is near balanced annually, but can reverse status during a single day.
- Year-round continuous measurements reveal that pCO₂ and CO₂ flux are mediated by temperature effects on biological activity and are inverse to the physical solubility of CO₂.

1

	Manuscript submitted to <u>EGU</u> : Biogeosciences	Deleted: JGR
21	ABSTRACT	
22	We estimated hourly air-water gas transfer velocities (k_{600}) for carbon dioxide in the Rhode	
23	River, a mesohaline subestuary of the Chesapeake Bay. Gas transfer velocities were calculated	
24	from estuary-specific parameterizations developed explicitly for shallow, microtidal estuaries in	
25	the Mid-Atlantic region of the United States, using standardized wind speed measurements.	
26	Combining the gas transfer velocity with continuous measurements of pCO ₂ in the water and in	
27	the overlying atmosphere, we determined the direction and magnitude of CO2 flux at hourly	
28	intervals across a 3 _e yr record (01 July 2018 to 01 July 2021). Continuous year-round	Deleted: -
29	measurements enabled us to document strong seasonal cycling whereby the Rhode River is	
30	primarily autotrophic during cold-water months (Dec-May), and largely net heterotrophic in	Deleted: net
31	warm-water months (Jun-Nov). Although there is inter-annual variability in CO2 flux in the	
32	Rhode River, the annual mean condition is near carbon neutral. Measurement at high temporal	
33	resolution across multiple years revealed that CO2 flux and apparent trophic status can reverse	
34	during a single 24 hr period. pCO ₂ and CO ₂ flux are mediated by temperature effects on	Deleted: -
35	biological activity and are inverse to temperature-dependent physical solubility of CO2 in water.	
36	Biological/biogeochemical carbon fixation and mineralization are rapid and extensive, so	
37	sufficient sampling frequency is crucial to capture unbiased extremes and central tendencies of	
38	these estuarine ecosystems.	
39		
40	1. Introduction	
41	Understanding the air_sea exchange of gases and establishing methodologies for accurate	Deleted: -
42	measurements has been a decades-long focus of atmospheric scientists, oceanographers, and	
43	biogeochemists seeking to understand interactions between oceans and the atmosphere and how	
44	these interactions contribute to the global carbon cycle (Broecker et al., 1979; Wanninkhof,	
45	1992, 2013). Coastal oceans and estuaries are ecosystems of interest for understanding the	
46	complex nature and contribution of the land_sea interface to lateral mass transport of carbon	Deleted: -
47	(Abril & Borges, 2005; Cai & Wang, 1998; Frankignoulle et al., 1998; Song et al., 2023) but also	
48	with respect to the role these ecosystems play as both atmospheric CO2 sources and sinks (Abril	
49	& Borges, 2005; Chen et al., 2020; Dai et al., 2022; Jiang et al., 2008). The exchange of carbon	
50	dioxide, methane, and other greenhouse gases (GHGs) between Earth's atmosphere and inland	
51	waters, estuaries, coastal oceans are well-documented but not fully quantified (Abril & Borges,	Deleted: necessarily

1	Manuscript submitted to <u>EGU</u> : Biogeosciences	Deleted: JGR
58	2005; Cai, 2011; Laruelle et al., 2017; Raymond & Cole, 2001; Raymond et al., 2013; Van Dam	
59	et al., 2019). CO ₂ evasion from estuaries alone has been estimated at 15–17% of the total <u>CO₂</u>	
60	input from oceans to the atmosphere (Chen et al., 2020; Laruelle et al., 2017), indicating the	
61	regional and global significance of estuaries (Bauer et al., 2013; Frankignoulle et al., 1998; Jiang	
62	et al., 2008). Yet, there is still great uncertainty surrounding the true net contributions of coastal	
63	oceans, estuaries, and inland water bodies to the atmospheric loading of GHGs (Borges, 2005;	Deleted: greenhouse gases
64	Chen et al., 2020; Herrmann et al., 2020; Joesoef et al., 2015; Laruelle et al., 2017; Raymond et	
65	al., 2013; Van Dam et al., 2019).	
66		
67	To better understand the effects of estuaries on atmospheric GHG exchange and accumulation, it	Deleted: greenhouse gas
68	is imperative that we understand their capacity and function as carbon sources and sinks and	
69	ultimately how estuaries factor into the planet's overall global carbon budget (Herrmann et al.,	
70	2020; Laruelle et al., 2017; Van Dam et al., 2019). Many attempts to characterize CO ₂ flux in	
71	estuaries and nearshore oceans (Chen et al., 2013; Herrmann et al., 2020; Rosentreter et al. 2021)	Deleted:),
72	have relied on direct measurements using floating domes, tracer gases, or, more recently, eddy	Deleted: ,
73	covariance methods (Laruelle et al, 2017; Van Dam et al., 2019). Because flux measurements are	
74	time intensive, they tend to be temporally and spatially limited (Herrmann et al., 2020; Klaus &	
75	Vachon, 2020). <u>Using</u> direct flux measurements to derive accurate gas transfer velocity	Deleted: Leveraging
76	constants (Ko, the velocity of gas crossing the air-water boundary) enables models to be	Deleted: k _o
77	parameterized to estimate Ko and compute gas flux. Thus, correlative models that incorporate	Deleted: k _o
78	<u>simultaneous</u> environmental measurements such as wind and/or water velocity, factors that affect	Deleted: contemporaneous
79	turbulence at the air-water interface and promote gas exchange, have aided in the widespread	
80	accumulation of gas flux estimates (Raymond & Cole, 2001; Van Dam et al., 2019; Wanninkhof,	
81	2014). Gas transfer velocity constant models vary according to the habitat/system being observed	
82	and chemical, physical, and biological factors present in each (e.g., lakes, rivers/streams,	
83	estuaries, and oceans; Herrmann et al., 2020; Ho et al., 2016; Raymond & Cole, 2001; Van Dam	
84	et al., 2019; Wanninkhof, 1992). To reduce uncertainty of computed gas fluxes, it is critical that	
85	the appropriate <u>Ko</u> models are matched to a targeted ecosystem.	Deleted: k _o
86		
87	Coastal oceans and estuaries are exceptionally complex, frequently characterized by their relative	
88	shallowness and how their freshwater inputs (riverine, surface, and groundwater) mix with salt	

Manuscript submitted to *EGU*: Biogeosciences Deleted: JGR 98 water (Chen et al., 2020). High nutrient and pollutant loading, due to urbanization and 99 eutrophication by humans, also have important effects on estuaries and coastal oceans (Freeman 100 et al., 2019). High spatial and temporal variability are hallmarks of estuaries. 101 102 Here we present a 3 year data set that combines high frequency (1 min interval) measurements of Deleted: -Deleted: -103 dissolved and atmospheric CO2 with co-located and continuous measurements of salinity, water 104 temperature, tidal cycling, and wind velocity, recorded at the Smithsonian Environmental 105 Research Center (SERC) dock, in the Rhode River, Maryland. To estimate hourly, daily, 106 seasonal, and annual CO₂ flux rates, we applied a CO₂ gas velocity constant model developed by 107 Van Dam et al. (2019) for the New River, North Carolina. This model is expressly designed for 108 application to shallow, well-mixed, microtidal estuaries located in the Mid-Atlantic coast of the 109 United States. 110 111 2. Methods Moved down [1]: In the Rhode River, we find that CO2 flux reverses itself daily for part of the year (June-November) 112 2.1 Study Location yielding some days that are characterized as a net sink (net autotrophic) and others that are a net source (net 113 The Rhode River is a tributary and subestuary of the Chesapeake Bay, a drowned river valley, heterotrophic). From Dec Moved down [2]: diel cycling is minimal and the river is 114 coastal plain estuary (Fig. 1). The Rhode River has been studied extensively by SERC staff and almost exclusively a net sink, autotrophic both day and night. Finally, although CO2 flux is pronounced but variable across 115 colleagues for over 4 decades: nutrient chemistry (Jordan & Correll, 1991; Jordan et al., 1991), seasons, the net CO2 flux of the Rhode River on an annual basis is near neutral. 116 phytoplankton ecology (Gallegos et al., 2010), color dissolved organic matter distribution 117 (Tzortziou et al., 2008; Tzortziou et al., 2011), and more recently, modeling of dissolved organic Deleted: From December to May Formatted: Font: +Headings CS (Times New Roman), Not 118 carbon (DOC) input from freshwater and tidal marsh sources (Clark et al., 2020). Located on the 119 Bay's northwestern shore (38°52'N, 76°32'W), the Rhode River is bounded at its head by Muddy Deleted: sub-estuary 120 Creek and at its mouth by the mainstem of the Chesapeake Bay. The Rhode River is a shallow Deleted: , its primary source of freshwater, 121 (mean depth = $\frac{2 \text{ m}}{\text{m}}$, max depth = $4\frac{1 \text{ m}}{\text{m}}$), mesohaline (0 to 18 ppt), well-mixed, eutrophic Deleted: 2m Deleted: 1m

tributary with a length of approximately 5 km; its surface area is approximately 5 km² with a

shoreline perimeter of 39 km (Breitburg et al., 2008; Clark et al., 2018). A 0.21 km² tidal marsh

(Kirkpatrick Marsh) fringes the estuary at the mouth of Muddy Creek (Fig. 1). Tides are semi-

diurnal with a mean amplitude of approximately 30 cm, but water height can be strongly affected

by wind and weather events. Muddy Creek is the main freshwater source of the Rhode River and has a maximum flow rate of 10.42 m³ · s⁻¹ and mean flow rate 0.18 m³ · s⁻¹ (mean flow = 15,552

m³ · d⁻¹; Clark et al., 2020; Clark et al., 2018; Jordan et al., 1986). The mean daily volume of

122

123

124

125

126

127

128

Deleted: 500 ha

Deleted: -ha

162

163

150 volume, based on the Rhode River's area and mean tidal amplitude. In the absence of 151 measurements of the pH or pCO2 of the freshwater entering the Rhode River from Muddy Creek 152 or other lesser freshwater inputs to the estuary, we are unable to report these pCO₂ or pH values. 153 However, given the exceedingly small overall volume of freshwater input to the Rhode River 154 from its surrounding watershed, it is not considered a river-dominated estuary so is not expected 155 to be substantially influenced by the chemical characteristics of this input. This is not to say there 156 is no freshwater influence, only that such influences are likely quite local when mixing with far 157 larger volumes of water from the Chesapeake Bay and therefore beyond the resolution of this 158 study. 159 160 Although the Rhode River is a model ecosystem that has been studied intensively for several

Deleted: Thus, the Rhode River is not considered a river-dominated estuary. However, Gallegos et al. (1992) observed that occasional freshets emanating from the Susquehanna River, the source of 55% of all freshwater input to the Chesapeake Bay (U.S. Geological Survey, 2023), whose mouth lies 45 nautical miles (nm) up bay from the Rhode River and can cause abrupt changes in salinity and nutrient loading in the Rhode River, resulting in predictable phytoplankton blooms.

Although the Rhode River is a model ecosystem that has been studied intensively for several decades across many dimensions (Clark et al. 2018; Correll et al., 1992; Gallegos et al., 1992; Jordan et al. 1991; Rose et al. 2019), no work to date has expressly characterized the nature and dynamics of CO₂ flux between the river and the atmosphere.

Deleted: with

Formatted: Font: Bold, Font color: Red

Deleted: ¶

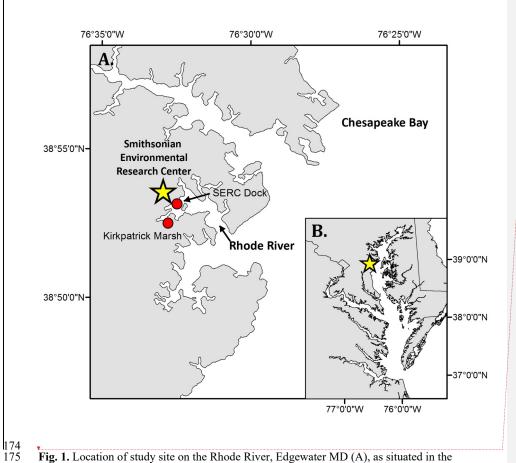


Fig. 1. Location of study site on the Rhode River, Edgewater MD (A), as situated in the Chesapeake Bay (B). All pCO_2 and related water quality values reported were measured from the SERC dock, that extends approximately $\frac{75 \text{ m}}{1000}$ from shore on Rhode River. Red circles indicate location of dock and a tidal creek that drains the Kirkpatrick saltmarsh (marsh area = $\frac{0.21 \text{ km}^2}{1000}$, 1 km up estuary from the dock).

2.2 In Situ Measurements, Calculated Parameters and Quantities

176

177

178

179

180 181

182

183

Continuous, automated environmental measurements were made in and above the Rhode River during a 3, year period between 01 July 2018 and 01 July 2021. The purpose of these

Deleted: 75m

Deleted: ha

Deleted: -

1	Manuscript submitted to <u>EGU</u> : Biogeosciences	Deleted: JGR
188	measurements was to document fluctuations in aqueous pCO ₂ on a fine time scale, from which	Deleted: ,
189	CO2 flux between the water and atmosphere could be calculated.	
190	2.2.1 Aqueous CO ₂ (pCO _{2water})	
191	To measure the CO ₂ gradient ($\Delta C = pCO_{2water} - pCO_{2air}$) across the Rhode River surface waters	
192	and its overlying atmosphere, measurements of pCO ₂ were made with a non-dispersive infrared	Deleted: dissolved and atmospheric
193	(NDIR) detector. In the case of dissolved gas measurements, water was equilibrated continuously	
194	with a spherical falling film equilibrator (Miller et al. 2019). Water from <u>I m</u> below the water's	Deleted: 1m
195	surface was pumped and dispersed continuously over a 25.4 cm diameter sphere. The falling film	Deleted: 4cm
196	created on the sphere generates a gas exchange surface which forces CO2 in the equilibrator	Deleted: sphere's surface
197	headspace into equilibrium with the water's CO ₂ content (i.e. mole fraction = x CO ₂ (μ mol/mol).	Deleted: across
198	Water exits the equilibrator via an airtight drain that prevents headspace contamination from	Deleted: CO ₂ Deleted: air
199	surrounding atmospheric air. Headspace gas circulates continuously in a closed loop through the	Status an
200	equilibrator, water trap and gas dehumidifier, past the NDIR, and back into the equilibrator.	
201	Experimental observations concluded that spherical falling film equilibrators achieve 99%	
202	equilibration of CO ₂ within 10–15 mins, depending on whether step changes are from low to	
203	high or high to low; details of the operation and performance of the falling film equilibrator are	
204	described in Miller et al. (2019). Measurements were made at 1 min intervals at a pressure equal	Deleted: -
205	to the ambient barometric pressure.	
206		
207	Measured raw CO ₂ mole fractions (μmol/mol) were converted to partial pressures (μatm) using	
208	equation 1. Minute-over-minute values were rounded down to the nearest hour and averaged to	
209	provide hourly means. The mole fractions were then evaluated with corresponding water	
210	temperature and salinity measurements following the methodology of Zeebe and Wolf-Gladrow	
211	(2001) where saturation vapor pressure of water is calculated according to Weiss and Price	
212	(1980) to determine $pCO_{2\text{water}}$.	
213		
214	$pCO_{2\text{water}} = xCO_2 \cdot (p - pH_2O) \tag{1}$	
215		
216	where,	Deleted: ,
217	pCO_2 = partial pressure of CO_2 of water (μ atm)	
218	xCO_2 = mole fraction of CO_2 in water (µmol/mol)	

Manuscript submitted to EGU: Biogeosciences I Deleted: JGR 229 p = total pressure = 1 atm230 pH_2O = saturation vapor pressure of water (µatm) 231 232 2.2.2 Atmospheric CO₂ 233 Every six hours, the sample gas stream was automatically diverted with programmed solenoid 234 control valves from the equilibrator to an atmospheric port located approximately 5 m above the Deleted: 5m 235 pier deck. During atmospheric sampling, 15 1-min interval measurements were made. To 236 account for inaccuracies during the transition period from equilibrator to atmospheric sampling, 237 the final eight measurements were averaged and the first seven were discarded. Similarly, the 238 first 30 measurements following switchover from atmospheric port to equilibrator were 239 discarded, to ensure measurements were fully equilibrated with water. For these atmospheric 240 measurements, the contribution of the vapor pressure of water to the total atmospheric pressure 241 of the open-air environment was considered negligible (i.e. $pH_2O = 0$ and p = 1), such that 242 $pCO_{2atm} = xCO_{2atm}$. As such, any potential differences are expected to fall well within the 243 measurement accuracy of the instrument (see below). 244 245 One advantage to using a shared NDIR sensor for aquatic and atmospheric samples is that any 246 minor effects of instrument drift will be reflected in both data streams, as opposed to two sensors 247 that drift independently of one another. Likewise, significant and sustained deviation from typical local atmospheric variability will be captured during atmospheric sampling and can signal 248 249 the need for recalibration and assist with QA/QC of corresponding data from both streams. A 250 disadvantage of using a common sensor for both dissolved and atmospheric CO2 measurements 251 is that it results in a mismatch in sampling frequency of the two. With this limitation in mind, we 252 chose a higher sampling frequency for aquatic measurements to better describe the inherently 253 higher variability in dissolved CO₂ in water vs. that in the atmosphere (Fig. 2).

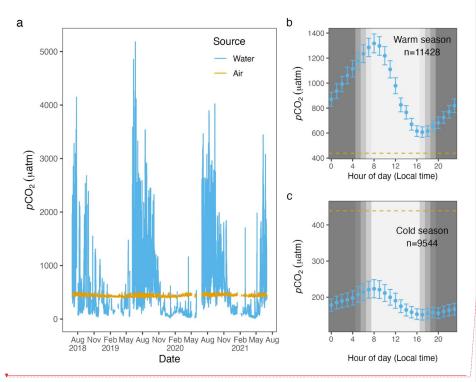
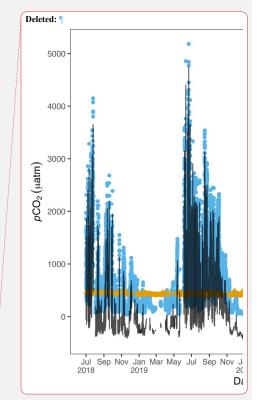



Fig. 2. Hourly pCO_{2water} (blue) and pCO_{2air} (goldenrod) values from 01 July 2018 to 01 July 2021, (panel a). The air-water CO_2 gradient, $\Delta C = pCO_{2water} - pCO_{2air}$ describes the directionality of gas diffusion. Negative ΔC values (pCO_{2water} values falling below goldenrod demarcation) represent gas movement from air to water and vice versa. Panels b and c depict mean pCO_{2water} values (95% CI) for each hour of the day for warm and cold seasons, with the dashed lines equal to the mean 3 yr value of pCO_{2air} .

Given the 3 yr time series and strong diel cycling of pCO_{2water} (and dissolved oxygen (DQ), see Figs. S1 and S2) in the Rhode River, we chose to aggregate aqueous minute-over-minute measurements to mean hourly averages. Owing to the relative lack of short-term variability in local atmospheric CO_2 concentrations (Fig. 2), we used linear interpolation to impute atmospheric CO_2 concentrations during hours in between actual readings (6 hr gaps between atmospheric measurements), which we assumed to be more realistic and reliable than Last Observation Carried Forward (LOCF) methods, where the last observation is repeated for all gaps until the next measurement is encountered, a method that has fallen out of favor, especially

Deleted: -

Deleted: measurements

Deleted: -

1	Manuscript submitted to <i>EGU</i> : <i>Biogeosciences</i>	Deleted: JGR
280	for environmental time series data (Lachin, 2016). To determine if any inadvertent bias was	
281	introduced by linear interpolation procedure, summary statistics of actual atmospheric readings	
282	and actual readings + imputed CO ₂ values were compared statistically. This approach enabled us	Deleted: to
283	to take advantage of >25,000 time points throughout the 3 yr period of observation, providing	Deleted: -
284	hourly resolution. Mean $pCO_{2air} = 437 \pm 20.0 \mu atm$ (Table 1), variability that falls well within	
285	manufacturer's specifications (see section 2.2.4).	
1 286		
287	$2.2.3 \text{ CO}_2$ gradient (Δ C)	
288	ΔC was determined by subtraction, $pCO_{2water} - pCO_{2air}$, where positive ΔC values correspond to	
289	higher CO ₂ concentrations in the water, tending toward movement from water to air (outgassing	
290	or evasion, where Rhode River = CO_2 source), and negative values that signal CO_2 transport	Deleted: movement
291	from air to water (dissolution, where Rhode River = CO_2 sink). Figure 2 shows $pCO_{2\text{water}}$ and	Deleted: transport
292	pCO _{2air,} plotted on an hourly basis for the 3 _e yr period beginning 01 July 2018 and ending 01 July	Deleted: Values of
293	2021. Across this period, ΔC was predominantly negative during cold months and predominantly	Deleted: , Deleted: , and ΔC are
294	positive during warm months when pCO_{2water} tended to reach the highest values of the year, but	Deleted: -
295	ΔC sometimes reversed sign due to occasional extreme day-time photosynthetic drawdown of	
296	<u>CO</u> ₂ (Fig. 2).	
1 297		
298	2.2.4 Accuracy of CO ₂ measurements	
299	Estimated accuracy of the spherical falling film equilibrator and NDIR sensor (SenseAir K30,	
300	https://senseair.com/) combination were experimentally determined in the lab and found to	
301	measure water equilibrated with known gas concentrations to be within the $\pm 1\%$ uncertainty	Deleted: 1
302	limits of the of certified standard gas mixtures used, and well within the published accuracy	
303	specification of the SenseAir K30 (i.e., \pm 30 ppmv \pm 3% of instrument reading). Experimental	
304	analysis by Martin et al. (2017) report even higher accuracy when relative humidity and	
305	atmospheric pressure are controlled for. Details on performance of the spherical falling film	
306	equilibrator, such as accuracy, precision, and time constants can be found in Miller et al. (2019).	
307	Although SenseAir offers automated calibration via long term comparisons to atmospheric	
308	readings, this feature was deactivated. The K30 NDIR was periodically validated using standard	
309	zero CO ₂ (nitrogen) and standard certified span gases at intervals of one to two months during	
310	the study period. Although the K30 was never observed to drift beyond its factory specifications,	

