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Abstract 14 

This study assesses the impact of different flux parameterizations and model parameters on simulations of snow depth. 15 

Through a sensitivity analysis in a process-based snow model based on the SUMMA framework, various options for 16 

parametrizing snow processes and adjusting parameter values were evaluated to identify optimal modeling 17 

approaches, understand sources of uncertainty, and determine reasons for model weaknesses. The study focused on 18 

model parameterizations of precipitation partitioning, liquid water flow, snow albedo, atmospheric stability, and 19 

thermal conductivity. In this study, sensitivity analysis (SA) is performed using the one-at-a-time (OAT) SA method 20 

as well as the Morris Method to estimate Elementary Effects, aiming to further explore the magnitudes and patterns 21 

of sensitivities.  The sensitivity analyses in this study are used to evaluate process parameterizations, model parameter 22 

values, and model configurations. Performance metrics such as the Nash-Sutcliffe Efficiency (NSE), the Kling-Gupta 23 

Efficiency (KGE), the root mean squared log error (RMSLE), and mean are used to assess the similarity between 24 

simulated and observed data. Bootstrapping is employed to estimate the variability of mean Elementary Effects and 25 

establish confidence bounds. The key findings of this research indicate that sensitivity analysis of snow modelling 26 

parameters plays a crucial role in understanding their impact on decision outcomes. The study identified the most 27 

sensitive parameters, such as critical temperature and thermal conductivity of snow, as well as liquid water drainage 28 

parameters. It was observed that water balance fluxes exhibited higher sensitivity than energy balance fluxes in 29 

simulating snow processes. The analysis also highlighted the importance of accurately representing water balance 30 

processes in snow models for improved accuracy and reliability. A key finding in this study is that the sensitivity of 31 

performance metrics to model parameters is contaminated by equifinality (i.e., parameter perturbations lead to similar 32 

performance metrics for quite different snow depth time series), and hence many published parameter sensitivity 33 

studies may provide misleading results. These findings have implications for snow hydrology research and water 34 

resource management, providing valuable insights for optimizing snow modelling and enhancing decision-making. 35 

 36 

Keywords: Snow Modelling, Sensitivity Analysis, Morris Method, Performance Metrics, Equifinality, SUMMA 37 

 38 

1 Introduction 39 

 40 

Hydrological models differ in their conceptualization and implementation to the extent that there is typically little 41 

agreement regarding "correct" model structures, particularly at larger spatial scales (Clark et al., 2011; Gupta et al., 42 
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2012). Hydrological modelling decisions are often made in an ad-hoc manner, depending on the purpose of the 43 

modelling study, the understanding of hydrological processes, the availability of data for the model evaluation, and 44 

other considerations (Clark et al., 2011). The wide range of decisions made by various modelers to account for the 45 

complex and interdisciplinary challenge of developing process-based hydrological models has led to the proliferation 46 

of hydrological models (Clark et al., 2011; 2015b), making it difficult to clearly attribute model performance 47 

differences to specific decisions that are made as part of the model development process (Koster and Milly, 1997). As 48 

a result, a key challenge for the hydrological modelling community has been to evaluate the underlying hypotheses of 49 

hydrological models, and to further improve models for specific applications (Clark et al., 2011).  50 

 51 

The objective of this study is to conduct a sensitivity analysis to evaluate the impact of alternative flux 52 

parameterizations and different model parameters on snow depth in a process-based snow model. To this end, this 53 

study uses the SUMMA framework (described in the next section) to conduct a sensitivity analysis on snow modelling 54 

processes in the Reynolds Mountain East research catchment. An Elementary Effects method is used to evaluate the 55 

options used to parametrize snow modelling processes and the parameter values that are used in the model 56 

parametrizations. This work is useful to identify preferable modelling approaches, understand various sources of 57 

model uncertainty, and determine specific reasons for model weaknesses. The snow process parameterizations we 58 

consider include precipitation partitioning, liquid water flow, snow albedo, atmospheric stability, and thermal 59 

conductivity. 60 

The remainder of this paper is organized as follows. Section 2 describes the methods used to conduct sensitivity 61 

analysis of process-based snow models. Section 3 presents the results and discussion, and Section 4 provides some 62 

key conclusions from this study. 63 

2 Methodology  64 

2.1 Study Area 65 

Reynolds Mountain East is located in southwestern Idaho (Flerchinger et al., 2012; Reba et al., 2009, 2014, 2011, 66 