	Manuscript submitted to <u>EGU</u> : Biogeosciences	Deleted: JGR
320	the sensor was occasionally re-calibrated in the lab, <u>and</u> measured values were accepted without	Deleted: but
321	adjustment.	
322		
323	CO ₂ measurements were downloaded to a database at approximately two-week intervals during	
324	the observation period. Data were graphed and reviewed visually, in combination with twice	
325	weekly observations of equilibrator function recorded in an accompanying notebook. Anomalous	
326	data were flagged and excluded from data analysis (e.g., flooding or clogging events that	
327	interrupted proper equilibration.)	
328		
329	2.3 Co-located water quality and atmospheric measurements	
330	This water quality station at the SERC dock is a long-term node of the Maryland Department of	
331	Natural Resources "Eyes on the Bay" Chesapeake Bay tidal water monitoring program, and has	
332	been operated by the SERC since 1986. Water quality and atmospheric data are maintained by	
333	the MarineGEO Upper Chesapeake Bay Observatory and can be accessed online (Benson et al.,	
334	2023). A YSI EXO2 sonde was positioned 1 m below the water's surface and in proximity (~2,5)	Deleted: 1m
335	$\underline{\mathbf{m}}$ distance) to the submerged water pump that fed the pCO_2 equilibrator. Sonde measurements	Deleted: 5m
336	were made at 6 minute intervals and aggregated to 1 hr averages. The published accuracy	Deleted: -
337	specifications for the YSI sonde are as follows: temperature: ±0.01 °C (-5° to 35°C); salinity:	Deleted: -
		Deleted: measurements
338	±1% of reading or 0.1 ppt, (0-70 ppt); dissolved oxygen: ±0.1 mg/L or 1% of reading (0 to 20	Deleted: T
339	mg/L). Discrete measurements of temperature and salinity, were made with a handheld YSI	Deleted: 01°C
340	Professional Plus 2030 with Quattro Cable instrument, with the following specifications:	Deleted:); Salinity Deleted: 1ppt (0–70
341	temperature: ±0.02 °C (-5° to 70° C); salinity: ±1% of reading or 0.1 ppt (0-70 ppt); dissolved	Deleted:); Dissolved
342	oxygen: ±0.2 mg/L or 2% of reading (0 to 20 mg/L). Equilibrator temperature was measured	Deleted: Discrete water samples were taken approximately
343	with a probe (EDS model OW-TEMP-B3-12xA) accurate to ±0.5 °C (-10° to 85 °C). Discrete	weekly from the equilibrator feed water to evaluate total alkalinity,
1 344	measurements were routinely compared with the sonde to corroborate measurement agreement.	Deleted: temperature and
345	Wind speed measurements were made using a sonic anemometer (Vaisala WXT-520 weather	Deleted: measurements
	- · · · · · · · · · · · · · · · · · · ·	Deleted: . Temperature
346	transmitter) mounted 7 m above the mean low tide height of the water and located directly above	Deleted: 02°C (-5°C
347	the pCO_2 equilibrator.	Deleted: 70°C); Salinity
348		Deleted: 1ppt
349	2.4 Data Processing	Deleted: D
	-	Deleted: Temperature: Deleted: 5°C (-10
350	Data included in this study span 01 Jul 2018 to 01 Jul 2021,	Formatted: Underline

Manuscript submitted to EGU: Biogeosciences Deleted: JGR 374 2.4.1 Gas-specific solubility Deleted: 375 To determine the purely physical effects of temperature and salinity on CO2 solubility, gas-376 specific solubility values K_0 (mmol · m⁻³ · μ atm⁻¹) were calculated across the 3 yr observation Deleted: -377 period using water temperature and salinity measurements in combination with pCO_{2water} values, 378 according to Weiss and Price (1980) at 1. hour intervals. Deleted: -hr frequencies. 379 380 2.4.2 Gas transfer velocity estimation (k) 381 Given the similarities between the Rhode River and New River estuaries (e.g., shallow, 382 microtidal estuaries with slow water velocity and strong diel cycles in pCO_2 and DO), we chose 383 to parameterize gas transfer velocity k (cm · h⁻¹) standardized to the unitless Schmidt number 384 $600 (k_{600})$ according to the estuary-specific k parameterization model developed by Van Dam et 385 al. (2019). Van Dam et al. (2019) determined that k correlated with wind speed differently during Deleted:) for shallow, microtidal estuaries. 386 Deleted: the day than daytime versus nighttime hours (linear vs. parabolic relationships). Wind speed data were 387 collected during the 3 yr period from a sonic anemometer located on the SERC dock directly Deleted: -388 above the equilibration system and approximately 7 m above the water's surface at mean low 389 tide height. For the analysis, windspeeds were standardized for a height of 10 m following a power-law relationship, $U_{10} = U_7 * (10/7)^{0.15}$ (Saucier, 2003). Following Van Dam et al., 390 Deleted: Wind 391 wind speed data were binned to 1.5 m s⁻¹ intervals for day and night readings and raw values 392 replaced by the mean wind speed for each bin. The median binned windspeed over the Rhode 393 River was 2.2 m s⁻¹, regardless of time of day or season. Recorded windspeeds never exceeded 394 10m, s¹ and were dominated by much lower values (Fig. S1). Unlike the New River Estuary, the Deleted: / 395 Rhode River's windspeed profile does not differ much between day and night, nor across season. 396 For this reason, we chose to use the most conservative k_{600} formulation from Van Dam et al 397 (2019), that combines day and night winds to estimate k_{600} . 398 399 Wind speed was used to parameterize k_{600} as follows: 400 $k_{600} = 1.5 * U_{10} + 4.2$ 401 (2) 402 403 where U_{10} = mean of binned wind speed at 10 m above the water's surface (m · s⁻¹). 404

1	Manuscript submitted to <i>EGU</i> : <i>Biogeosciences</i>	Deleted: JGR
413	2.4.3 CO ₂ flux	
414	Using continuous, parallel 3 yr records (01 July 2018 to 01 July 2021) of dissolved and	Deleted: -
415	atmospheric pCO_2 , water temperature, salinity, and wind speed (at standard 10m height, U_{10}),)
416	CO ₂ flux was derived according to the equation:	
417	CO2 has was derived according to the equation.	
418	$CO_2 \text{ flux} = k_{600} \cdot K_0 \cdot \Delta C \cdot (600 / Sc)^{-0.5}$ (3)	
419	where	Deleted: ,
420	CO_2 flux = the rate and direction of CO_2 mass moving between water and gas phases	J. States,
421	(mmol · m ⁻² · hr ⁻¹)	
422	$k_{600} = \text{gas transfer velocity (cm} \cdot \text{hr}^{-1})$, normalized to a common Schmidt number	
423	(Sc = 600)	
424	$K_0 = \text{gas-specific solubility for CO}_2 \text{ (mmol} \cdot \text{m}^{-3} \cdot \mu \text{atm}^{-1}\text{)}$	
425	$\Delta C = air-water concentration gradient (µatm)$	
426	Sc = Schmidt number	
427		
428	Note: CO ₂ flux calculations require conversion from traditional k_{600} units (cm · hr ⁻¹) to (m · hr ⁻¹)	
429	from ΔC units (μ atm) to (atm) prior to calculation.	
430		
431	2.4.4 Day/Night Designation	
432	To differentiate daytime from nighttime hours, we used the position of the measurements	
433	(latitude) in the Rhode River, combined with the local date and time. This approach enabled us to	
434	uniformly designate various environmental measurements as happening during the day or night	
435	(R package "LakeMetabolizer", Winslow et al., 2016).	
436		
437	2.4.5 Seasonality	Deleted: -mo
438	We chose to break the year into two 6 month periods based seasonal water temperature shifts.	Deleted: in the spring and fall
439	designating June–November as "warm-water months" when water temperatures averaged 23.2 ±	Formatted: Font color: Text 1
440	6.90 °C. (mean ± 1 sd) and December–May as "cold-water months,", 10.9 ± 5.66 °C (Figs. S1 and	Formatted: Font color: Text 1
441	<u>S2).</u>	Formatted: Font color: Text 1 Deleted: and Dec
442		Deleted: "(Fig. S1).
443		Formatted: Font color: Text 1
1		Formatted: Underline

ĺ	Manuscript submitted to <u>EGU</u> : Biogeosciences	Deleted: JGR
450	2.4.6 Effect size	
451	Owing to the large number of observations available for comparison in this study, the likelihood	
452	of finding statistically significant results is quite high. Whether such statistical results by	
453	themselves connote practical and informative differences can be difficult to discern. Effect sizes	Deleted: So, effect
454	(Omega-squared, ω^2) were calculated according to two-factor ANOVAs where independent)
455	variables were investigated by season (cold-water vs. warm-water season), day/night period and	
456	the interaction of season and day/night. The independent variables compared were: K_0 , CO ₂ flux,	
457	$\Delta p CO_2$, k_{600} , $p CO_{2air}$, $p CO_{2water}$, and wind speed. To account for temporal autocorrelation and	
458	lack of independence of observations that are typical of environmental time series data, we	
459	corrected for overinflation in the residual mean square used in the effect size calculations by	
460	removing the autocorrelation present within residuals, leaving the white-noise component as the	
461	unbiased estimate of residual variability (Cochrane-Orcutt procedure, R package "orcutt", Spada	
462	et al., 2018).	
463	et al., 2010).	
464	3. Results and Discussion	
465	3.1 Daily and Seasonal Cycling of pCO ₂	
466	Hourly averaged measurements of $pCO_{2\text{water}}$ in the Rhode River across three years revealed	
467	strong diel and seasonal cycling (Fig. 2). Mean and maximum pCO_{2water} were significantly higher	
468	in warm-water vs. cold-water months (Table 1). During warm-water months (Jun-Nov) daily	Deleted: e
1 469	oscillations of pCO ₂ frequently transit from far above to below ambient atmospheric conditions	
470	over the course of the day, only to reverse direction (from low to high) during the nighttime	
471	hours (Fig. 2). During the summer, pCO _{2water} levels sometimes shifted by as much as 4500 μatm	Deleted: 3
472	in both directions during a single 24 hr period (Fig. 2). This pattern is consistent with	Deleted: -
1 473	biologically driven cycling whereby very high early morning $pCO_{2\text{water}}$ conditions are depleted	Deleted: 3
474	by net photosynthetic activity (inorganic carbon fixation) over the course of the day, but high	
475	$p\text{CO}_{2\text{water}}$ is restored by respiration in the benthos and water column at night (Song et al. 2023).	
476	Comparing dissolved oxygen (DO) over the same period, similar harmonic cycling is observed,	
477	but maximums and minimums of pCO ₂ and DO were inversely related (Fig. S1), hallmarks of a	
478	production/respiration driven system (Herrmann et al., 2020; Van Dam et al., 2019).	
479	T	Deleted: Page Break

Table 1. Descriptive statistics comparing seasonality of pCO2, CO2, flux and associated parameters in cold-water (Dec-May) and warm-water seasons (Jun-Nov).

Т:								
Seaso Time Period	Variable	Units	N.	Mean	Min	Max_	SD.	
overal l	CO2 flux	mmol·m-2·	2097	-0.09	<u>-4.89</u>	,11, <u>18</u> ,	1.823	
cold_day_	CO2 flux	mmol·m-2· hr-1	4494	-1.39	-4,89	8.26	1.134	3
cold, night,	CO2 flux	mmal.ma.	5050	-1.39	-4.66	<u>5,24,</u>	0.927	3
warm_day_	CO2 flux	mmol·m··	6007	1.18	-3. <u>95</u>	11,18,	1.731	3
warm_night_	CO2 flux	mmol · m · ·	5421	0.78	-3.97	8.05	1.467	3
overal	K0,	mmol · m-3 ·	2097	0.04	0.03	0.07	0.011	3
cold_day_	K ₀	mmol·m-3·	4494	0.05	0.03	0.07	0.009	4
cold, night,	K ₀	mmol·m ₋₃ ·	5050	0.05	0.03	0.07	0.008	1
warm_day_	K ₀	mmol·m ₋₃ ·	6007	0.03	0.03	0.06	0.007	4
warm_night_	K ₀	mmol·m-3· matm-1	5421	0,04	0.03	0.07	0.008	4
overal	k600_	cm hr-1	2097	7 <u>.86</u>	5.57	18.36	2.047	4
cold_day_	k600	cm·hr-1	4494	8,71	5.57	.16. <u>33</u>	2.251	4
cold, night,	k600	cm · hr ₋₁	5050	7.74	5.57	18.36	2.081	
warm_day_	k600_	cm · hr ₋₁	6007	7.92	5.57	18.36	1.868	*
warm night	k600	cm · hr ₋₁	5421 2097	7.20	5.57	18.36	1.751	4
overal l	DC.	matm_	-1,	154	<u>.436</u>	4750		
cold_day_		matm_	4494	239	436	1553		
cold, night,		matm_	5050	-256	-434	1204		
warm day overal		matm	2097	570.	-399	4750		
l, A-	pCO2air		1, 4494	437		500		
cold_day_	pCO _{2air}	matm_	A	430	390	497	16.0	4

Deleted: JGR	
Formatted	[1]
Formatted	[3]
Formatted	([2])
Deleted: e	
Formatted	([4]
Formatted	[5]
Formatted	([7])
Formatted	[6]
Formatted	([8]
Formatted	([9])
Formatted	([10])
Formatted	([11])
Formatted	([12])
Formatted	[13]
Formatted	([14])
Formatted	([14])
Formatted	([20])
Formatted	
Formatted	([21])
Formatted	([16])
Formatted	([22])
Formatted	([18])
Formatted	([19])
>	([24])
Deleted: 1	\longrightarrow
Deleted: 885	
Deleted: 177	
Formatted	[25]
Formatted	([26])
Formatted	([27])
Formatted	[28]
Formatted	[29]
Formatted	([30])
Formatted	([17]
Formatted	[23]
Formatted	[36]
Formatted	([37])
Formatted	[38]
Deleted: 0	
Deleted: 885	
Deleted: 4	
Deleted:	
Formatted	[31]
Formatted	[33]
Formatted	[34]
Formatted	[35]
Formatted	[40]
Formatted	[41]
Formatted	[42]
Formatted	[43]
Formatted	[44]
Formatted	[45]
Formatted	([32])
E	

(... [46])

(... [47])

Formatted

Formatted

Formatted
Formatted
Formatted

cold_night_pCO2air_matm	5050	432	387	499	17.8	
warm_daypCO2airmatm_	6007	439	<u>390</u>	499	20.7	
warm night pCO2air matm	5421	443	387	500	21. <u>5.</u>	
overal pCO _{2water} matm	2097	591	15	5182	651 <u>8</u>	4
cold day pCO2water matm	4494	191	15	1982	220. <mark>9.</mark>	
cold, night, pCO2water matm	5050	176	17,	1638	163.9	
warm day pCO2water matm	6007				752 <u>6</u>	
warm night_pCO2water matm	5421	844	38,	4855	632.2	
overal wind m s ₋₁	2097	2,4	0,1	9. <u>8.</u>	1.42.	4
cold day wind m s.1.	4494	3.1.	0,3	8.9.	1.53	-
cold night wind m s-1	5050	2,4.	0,3	9,1,	1.45	-
warm day wind m s	6007	2.5	0.1	9.8.	1.28.	4
warm night wind m s	5421	<u>2.0</u>	0.1.	9,1,	1.23	4

On the seasonal timescale, *p*CO₂ was consistently lowest and DO highest during cold-water months of the year (Dec–May; Fig. S1). Importantly, for both gases the temporal variability (diel cycling; Fig. S2) was most constrained during cold-water months across years, strongly suggesting that carbon fixation exceeds respiration for prolonged periods (weeks to months). In contrast, during warm-water months (Jun–Nov), photosynthesis/carbon fixation and respiration are more evenly balanced, compensating one another over 24 hr periods (i.e., respiration > productivity at night and productivity > respiration during daylight hours; Fig. 2).

3.2 Air-water concentration gradient = ΔC (µatm)

633

634635

636

637

638

639

640641642

643

644645

646

647

When hourly $pCO_{2\text{water}}$ and $pCO_{2\text{air}}$ values (composed of 4 hourly measurements and 20 interpolated values per day) were plotted across the three years of observation, the diel and seasonal cycles of $pCO_{2\text{water}}$ are evident. As expected, atmospheric concentrations of CO_{2} remained relatively constant compared with aqueous loads. When the mean raw $pCO_{2\text{air}}$ measurements (mean = 435.1, 95% CI [434.4, 435.7]) were compared with raw $pCO_{2\text{air}}$

Deleted: JGR	
Formatted	
Formatted	[354]
	[355]
Deleted: .078	\longrightarrow
Deleted: .000	\longrightarrow
Deleted: 498.556	
Deleted: 807	
Formatted	[348]
Formatted	([350])
Formatted	([351])
Formatted	[352]
Formatted	[353]
Formatted	[357]
Formatted	([358]
Formatted	[359]
Formatted	[360]
Formatted	([361])
Formatted	[362]
Formatted	[363]
Formatted	([349])
Formatted	([356])
Formatted	([370])
Formatted	([371])
Formatted	([364])
Formatted	([366])
Formatted	([367])
Formatted	([368])
Formatted	[369]
rormatteu	
Formatted	
	[373]
Formatted Formatted	
Formatted Formatted Deleted: .103	[373]
Formatted Formatted Deleted: .103 Deleted: 389.648	[373]
Formatted Formatted Deleted: .103 Deleted: .389.648 Deleted: .444	[373]
Formatted Formatted Deleted: .103 Deleted: .389.648 Deleted: .444 Deleted: .668	([373]) ([365])
Formatted Formatted Deleted: .103 Deleted: .389.648 Deleted: .444 Deleted: .668 Formatted	([373]) ([365])
Formatted Formatted Deleted: .103 Deleted: .389.648 Deleted: .444 Deleted: .668 Formatted Formatted	([373]) ([365]) ([374]) ([375])
Formatted Formatted Deleted: .103 Deleted: .389.648 Deleted: .444 Deleted: .668 Formatted Formatted Formatted	([373]) ([365]) ([374]) ([375]) ([376])
Formatted Formatted Deleted: .103 Deleted: .389.648 Deleted: .444 Deleted: .668 Formatted Formatted Formatted Formatted	([373]) ([365]) ([365]) ([374]) ([375]) ([376]) ([377])
Formatted Formatted Deleted: .103 Deleted: .389.648 Deleted: .444 Deleted: .668 Formatted Formatted Formatted Formatted Formatted Formatted	([373]) ([365]) ([365]) ([374]) ([375]) ([376]) ([377]) ([378])
Formatted Formatted Deleted: .103 Deleted: .389.648 Deleted: .444 Deleted: .668 Formatted Formatted Formatted Formatted Formatted Formatted Formatted Formatted	([373]) ([365]) ([365]) ([374]) ([377]) ([377]) ([378]) ([379])
Formatted Formatted Deleted: .103 Deleted: .389.648 Deleted: .444 Deleted: .668 Formatted Formatted Formatted Formatted Formatted Formatted Formatted Formatted Formatted	([373]) ([365]) ([365]) ([374]) ([375]) ([377]) ([378]) ([379]) ([372])
Formatted Formatted Deleted: .103 Deleted: .389.648 Deleted: .444 Deleted: .668 Formatted	([373]) ([365]) ([365]) ([374]) ([375]) ([377]) ([378]) ([379]) ([372]) ([386])
Formatted Formatted Deleted: .103 Deleted: .389.648 Deleted: .444 Deleted: .668 Formatted	([373]) ([365]) ([365]) ([374]) ([375]) ([377]) ([378]) ([379]) ([372])
Formatted Formatted Deleted: .103 Deleted: .389.648 Deleted: .444 Deleted: .668 Formatted Deleted: .326	([373]) ([365]) ([365]) ([374]) ([375]) ([377]) ([378]) ([379]) ([372]) ([386])
Formatted Formatted Deleted: .103 Deleted: .389.648 Deleted: .444 Deleted: .668 Formatted	([373]) ([365]) ([365]) ([374]) ([375]) ([377]) ([378]) ([379]) ([372]) ([386])
Formatted Deleted: .103 Deleted: .389.648 Deleted: .444 Deleted: .668 Formatted	([373]) ([365]) ([365]) ([374]) ([375]) ([377]) ([378]) ([379]) ([372]) ([386])
Formatted Deleted: .103 Deleted: .389.648 Deleted: .444 Deleted: .668 Formatted Formatted Formatted Formatted Formatted Formatted Formatted Formatted Formatted Deleted: .326 Deleted: .326 Deleted: .499.889 Deleted: .459	([373]) ([365]) ([365]) ([374]) ([375]) ([377]) ([378]) ([372]) ([386]) ([387])
Formatted Deleted: .103 Deleted: .389.648 Deleted: .444 Deleted: .668 Formatted Deleted: .326 Deleted: .386.667 Deleted: .499.889 Deleted: .459 Formatted	([373]) ([365]) ([365]) ([374]) ([375]) ([377]) ([378]) ([372]) ([386]) ([387])
Formatted Formatted Deleted: .103 Deleted: .389.648 Deleted: .444 Deleted: .668 Formatted	([373]) ([365]) ([365]) ([374]) ([375]) ([377]) ([378]) ([372]) ([386]) ([380]) ([382])
Formatted Formatted Deleted: 103 Deleted: 389.648 Deleted: .444 Deleted: 668 Formatted	([373]) ([365]) ([365]) ([374]) ([375]) ([377]) ([378]) ([372]) ([386]) ([380]) ([382]) ([383])
Formatted Formatted Deleted: 103 Deleted: 389.648 Deleted: 668 Formatted	([373]) ([365]) ([365]) ([374]) ([375]) ([377]) ([377]) ([379]) ([387]) ([387]) ([380]) ([382]) ([383]) ([384])
Formatted Formatted Deleted: .103 Deleted: .389.648 Deleted: .444 Deleted: .668 Formatted	([373]) ([365]) ([365]) ([374]) ([375]) ([377]) ([377]) ([372]) ([386]) ([387]) ([383]) ([383]) ([384]) ([381])
Formatted Formatted Deleted: .103 Deleted: .389.648 Deleted: .444 Deleted: .668 Formatted	([373]) ([365]) ([365]) ([374]) ([375]) ([376]) ([377]) ([379]) ([387]) ([387]) ([388]) ([383]) ([383]) ([381]) ([385])
Formatted Formatted Deleted: .103 Deleted: .389.648 Deleted: .444 Deleted: .668 Formatted Formatted	([373]) ([365]) ([365]) ([374]) ([375]) ([376]) ([377]) ([378]) ([372]) ([386]) ([387]) ([380]) ([382]) ([384]) ([381]) ([385]) ([389])
Formatted Formatted Deleted: .103 Deleted: .389.648 Deleted: .444 Deleted: .668 Formatted	([373]) ([365]) ([365]) ([374]) ([375]) ([376]) ([377]) ([379]) ([387]) ([387]) ([388]) ([383]) ([383]) ([381]) ([385])

(... [393])

(... [394])

Formatted Formatted

Formatted

ī	March 1 in the POW Pr	
I	Manuscript submitted to <i>EGU</i> : <i>Biogeosciences</i>	Deleted: JGR
764	measurements + imputed estimates (mean = 435.4, 95% CI [435.2, 435.7]) no statistical	
765	difference was observed, indicating that no substantial bias was introduced by linear	
766	interpolation of atmospheric measurements.	
767		
768	Although nearshore atmospheric CO2 concentrations are expected to vary more than those in	
769	isolated well-mixed atmosphere (e.g., at the Mona Loa Observatory), annual mean values were	
770	consistent and within the published uncertainty of the K30 NDIR sensor, when compared with	
771	global measurements conducted at Mona Loa (<u>Thoning et al., 2023</u>). <u>Local perturbations (e.g.,</u>	Deleted: Variability at the 6-hr measurement scale was
772	effects of terrestrial photosynthetic drawdown when wind is absent) were apparent in	shown to be considerable, reflecting expected local Deleted:), yet
773	measurements (Fig. 2) but there were no instances when the measured local atmospheric values	
774	were suspiciously high or low for days on end, as compared with expected global mean	
775	atmospheric values for the time period (i.e., 408–416 ppmv; https://www.co2.earth/annual-co2,	
776	Thoning et al., 2023). This lack of sustained anomalous deviation served as additional	
777	confirmation that the K30 was functioning properly and had not drifted outside its calibration	
778	range. Importantly, given the extreme diel cycling and seasonal variability of the Rhode River's	
779	pCO _{2water} , the absolute accuracy necessary for determining year-over-year changes in	
780	atmospheric or ocean pCO ₂ is not a requirement for these CO ₂ flux calculations which rely on	Deleted: consistent,
781	relative differences between water and atmospheric measurements.	
782	A	Formatted: Font: +Headings CS (Times New Roman)
783	Hourly air-water concentration gradient values = ΔC (μ atm) were calculated and plotted across	
784	the three years of study (Fig. 2). During warm months, pCO_{2water} routinely shifts from	
785	supersaturated to sub-atmospheric and back again, over the course of 24 hours (e.g., between	
786	$>$ 2000 μ atm and $<$ 410 μ atm on a single day). These large daily swings in p CO _{2water} produced	
787	concomitant directional reversals of ΔC ($pCO2_{water} - pCO_{2air}$), which result in longer term	
788	averaged gradients (e.g., multi-day, multi-week averages) near zero (Fig. 2). In contrast, most of	Deleted: majority
789	the time during cold-water months is spent in a state of sub-atmospheric pCO_{2water} (under-	
790	saturation with respect to overlying atmosphere), resulting in ΔC values that are negative and	
791	which promote movement of CO ₂ from the atmosphere into the water,	Deleted: over prolonged periods
792		
793	3.3 Gas-specific solubility (K_0)	

801

802

803

804

805

806

807

808

809

810 811

812

Deleted: the

To account for the physical effects of temperature and salinity on the solubility of CO_2 in estuarine water, K_0 was calculated by methods of Weiss and Price (1980). K_0 varied strongly across seasons over the 3 yr observation period. The maximum annual range = 0.027 to 0.071 mmol· m^{-3} · μ atm⁻¹; mean cold-water months = 0.051 and mean warm-water months = 0.035 mmol· m^{-3} · μ atm⁻¹, confirming that CO_2 was most soluble during winter and least soluble in summer (Fig. 3). This is inverse to observed dissolved CO_2 values: pCO_{2water} was lowest and least variable during winter and highest and most variable during summer (Fig. 2, Table 1) suggesting that solubility, in and of itself, plays only a minor and non-limiting role in pCO_{2water} in the Rhode River. Effect size (ω^2) estimates indicated that the greatest proportion of variability in K_0 was associated with season, vs. day/night or the interaction of the two (Table 2).

Deleted: -

Deleted: 4

0.007-0.006-0.005-

Deleted:

Deleted: 4

Deleted:)

Fig. 3. Gas-specific solubility (K_0) for CO₂ based on water temperature and salinity. Units are mmol m⁻³ μ atm⁻¹ in the Rhode River (01 Jul 2018 to 01 Jul 2021).

Deleted: -

Deleted: e

Deleted:

Deleted:), a standardized approach

Deleted: -

I

Table 2. Contrast effect sizes based on two-factor ANOVA where independent variables were compared by season (cold-water season = Dec_May vs warm-water season = Jun_Nov), day/night period and the interaction of the two. ω^2 is a measure of effect size, estimating the proportion of total variance explained by each parameter. Effect sizes were corrected for inherent temporal autocorrelation using the Cochrane-Orcutt procedure (Spada et al., 2018).

De	eted:
De	leted: ¶
De	eted: ¶
De	eted:

Variable	Factor	Effect Size (ω²)
K_0	Season	0.0300
K_0	Day/Night	0.000575
K_0	Season:Day/Night	0.0000140
CO ₂ flux	Season	0.415
CO ₂ flux	Day/Night	0.00295
CO ₂ flux	Season:Day/Night	0.00301
ΔC	Season	0.310
ΔC	Day/Night	0.00501
ΔC	Season:Day/Night	0.00333
k_{600}	Season	0.00164
k_{600}	Day/Night	0.00269
k_{600}	Season:Day/Night	0.0000549
$p\mathrm{CO}_{2\mathrm{air}}$	Season	0.000137
$p\mathrm{CO}_{2\mathrm{air}}$	Day/Night	0.0000134
$p\mathrm{CO}_{2\mathrm{air}}$	Season:Day/Night	0.00000137
$p\mathrm{CO}_{2\mathrm{water}}$	Season	0.188
$p\mathrm{CO}_{2\mathrm{water}}$	Day/Night	0.00275
$p\mathrm{CO}_{2\mathrm{water}}$	Season:Day/Night	0.00191
wind speed	Season	0.00711
wind speed	Day/Night	0.0186
wind speed	Season:Day/Night	0.000182

3.4 Temperature/Biology ratio

To independently parse the magnitude of the physical versus biological forcing of pCO_{2water} , we estimated the Takahashi's Temperature/Biology ratio (Takahashi et al., 2002) to compare the influence of temperature and biological activities on pCO_{2water} . Across the 3_eyear period, we found that just $26.0 \pm 4.0\%$ (mean \pm SD) of forcing was attributable to the effect of temperature on solubility, confirming that the predominant driver of pCO_{2water} in the Rhode River is indeed biological activity (75%, Table 3). These patterns demonstrate the outsized role that biological processes play in shaping pCO_{2water} in nearshore marine and estuarine ecosystems (Dai et al., 2022; Van Dam et al., 2019).

Table 3. Takahashi Temperature/Biology Ratio (Eq. 5a From Takahashi et al. 2002).

Manuscript submitted to	EGU : Biogeosciences
-------------------------	-----------------------------

Year	N	Δp CO ₂ _bio	∆pCO2_temp	T/B ratio
2018	4416	3193.0	765.8	0.240
2019	8760	3669.8	1019.6	0.278
2020	8784	2772.1	846.0	0.305
2021	4345	2356.1	507.2	0.215
Overall	26305	3701.5	926.4	0.250

850

851

852

853

854

855

856

857

858

859

860

861

862 863

864

865

866

867

868

869

870

871

872

873

3.5 Gas transfer velocity (k_{600})

investigate possible influences explicitly.

Gas transfer velocity is affected by both mass transfer from molecular diffusion driven by ΔC (i.e. CO₂ gradient between water and atmosphere) and momentum transfer linked to external environmental forces that enhance turbulence at the air-water boundary layer (Ho et al., 2016; Raymond & Cole, 2001; Van Dam et al., 2019). Van Dam et al. (2019) validated the use of wind speed at $\frac{10 \text{ m}}{100 \text{ m}}$ above the water's surface (U_{10}) to estimate gas transfer velocities of CO₂ that were standardized to a Schmidt number of $600 (k_{600})$ by comparing estimated values to k_{600} values derived directly from eddy covariance CO2 flux measurements. Given the relative uniformity of wind speed over the Rhode River where median binned U_{10} windspeed (converted from U_7 measurements) was 2.2 m · s⁻¹ regardless of time of day or season, and that maximum values rarely exceeded 10 m s⁻¹ (Table 1, Fig. S1), we chose to use the most conservative estuarinespecific parameterization of k_{600} (Van Dam et al., 2019) (Eq. 2). The mean overall Rhode River k_{600} value for CO₂ (mean \pm SD, 7.86 \pm 2.05 cm · hr⁻¹) was of comparable magnitude to that of the New River Estuary, NC $(9.37 \pm 9.47 \text{ cm} \cdot \text{hr}^{-1} \text{ However, wind speed varied far less on the})$ Rhode River than the New River estuary and day/night explained more variability in wind speed than season. Because wind speed directly influenced the formulation of k_{600} (Eq. 2), the effect size of day/night is similarly greater than the seasonal effect on gas transfer velocity (Table 2). Nevertheless, effect sizes (ω^2) indicate that "season" explained at least 10 times more of the observed variance of pCO2water, pCO2air, air-water concentration gradient, CO2 flux, and gasspecific solubility than "day/night" or their interaction (Table 2). Given the minor freshwater input and microtidal nature of the Rhode River, we do not believe that lateral water velocity and bottom turbulence appreciably affect the gas transfer velocity of CO2 here, although we did not

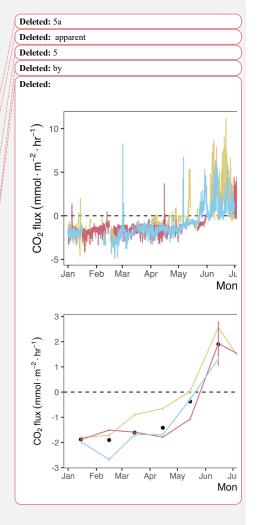
Deleted: JGR

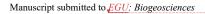
Deleted: 10m

Deleted: made in the New River Estuary, a shallow microtidal estuary similar to the Rhode River, which is applied here....

Deleted:). Effect

Deleted: than day/night


Deleted: JGR


Importantly, in coastal marine and estuarine habitats, ΔC can shift as much as several thousand μatm per day due to diel cycling associated with CO₂ production and depletion (Figs. 2, S2). The uncertainty surrounding gas transfer velocity parameterization can represent a major source of error in CO₂ flux calculations (Frankignoulle et al., 1998; Upstill-Goddard, 2006; Wanninkhof & McGillis, 1999); however, small errors in k600 have far less effect on CO2 flux calculations in estuaries which experience pCO₂ swings of several thousand µatm during a single day, compared with more stable conditions of the open ocean where interannual ranges of pCO_2 are typically far less (Van Dam et al., 2019).

Deleted: and 3

3.6 CO₂ flux - Seasonality and Interannual Variation

CO₂ flux was determined according to Eq. 3 using hourly Δ C measurements, CO₂ solubility values (K_0) calculated according to temperature and salinity, and estuary-specific standardized gas transfer velocities (k_{600}) of Van Dam et al. (2019). CO₂ flux was plotted across the three years of observations at hourly and monthly intervals (Fig. 4a-b). As observed with pCO₂, CO₂ flux in the Rhode River was shown to be strongly seasonal. Given the similarity in windspeed across seasons (Fig. S1), the effect of differential mean Δ C and variation between warm- and cold-water seasons (Fig. 2, Table 1) almost certainly drives the observed seasonal differences in CO₂ flux (Fig. 4). Again, the specific solubility of CO₂ is greatest at low temperatures, yet this is contrary to the observed mean pCO₂water</sub> patterns, pointing toward a biological mechanism for pCO₂, Δ C, and ultimately, CO₂ flux. The effect size of season on CO₂ flux was two orders of magnitude greater than either day/night or the season day/night by interaction (Table 2).

Deleted: JGR

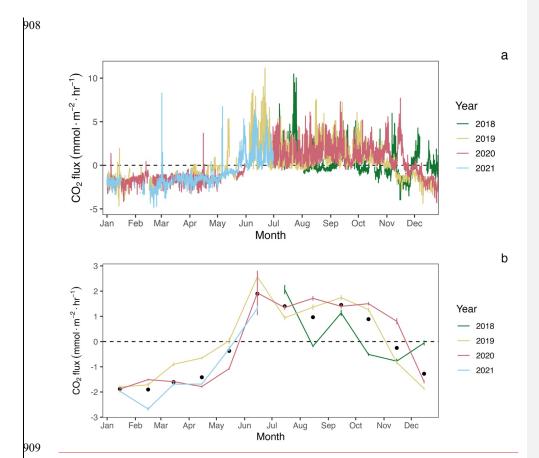


Fig. 4. CO₂ flux estimates by year: a. Hourly, b. Monthly average CO₂ flux estimates with 95% confidence limits. Black dots in panel b indicate mean monthly fluxes across years.

Among years, $pCO_{2\text{water}}$ and CO_2 flux largely repeat themselves, with dissolved CO_2 becoming consistently sub-atmospheric and CO_2 flux going negative (gas exchange from atmosphere to water) between December and May and abruptly transitioning to much higher maximum, yet variable $pCO_{2\text{water}}$ values with net positive CO_2 fluxes from June through November (Figs. 2 and 4). Monthly averaged CO_2 fluxes are consistent among years (Fig. 4b), with net positive CO_2 fluxes (heterotrophic conditions) between June and November and negative (autotrophic) fluxes dominating when water temperatures are cold, between December and May. Despite the overall

Deleted: 5

Deleted: 1

Deleted: 5

Deleted: 5b

Deleted:

l	Manuscript submitted to <i>EGU</i> : Biogeosciences	Deleted: JGR
925	similarities in seasonal CO ₂ flux, inter-annual patterns can vary considerably. When hourly CO ₂	
926	flux values were averaged for the year, the Rhode River in 2019 was shown to have a net	
927	positive flux but a net negative flux in 2020. When scaled for the year, 2019 outgassed CO ₂ from	
928	the water to the atmosphere at a rate of 2215.08 mmol \cdot m ⁻² \cdot yr ⁻¹ (95% CI = 1816.88, 2613.29).	
929	The annual net flux rate in 2020 was negative (i.e. CO ₂ moved from the atmosphere into the	
930	river) at a rate of -1361.31 mmol \cdot m ⁻² \cdot yr ⁻¹ (95% CI = -1723.60, -999.01).	
931		
932	At shorter time scales, such as comparing the same week of the year among years, we sometimes	
933	observed vast differences in the magnitude and direction of CO ₂ flux (Fig. <u>\$3</u>), signaling	Deleted: S2
934	differences in seasonal conditions between years. Transient events can also result in deviations	Deleted: across
935	from otherwise typical CO ₂ flux conditions. For example, the period from July 2018 to Jan 2019	
936	deviated from other years as CO2 flux was more erratic, with intermittent periods of negative and	Deleted: and
937	positive CO2 flux extending later into the winter season than in other years. When water	
938	temperatures are compared among years, 2018 was shown to be more inconsistent, with more	
939	pronounced temperature shifts and reversals than in 2019 or 2020 (Fig. S1). Salinities remained	
940	relatively low for the latter half of 2018 into early 2019, reflecting wetter conditions (Fig. S1).	
941	There were also two rapid salinity declines (>4 ppt reductions) in July and October 2018, likely	
942	associated with strong precipitation events. These events were both followed by immediate	
943	spikes in chlorophyll- a concentration to levels exceeding 200 $\mu g \cdot L^{-1}$, indicative of	
944	phytoplankton bloom conditions. From 2018 to 2021, chlorophyll-a levels of this magnitude and	
945	greater were generally confined to cold-water months (Dec-May; Fig. S1 Erratic water	
946	temperature and salinity are also reflected in more variable gas-specific solubility (K_0) for CO_2 in	
947	2018 than later years (Fig. 3).	Deleted: 4
948		
949	Gallegos et al. (1992) documented predictable phytoplankton blooms associated with freshets in	
950	the Rhode River, when nutrient-rich freshwater inundates the estuary, not from point and non-	
951	point sources within the local Rhode River watershed, but instead from the enormous watershed	
952	that feeds the Susquehanna River, the primary source of freshwater input into the Chesapeake	
953	above the Potomac as well as >50% of the entire Bay's freshwater (U.S. Geological Survey,	
954	2023). Unlike river dominated estuaries, in the Rhode River estuary, volumetric influxes from	
955	the Chesapeake Bay end member far exceed freshwater input from the Muddy Creek and	

1	Manuscript submitted to <u>FGU</u> : Biogeosciences	Deleted: JGR
960	secondary tributaries. In the Rhode River, phytoplankton blooms result in the temporary	
961	depletion of $pCO_{2\text{water}}$, followed by a spike, as phytoplankton senesce and organic carbon is	
962	decomposed/re-mineralized back into inorganic carbon. Episodic, short-lived occurrences like	
963	these demonstrate how immediate small scale biological forcing, can be coupled with, and	
964	catalyzed by, distant large-scale weather and hydrological events. These in turn can influence	
965	pCO_2 flux variations within seasons and among years (Fig. 3 and S3; and Chen et al., 2020).	Deleted: 5
966		Deleted: S2
967	Overall, except for wind speed, the effect sizes for the other six measured or calculated variables	
968	were shown to be greatest for season vs. day/night or the interaction of season x day/night, and in	
969	all cases the season effect was greater by at least 1 order of magnitude (Table 2). Seasonality has	
970	10 to 1000 times more explanatory power than other variables investigated as estimated by ω^2	
971	(Table 2).	
972		
973	3.7 Diel Cycling	
974	The notion that estuaries are predominantly heterotrophic systems that invariably outgas more	
975	CO ₂ to the atmosphere than they absorb has been a long-held view (Abril et al., 2000; Borges et	
976	al., 2004; Cai, 2011; Cai et al., 2000; Chen, 2013; Frankignoulle et al., 1998, Gattuso et al.,	
977	1998). However, more recently investigators have realized that physical and hydrological	
978	characteristics, geographical location, size, and biological and biogeochemical activities may	
979	individually, or together, influence CO2 flux in estuaries and therefore contributions to	
980	atmospheric chemistry (Brodeur et al. 2019; Caffrey, 2004; Chen et al., 2013, 2020; Herrmann et	
981	al., 2020). Furthermore, inadequate sampling can induce bias (e.g., upscaling from a small	
982	number of daytime samples taken during warm-water months can skew apparent patterns;	
983	Laruelle et al., 2017; Van Dam et al., 2019.) Using 1 minute sampling intervals, averaged to the	Deleted: -
984	hour, reveals patterns in the Rhode River that might otherwise be overlooked. We document the	Deleted: continually over three years
985	Rhode River as having strong seasonality in both pCO ₂ content as well as the extent and	
986	direction of CO ₂ flux (Figs. 2, S1, S2). Both measures are marked by daily oscillations,	Deleted: and 3
987	frequently reversing direction during a single 24 hr period in warm-water months (Figs. 2) but	Deleted: the CO ₂ gradient (ΔC)
988	more stable and unidirectional during cold-water months (Figs. 2 and 5).	Deleted: -
989		Deleted: and 3 Deleted: are
990	3.8 Shifting Net Ecosystem Production	

Manuscript submitted to *EGU*: Biogeosciences

I

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

To better understand how the net ecosystem production (NEP) of the Rhode River shifts throughout the year, where positive NEP indicates the river is storing carbon (autotrophic state) and negative NEP indicates it is releasing carbon to the atmosphere (heterotrophic state), we calculated hourly CO_2 flux values, averaged them by day (i.e. 24, hr period) and plotted each in relation to the $\Delta C = 0$ reference. Each day of the 3, yr study was categorized as either net heterotrophic (CO_2 flux from water to atmosphere) or net autotrophic (CO_2 flux from atmosphere to water). Each day was then further identified as either purely heterotrophic (all 24 hours were heterotrophic), purely autotrophic, or mixed (some hours were heterotrophic and some were autotrophic, but resulting in a net autotrophic or net heterotrophic state for the day) (Fig. 5). From July 2018 to July 2021, most 24, hr periods were categorized as pure autotrophic (444/920 = 48%), while 25% (229/990) were purely heterotrophic, and the remainder of mixed trophic status (17% net heterotrophic and 10% net autotrophic; Fig. 5).

Deleted: JGR

Deleted: and
Deleted: -

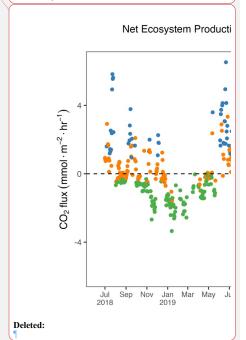
Deleted: Every given

Deleted: -

Deleted: ,

Deleted: 6

Deleted: -


Deleted: .3

Deleted: 24.9

Deleted: .0

Deleted: .0

Deleted: 6).

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

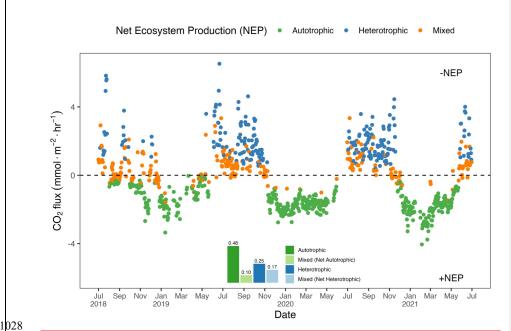


Fig. 5. Daily mean CO_2 flux estimates (CO_2 gradient is $CO_{2water} - CO_{2air}$). Green dots indicate days when all 24 hourly flux measurements were negative (autotrophic with +NEP); blue dots indicate days on which all 24 hourly flux measurements were positive (heterotrophic with -NEP). Orange dots indicate that hourly fluxes were both negative and positive, and the position of the orange dot below or above the zero line indicates whether the day was net autotrophic or net heterotrophic. Insert describes the proportion of days in each category indicating that during 58% (0.48 + 0.10) of days across three years of observation, the Rhode River was a CO_2 sink.

Altogether, the Rhode River was net autotrophic for (535 of 920 days = 58%) and net heterotrophic for 42% (385 days) across three years. When CO₂ flux is integrated over all three years, the Rhode River is shown to have near neutral NEP (Fig. 6). The effect size of season is two orders of magnitude greater than either that of day/night or season:day/night interaction (Table 2). Mean CO₂ flux values highlight the obvious correlation between season and NEP; error bars (± 1 SD) reveal the importance of diel cycling where the magnitude and directionality of day/night flux variability is approximately equal to the overall variability accrued across all three years (Fig. 6). Although CO₂ flux is less variable and more autotrophic during cold-water

Deleted: 6

Deleted: on which

Deleted:) and orange

Deleted: or

Deleted:

Deleted: .2 Deleted: 41.8

Deleted: However, because CO₂ flux is integrative, it is vital to know the magnitude and direction of flux to understand

the nature of the river's NEP.

Deleted: summarized across

Deleted: 3

Deleted: according to season and day/night cycles,

Deleted: estuary

Deleted: slightly autotrophic;

Deleted: 7

Deleted: Day/Night

Deleted: 7

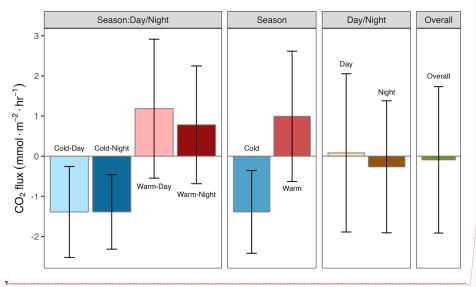
I Manuscript submitted to EGU: Biogeosciences Deleted: JGR 1063 months than warm-months in the Rhode River, the range of possible values that occur across 1064 night and day, regardless of season, must be taken into consideration to minimize incidental 1065 sampling bias (Figs. 2 and 6). Deleted: 7 1066 1067 A multi-year investigation of CO₂ flux in the main stem of Chesapeake Bay by Chen et al. 1068 (2020) combined several bay-wide cruises that were distributed across seasons to collect discrete 1069 and underway pCO₂ data for CO₂ flux calculations. They concluded that the low salinity upper 1070 bay, which receives large volumes of freshwater from the Susquehanna River, was net 1071 heterotrophic; the mesohaline middle bay was net autotrophic, and the polyhaline lower bay was 1072 near carbon neutral. Chen et al. (2020) characterized Chesapeake Bay, on the whole, as a weak 1073 source of CO₂ to the atmosphere (net flux = $0.73 \text{ mol} \cdot \text{m}^{-2} \cdot \text{yr}^{-1}$) but suggested that during wet 1074 years, it may function as weak sink of CO2. Herrmann et al. (2020) also concluded that the 1075 Chesapeake Bay was a weak source of CO_2 to the atmosphere based on calculated pCO_2 values 1076 from long term pH and alkalinity measurements (net flux = 1.2 mol \cdot m⁻² \cdot yr⁻¹mol). Brodeur and 1077 colleagues (2019) examined dissolved inorganic carbon (DIC) and total alkalinity along the Deleted: DIC mainstem of the Chesapeake Bay across the year in 2016 and concluded that DIC increases from 1078 1079 north to south and from surface waters to depth, but that seasonal riverine input and biological Deleted: and 1080 cycling were significantly important, concluding that the Bay as a whole was a sink for CO₂. Deleted: , but that 1081 Deleted: may be Deleted: net 1082 When our annual mean pCO₂ values were compared with the Chen et al. (2020) survey, the Deleted: of 1083 Rhode River was shown to be higher on average and more variable than the mesohaline main 1084 stem of the Bay (591 \pm 652 vs. 416 \pm 167 μ atm), including a substantially greater measured Deleted: b 1085 range (min = 15, max = 5182 µatm vs. 103 and 1033 µatm). These results suggest that water in 1086 the shallow and well mixed Rhode River, and DIC in particular, undergo more acute biological Deleted: dissolved inorganic carbon (DIC) 1087 transformation than in the mesohaline main stem of Chesapeake Bay. Chen et al. (2020) point to 1088 a variety of factors that affect pCO₂ and CO₂ flux in the main stem bay, including temperature, 1089 depth, stratification, and freshwater input volume, some of which may attenuate biological 1090 forcing. Interannual variability was demonstrated in both the Rhode River (some years were net 1091 autotrophic and others heterotrophic, Figs. 4 and 5) and in the mesohaline main stem of the Bay; Deleted: 5 Deleted: 6 1092 however, we attribute interannual variability in pCO2 and CO2 flux primarily to variation in Deleted: b 1093 water temperature that in turn drives biological activity. We conclude that seasonal variations the

Deleted: but as

3

2

-2


Deleted:

Moved (insertion) [1]

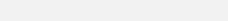
Moved (insertion) [2]

 CO_2 flux $(mmol \cdot m^{-2} \cdot hr^{-1})$

Rhode River (and likely similar rivers in the mesohaline portion of the Chesapeake) are significant and predictable, closely associated with water temperature, and that temperature mediates NEP biologically rather than by changes to the solubility of CO₂.

Deleted: 7

Cold-Day


Cold-Night

Warm-Day

Season:Day/Night

Fig. 6. Mean CO_2 flux \pm 1 SD (mmol \cdot m⁻² \cdot hr⁻¹) plotted by day/night cycling, cold-water/warmwater season, season by day/night interaction, and overall CO_2 flux across three years of observation.

In the Rhode River, we find that CO₂ flux reverses itself daily for part of the year (June—November) yielding some days that are characterized as a net sink (net autotrophic) and others that are a net source (net heterotrophic). From December to May, diel cycling is minimal and the river is almost exclusively a net sink, autotrophic both day and night. Finally, although CO₂ flux is pronounced but variable across seasons, the net CO₂ flux of the Rhode River on an annual basis is near neutral.

Formatted: Font: +Headings CS (Times New Roman), Not Bold, Underline

3.9 Lateral transport

1

1106

1107

1108

1109

1110 1111

1112

1113

1114 1|115

1116

1117

1118

1119

1120

1121

ļ	Manuscript submitted to <i>EGU</i> : <i>Biogeosciences</i>	Deleted: JGR
1128	Tidal cycling has been shown to liberate and laterally transport DOC from brackish marshes to	
1129	adjacent estuaries (Cai, 2011; Herrmann, 2015) and therefore is of great importance to carbon	
1130	cycling and budgets of wetlands and estuaries (Najjar et al., 2020). DOC outwelling from the	
1131	Kirkpatrick Marsh (hereafter KPM), a <u>0.</u> 21 <u>km</u> tidal marsh located approximately 1 km up	Deleted: -ha
1132	estuary from our primary study site at the SERC Dock (Fig. 1), into the Rhode River has been	Deleted:)
1133	measured and modeled extensively in recent years (Clark et al., 2020; Menendez et al., 2022;	
1134	Tzortziou et al., 2011; Tzortziou et al., 2008). These studies indicate that the KPM is responsible	
1135	for a large portion of overall DOC input to the Rhode River, as well as significant export from	
1136	the river to the mainstem of Chesapeake Bay. Model generation and validation by Clark et al.	
1137	(2020) indicate that up to 13.1% of the total DOC input to the Rhode River originates in the	
1138	KPM. Another important source (53% of total) is DOC derived from phytoplankton and is	
1139	therefore labile and readily biodegraded and remineralized into DIC. Furthermore, large	
1140	quantities of other, semi-labile forms of DOC are exported from the KPM, which are themselves	
1141	subject to photochemical and biodegradation and remineralization (Clark et al., 2020).	
1142	Importantly, each of these DOC streams provides a potential source of DIC, including pCO ₂ , to	
1143	the Rhode River.	
1144		
1145	Dissolved inorganic carbon generated in brackish tidal wetlands is also outwelled directly into	
1146	estuaries (e.g., Cai et al., 2000; Chu et al., 2018; Song et al., 2023). Recent work by Song et al.	
1147	(2023) demonstrates that pCO ₂ in a salt marsh tidal creek in Waquoit Bay, MA was regulated by	
1148	both tide height (inversely) and the day/night cycle, with nighttime low tides resulting in the	
1149	highest pCO ₂ values, signaling a strong local effect from respiration and photosynthesis in	
1150	combination with tidal outwelling.	
1151		
1152	In the Rhode River watershed pCO_2 was measured continuously in the single tidal creek that	
1153	drains the KPM using the same methods as at our primary study location. We observed that the	
1154	KPM tidal creek pCO ₂ follows the tidal cycle exclusively, yet outside the mouth of the tidal	
1155	creek, in the estuary proper, day/night cycling overwhelms this marsh tidal signal. Simultaneous	
1156	pCO ₂ measurements from the SERC dock follow a strict day/night cycle (Fig. §4). However,	Deleted: s
1157	while peak levels of dissolved CO_2 in the Kirkpatrick Marsh creek occur at low tide and can	Deleted: S3
1158	reach values nearly 20 times greater than highs at the SERC dock (Fig. <u>\$4</u>) there is no obvious	Deleted: S3

1164 evidence of this tidal DIC input at the dock site, Remineralization of DOC exported from the Deleted: These findings suggest that despite periodic extreme CO2 concentrations (>25,000 ppmv), the overall 1165 KPM, as well as DOC originating in other locations within the watershed are important sources mass of CO2 export is not sufficient to have an immediate, measurable effects on the deeper, well-mixed portions of the 1166 of DIC in the river, but given the relative volumes of these sources to that of the much larger Rhode River 1167 estuary, as well as the physical distance (~1 km) from SERC dock, these input signals should be Formatted: Pattern: Clear 1168 expected to be lagged and damped inside the estuary and not tightly coupled with tidal cycles. 1169 Instead, pCO₂ exported from the KPM is expected to undergo significant dilution effects, be 1170 partially off-gassed to the atmosphere, and be metabolized via photosynthesis, reducing its Deleted: 1171 influence on downstream sites. These findings suggest that despite periodic extreme pCO₂ in 1172 KPM tidal creek (>30,000 ppmv), the overall mass of CO₂ export is not sufficient to have 1173 measurable effects on the deeper, well-mixed portions of the Rhode River. 1174 1175 Thus, although land - sea interfaces and outwelling of DOC and DIC are important in estuaries Deleted: -1176 and coastal ecosystems, the relative sizes of wetlands and adjacent water bodies and the overall 1177 volume of water moving between the two are also important factors. In eutrophic estuaries like 1178 the Rhode River, biological forcing can rapidly assimilate DIC and degrade and mineralize labile 1179 forms of DOC, as evidenced by extensive diel cycling in these systems (e.g., Brodeur et al. 2019; 1180 Song et al. 2023, and the present study.) The much larger and complex Chesapeake Bay 1181 generally follows seasonal changes in pCO₂ and CO₂ flux, but these appear to be most 1182 predictable in the upper oligohaline portion and the polyhaline region of the bay near the mouth, 1183 where freshwater and oceanic end-member effects are most pronounced (Brodeur et al. 2019; 1184 Chen et al., 2020). The central mesohaline part of Chesapeake Bay comprises numerous discrete 1185 and unique watersheds and subestuaries/rivers, each of which exchanges water with the bay. 1186 Elucidating spatial and temporal patterns of pCO_2 and CO_2 flux are vital for understanding each 1187 one's role as an atmospheric source or sink, but also could provide better insight into how each 1188 may be influenced by global increases in atmospheric CO₂ (i.e., acidification and its influences 1189 on estuarine metabolism, and the local biota, fisheries, and habitats each support.) Collectively, 1190 these and other subestuaries will have cumulative effects on the overall water quality of 1191 Chesapeake Bay, including cycling of DOC and DIC, which in turn affect pCO2 and CO2 flux. 1192 1193 1194 4. Conclusion Deleted: and Recommendations

Manuscript submitted to *EGU*: Biogeosciences

I

Deleted: JGR

ļ	Manuscript submitted to <u>EGU</u> : Biogeosciences	Deleted: JGR
1203	As indicated in this study and others, the role that biological processes play in estuaries to either	
1204	fix CO ₂ (autotrophy) or liberate CO ₂ (heterotrophy) are extensive, complex, and can be quite	
1205	variable over space and time (Brodeur et al. 2019; Chen et al., 2020; Herrmann et al., 2020;	
1206	Rosentreter et al., 2021). High frequency automated measurements revealed strong seasonal	
1207	contrasts in dissolved CO ₂ content and CO ₂ flux between water and atmosphere of the Rhode	
1208	River, a shallow mesohaline reach of the Chesapeake Bay. Importantly, only through high	
1209	frequency, multi-year measurements could diel and seasonal cycling be fully discerned. The	
1210	timing and frequency of measurements are critical and have potential for strong and misleading	
1211	biases if sampling is insufficient. In contrast, cold-water months coincide with long periods	
1212	(weeks to months) of continuous sub-atmospheric sink conditions for CO ₂ . Using these	
1213	measurements, we estimated the direction and magnitude of CO ₂ flux in hourly, daily, and	
1214	annual terms. In the Rhode River CO ₂ flux reverses itself daily for part of the year (June through	Deleted: Jun-Nov
1215	November) yielding some days that are characterized as net sink (net autotrophic and NEP > 0)	
1216	and others that are net source (net heterotrophic and NEP < 0). From December to May diel	Deleted: the river has negative
1217	cycling is minimal, and the river is almost exclusively a CO2 sink with +NEP both day and night.	Deleted: Dec-
1 1218	Although CO ₂ flux is pronounced but variable across seasons, the net CO ₂ flux of the Rhode	Deleted: /net autotrophic
1219	River on an annual basis is near carbon neutral, although some years are net heterotrophic and	
1220	others net autotrophic.	
1221		
1222	High frequency sampling of pCO_2 , although typically confined spatially, is one approach to	
1223	understanding fundamental aspects of estuarine metabolic states and CO2 flux that may	
1224	otherwise go undetected (Song et al., 2023). To address the spatial complexity of estuarine,	
1225	nearshore, and inland waters, more observation locations are required. As with any	
1226	environmental or ecological question, careful sampling design is critical to balance efficiency	
1227	and statistical power.	
1228		
1229	As the largest and arguably most complex estuary in the United States, the Chesapeake Bay is	
1230	the subject of extensive ecosystem management efforts and ranks among the most studied and	
1231	monitored estuaries in the world (Boesch and Goldman 2009). Yet, information on CO2 and	Formatted: No underline
1232	GHG fluxes continue to be limited (Brodeur 2019; Chen et al., 2020; Herrmann et al., 2020).	Deleted: greenhouse gas flux continues
1233	Given the extensive coordinated monitoring programs that either make real-time water quality	

	Manuscript submitted to EGU: Biogeosciences	Deleted: JGR
1239	measurements and/or maintain routine water sampling schedules (e.g., Maryland DNR "Eyes on	
1239	the Bay" program) in this region, existing water quality observation assets and sampling	Deleted: strategic leveraging of
	programs could be <u>leveraged</u> to more fully characterize and quantify CO ₂ and other <u>GHG</u>	
1241		Deleted: /or
1242	dynamics and flux in the Bay and elsewhere (see Saba et al. 2019). For example, coordinated	Deleted: greenhouse gas
1243	deployment of additional automated sampling devices (e.g., robust air-water equilibrators and	
1244	traditional atmospheric gas sensors) in key locations would enable estimates of CO ₂ flux, and if	
1245	combined with pH, DIC, or total alkalinity measurements, carbonate chemistry calculations as	
1246	well. Importantly, such installations need not be permanent. Instead, a small group of	
1247	instruments could be systematically deployed across an existing observation network, co-located	
1248	with other water quality instruments using a stratified sampling approach to capture spatial	
1249	variability. For example, a set of shifting two to four week deployments during summer and	Deleted: -
1250	winter months could yield sufficient data to advance our understanding of Chesapeake Bay-wide	Deleted: to 1-month long
1251	CO ₂ flux significantly in a single year. Such information would complement underway transects	
1252	that are vital, but which tend to underestimate temporal variability in any given location. In the	
1253	case of dissolved GHGs, liquid-air equilibration techniques are being used to measure multiple	Deleted: greenhouse gases
1254	GHGs (Call et al. 2015; Hartmann 2018; Gülzow et al. 2011; Miller et al. 2019; Xiao et al.	Deleted: greenhouse gas gases
1255	2020).	Formatted: No underline
1256		
1257	Understanding the GHG dynamics in estuaries is a vital component to generating accurate global	Deleted: greenhouse gas
1258	budgets (Maher & Eyre, 2012) as well as informing where emerging carbon capture	
1259	technologies, including nature-based solutions, might be best located (Bradshaw & Dance, 2005;	
1260	Sun et al., 2021. In the case of estuaries, there have been extensive global losses of seagrasses	Deleted:), including nature-based solutions.
1261	due to habitat degradation, pollution, and disease (Waycott et al. 2009). In addition to many	
1262	other ecosystem service benefits, restoration of seagrass and submerged aquatic vegetation has	
1263	the potential to restore and enhance natural carbon sequestration (i.e. blue carbon; Kennedy et al.	
1264	2022; Macreadie et al. 2022; Unsworth et al. 2022). <u>In Virginia, U.S.A., Oreska et al. (2020)</u>	Deleted: In an increasingly automated world, marrying
1265	demonstrated how the functional benefits of a restored seagrass meadow habitat can be	innovative, robust, and economical measurement solutions with traditional observing networks will provide efficient, real-time information that can be readily shared. Such
1266	quantified ecologically in terms of their ability to sequester carbon and affect GHG fluxes	information will increase our understanding of greenhouse
1267	between the estuary and atmosphere. Uniquely, these investigators then monetized the costs and	gas flux at both the local habitat scales that are of local ecological significance, as well as at the ecosystem level of
1268	benefits of habitat restoration and function as CO2 offset credits, as part of a GHG budget, and	an estuary.

	Manuscript submitted to <i>EGU</i> : Biogeosciences	Deleted: JGR
	* ************************************)
1287	demonstrated how such approaches can be used to incentivize habitat restoration (Oreska et al.	
1288	<u>(2020).</u>	
1289		
1290	Increasing the completeness and utility of global GHG budgets, as they relate to human activities	
1291	and ecosystem functions, are necessary steps toward combating global climate change.	
1292	Measurement of GHGs at high spatial and temporal resolution using economical, automated	
1293	measurement solutions can increase our understanding of GHG dynamics at small ecologically	
1294	significant scales, as well as at the larger ecosystem level of an estuary.	
1295		
1296	<u>Data Availability</u>	
1297	Hourly means of pCO ₂ and associated environmental data used in the analyses are available at	
1298	the Smithsonian Figshare repository https://doi.org/10.25573/serc.22491655 via under Creative	
1299	Commons license CC BY-NC 4.0.	
1300		
1301	<u>Author Contributions</u>	
1302	AWM contributed to project Conceptualization, Funding acquisition, Investigation,	
1303	Methodology, Project Administration, Resources, Supervision and Writing - Original Draft.	
1304	JRM contributed to Data Curation, Formal Analysis, Software and Visualization. ACR	
1305	contributed to Data Curation, Investigation, Methodology and Project Administration. MSM	
1306	contributed to Conceptualization, Supervision and Visualization. KJK contributed to	
1307	Conceptualization, Data Curation, Software, Validation. All authors contributed to Writing –	
1308	review and editing.	
1309		
1310	<u>Competing Interests</u>	
1311	The corresponding author has declared that none of the authors has any competing interests.	
1312		
1313	A	Formatted: Font: Times New Roman, Not Bold
1314	4	Formatted: Line spacing: 1.5 lines
1315		
l		

1316	Acknowledgments		
1317	We thank Patrick Neale and Stephanie Wilson for their early review and critical feedback on this	1	Deleted: wish tothank Patrick Neale and Stephanie Wilson for their early review and critical feedback on this manuscript, as well as J. Patrick Megonigal for discussions
1318	manuscript, as well as J. Patrick Megonigal for discussions on methodology, and two anonymous		on methodology [561]
1319	<u>reviewers who contributed beneficial suggestions.</u> Funding for this research was provided by the	Ĭ	Formatted: Line spacing: 1.5 lines
1320	Smithsonian Institution.		Formatted: Font: Bold
1321		4/1	Deleted: Open Research¶ AGU requires an Availability Statement for the underlying
1322	References	/	data needed to understand, evaluate, and build upon the reported research at the time of peer review and publication.
1323	Abril, G. and Borges, A. V.: Carbon Dioxide and Methane Emissions from Estuaries. in:	\	Additionally, authors should include an Availability Statement for the software that has a significant impact on the research. Details and templates are in the Availability
1324	Greenhouse Gas Emissions — Fluxes and Processes: Hydroelectric Reservoirs and Natural	$\langle \cdot \rangle$	Statement section of the Data & Software for Authors
1325	Environments, edited by: Tremblay, A., Varfalvy, L., Roehm, C., and Garneau, M., Springer,	//	Guidance. For physical samples, use the IGSN persi [562] Formatted: Font: Not Bold, Not Highlight
1326	Berlin, Heidelberg, 187–207, https://doi.org/10.1007/978-3-540-26643-3 8, 2005.	//	Deleted: ¶[563]
1520	Bernii, Heidelberg, 167–207, https://doi.org/10.1007/970-3-340-20043-3_6, 2003.		Formatted: Font: Not Italic
1327	Abril, G., Etcheber, H., Borges, A. V., and Frankignoulle, Me: Excess atmospheric carbon	Y	Deleted: (pp. 187–207) edited by: Tremblay, A [564]
1328	dioxide transported by rivers into the Scheldt estuary. Comptes Rendus de l'Académie des	\supset	Deleted: &nd Frankignoulle, M. (2000): Exce [565]
1329	Sciences - Series IIA - Earth and Planetary Science, 330, 761–768.	7	Deleted: D
			Formatted: Font: Not Italic
1330	https://doi.org/10.1016/S1251-8050(00)00231-7, 2000.		Formatted [566]
1331	Bauer, J. E., Cai, WJ., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S., and Regnier, P. A. G.:		Deleted: (11), 761–768 [567] Formatted: Not Highlight
1332	The changing carbon cycle of the coastal ocean, Nature, 504, 61–70.	\searrow	Deleted: \(\begin{array}{c} \ldots \\ \ldots \\ \ldots \\ \ldots \\ \end{array}\\ \ldots \\ \ldots \\ \ldots \\ \end{array}\\ \ldots \\ \ldots \\ \end{array}\\ a
			Formatted ([569])
1333	https://doi.org/10.1038/nature12857, 2013.	Y	Deleted: (7478), 61–70 [570]
1334	Benson, S., Rich, R., Tashjian, A., Lonneman, M., and Neale, P.: MarineGEO Upper	1	Deleted: ¶ [571]
1335	Chesapeake Bay Observatory CPOP Data, https://doi.org/10.25573/SERC.C.6100368.V10.	//	Deleted: ¶
		-//	Deleted: . (2009).
1336	<u>2023.</u>	$/\!/\!\!/$	Deleted: b
1337	Boesch, D.F. and Goldman, E.B.; Chesapeake Bay, USA, in: Ecosystem-Based Management for		Deleted: . In K. McLeod and H. Leslie (Eds.)
1338	the Oceans, edited by: McLeod, K. McLeod and Leslie H. Island Press, Washington, D.C., 268-		Formatted: No underline, Font color: Text 1 Formatted: No underline, Font color: Text 1
1339			Formatted: No underline, Font color: Text 1
	293, 2009.		Formatted ([572])
1340		$\langle // \rangle$	Deleted: . (2009), pp.
1341	Borges, A. V.: Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal	$\langle \langle $	Deleted: -
1342	ocean ² , Estuaries, 28, 3–27, https://doi.org/10.1007/BF02732750, 2005.	1//	Formatted: Font color: Text 1
			Formatted [573]
		1/3	Deleted: \(\tag{[574]}
		/	Deleted: (1), 3–27 [576]

Manuscript submitted to EGU: Biogeosciences

Formatted

(... [575])

Deleted: JGR

transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thamea). Limnology and Oceanography, 49, 1630–1641, 2004. Bradshaw, I, and Dance, T.; Mapping geological storage prospectivity of CO2 for the world's sedimentary basins and regional source to sink matching, in: Greenhouse Gas Control Fermatted: Sedimentary basins and regional source to sink matching, in: Greenhouse Gas Control Fermatted: Ten No Talas: Deleted: S. and Dance, T. (2005)Mapping geological storage prospectivity of CO2 for the world's sedimentary basins and regional source to sink matching. In: Greenhouse Gas Control Fermatted: Ten No Talas: Deleted: S. and Dance, T. (2005)Mapping geological storage prospectivity of CO2 for the world's sedimentary basins and regional source to sink matching. In: Greenhouse Gas Control Fermatted: Ten No Talas: Deleted: S. and Dance, T. (2005)Mapping geological storage prospectivity of CO2 for the world's sedimentary basins and regional source to sink match. [581] Fermatted: Ten No Talas: Deleted: S. and Dance, T. (2005)Mapping geological storage prospectivity of CO2 for the world's sedimentary basins and regional source to sink match. [581] Fermatted: Ten No Talas: Deleted: S. and Dance, T. (2005)Mapping geological storage prospectivity of CO2 for the world's sedimentary basins and regional source to sink match. [581] Deleted: S. and Dance, T. (2005)Mapping geological storage prospectivity of CO2 for the world's sedimentary basins and regional source to sink match. [581] Deleted: S. and Dance, T. (2005)		Manuscript submitted to <u>FGU</u> : Biogeosciences		Deleted: JGR	
transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames) Limnology and Oceanography, 49, 1630–1641, 2004. Bradshaw, J. and Dance, T.; Mapping geological storage prospectivity of CO2 for the world's sedimentary basins and regional source to sink matching, in: Greenhouse Gas Control Feehnologies 7, 201. I, Jisevier, 583–591, https://doi.org/10.1016/B978-008044704-9/50059-8. Breitburg, D. L., Hines, A. H., Jordan, T. E., McCormick, M. K., Weller, D. E., and Whigham. Breitburg, D. L., Hines, A. H., Jordan, T. E., McCormick, M. K., Weller, D. E., and Whigham. Broeder, J. R., Chen, B., Su. J., Xu. YY., Hussain, N., Scaboo, K. M., Zhang, Y., Testa, J. M., and G. WJ., (2005) Chespeake Bay Vanishing Science, 6, https://doi.org/10.3389/fmars.2019.00099. 2019 Broecker, W. S., Takahashi, T., Simpson, H. J., and Peng, TH., Fate of Fossil Fuel Carbon Broecker, W. S., Takahashi, T., Simpson, H. J., and Peng, TH., Fate of Fossil Fuel Carbon Broecker, W. S., Takahashi, T., Simpson, H. J., and Peng, TH., Fate of Fossil Fuel Carbon Cai, WJ., Estuarine and Coastal Ocean Carbon Paradox: CO2 Sinks or Sites of Terrestrial Formatted Limitation of the Satilla and Altamaha Rivers, Georgia, J. imnology and Oceanography, 43, 657–668, https://doi.org/10.4319/b.,1998.43.4.0657, 1998. Broecker, W. J., Wiebe, W. J., Wang, Y., and Sheldon, J. E., Intertidal marsh as a source of dissolved inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern users of the Satilla and Altamaha Rivers, Georgia, J. imnology and Oceanography, 43, 657–668, https://doi.org/10.4319/b., 1998.43.4.0657, 1998. Broecker, W. J., Wiebe, W. J., Wang, Y., and Sheldon, J. E., Intertidal marsh as a source of dissolved inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern users of the Satilla and Altamaha Rivers, Georgia, J. imnology and Oceanography, 43, 657–668, https://doi.org/10.4319/b., 1998.43.4.0657, 1998. Broecker, W. J.,					
Limnology and Oceanography, 49, 1630–1641, 2004. Bradshaw, I, and Dance, T.; Mapping geological storage prospectivity of CO2 for the world's sedimentary basins and regional source to sink matching, in: Greenhouse Gas Control Formatted	1450	Borges, A. V., Delille, B., Schiettecatte, LS., Gazeau, F., Abril, G., and Frankignoulle, M.: Gas		Deleted: ¶	([577])
Limnology and Oceanography, 49, 1630–1641, 2004. Bradshaw, I, and Dance, T.; Mapping geological storage prospectivity of CO2 for the world's sedimentary basins and regional source to sink matching, in: Greenhouse Gas Control Formatted	1451	transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames),			
Bradshaw, I, and Dance, T.; Mapping geological storage prospectivity of CO2 for the world's goological storage goological storage prospectivity of CO2 for the world's goological storage prospectivity of CO2 for the world's goological storage prospectivity of CO2 for the world's goological storage goolog		•		Deleted: (5), 1630–1641.	([579])
pseudogical storage prospectivity of CO2 for the world's sedementary basins and regional source to sink matching_in_Greenhouse Gas Control Technologies 7, ¿ol. I, Elsevier, 583–591, https://doi.org/10.1016/B978-008044704-9/50059-8. 1457 Breitburg, D. L., Hines, A. H., Jordan, T. E., McCormick, M. K., Weller, D. E., and Whigham, 1458 D. F.; Landscape patterns, nutrient discharges, and biota of the Rhode River estuary and its watershed: Contribution of the Smithsonian Environmental Research Center to the Pilot Integrated Ecosystem Assessment, 2008. 1461 Brodeur, J. R., Chen, B., Su, J., Xu, YY., Hussain, N., Scaboo, K. M., Zhang, Y., Testa, J. M., and Cai, WJ., Chesapeake Bay Inorganic Carbon: Spatial Distribution and Seasonal Variability, Prom. Mar. Sci Trontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00099, 2019. 1462 Broecker, W. S., Takahashi, T., Simpson, H. J., and Peng, TH.; Fate of Fossil Fuel Carbon Dioxide and the Global Carbon Budget, Science, 206, 409-418, 1979. 1463 Caffrey, J. M., Factors controlling net ecosystem metabolism in US estuaries, Estuaries, 27, 90-104cetei. 1464 Cai, WJ., Estuarine and Coastal Ocean Carbon Paradox: CO2 Sinks or Sites of Terrestrial Formated [.587] 1465 Caffrey, J. M., Factors controlling net ecosystem metabolism in US estuaries, Estuaries, 27, 90-104cetei. 1466 Caffrey, J. M., Factors controlling net ecosystem metabolism in US estuaries and the Global Carbon Paradox: CO2 Sinks or Sites of Terrestrial English Paragraph Font. Font color. Auto. Deleted: 1470 bttps://doi.org/10.1146/annurev-marine-120709-142723, 2011, 1471 Cai, WJ., and Wang, Y., The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia, Limnology and Oceanography, 43, 657-668 [Formatted [.591] Deleted: and Wang, Y. (1998) The chemical [.591] Deleted: and Wang, Y. (1998) The chemical [.591] Deleted: and Wang, Y. (1998) The chemical [.591] Deleted: and Wang, Y. (1998) The ch	1732	Limitology and Occanography, 47, 1030–1041, 2004.	_	Formatted	
sedimentary basins and regional source to sink matching, in: Greenhouse Gas Control Technologies 7, vol. I, Elsevier, 583-591, https://doi.org/10.1016/B978-008044704-9/50059-8. Breitburg, D. L., Hines, A. H., Jordan, T. E., McCormick, M. K., Weller, D. E., and Whigham, Jave Harden, and the Global Carbon of the Smithsonian Environmental Research Center to the Pilot Integrated Ecosystem Assessment, 2008. Brodeur, J. R., Chen, B., Su, J., Xu, YY., Hussain, N., Scaboo, K. M., Zhang, Y., Testa, J. M., and Cai, WJ., Cai, WJ., Tentiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00099, 2019. Brocker, W. S., Takahashi, T., Simpson, H. J., and Peng, TH.; Fate of Fossil Fuel Carbon Dioxide and the Global Carbon Budget, Science, 206, 409-418, 1979. Carbon Incineration, Annual Review of Marine Science, 3, 123-145, https://doi.org/10.4319/10.2004. Lag. Lag. Lag. Lag. Lag. Lag. Lag. Lag	1453	Bradshaw, J. and Dance, T. Mapping geological storage prospectivity of CO2 for the world's	1		
Technologies 7, 20.1., Elsevier, 583-591, https://doi.org/10.1016/B978-008044704-9/50059.8 Deleted: (Vol. I, ppbevier, 583-591) Elsevier [_SII] Deleted: (Vol. I, ppbevier, 583-591, ppbevier, 583-	1454	sedimentary basins and regional source to sink matching in: Greenhouse Gas Control		sedimentary basins and regional source to sin	ik mate [580]
Breitburg, D. L., Hines, A. H., Jordan, T. E., McCormick, M. K., Weller, D. E., and Whigham, D. F., Landscape patterns, nutrient discharges, and biota of the Rhode River estuary and its watershed: Contribution of the Smithsonian Environmental Research Center to the Pilot Integrated Ecosystem Assessment, 2008. Brodeur, J. R., Chen, B., Su, J., Xu, YY., Hussain, N., Scaboo, K. M., Zhang, Y., Testa, J. M., and Cai, WJ., Chesapeake Bay Inorganic Carbon: Spatial Distribution and Seasonal Variability, Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00099, 2019. Brodeur, J. R., Chen, B., Su, J., Xu, YY., Hussain, N., Scaboo, K. M., Zhang, Y., Testa, J. M., Broecker, W. S., Takahashi, T., Simpson, H. J., and Peng, TH., Fate of Fossil Fuel Carbon Dioxide and the Global Carbon Budget, Science, 206, 409–418, 1979. Border, J. M., Factors controlling net ecosystem metabolism in US estuaries, Estuaries, 27, 90—101, 2004. Caffrey, J. M., Factors controlling net ecosystem metabolism in US estuaries, Estuaries, 27, 90—101, 2004. Carbon Incineration? Annual Review of Marine Science, 3, 213–145. Capton Incineration? Annual Review of Marine Science, 3, 213–145. Cai, WJ., and Wang, Y., The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia, Limnology and Oceanography, 43, 657–668. Cai, WJ., Wiebe, W. J., Wang, Y., and Sheldon, J. E., Intertidal marsh as a source of dissolved Interface and Carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern in t	1455	Technologies 7, vol. I, Elsevier, 583–591, https://doi.org/10.1016/B978-008044704-9/50059-8,			
Breitburg, D. L., Hines, A. H., Jordan, T. E., McCormick, M. K., Weller, D. E., and Whigham, D. F., Landscape patterns, nutrient discharges, and biota of the Rhode River estuary and its watershed: Contribution of the Smithsonian Environmental Research Center to the Pilot Integrated Ecosystem Assessment, 2008. Brodeur, J. R., Chen, B., Su, J., Xu, YY., Hussain, N., Scaboo, K. M., Zhang, Y., Testa, J. M., and Cai, WJ., (2019) (Desupeake Bay Inorganic Carbon: Spatial Distribution and Seasonal Variability, Profile in Marine Science, 499, doi: 10.1889/faun.2019.00099 Broecker, W. S., Takahashi, T., Simpson, H. J., and Peng, TH.; Fate of Fossil Fuel Carbon Dioxide and the Global Carbon Budget, Science, 206, 409–418, 1979. Gaffrey, J. M.; Factors controlling net ecosystem metabolism in US estuaries, Estuaries, 27, 90–1466 Carbon Incineration, Annual Review of Marine Science, 3, 123–145. https://doi.org/10.1146/annurev-marine-120709-142723, 2011, 2014 Cai, WJ., and Wang, Y.; The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia, Limnology and Oceanography, 43, 657–668, 1474 Cai, WJ., Wiebe, W. J., Wang, Y., and Sheldon, J. E.; Intertidal marsh as a source of dissolved inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeast	1456	2005			Elsevier [581]
Breitburg, D. L., Hines, A. H., Jordan, T. E., McCormick, M. K., Weller, D. E., and Whigham, D. F., Landscape patterns, nutrient discharges, and biota of the Rhode River estuary and its watershed: Contribution of the Smithsonian Environmental Research Center to the Pilot Integrated Ecosystem Assessment, 2008. Brodeur, J. R., Chen, B., Su, J., Xu, YY., Hussain, N., Scaboo, K. M., Zhang, Y., Testa, J. M., and Cai, WJ., Chesapeake Bay Inorganic Carbon: Spatial Distribution and Seasonal Variability, Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00099, 2019. Broecker, W. S., Takahashi, T., Simpson, H. J., and Peng, TH.; Fate of Fossil Fuel Carbon Dioxide and the Global Carbon Budget, Science, 206, 409–418, 1979. Caffrey, J. M., Factors controlling net ecosystem metabolism in US estuaries, 27, 90– Dioxide and Castal Ocean Carbon Paradox: CO2 Sinks or Sites of Terrestrial Cai, WJ., Estuarine and Coastal Ocean Carbon Paradox: CO2 Sinks or Sites of Terrestrial Carbon Incineration?, Annual Review of Marine Science, 3, 123–145. https://doi.org/10.1146/annurev-marine-120709-142723, 2011, 1471 Cai, WJ. and Wang, Y., The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia, Limnology and Oceanography, 43, 657–668, https://doi.org/10.4319/10.1998.43.4.0657, 1998. 1474 Cai, WJ., Wiebe, W. J., Wang, Y., and Sheldon, J. E.; Intertidal marsh as a source of dissolved inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in t	1130	2003.			
Hassin, N., Scaboo, K. M., Zhang, Y., Testa, J. M., and Cai, W., J. (2019) (Testa, J. M., and Cai, W., J., (2019) (Testa, J. M., (2019) (Testa, J. M., and Cai, W., J., (2019) (Testa, J. M., (2019) (Testa, J.	1457	Breitburg, D. L., Hines, A. H., Jordan, T. E., McCormick, M. K., Weller, D. E., and Whigham,	\mathcal{M}	<u> </u>	
watershed: Contribution of the Smithsonian Environmental Research Center to the Pilot Integrated Ecosystem Assessment 2008. Action	1458	D. F.: Landscape patterns, nutrient discharges, and biota of the Rhode River estuary and its	///	Hussain, N.;, Scaboo, K. M.;, Zhang, Y	;, Testa, J.
Integrated Ecosystem Assessment, 2008. Integrated Ecosystem Assessment, 2008. 699. doi: 10.3389/fmars.2019.00099	1 1459	watershed: Contribution of the Smithsonian Environmental Research Center to the Pilot		Inorganic Carbon: Spatial Distribution and S	easonal
Brodeur, J. R., Chen, B., Su, J., Xu, YY., Hussain, N., Scaboo, K. M., Zhang, Y., Testa, J. M., and Cai, WJ., Chesapeake Bay Inorganic Carbon: Spatial Distribution and Seasonal Variability. Fromtiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00099, 2019, Broecker, W. S., Takahashi, T., Simpson, H. J., and Peng, TH.; Fate of Fossil Fuel Carbon Dioxide and the Global Carbon Budget, Science, 206, 409–418, 1979. 1466 Caffrey, J. M.; Factors controlling net ecosystem metabolism in US estuaries, Estuaries, 27, 90–101, 2004. 1468 Cai, WJ.; Estuarine and Coastal Ocean Carbon Paradox: CO2 Sinks or Sites of Terrestrial Carbon Incineration? Annual Review of Marine Science, 3, 123–145. 1470 https://doi.org/10.1146/annurev-marine-120709-142723, 2011. 1471 Cai, WJ. and Wang, Y.; The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia, Limnology and Oceanography, 43, 657–668, https://doi.org/10.4319/lo.1998.43.4.0657, 1998. 1474 Cai, WJ., Wiebe, W. J., Wang, Y., and Sheldon, J. E.; Intertidal marsh as a source of dissolved inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern U.S., Limnology and Oceanography, 45, 1743–1752, https://doi.org/10.4319/lo.2000.45.8.1743, 2000.	1460	Integrated Ecosystem Assessment 2008			
and Cai, W. J.; Chesapeake Bay Inorganic Carbon: Spatial Distribution and Seasonal Variability Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00099, 2019, Broecker, W. S., Takahashi, T., Simpson, H. J., and Peng, TH.; Fate of Fossil Fuel Carbon Dioxide and the Global Carbon Budget, Science, 206, 409–418, 1979. Caffrey, J. M.; Factors controlling net ecosystem metabolism in US estuaries, Estuaries, 27, 90– 101, 2004. Cai, WJ.; Estuarine and Coastal Ocean Carbon Paradox: CO2 Sinks or Sites of Terrestrial Cai, WJ.; Estuarine and Coastal Ocean Carbon Paradox: CO2 Sinks or Sites of Terrestrial Cai, WJ. and Wang, Y.; The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satila and Altamaha Rivers, Georgia, Limnology and Oceanography, 43, 657–668, https://doi.org/10.4319/lo.1998.43.4.0657, 1998. Cai, WJ., Wiebe, W. J., Wang, Y., and Sheldon, J. E.; Intertidal marsh as a source of dissolved inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern U.S., Limnology and Oceanography, 45, 1743–1752, https://doi.org/10.4319/lo.2000.45.8.1743, 2000. Deleted: (4417) 409–418 [586] Formatted ([588] Formatted: Default Paragraph Font, Font color: Auto, Pattern: Clear Formatted: Default Paragraph Font, Font color: Auto, Pattern: Clear Formatted: Default Paragraph Font, Font color: Auto, Pattern: Clear Formatted: Default Paragraph Font, Font color: Auto, Pattern: Clear Formatted: Default Paragraph Font, Font color: Auto, Pattern: Clear Formatted: Default Paragraph Font, Font color: Auto, Pattern: Clear Formatted: Default Paragraph Font, Font color: Auto, Pattern: Clear Formatted: Default Paragraph Font, Font color: Auto, Pattern: Clear Formatted: Default Paragraph Font, Font color: Auto, Pattern: Clear Formatted: Default Paragraph Font, Font color: Auto, Pattern: Clear Formatted: Default Paragraph Font, Font color: Auto, Pattern: Clear Formatted: Default Paragraph Font, Font color: Auto, Pattern: C		megrated 2003/sem 763655men 2005.	' ///	Formatted: Default Paragraph Font	
and Cai, W. J., Chesapeake Bay Inorganic Carbon: Spatial Distribution and Seasonal Variability, Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00099, 2019. Broecker, W. S., Takahashi, T., Simpson, H. J., and Peng, TH.; Fate of Fossil Fuel Carbon Dioxide and the Global Carbon Budget, Science, 206, 409–418, 1979. Caffrey, J. M., Factors controlling net ecosystem metabolism in US estuaries, Estuaries, 27, 90– 101, 2004. Cai, WJ., Estuarine and Coastal Ocean Carbon Paradox: CO2 Sinks or Sites of Terrestrial Carbon Incineration? Annual Review of Marine Science, 3, 123–145, https://doi.org/10.1146/annurev-marine-120709-142723, 2011, Cai, WJ. and Wang, Y.; The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia, Limnology and Oceanography, 43, 657–668, https://doi.org/10.4319/lo.1998.43.4.0657, 1998. Cai, WJ., Wiebe, W. J., Wang, Y., and Sheldon, J. E.; Intertidal marsh as a source of dissolved inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern U.S., Limnology and Oceanography, 45, 1743–1752, https://doi.org/10.4319/lo.2000.45.8.1743. Deleted: (1). Deleted: (2011). Formatted ([588] Formatted ([589] Formatted ([589] Deleted: (1). Deleted: (1). Deleted: (1). Deleted: (1). Deleted: (1). Deleted: (1). Deleted: (2). Deleted: (3). Deleted: (4) 657–668. Formatted ([592] Formatted ([593] Formatted ([593] Formatted ([588] Deleted: (1). Dele	1461	Brodeur, J. R., Chen, B., Su, J., Xu, YY., Hussain, N., Scaboo, K. M., Zhang, Y., Testa, J. M.,	/// //	Deleted: ¶	([584])
Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00099, 2019. Broecker, W. S., Takahashi, T., Simpson, H. J., and Peng, TH.: Fate of Fossil Fuel Carbon Dioxide and the Global Carbon Budget, Science, 206, 409–418, 1979. Caffrey, J. M.; Factors controlling net ecosystem metabolism in US estuaries, Estuaries, 27, 90– 1466 Caffrey, J. M.; Factors controlling net ecosystem metabolism in US estuaries, Estuaries, 27, 90– 1467 101, 2004. Cai, WI.: Estuarine and Coastal Ocean Carbon Paradox: CO2 Sinks or Sites of Terrestrial Carbon Incineration?, Annual Review of Marine Science, 3, 123–145. 1470 https://doi.org/10.1146/annurev-marine-120709-142723, 2011, Cai, WI. and Wang, Y.: The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia, Limnology and Oceanography, 43, 657–668, https://doi.org/10.4319/lo.1998.43.4.0657, 1998. Cai, WJ., Wiebe, W. J., Wang, Y., and Sheldon, J. E.: Intertidal marsh as a source of dissolved inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern U.S., Limnology and Oceanography, 45, 1743–1752, https://doi.org/10.4319/lo.2000.45.8.1743. 1470 2000.	1462	and Cai, WL.: Chesapeake Bay Inorganic Carbon: Spatial Distribution and Seasonal Variability.	//////	` <u> </u>	[586]
Broecker, W. S., Takahashi, T., Simpson, H. J., and Peng, TH.: Fate of Fossil Fuel Carbon Dioxide and the Global Carbon Budget, Science, 206, 409–418, 1979. 1466 Caffrey, J. M.: Factors controlling net ecosystem metabolism in US estuaries, Estuaries, 27, 90– 1467 101, 2004. 1468 Cai, WI.: Estuarine and Coastal Ocean Carbon Paradox: CO2 Sinks or Sites of Terrestrial 1469 Carbon Incineration? Annual Review of Marine Science, 3, 123–145, 1470 https://doi.org/10.1146/annurev-marine-120709-142723, 2011, 1471 Cai, WI. and Wang, Y.: The chemistry, fluxes, and sources of carbon dioxide in the estuarine 1472 waters of the Satilla and Altamaha Rivers, Georgia, Limnology and Oceanography, 43, 657–668, 1473 https://doi.org/10.4319/lo.1998.43.4.0657, 1998. 1474 Cai, WJ., Wiebe, W. J., Wang, Y., and Sheldon, J. E.: Intertidal marsh as a source of dissolved 1475 inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern 1476 U.S., Limnology and Oceanography, 45, 1743–1752, https://doi.org/10.4319/lo.2000.45.8.1743, 2000 Formatted5991 1477 2000 Formatted5991 1478 Poleted: (1). 1488 Deleted: (2011). 1588 Deleted: (2011). 1589 Deleted: (1).	1463		'// ////		[585]
Broecker, W. S., Takahashi, T., Simpson, H. J., and Peng, TH.; Fate of Fossil Fuel Carbon Dioxide and the Global Carbon Budget, Science, 206, 409–418, 1979. 1466 Caffrey, J. M.; Factors controlling net ecosystem metabolism in US estuaries, Estuaries, 27, 90– 1467 101, 2004. 1468 Cai, WJ.; Estuarine and Coastal Ocean Carbon Paradox: CO2 Sinks or Sites of Terrestrial 1469 Carbon Incineration?, Annual Review of Marine Science, 3, 123–145. 1470 https://doi.org/10.1146/annurev-marine-120709-142723, 2011. 1471 Cai, WJ. and Wang, Y.; The chemistry, fluxes, and sources of carbon dioxide in the estuarine 1472 waters of the Satilla and Altamaha Rivers, Georgia, Limnology and Oceanography, 43, 657–668, https://doi.org/10.4319/lo.1998.43.4.0657, 1998. 1474 Cai, WJ., Wiebe, W. J., Wang, Y., and Sheldon, J. E.; Intertidal marsh as a source of dissolved inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern 1476 U.S., Limnology and Oceanography, 45, 1743–1752, https://doi.org/10.4319/lo.2000.45.8.1743. 1477 2000.	1703	1 toliticis ili Wai ilic Science, w ilitps://doi.org/10.3369/ilitais.2017.00099, 2017.	F /////	<u> </u>	
Dioxide and the Global Carbon Budget, Science, 206, 409–418, 1979. Pattern: Clear Formatted Listed: Deleted:	1464	Broecker, W. S., Takahashi, T., Simpson, H. J., and Peng, TH.: Fate of Fossil Fuel Carbon	/////		1 44-
Formatted	1465	Dioxide and the Global Carbon Budget, Science, 206, 409–418, 1979.			ior: Auto,
Deleted: Del		V EA /A E	' /	Formatted	[587]
Deleted: _(2011). Cai, WJ.; Estuarine and Coastal Ocean Carbon Paradox: CO2 Sinks or Sites of Terrestrial Formatted	1466	Caffrey, J. M.: Factors controlling net ecosystem metabolism in US estuaries, Estuaries, 27, 90–			[588]
Cai, WJ.; Estuarine and Coastal Ocean Carbon Paradox: CO2 Sinks or Sites of Terrestrial Carbon Incineration?, Annual Review of Marine Science, 3, 123–145. https://doi.org/10.1146/annurev-marine-120709-142723, 2011., Cai, WJ., and Wang, Y.; The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia, Limnology and Oceanography, 43, 657–668. https://doi.org/10.4319/lo.1998.43.4.0657, 1998. https://doi.org/10.4319/lo.1998.43.4.0657, 1998. Cai, WJ., Wiebe, W. J., Wang, Y., and Sheldon, J. E.; Intertidal marsh as a source of dissolved inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern U.S., Limnology and Oceanography, 45, 1743–1752, https://doi.org/10.4319/lo.2000.45.8.1743. Formatted [Formatted	1467	101 <u>, 2004.</u>			\longrightarrow
Carbon Incineration? Annual Review of Marine Science, 3, 123–145. https://doi.org/10.1146/annurev-marine-120709-142723, 2011. Cai, WJ. and Wang, Y.: The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia Limnology and Oceanography, 43, 657–668. https://doi.org/10.4319/lo.1998.43.4.0657, 1998. Cai, WJ., Wiebe, W. J., Wang, Y., and Sheldon, J. E.: Intertidal marsh as a source of dissolved inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern U.S., Limnology and Oceanography, 45, 1743–1752, https://doi.org/10.4319/lo.2000.45.8.1743. Formatted[593] Formatted[593] Formatted[593] Formatted[593] Formatted[593] Formatted[593] Formatted[593] Formatted[594] Deleted: 4, 657–668. Deleted: 4, 657–668. [595] Deleted: 4, 657–668. [596] Deleted: 4, 657–668. [597] Formatted[598] Deleted: 8, 1743–1752 Deleted: 9. Delet					
1469 Carbon Incineration?, Annual Review of Marine Science, 3, 123–145. 1470 https://doi.org/10.1146/annurev-marine-120709-142723 , 2011. 1471 Cai, WJ. and Wang, Y.: The chemistry, fluxes, and sources of carbon dioxide in the estuarine 1472 waters of the Satilla and Altamaha Rivers, Georgia, Limnology and Oceanography, 43, 657–668. 1473 https://doi.org/10.4319/lo.1998.43.4.0657 , 1998. 1474 Cai, WJ., Wiebe, W. J., Wang, Y., and Sheldon, J. E.: Intertidal marsh as a source of dissolved inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern 1476 U.S., Limnology and Oceanography, 45, 1743–1752, https://doi.org/10.4319/lo.2000.45.8.1743 1477 2000. 1478 Deleted: 2 Deleted: 2 Deleted: 1 Formatted ([593] Formatted ([593] Deleted: (1), Deleted: (2) Deleted: (1), Deleted: (2) Deleted: (1), Deleted: (2) Deleted: (1), Deleted: (2) Formatted ([593] Formatted ([593] Deleted: (1), Deleted: (2) Deleted: (1), Deleted: (2) Deleted: (1), Deleted: (2) Formatted ([593] Deleted: (1), Deleted:	1468	Cai, WJ.: Estuarine and Coastal Ocean Carbon Paradox: CO2 Sinks or Sites of Terrestrial			
https://doi.org/10.1146/annurev-marine-120709-142723, 2011. Cai, WJ. and Wang, Y.: The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia, Limnology and Oceanography, 43, 657–668, https://doi.org/10.4319/lo.1998.43.4.0657, 1998. Lateral Cai, WJ., Wiebe, W. J., Wang, Y., and Sheldon, J. E.: Intertidal marsh as a source of dissolved inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern U.S., Limnology and Oceanography, 45, 1743–1752, https://doi.org/10.4319/lo.2000.45.8.1743 Deleted: (1), Deleted: .https://doi.org/10.1146/annurev-marine-1([593]) Formatted ([591]) Deleted: .https://doi.org/10.1146/annurev-marine-1([593]) Formatted ([594]) Deleted: (4), 657–668. ([597]) Formatted ([596]) Deleted: (8), 1743–1752 ([600]) Formatted ([598])	1469	Carbon Incineration, Annual Review of Marine Science, 3, 123–145.	×		([390])
Cai, WJ. and Wang, Y.: The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia, Limnology and Oceanography, 43, 657–668. https://doi.org/10.4319/lo.1998.43.4.0657, 1998. Cai, WJ., Wiebe, W. J., Wang, Y., and Sheldon, J. E.: Intertidal marsh as a source of dissolved inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern U.S., Limnology and Oceanography, 45, 1743–1752, https://doi.org/10.4319/lo.2000.45.8.1743 Deleted: https://doi.org/10.1146/annurev-marine- [593] Formatted [594] Deleted: , & and Wang, Y. (1998): The chemical source of dissolved inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern U.S., Limnology and Oceanography, 45, 1743–1752, https://doi.org/10.4319/lo.2000.45.8.1743 Deleted: https://doi.org/10.1146/annurev-marine- [593] Formatted [594] Deleted: and Wang, Y. (1998): The chemical source of dissolved [595] Deleted: and Wang, Y. (1998): The chemical source of dissolved [597] Formatted [598] Deleted: https://doi.org/10.1346/annurev-marine- [593] Deleted: https://doi.org/10.1346/annurev-marine- [593] Formatted [594] Deleted: https://doi.org/10.1346/annurev-marine- [593] Deleted: https://doi.org/10.1346/annurev-marine- [593] Deleted: https://doi.org/10.1346/annurev-marine- [593] Deleted: https://doi.org/10.1346/annurev-marine- [593] Formatted [594] Deleted: https://doi.org/10.1346/annurev-marine- [593] Deleted: https://doi.org/10.1346/annurev-marine- [593] Formatted [594] Deleted: https://doi.org/10.1346/annurev-marine- [593] Formatted [594] Deleted: https://doi.org/10.1346/annurev-marine- [594] Deleted: https://doi.org/10.1346/annurev-marine- [594] Formatted [594] Deleted: https://doi.org/10.1346/annurev-marine- [594] Deleted: https://d	1470	https://doi.org/10.1146/annurev-marine-120709-142723, 2011.			
Cai, WJ. and Wang, Y.: The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia, Limnology and Oceanography, 43, 657–668. https://doi.org/10.4319/lo.1998.43.4.0657, 1998. Cai, WJ., Wiebe, W. J., Wang, Y., and Sheldon, J. E.: Intertidal marsh as a source of dissolved inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern U.S., Limnology and Oceanography, 45, 1743–1752, https://doi.org/10.4319/lo.2000.45.8.1743 Deleted: (%) 1743–1752			////	Deleted: https://doi.org/10.1146/annurev-m	arine-1 [593]
https://doi.org/10.4319/lo.1998.43.4.0657, 1998. Cai, WJ., Wiebe, W. J., Wang, Y., and Sheldon, J. E.: Intertidal marsh as a source of dissolved inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern U.S., Limnology and Oceanography, 45, 1743–1752, https://doi.org/10.4319/lo.2000.45.8.1743. Formatted Deleted: (4) 657–668. Formatted [595] Deleted: (4) 657–668. Deleted: (596) Deleted: (8) 1743–1752 Deleted: (8) 1743–1752 Formatted [598]	1471	Cai, WJ. and Wang, Y.: The chemistry, fluxes, and sources of carbon dioxide in the estuarine	,	>	
https://doi.org/10.4319/10.1998.43.4.0657, 1998. Cai, WJ., Wiebe, W. J., Wang, Y., and Sheldon, J. E.: Intertidal marsh as a source of dissolved inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern U.S., Limnology and Oceanography, 45, 1743–1752, https://doi.org/10.4319/10.2000.45.8.1743. Deleted: "& and Wang, Y. (1998): The chem[595] Deleted: (4), 657–668. Deleted: (4), 657–668. Deleted: (8), 1743–1752	1472	waters of the Satilla and Altamaha Rivers, Georgia, Limnology and Oceanography, 43, 657–668,			[592]
1474 Cai, WJ., Wiebe, W. J., Wang, Y., and Sheldon, J. E.: Intertidal marsh as a source of dissolved 1475 inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern 1476 U.S., Limnology and Oceanography, 45, 1743–1752, https://doi.org/10.4319/lo.2000.45.8.1743 1477 2000. 1478 Cai, WJ., Wiebe, W. J., Wang, Y., and Sheldon, J. E.: Intertidal marsh as a source of dissolved 1479 inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern 1470 U.S., Limnology and Oceanography, 45, 1743–1752, https://doi.org/10.4319/lo.2000.45.8.1743 1479 Deleted: (4) 657–668. 1470 Deleted: (8) 1743–1752 1470 [600]	1473	https://doi.org/10.4319/lo.1998.43.4.0657, 1998.			
1475 inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern 1476 U.S., Limnology and Oceanography, 45, 1743–1752, https://doi.org/10.4319/lo.2000.45.8.1743 1477 2000. 1478 Deleted: \(\text{Sign} \) 1479 Deleted: \(\text{Sign} \) 1479 ([598]	1474				
1475 inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern 1476 U.S., Limnology and Oceanography, 45, 1743–1752, https://doi.org/10.4319/lo.2000.45.8.1743 1477 2000. Formatted Deleted: ¶ [598] Deleted: (8), 1743–1752 Formatted [599]			/ /	\	
1476 U.S., Limnology and Oceanography, 45, 1743–1752, https://doi.org/10.4319/lo.2000.45.8.1743. Deleted: (8), 1743–1752 [600] 1477 2000. Formatted [599]	1475	inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern		Deleted: ¶	
17/1 2000,	1476	U.S., Limnology and Oceanography, 45, 1743–1752, https://doi.org/10.4319/lo.2000.45.8.1743	4	Deleted: (8), 1743–1752	
Formatted: Default Paragraph Font	1477	<u>2000.</u>		Formatted	[599]
				Formatted: Default Paragraph Font	

1	Manuscript submitted to <u>EGU</u> : Biogeosciences
1580	Call, M., Maher, D. T., Santos, I. R., Ruiz-Halpern, S., Mangion, P., Sanders, C. J., Erler, D. V.,
1581	Oakes, J. M., Rosentreter, J., Murray, R., and Eyre, B. D.; Spatial and temporal variability of
1582	carbon dioxide and methane fluxes over semi-diurnal and spring-neap-spring timescales in a
1583	mangrove creek Geochimica et Cosmochimica Acta, 150, 211–225
1584	https://doi.org/10.1016/j.gca.2014.11.023, 2015
1585	Chen, B., Cai, WJ., Brodeur, J. R., Hussain, N., Testa, J. M., Ni, W., and Li, Q.; Seasonal and
1586	spatial variability in surface pCO2 and air-water CO2 flux in the Chesapeake Bay, Limnology
1587	and Oceanography, 65, 3046–3065, https://doi.org/10.1002/lno.11573, 2020,
1588	Chen, CT. A., Huang, TH., Chen, YC., Bai, Y., He, X., and Kang, Y.: Air-sea exchanges of
1589	CO2 in the world's coastal seas, Biogeosciences, 10, 6509–6544, https://doi.org/10.5194/bg-10-
1590	6509-2013, 2013,
1591	Chu, S. N., Wang, Z. A., Gonneea, M. E., Kroeger, K. D., and Ganju, N. K.: Deciphering the
1592	dynamics of inorganic carbon export from intertidal salt marshes using high-frequency
1593	measurements, Marine Chemistry, 206, 7–18, https://doi.org/10.1016/j.marchem.2018.08.005,
1594	2018.
1595	Clark, J. B., Long, W., Tzortziou, M., Neale, P. J., and Hood, R. R.: Wind-Driven Dissolved
1596	Organic Matter Dynamics in a Chesapeake Bay Tidal Marsh-Estuary System, Estuaries and
1597	Coasts, 41, 708–723, https://doi.org/10.1007/s12237-017-0295-1, 2018.
1598	Clark, J. B., Long, W., and Hood, R. R.: A Comprehensive Estuarine Dissolved Organic Carbon
1599	Budget Using an Enhanced Biogeochemical Model, Journal of Geophysical Research:
1600	Biogeosciences, 125, e2019JG005442, https://doi.org/10.1029/2019JG005442, 2020.
1601	Correll, D. L., Jordan, T. E., and Weller, D. E.; Nutrient flux in a landscape: Effects of coastal
1602	land use and terrestrial community mosaic on nutrient transport to coastal waters, Estuaries, 15,
1603	431–442, https://doi.org/10.2307/1352388, 1992.
1604	Dai, M., Su, J., Zhao, Y., Hofmann, E. E., Cao, Z., Cai, WJ., Gan, J., Lacroix, F., Laruelle, G.
1605	G., Meng, F., Müller, J. D., Regnier, P. A. G., Wang, G., and Wang, Z.: Carbon Fluxes in the
1606	Coastal Ocean: Synthesis, Boundary Processes, and Future Trends, Annual Review of Earth and
1607	Planetary Sciences, 50, 593–626, https://doi.org/10.1146/annurev-earth-032320-090746, 2022,

λ	Deleted: JGR	
1	Deleted: ¶	
Ŋ	Deleted: .:	
/	Deleted: .;	$\overline{}$
	Deleted: .:	
	Deleted: .:	$\overline{}$
\	Deleted: .:	$\overline{}$
\	Deleted: .:	$\overline{}$
\	Deleted: .;	$\overline{}$
\	Formatted	([601])
١	Formatted	([602])
	Formatted	[603]
	Formatted	([604])
	Formatted	([605])
	Formatted	([606])
	Formatted	([607])
	Formatted	([608])
	Deleted: :	([000])
	Deleted: :	$\overline{}$
	Deleted: :	$\overline{}$
	Deleted: .	\longrightarrow
	Deleted: Temporal Variability	\longrightarrow
	Formatted	16001
	Formatted	([609])
	Formatted	([610])
	Formatted	([611])
	Formatted	[612]
	Deleted: Carbon Dioxide	[613]
	Deleted: Methane Fluxes	$\overline{}$
	Deleted: Semi-Diurnal and Spring-Neap-Spring	Timescales
	Formatted	$\overline{}$
	Formatted	([614])
	Formatted	([615])
	Deleted: Mangrove Creek.	([616])
	Deleted: 2015	\longrightarrow
	Deleted: . https://doi.org/10.1016/j.gca.2014.11.	023
	Formatted	$\overline{}$
	Formatted	[617]
	Formatted	([618])
	Deleted: ¶	([619])
	Deleted: &	\longrightarrow
		$\overline{}$
	Deleted: . (2020). Formatted	
	Formatted	([620])
88		(162111
		([621])
	Formatted	([622])
	Formatted Deleted:	([622])
	Formatted Deleted: . Formatted	
	Formatted Deleted: . Formatted Deleted: (12),	([622])
	Formatted Deleted: . Formatted Deleted: (12), Deleted: . https://doi.org/10.1002/lno.11573	([622])
	Formatted Deleted: . Formatted Deleted: (12), Deleted: . https://doi.org/10.1002/lno.11573 Formatted	([622]) ([623]) ([624])
	Formatted Deleted: . Formatted Deleted: (12), Deleted: .https://doi.org/10.1002/lno.11573 Formatted Formatted	([622])
	Formatted Deleted: . Formatted Deleted: (12), Deleted: .https://doi.org/10.1002/lno.11573 Formatted Formatted Deleted: ¶	([622]) ([623]) ([624])
	Formatted Deleted: . Formatted Deleted: (12), Deleted: .https://doi.org/10.1002/lno.11573 Formatted Formatted	([622]) ([623]) ([624])

Formatted Formatted

Formatted

Deleted: (10),

(... [627])

(... [628])

	Manuscript submitted to <u>EGU</u> : Biogeosciences
1727	Frankignoulle, M., Abril, G., Borges, A., Bourge, I., Canon, C., Delille, B., Libert, E., and
1728	Théate, JM.; Carbon Dioxide Emission from European Estuaries, Science, 282, 434–436.
1729	https://doi.org/10.1126/science.282.5388.434, 1998.
1730	Freeman, L. A., Corbett, D. R., Fitzgerald, A. M., Lemley, D. A., Quigg, A., and Steppe, C. N.:
1731	Impacts of urbanization and development on estuarine ecosystems and water quality. Estuaries
1732	and Coasts, 42, 1821–1838, https://doi.org/10.1007/s12237-019-00597-z, 2019,
1733	Freshwater Flow into Chesapeake Bay U.S. Geological Survey:
1734	https://www.usgs.gov/centers/chesapeake-bay-activities/science/freshwater-flow-chesapeake-
1735	bay, last access: 21 September 2023.
1736	Gallegos, C. L., Jordan, T. E., and Correll, D. L.: Event-scale response of phytoplankton to
1737	watershed inputs in a subestuary: Timing, magnitude, and location of blooms, Limnology and
1738	Oceanography, 37, 813–828, https://doi.org/10.4319/lo.1992.37.4.0813, 1992.
1739	Gallegos, C. L., Jordan, T. E., and Hedrick, S. S.: Long-term Dynamics of Phytoplankton in the
1740	Rhode River, Maryland (USA). Estuaries and Coasts, 33, 471–484.
1741	https://doi.org/10.1007/s12237-009-9172-x, 2010.
1742	Gattuso, JP., Frankignoulle, M., and Wollast, R.: Carbon and Carbonate Metabolism in Coastal
1743	Aquatic Ecosystems, Annual Review of Ecology and Systematics, 29, 405–434
1744	https://doi.org/10.1146/annurev.ecolsys.29.1.405, 1998,
1745	Gülzow, W., Rehder, G., Schneider, B., Deimling, J. S. v., and Sadkowiak, B.; A new method for
1746	continuous measurement of methane and carbon dioxide in surface waters using off-axis
1747	integrated cavity output spectroscopy (ICOS): An example from the Baltic Sea, Limnology and
1748	Oceanography: Methods, 9, 176–184, https://doi.org/10.4319/lom.2011.9.176, 2011.
1749	Hartmann, J. F., Gentz, T., Schiller, A., Greule, M., Grossart, HP., Ionescu, D., Keppler, F.
1750	Martinez-Cruz, K., Sepulveda-Jauregui, A., and Isenbeck-Schröter, M.; A. fast and sensitive
1751	method for the continuous in situ determination of dissolved methane and its δ13C-isotope ratio
1752	in surface waters, Limnology and Oceanography: Methods, 16, 273–285.
1753	https://doi.org/10.1002/lom3.10244, 2018,
1753	https://doi.org/10.1002/lom3.10244, 2018.

Deleted: JGR	
Deleted: &	
Formatted	[654]
Deleted: . (1998).	
Formatted	([655])
Deleted: .	([655])
Formatted	([656])
Deleted: (5388),	([656])
Formatted	([657])
Deleted: .	([037])
Formatted	([658])
Deleted: https://doi.org/10.1126/science	
Formatted	([659])
Deleted: ¶	([660])
Formatted	([661])
Deleted: (7), 1821–1838.	
Formatted	[662]
Deleted: ¶	([663])
Formatted	[[(1]
Formatted	([664])
Deleted: &	([665])
Formatted	
Deleted: . (1992).	([666])
Formatted	16(71)
Deleted: .	([667])
Formatted	[[(0]
Deleted: (4),	([668])
Formatted	
Deleted: .	([669])
Deleted: https://doi.org/10.4319/lo.1992	2 37 4 0813
Formatted	$\overline{}$
Formatted	([670])
Deleted: ¶	([671])
Deleted: (2), 471–484.	([672])
Formatted	([674])
Deleted: &nd Wollast, R. (1998):	([673])
Deleted: (1), 405–434	
Formatted	([677])
Formatted	[676]
Deleted: ¶	([678])
Deleted: .;	$\overline{}$
Deleted: .;	$\overline{}$
	$\overline{}$
Deleted: .:	
Deleted: _:	$\overline{}$
Deleted: . Deleted: New Method	$\overline{}$
Formatted	[679]
Formatted	([680])
Formatted	[681]
Formatted	[682]
Formatted	[683]
Formatted	([684])
Formatted	[685]

(... [685]

(... [686])

... [687]

(... [688]

Formatted Formatted

Deleted: M

Formatted

Formatted

Formatted

Deleted: Continuous Measurement

Deleted: Carbon Dioxide

I	Manuscript submitted to <u>EGU</u> : Biogeosciences
1891	Herrmann, M., Najjar, R. G., Kemp, W. M., Alexander, R. B., Boyer, E. W., Cai, WJ., Griffith,
1892	P. C., Kroeger, K. D., McCallister, S. L., and Smith, R. A.: Net ecosystem production and
1893	organic carbon balance of U.S. East Coast estuaries: A synthesis approach, Global
1894	Biogeochemical Cycles, 29, 96–111, https://doi.org/10.1002/2013GB004736, 2015.
1895	Herrmann, M., Najjar, R. G., Da, F., Friedman, J. R., Friedrichs, M. A. M., Goldberger, S.,
1896	Menendez, A., Shadwick, E. H., Stets, E. G., and St-Laurent, Pri Challenges in Quantifying Air-
1897	Water Carbon Dioxide Flux Using Estuarine Water Quality Data: Case Study for Chesapeake
1898	Bay, Journal of Geophysical Research: Oceans, 125, e2019JC015610,
1899	https://doi.org/10.1029/2019JC015610, 2020.
1900	Ho, D. T., Coffineau, N., Hickman, B., Chow, N., Koffman, T., and Schlosser, P.: Influence of
1901	current velocity and wind speed on air-water gas exchange in a mangrove estuary, Geophysical
1902	Research Letters, 43, 3813–3821, https://doi.org/10.1002/2016GL068727, 2016.
1903	Jiang, LQ., Cai, WJ., and Wang, Y. A comparative study of carbon dioxide degassing in
1904	river-and marine-dominated estuaries, Limnology and Oceanography, 53, 2603–2615, 2008.
1905	Joesoef, A., Huang, WJ., Gao, Y., and Cai, WJ.: Air-water fluxes and sources of carbon
1906	dioxide in the Delaware Estuary: spatial and seasonal variability, Biogeosciences, 12, 6085–
1907	6101, https://doi.org/10.5194/bg-12-6085-2015, 2015.
1908	Jordan, T. E. and Correll, D. L.: Continuous automated sampling of tidal exchanges of nutrients
1909	by brackish marshes, Estuarine, Coastal and Shelf Science, 32, 527–545.
1910	https://doi.org/10.1016/0272-7714(91)90073-K, 1991.
1911	Jordan, T. E., Correll, D. L., Peterjohn, W. T., and Weller, D. E.: Nutrient flux in a landscape:
1912	The Rhode River watershed and receiving waters, in: Watershed Research Perspectives, edited
1913	by: Correll, D. L., Smithsonian Institution Press, Washington, DC, 1986.
1914	Jordan, T. E., Correll, D. L., Miklas, J., and Weller, D. E.: Nutrients and chlorophyll at the
1915	interface of a watershed and an estuary, Limnol. Oceanogr., 36, 251–267,
1916	https://doi.org/10.4319/lo.1991.36.2.0251, 1991.
1917	Kennedy, H., Pagès, J. F., Lagomasino, D., Arias, Ortiz, A., Colarusso, P., Fourqurean, J. W.,
1918	Githaiga, M. N., Howard, J. L., Krause-Jensen, D., Kuwae, T., Lavery, P. S., Macreadie, P. I.,

Moved (insertion) [4] Formatted	Deleted: JGR	
Deleted: & Deleted: . (2020). Formatted	Moved (insertion) [4]	
Deleted: .(2020). Formatted	Formatted	([72
Formatted	Deleted: &	
Deleted:	Deleted: . (2020).	
Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted:	Formatted	([72
Deleted:	Formatted	
Deleted: . Formatted	Deleted: .	
Deleted: . Formatted	Deleted: (7),	
Formatted [72] Formatted [72] Deleted: https://doi.org/10.1029/2019JC015610 Formatted [72] Moved up [4]: Herrmann, M., Najjar, R. G., Kemp, W. M., Deleted: et al. (2015). Net ecosystem production an [72] Formatted [73] Deleted: (8), 3813–3821 [73] Deleted: & Deleted: (2008). Formatted [73] Formatted [73] Formatted [73] Deleted: [73] Formatted [73] Formatted [73] Formatted [73] Deleted: [73] Deleted: [74] Formatted [74] Deleted: (6), 527–545 [74] Formatted [74] Moved down [5]: Jordan, T. E., Correll, D. L., Miklas, J., Deleted: Weller, D. E. (1991). Nutrients and chlo [74] Formatted [74] Formatted [74] Formatted [74] Moved (insertion) [5] Deleted: Washington, DC: edited by: Correll, P [74] Formatted [74]		
Formatted [72: Formatted [72: Deleted: https://doi.org/10.1029/2019JC015610 Formatted [72: Moved up [4]: Herrmann, M., Najjar, R. G., Kemp, W. M., Deleted: et al. (2015). Net ecosystem production an [72: Formatted [73: Deleted: (8), 3813–3821 [73: Deleted: & Deleted: (2008). Formatted [73: Deleted: [74: Deleted: [74: Moved down [5]: Jordan, T. E., Correll, D. L., Miklas, J., Deleted: [74: Moved (insertion) [5] Deleted: [74: Moved (insertion) [5] Deleted: [74: Formatted [74: Moved (insertion) [5] Deleted: [74: Formatted [75: Formatted [74: Formatted [74: Formatted [74: Formatted	Formatted	<u> </u>
Formatted	Formatted	
Deleted: https://doi.org/10.1029/2019JC015610 ^{cd} Formatted	Formatted	
Formatted	Deleted: https://doi.org/10.1029/2019JC0156	
Moved up [4]: Herrmann, M., Najjar, R. G., Kemp, W. M., Deleted: et al. (2015). Net ecosystem production an([72] Formatted [73] Deleted: (8), 3813–3821 [73] Deleted: & Deleted: (2008). Formatted [73] Formatted [73] Deleted: (2008). Formatted [73] Deleted: Deleted: (2008). Formatted [73] Deleted: Deleted: [73] Deleted: Deleted: [73] Deleted: Deleted: [73] Deleted: [73] Deleted: [74] Formatted [73] Formatted [73] Formatted [73] Deleted: (20), 6085–6101 [74] Formatted [73] Deleted: (20), 6085–6101 [74] Formatted [74] Deleted: (6), 527–545 [74] Formatted [74] Moved down [5]: Jordan, T. E., Correll, D. L., Miklas, J., Deleted: & Weller, D. E. (1991). Nutrients and chloc [74] Formatted [74] Moved (insertion) [5] Deleted: Tormatted [74] Moved (insertion) [5] Deleted: Tormatted [74] Formatted [74] F		
Deleted: et al. (2015). Net ecosystem production an [72]		
Formatted [72: Deleted: (8), 3813–3821 [73: Deleted: & [73: Deleted: & [73: Formatted [73: Formatted [73: Formatted [73: Deleted: (6), Deleted: (6), Deleted: https://doi.org/10.4319/lo.2008.53.6.2603 Formatted [73: Formatted [73: Formatted [73: Formatted [73: Formatted [73: Deleted: \[\] [74: Formatted [74: Formatted [74: Deleted: \[\] [74: Deleted: \[\] [74: Moved down [5]: Jordan, T. E., Correll, D. L., Miklas, J., Deleted: \[\] Deleted: \[\] Washington, DC: edited by: Correll, P [74: Formatted [74: Moved (insertion) [5] Deleted: \[\] Deleted: \[\] Sormatted [74: Formatted		
Deleted: (8), 3813–3821 [72] Deleted: \(\) [73] Deleted: \(\) [73] Deleted: \(\) [73] Formatted [73] Formatted [73] Formatted [73] Deleted: \(\) https://doi.org/10.4319/lo.2008.53.6.2603 Formatted [73] Formatted [73] Formatted [73] Deleted: \(\) [74] Formatted [74] Formatted [74] Deleted: \(\) [74] Formatted [74] Moved down [5]: Jordan, T. E., Correll, D. L., Miklas, J., Deleted: \(\) Deleted: \(\) Weshington, DC: edited by: Correll, \(\) [74] Formatted [74] Formatted [74] Moved (insertion) [5] Deleted: \(\) Deleted: \(\) Deleted: \(\) Tormatted [74] Formatted [74]		
Deleted: \(\) [73] Deleted: \(\) [73] Deleted: \(\) [73] Formatted [73] Formatted [73] Formatted [73] Deleted: \(\) [73] Deleted: \(\)		
Deleted: & Deleted: . (2008). Formatted [73] Formatted [73] Formatted [73] Deleted: [73] Deleted: [73] Deleted: [73] Formatted [73] Formatted [73] Formatted [73] Formatted [73] Formatted [73] Deleted: ¶ [73] Deleted: ¶ [74] Deleted: ¶ [74] Deleted: (6), 527–545 [74] Formatted [74] Moved down [5]: Jordan, T. E., Correll, D. L., Miklas, J., Deleted: ¶ Deleted: & Weller, D. E. (1991). Nutrients and chlo [74] Formatted [74] Formatted [74] Moved (insertion) [5] Deleted: ¶ Deleted: [74] Formatted [74]		
Deleted: . (2008). Formatted		([73
Formatted [73] Formatted [73] Formatted [73] Deleted: Deleted: [73] Deleted: [73] Deleted: [73] Deleted: [73] Formatted [73] Formatted [73] Formatted [73] Formatted [73] Deleted: ¶ [73] Deleted: (20), 6085–6101 [74] Formatted [73] Deleted: ¶ [74] Deleted: (6), 527–545 [74] Formatted [74] Moved down [5]: Jordan, T. E., Correll, D. L., Miklas, J., Deleted: & Weller, D. E. (1991). Nutrients and chlo [74] Formatted [74] Formatted [74] Moved (insertion) [5] Deleted: ¶ Deleted: [74] Formatted [74]		
Formatted [73] Formatted [73] Deleted: [73] Deleted: [73] Deleted: [74] Formatted [73] Formatted [73] Formatted [73] Formatted [73] Formatted [73] Deleted: ¶ [74] Deleted: (20), 6085–6101 [74] Formatted [73] Deleted: ¶ [74] Deleted: (6), 527–545 [74] Formatted [74] Moved down [5]: Jordan, T. E., Correll, D. L., Miklas, J., Deleted: & Weller, D. E. (1991). Nutrients and chlo [74] Formatted [74]	Deleted: . (2008).	
Formatted [73] Deleted:	Formatted	([73
Deleted: Deleted: . Deleted: (6), Deleted: .https://doi.org/10.4319/lo.2008.53.6.2603 Formatted [73: Formatted [73: Formatted [73: Deleted: \(\)	Formatted	([73:
Deleted: . Deleted: (6), Deleted: . https://doi.org/10.4319/lo.2008.53.6.2603 Formatted [73: Formatted [73: Formatted [73: Deleted: ¶ [73: Deleted: Q0), 6085–6101 [74: Formatted [73: Deleted: ¶ [74: Deleted: ¶ [74: Deleted: ¶ [74: Moved down [5]: Jordan, T. E., Correll, D. L., Miklas, J., Deleted: & Weller, D. E. (1991). Nutrients and chlo [74: Moved (insertion) [5] Deleted: ¶ Deleted: [74: Formatted .	Formatted	([73
Deleted: (6), Deleted: . https://doi.org/10.4319/lo.2008.53.6.2603 Formatted [73: Formatted [73: Formatted [73: Formatted [73: Deleted: ¶ [74: Formatted [Deleted:	
Deleted: https://doi.org/10.4319/lo.2008.53.6.2603 Formatted	Deleted: .	
Formatted [73: Formatted [73: Formatted [73: Formatted [73: Deleted: ¶ [74: Formatted [74: Formatted [74: Formatted [74: Deleted: ¶ [74: Deleted: (6), 527–545 [74: Formatted [74: Formatted [74: Moved down [5]: Jordan, T. E., Correll, D. L., Miklas, J., Deleted: ¶ Deleted: & Weller, D. E. (1991). Nutrients and chlo [74: Deleted: [74: Moved (insertion) [5] Deleted: ¶ Deleted: ¶ Deleted: ¶ Deleted: ¶ Deleted: ¶ Formatted [74: F	Deleted: (6),	
Formatted [73: Formatted [73: Formatted [73: Deleted: ¶ [73: Deleted: (20), 6085–6101 [74: Formatted [73: Deleted: ¶ [74: Deleted: ¶ [74: Formatted [74: Moved down [5]: Jordan, T. E., Correll, D. L., Miklas, J., Deleted: & Weller, D. E. (1991). Nutrients and chlo [74: Deleted: [74: Formatted [74: Moved (insertion) [5] Deleted: ¶ Deleted: ¶ Deleted: ¶ Deleted: ¶ Deleted: ¶ Formatted [74:	Deleted: . https://doi.org/10.4319/lo.2008.53.	.6.2603
Formatted [73: Formatted [73: Formatted [73: Deleted: ¶ [73: Deleted: (20), 6085–6101 [74: Formatted [73: Deleted: ¶ [74: Deleted: ¶ [74: Formatted [74: Moved down [5]: Jordan, T. E., Correll, D. L., Miklas, J., Deleted: & Weller, D. E. (1991). Nutrients and chlo [74: Deleted: [74: Formatted [74: Moved (insertion) [5] Deleted: ¶ Deleted: ¶ Deleted: ¶ Deleted: ¶ Deleted: ¶ Formatted [74:	Formatted	([73-
Formatted [73: Formatted [73: Deleted: ¶ [73: Deleted: (20), 6085–6101 [74: Formatted [73: Deleted: (20), 6085–6101 [74: Formatted [74: Deleted: ¶ [74: Deleted: (6), 527–545 [74: Formatted [74: Moved down [5]: Jordan, T. E., Correll, D. L., Miklas, J., Deleted: & Weller, D. E. (1991). Nutrients and chlo [74: Deleted: & Washington, DC: edited by: Correll, D [74: Formatted [74: Moved (insertion) [5] Deleted: ¶ Deleted: [74: Formatted	Formatted	
Formatted [73] Deleted: \[\] [73] Deleted: \[\] [74] Formatted [74] Formatted [74] Deleted: \[\] [74] Deleted: \[\] [74] Peleted: \[\] [74] Formatted [74] Moved down [5]: Jordan, T. E., Correll, D. L., Miklas, J., Deleted: \[\] Washington, DC: edited by: Correll, D [74] Formatted [74] Moved (insertion) [5] Deleted: \[\] Deleted: \[\] Deleted: \[\] Formatted [74] Formatted [74] Formatted [74] Formatted [74]	Formatted	
Deleted: \(\) [73:] Deleted: \(\) [74:] Formatted [74:] Deleted: \(\) 527-545 [74:] Formatted [74:] Moved down [5]: Jordan, T. E., Correll, D. L., Miklas, J., Deleted: \(\) Deleted: \(\) Deleted: \(\) Worded: Washington, DC: edited by: Correll, D [74:] Formatted [74:] Moved (insertion) [5] Deleted: \(\) Deleted: \(\) Deleted: \(\) Tormatted [74:] Formatted [74:] Formatted [74:] Formatted [74:] Formatted [74:] Formatted [74:]	Formatted	
Deleted: (20), 6085–6101 [74] Formatted [73] Deleted: \(\) [74] Deleted: (6), 527–545 [74] Formatted [74] Moved down [5]: Jordan, T. E., Correll, D. L., Miklas, J., Deleted: \(\) Deleted: \(\) Weller, D. E. (1991). Nutrients and chlo [74] Deleted: \(\) Washington, DC: edited by: Correll, P [74] Moved (insertion) [5] Deleted: \(\) Deleted: \(\) Deleted: \(\) Formatted [74] Formatted [74] Formatted [74]	Deleted: ¶	
Formatted [73] Deleted: \(\) [73] Deleted: \(\) 527–545 [74] Formatted [74] Moved down [5]: Jordan, T. E., Correll, D. L., Miklas, J., Deleted: \(\) Deleted: \(\) Weller, D. E. (1991). Nutrients and chlo [74] Deleted: Washington, DC: edited by: Correll, D [74] Formatted [74] Moved (insertion) [5] Deleted: \(\) Deleted: \(\) Formatted [74] Formatted [74] Formatted [74] Formatted [74]	Deleted: (20), 6085–6101.	
Deleted: \(\) [74] Deleted: (6), 527–545.		
Deleted: (6), 527–545. Formatted Moved down [5]: Jordan, T. E., Correll, D. L., Miklas, J., Deleted: Deleted: Deleted: Weller, D. E. (1991). Nutrients and chlo [74: Moved (insertion) [5] Deleted: Deleted: Deleted: Formatted Moved (insertion) [5] Deleted: Formatted Moved (insertion) [5] Deleted: Formatted Moved (insertion) [5] Deleted: Formatted Moved (insertion) [74: Moved (insertio	Deleted: ¶	
Formatted [74: Moved down [5]: Jordan, T. E., Correll, D. L., Miklas, J., Deleted: ¶ Deleted: & Weller, D. E. (1991). Nutrients and chlo [74: Poleted: Washington, DC: edited by: Correll, P [74: Moved (insertion) [5] Deleted: ¶ Deleted: = Formatted [74: Formatted [75: Formatted	"	
Moved down [5]: Jordan, T. E., Correll, D. L., Miklas, J., Deleted: ¶ Deleted: & Weller, D. E. (1991). Nutrients and chlo [74. Deleted: Washington, DC: edited by: Correll, P [74. Formatted [74. Moved (insertion) [5] Deleted: ¶ Deleted: = Formatted [74. Formatted [75. Formatted		
Deleted: Deleted: & Weller, D. E. (1991). Nutrients and chlo 74. Deleted: . Washington, DC: edited by: Correll, D 74. Formatted		
Deleted: & Weller, D. E. (1991). Nutrients and chlo [74: Deleted: . Washington, DC: edited by: Correll, D [74: Formatted [74: Moved (insertion) [5]		, iviikids, J.,
Deleted: . Washington, DC: edited by: Correll, D [74] Formatted [74] Moved (insertion) [5] Deleted: ¶ Deleted: _ Formatted [74] Formatted [74] Formatted [74]		ad abl-
Formatted ([74: Moved (insertion) [5] Deleted: ¶ Deleted: _ Formatted ([74: Formatted ([74: Formatted ([74: Formatted ([75: Form		11 D
Moved (insertion) [5] Deleted: ¶ Deleted: _ Formatted		(7 .
Deleted: ¶ Deleted: = Formatted		([74
Deleted: _		
Formatted [74] Formatted [74] Formatted [75]	Deleted: ¶	
Formatted ([74:	Deleted: _	
Formatted [75]	Formatted	([74
E # 1	Formatted	([74
Formatted [74	Formatted	([75
	Formatted	([74

Deleted: <u>and</u>

Formatted

Formatted

Deleted: 2022. Species traits and geomorphic settin ... [753]

(... [751])

(... [752])

		Formatted	([754])
	Manuscript submitted to <u>FGU</u> : Biogeosciences	Deleted: (10) p.	
		Formatted	([755])
2026	Marbà, N., Masqué, P., Mazarrasa, I., Miyajima, T., Serrano, O., and Duarte, C. M.: Species	Deleted: .<	
		Formatted	[756]
2027	Traits and Geomorphic Setting as Drivers of Global Soil Carbon Stocks in Seagrass Meadows,	Deleted: ., & and Vachon, D. (202)	0): Challeng [757]
2028	Global Biogeochemical Cycles, 36, e2022GB007481, https://doi.org/10.1029/2022GB007481,	Formatted	[758]
2029	<u>2022.</u>	Deleted: (3), 53.	[759]
		Deleted: ¶	[760]
2030	Klaus, M. and Vachon, D.: Challenges of predicting gas transfer velocity from wind	Formatted Pales I (2) 1(1 1(8)	([761])
2031	measurements over global lakes. Aquat Sci, 82, 53, https://doi.org/10.1007/s00027-020-00729-9,	Deleted: (2), 161–168. Deleted: ¶	([762])
2032	2020.	Formatted	[7(2)]
		Deleted: &	[763]
2033	Lachin, J. M.: Fallacies of last observation carried forward analyses. Clinical Trials, 13, 161–	Formatted	([764])
2034	168, https://doi.org/10.1177/1740774515602688, 2016.	Deleted: . (2017).	([704])
		Formatted	([765])
2035	Laruelle, G. G., Goossens, N., Arndt, S., Cai, WJ., and Regnier, P.: Air-water CO2 evasion	Deleted: .	(11/100)
2036	from US East Coast estuaries, Biogeosciences, 14, 2441–2468, https://doi.org/10.5194/bg-14-	Formatted	([766])
2037	2441-2017, 2017.	Deleted: (9),	
2037	2441-2017, 2017,	Formatted	[767]
2038	Macreadie, P. J., Robertson, A. J., Spinks, B., Adams, M. P., Atchison, J. M., Bell-James, J.,	Deleted: .	
2039	Bryan, B. A., Chu, L., Filbee-Dexter, K., Drake, L., Duarte, C. M., Friess, D. A., Gonzalez, F.,	Deleted: https://doi.org/10.5194/bg-1	<u>4-2441-2017</u>
		Formatted	[768]
2040	Grafton, R. Q., Helmstedt, K. J., Kaebernick, M., Kelleway, J., Kendrick, G. A., Kennedy, H.,	Formatted	[769]
2041	Lovelock, C. E., Megonigal, J. P., Maher, D. T., Pidgeon, E., Rogers, A. A., Sturgiss, R.,	Deleted: ¶	
2042	Trevathan-Tackett, S. M., Wartman, M., Wilson, K. A., and Rogers, K.; Operationalizing	Formatted Deleteds, and Directs C.M. 2022	([770])
2043	marketable blue carbon, One Earth, 5, 485, 492, https://doi.org/10.1016/j.oneear.2022.04.005,	Deleted: . and Duarte, C.M., 2022. Formatted	[771]
		Deleted: .	[771]
2044	2022,	Deleted: (5):	
2045	Maher, D. T., and Eyre, B. D.: Carbon budgets for three autotrophic Australian estuaries:	Deleted: -	
		Formatted	([772])
2046	Implications for global estimates of the coastal air-water CO2, flux, Global Biogeochemical	Formatted	([773])
2047	Cycles, 26, https://doi.org/10.1029/2011GB004075, 2012,	Formatted	([774])
2048	Martin, C. R., Zeng, N., Karion, A., Dickerson, R. R., Ren, X., Turpie, B. N., and Weber, K. J.:	Deleted: ¶	
	\\!	Deleted: .,	
2049	Evaluation and environmental correction of ambient CO ₂ measurements from a low-cost NDIR	Deleted:	
2050	sensor, Atmospheric Measurement Techniques, 10, 2383–2395, https://doi.org/10.5194/amt-10-	Deleted: . (2012),	
2051	2383-2017, 2017.	Formatted	([775])
		Formatted	([776])
2052	Menendez, A., Tzortziou, M., Neale, P., Megonigal, P., Powers, L., Schmitt-Kopplin, P., and	Formatted	[777]
2053	Gonsior, M.: Strong Dynamics in Tidal Marsh DOC Export in Response to Natural Cycles and	Formatted Poletade flow Global Biographem (([778])
I		Deleted: flux, Global Biogeochem. (
	ackslash	Deleted: ¶	[780]
	39	Deleted: (7), 2383–2395.	([781])

Deleted: (7),... 2383–2395.

Formatted
Deleted: ¶

(... [783]) (... [782])

(... [784])

Deleted: JGR

		/	1	
	Manuscript submitted to <u>EGU</u> : Biogeosciences	/ /	F	ormatted
			D	eleted: (7), e2022JG006863.
2126	Episodic Events From Continuous Monitoring, Journal of Geophysical Research:	///	$/\!\!>$	eleted: ¶
2127	Biogeosciences, 127, e2022JG006863, https://doi.org/10.1029/2022JG006863, 2022.		/ >	ormatted
2127	Biogeoseienees, 121 020223 0000005, intps://doi.org/10.1027/20223 0000005, 2022.		/>	eleted: (9), e0222303.
2128	Miller, A. W., Reynolds, A. C., and Minton, M. S.: A spherical falling film gas-liquid	////	/>	eleted: ¶
2129	equilibrator for rapid and continuous measurements of CO2 and other trace gases, PLOS ONE,	$/\!/\!/$	/ >	ormatted eleted: et al. (2020).
2130	14. e0222303. https://doi.org/10.1371/journal.pone.0222303, 2019.	////	/>	ormatted
2130	11-2 COZZZZOO 11010 10110 110110 110110 110110 110110	////	D	eleted: .
2131	Najjar, R. G., Herrmann, M., Cintrón Del Valle, S. M., Friedman, J. R., Friedrichs, M. A. M.,	////	D	eleted: <mark>(1),</mark>
2132	Harris, L. A., Shadwick, E. H., Stets, E. G., and Woodland, R. J.; Alkalinity in Tidal Tributaries	///	D	eleted: <mark>.</mark>
2133	of the Chesapeake Bay, Journal of Geophysical Research: Oceans, 125, e2019JC015597,		F	ormatted
			\succ	ormatted
2134	https://doi.org/10.1029/2019JC015597, 2020.		\succ	ormatted
2135	Oreska, M. P. J., McGlathery, K. J., Aoki, L. R., Berger, A. C., Berg, P., and Mullins, L.: The		\succ	eleted: ¶ eleted: ., &
2136	greenhouse gas offset potential from seagrass restoration, Sci Rep, 10, 7325,		/>	eleted: . (2001).
			/ >	ormatted
2137	https://doi.org/10.1038/s41598-020-64094-1, 2020.		F	ormatted
2138	Raymond, P. A. and Cole, J. J.; Gas Exchange in Rivers and Estuaries: Choosing a Gas Transfer		F	ormatted
2139	Velocity, Estuaries, 24, 312–317, https://doi.org/10.2307/1352954, 2001.		\succ	ormatted
2137	Volocity, Estaurios, E. 512 517, and S. Hubbs. Hubb		\succ	eleted: .
2140	Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman,		\sim	eleted: (2),
2141	D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais, P., and	M	$\backslash \succ$	eleted: https://doi.org/10.2307/1352954
2142	Guth, P. Global carbon dioxide emissions from inland waters. Nature, 503, 355–359.	M/M	$\backslash \succ$	ormatted
			\sim	ormatted
2143	https://doi.org/10.1038/nature12760, 2013.	The same of the sa	F	ormatted
2144	Rose, K. C., Neale, P. J., Tzortziou, M., Gallegos, C. L., and Jordan, T. E.: Patterns of spectral,		F	ormatted
2145	spatial, and long-term variability in light attenuation in an optically complex sub-estuary.		D	eleted: ¶
			>	ormatted
2146	Limnology and Oceanography, 64, S257–S272, https://doi.org/10.1002/lno.11005, 2019.		$\square >$	eleted: &
2147	Rosentreter, J. A., Wells, N. S., Ulseth, A. J., and Eyre, B. D.: Divergent Gas Transfer Velocities		$\parallel >$	ormatted eleted: . (2013).
2148	of CO2, CH4, and N2O Over Spatial and Temporal Gradients in a Subtropical Estuary, Journal		$\parallel >$	eleted: . (2013).
2149	of Geophysical Research: Biogeosciences, 126, e2021JG006270	$\mathbb{N}\mathbb{N}$	$\parallel >$	eleted: (7476), Article 7476.
		$\parallel\parallel\parallel$	\vdash	ormatted
2150	https://doi.org/10.1029/2021JG006270, 2021.		F	ormatted
2151	Saba, G. K., Goldsmith, K. A., Cooley, S. R., Grosse, D., Meseck, S. L., Miller, A. W., Phelan,		F	ormatted
2152	B., Poach, M., Rheault, R., St. Laurent, K., Testa, J. M., Weis, J. S., and Zimmerman, R.:		\sim	eleted: https://doi.org/10.1038/nature12760
ļ		mannan .	>=	ormatted
2153	Recommended priorities for research on ecological impacts of ocean and coastal acidification in	annumi.	$\parallel >$	eleted: ¶
				eleted: (S1), S257-S272.
	40		$1 \succ$	ormatted
	40	- 11	1	

Deleted: ¶

Formatted

Deleted: ¶ **Deleted:** et al. (2019). Formatted

Deleted: (10),... e2021JG006270.

Deleted: JGR Deleted:

> (... [785]) (... [786]) (... [787]) (... [788]) (... [789])

> (... [790])

(... [791])

... [792] (... [793]) (... [794])

(... [795]) <u>... [797]</u> (... [798]) ... [796]

(... [799]) [800] ... [801] ... [802]

... [803]

(... [804]

(... [805]) (... [806]) (... [807])

(... [808] (... [809] (... [811]) (... [810]) (... [812])

(... [813])

... [814]

... [815]

(... [816]

	Manuscript submitted to <u>EGU</u> : Biogeosciences	Deleted: JGR
2223	the <u>U.S.</u> Mid-Atlantic, Estuarine, Coastal and Shelf Science, 225, 106188,	Deleted: USS. Mid-Atlantic. ([817])
		Deleted: :
2224	https://doi.org/10.1016/j.ecss.2019.04.022, 2019.	Formatted ([818])
2225	Saucier, W. J.; Principles of Meteorological Analysis, Dover Publications, 468 pp., 2003,	Deleted: ¶
		Deleted: <u>. (2003).</u>
2226	Song, S., Wang, Z. A., Kroeger, K. D., Eagle, M., Chu, S. N., and Ge, J.; High-frequency	Deleted: _
2227	variability of carbon dioxide fluxes in tidal water over a temperate salt marsh, Limnology and	Deleted: . New York
2228	Oceanography, 68, 2108–2125, https://doi.org/10.1002/lno.12409, 2023,	Formatted [819]
		Formatted[820]
2229	Spada, S., Quartagno, M., Tamburini, M., and Robinson, D.: orcutt: Estimate Procedure in Case	Formatted [821]
2230	of First Order Autocorrelation, 2018,	Formatted ([822]) Deleted: ←
		Deleted: &
2231	Sun, X., Alcalde, J., Bakhtbidar, M., Elío, J., Vilarrasa, V., Canal, J., Ballesteros, J., Heinemann,	Deleted: . (2023).
2232	N., Haszeldine, S., Cavanagh, A., Vega-Maza, D., Rubiera, F., Martínez-Orio, R., Johnson, G.,	Formatted ([823])
2233	Carbonell, R., Marzan, I., Travé, A., and Gomez-Rivas, E.: Hubs and clusters approach to unlock	Formatted ([824])
2234		Formatted ([825])
	the development of carbon capture and storage – Case study in Spain, Applied Energy, 300,	Deleted: .
2235	117418, https://doi.org/10.1016/j.apenergy.2021.117418, 2021.	Formatted [826]
2236	Susquehanna River at Conowingo, MD U.S. Geological Survey:	Deleted: .
2237	https://waterdata.usgs.gov/monitoring-location/01578310/, last access: 28 September 2023.	Formatted[827]
2237	intps://waterdata.usgs.gov/momtoring-tocation/015/6510/, last access. 26 September 2025.	Deleted: Formatted [828]
2238	Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N.,	([025])
2239	Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson, J., and Nojiri, Y.: Global sea-air CO2 flux	Deleted:
2240	based on climatological surface ocean pCO2, and seasonal biological and temperature effects.	Deleted: <u>https://doi.org/10.1016/j.apenergy.202 ([832])</u>
		Deleted: et al. (2002).
2241	Deep Sea Research Part II: Topical Studies in Oceanography, 49, 1601–1622	Formatted [833]
2242	https://doi.org/10.1016/S0967-0645(02)00003-6, 2002,	Deleted:
22.42		Formatted ([834])
2243	Thoning, K. W., Crotwell, A. M., and Mund, J. W.: NOAA Global Monitoring Laboratory	Deleted: (9), 1601–1622 [836]
2244	Carbon Cycle and Greenhouse Gases Group Continuous Insitu Measurements of CO2 at Global	Formatted[835]
2245	Background Sites, 1973-Present, https://doi.org/10.15138/YAF1-BK21, 2023,	Formatted
2246	Tzortziou, M., Neale, P. J., Osburn, C. L., Megonigal, J. P., Maie, N., and JaffÉ, R.: Tidal	Formatted ([839])
I		Moved down [6]: Tzortziou, M., Neale, P. J., Megonigal, J.
2247	marshes as a source of optically and chemically distinctive colored dissolved organic matter in	Deleted: ¶
2248	the Chesapeake Bay, Limnology and Oceanography, 53, 148–159,	Deleted: & Butterworth, M. (2011). Spatial gradien [840]
2249	https://doi.org/10.4319/lo.2008.53.1.0148, 2008,	Deleted: (1), 148–159 [842]
		Formatted [841]
		Formatted [843]

		Deleted. JOA)
		Moved (insertion) [6]	
	Manuscript submitted to EGU: Biogeosciences	Deleted: ¶	
		Deleted: ., 2022.	
2325	Tzortziou, M., Neale, P. J., Megonigal, J. P., Pow, C. L., and Butterworth, M.: Spatial gradients	Formatted	([844])
2326	in dissolved carbon due to tidal marsh outwelling into a Chesapeake Bay estuary, Marine	Formatted	([846])
		Formatted	[847]
2327	Ecology Progress Series, 426, 41–56, https://doi.org/10.3354/meps09017, 2011.	Formatted	([845])
2328	Unsworth, R. K. F., Cullen-Unsworth, L. C., Jones, B. L. H., and Lilley, R. L. The planetary role	Deleted: (6606), pp.609-613	\longrightarrow
		Formatted	([848])
2329	of seagrass conservation, Science, 377, 609–613, https://doi.org/10.1126/science.abq6923, 2022,	Formatted	([849])
2330	Upstill-Goddard, R. C.: Air-sea gas exchange in the coastal zone, Estuarine, Coastal and Shelf	Deleted: ←	(1010)
2331	Science, 70, 388–404, https://doi.org/10.1016/j.ecss.2006.05.043, 2006,	Deleted: . (2006): Air–sea gas excl	hange in the co[851]
2551	Science, 10, 366-404, https://doi.org/10.1010/j.ccss.2000.03.043, 2000.	Formatted	([852])
2332	Van Dam, B. R., Edson, J. B., and Tobias, C.: Parameterizing Air-Water Gas Exchange in the	Formatted	([850])
2333	Shallow, Microtidal New River Estuary, Journal of Geophysical Research: Biogeosciences, 124	Deleted: (3), 388–404.	[853]
		Formatted	([854])
2334	2351–2363, https://doi.org/10.1029/2018JG004908, 2019.	Deleted: U.S. Geological Survey (20)	23). Freshwate [855]
2335	Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean. Journal of	Deleted: (7), 2351–2363.	[857]
		Formatted	([856])
2336	Geophysical Research: Oceans, <u>97, 7373–7382, 1992</u> .	Deleted: ¶ Formatted	([858])
2337	Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean revisited.	Deleted: (C5),	([859])
2338	Limnology and Oceanography: Methods, 12, 351–362, https://doi.org/10.4319/lom.2014.12.351,	Deleted: ¶	([860])
		Deleted: (6), 351–362.	([862])
2339	<u>2014.</u>	Formatted	[861]
2340	Wanninkhof, R. and McGillis, W. R.: A cubic relationship between air-sea CO2 exchange and	Deleted: ¶	[863]
2341	wind speed, Geophysical Research Letters, 26, 1889–1892	Deleted: (13), 1889–1892.	[865]
		Formatted	[864]
2342	https://doi.org/10.1029/1999GL900363, 1999.	Deleted: et al. (2013)ruber, N., Do	
2343	Wanninkhof, R., Park, GH., Takahashi, T., Sweeney, C., Feely, R., Nojiri, Y., Gruber, N.,	Deleted: (3), 1983–2000.	([868])
2344	Doney, S. C., McKinley, G. A., Lenton, A., Le Quéré, C., Heinze, C., Schwinger, J., Graven, H.,	Formatted	([867]) ([869])
	///	Deleted: ¶	([869])
2345	and Khatiwala, S.: Global ocean carbon uptake: magnitude, variability and trends	Deleted: +10, and Susan L.	$\overline{}$
2346	Biogeosciences, 10, 1983–2000, https://doi.org/10.5194/bg-10-1983-2013, 2013.	Formatted	([870])
2347	Waycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S.,	Deleted: <u>. (2009).</u>	
		Formatted	([871])
2348	Calladine, A., Fourqurean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W.	Formatted	([872])
2349	J., Short, F. T., and Williams, S. L., Accelerating loss of seagrasses across the globe threatens	Deleted: _	
2350	coastal ecosystems, Proceedings of the National Academy of Sciences, 106, 12377–12381	Deleted: (30):	\longrightarrow
2351	https://doi.org/10.1073/pnas.0905620106, 2009.	Deleted: -	
		Deleted: Formatted	[072]
•	\setminus	Formatted	[873] ([874])
		Formatted	([874])
		N. C.	([0,0])

Formatted

(... [876])

Deleted: JGR

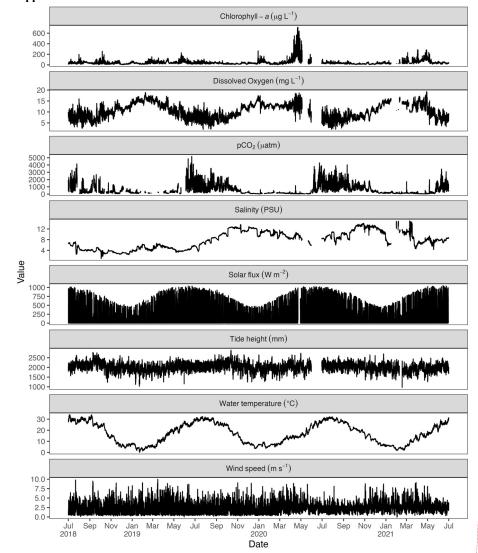
1	Manuscript submitted to <u>FGU</u> : <u>Biogeosciences</u>		Deleted: JGR
2442	Weiss, R. and Price, B.: Nitrous oxide solubility in water and seawater. Marine Chemistry, &		Deleted: ., & and Price, B. (1980): Nitrous oxide solubility in water and seawater [877]
2443	347–359, https://doi.org/10.1016/0304-4203(80)90024-9, 1980,	+	Deleted: (4), 347–359. ([879])
2444	Winslow, L. A., Zwart, J. A., Batt, R. D., Dugan, H. A., Woolway, R. I., Corman, J. R., and		Formatted [878] Formatted: Default Paragraph Font
2445	Read, J. S.: LakeMetabolizer: An R package for estimating lake metabolism from free-water		Deleted: \(\begin{array}{ccccc} \text{Contacted: Person Formation } \\ \text{Contacted: } \\ Contacted:
2446	oxygen using diverse statistical models, Inland Waters, 6, https://doi.org/10.1080/IW-6.4.883.		Deleted: : Journal of the International Society of Limnology
2447	2016.		Deleted: (4).
21177	2010	1//	Formatted: Font: Not Italic
2448	Xiao, S., Liu, L., Wang, W., Lorke, A., Woodhouse, J., and Grossart, HP., A Fast-Response		Formatted: Font: Not Italic
2449	Automated Gas Equilibrator (FaRAGE) for continuous in situ measurement of CH _A and CO ₂	M.	Formatted: Default Paragraph Font
			Deleted: .:
2450	dissolved in water, Hydrology and Earth System Sciences, 24, 3871–3880.		Deleted: .;
2451	https://doi.org/10.5194/hess-24-3871-2020, 2020.		Deleted: .:
			Deleted: .;
2452	Zeebe, R. E. and Wolf-Gladrow, D.: CO2 in Seawater: Equilibrium, Kinetics, Isotopes, Gulf		Formatted: Default Paragraph Font
2453	Professional Publishing, 382 pp., 2001.		Formatted: Default Paragraph Font
			Formatted: Default Paragraph Font
2454	T		Formatted: Default Paragraph Font
I			Deleted: .:
			Deleted: _
			Formatted: Default Paragraph Font
			Formatted: Default Paragraph Font
			Deleted: C
			Deleted: Situ Measurement
			Formatted: Default Paragraph Font
			Formatted [881]
			Deleted: D
			Deleted: Water (2020).
			Deleted: (7).
			Deleted: . https://doi.org/10.5194/hess-24-3871-
			Formatted: Default Paragraph Font
			Formatted [882]

Formatted: Default Paragraph Font
Formatted: Default Paragraph Font

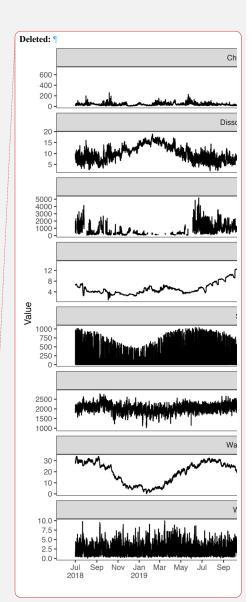
Formatted: Font: Not Italic

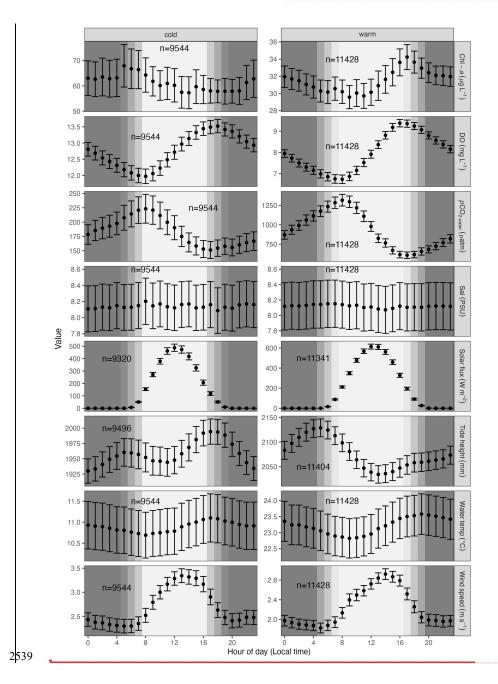
(... [883])

(... [884])


Deleted: ¶

Deleted: .


Deleted: ¶



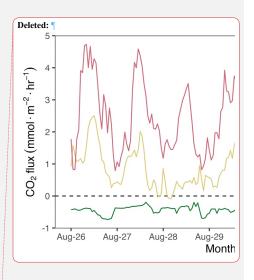
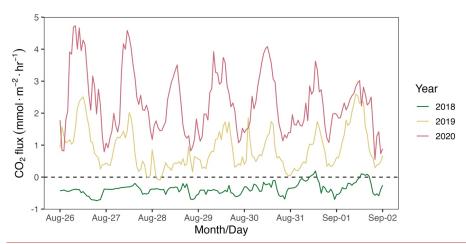

2536

Fig. S1. Plot of all raw values from environmental variables for the same time period as CO₂ flux (July 2018–July 2021).



Formatted: Font: Not Bold

Fig. S2 Average hourly values (95% CI) of environmental variables across 24 hours of the day (July 2018–July 2021) in cold and warm seasons. Light/dark background indicates day/night conditions.

<u>Fig. S3.</u> Hourly CO₂ flux estimates for the week of August 26 to Sept<u>ember</u> 2 where CO₂ flux status differs among years.

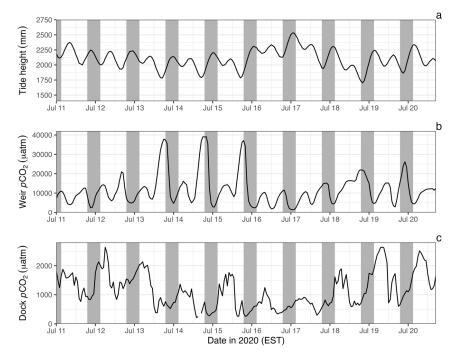


Fig. S4. Simultaneous pCO_2 measurements (1,hr intervals) from SERC dock (panel c) and the mouth of the single tidal creek that drains the Kirkpatrick Marsh (panel b) (11–20 Jul 2020) indicate that dissolved CO_2 varies at the dock according to a day/night cycle while CO_2 in the marsh tidal creek rises and falls inversely with tide height (panel a), indicating outwelling of marsh derived CO_2 (e.g., root respiration, pore and groundwater).

2556

Deleted: S3
Deleted: Deleted: -