2012). It is a headwater catchment in southwestern Idaho's Reynolds Creek Experimental Watershed (RCEW) (Robins 67 

et al., 1965). RCEW's geography varies from a flat valley in the north to steep mountain slopes in the south, with an 68 

elevation range of 1099 to 2244 m above mean sea level and an area of 239 km2 (Sridhar and Nayak, 2010). The 69 

elevation over RCEW causes orographic effects, which cause a decrease in temperature and a rise in precipitation. 70 

The lower elevations of RCEW receive 4-5 times less precipitation than those at higher elevations (Hanson et al., 71 

2001). At higher elevations, snow predominates, while rain takes over at lower elevations and in the watershed's valley 72 

regions. The Reynolds Mountain East (RME) watershed receives approximately 900 mm of precipitation each year, 73 

with over 70% of it falling as snow, and about 520 mm of this precipitation exits the basin as stream flow (Seyfried et 74 

al., 2009). Snow tends to accumulate in deep drifts, often exceeding 2 meters in sheltered areas (Winstral and Marks, 75 

2014). 76 

 77 

The data from the “sheltered site” (i.e., the Aspen site) in Reynolds Mountain East (RME) was used to investigate 78 

how simulations of snow depth are affected by the process parametrizations and parameter values, including the 79 

thermal conductivity of snow, snow albedo, and the critical temperature that is used to distinguish rain from snow. 80 

The sheltered site is located in a clearing in a forest, where the grasses are covered by snow early in the snow season 81 

and vegetation has little influence on how the snow depth changes during the year (Figure 1). In addition, protected 82 

locations have modest wind speeds (Reba et al., 2011), thus turbulent heat fluxes have less impact on the surface 83 

energy balance than in more exposed locations. The annual development of the snowpack is mostly governed by the 84 

surface radiation budget. The available observed snow depth data spans from October 1999 to October 2008. 85 
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 86 
Figure 1: Location map of Reynolds Mountain East Catchment (Reba et al. 2012, 2014)  87 

 88 

This study simulates snow processes for the period November 2005 to June 2006. This choice was made to reduce the 89 

computational effort required for modelling and analysis. Additionally, the time interval between November and June 90 

was specifically chosen as it reflects a complete cycle of snow accumulation and melting, with non-zero snow depth 91 

values throughout this period. However, selecting the 2005-2006 year does not offer any advantage over choosing 92 

other years since the snow depth pattern remains almost consistent throughout the recorded period.  93 

2.2 The SUMMA multiple hypothesis framework 94 

A model can be considered as an assemblage of coupled hypotheses that describe dominant hydrological processes 95 

(Clark et al., 2011). In this respect, it is important to investigate hypotheses that define individual processes and their 96 

connections within the overall system (Clark et al., 2011); i.e., to adopt the "multiple working hypotheses" approach 97 

defined by Chamberlin (1890) to investigate multiple rational explanations for the phenomenon being studied. This 98 

approach also provides a systematic approach to model evaluation and improvement (Clark et al., 2011). Some 99 

examples of multiple hypothesis frameworks are JULES (Best et al., 2011), CLM (Lawrence and Chase, 2007), Noah-100 

MP (Niu et al., 2011), and SUMMA (Clark et al. 2015b).  101 

This study uses the Structure for Unifying Multiple Modeling Alternatives (SUMMA), a flexible, extensible, and 102 

modular framework to simulate hydrological processes. SUMMA’s modular structure enables incorporating different 103 

model representations of physical processes in a common set of conservation equations, which makes it possible to 104 

systematically evaluate different parameterizations of the same process and understand the impact of different 105 

modelling assumptions on model behavior (Clark et al. 2015b). SUMMA is an example of a multiple hypothesis 106 

framework (Clark et al., 2011), which enables users to identify process parameterizations consistent with theoretical 107 

expectations and observed data, and to characterize model uncertainty through much more extensive and detailed 108 

coverage of the model hypothesis space than typical small ensemble multimodel applications.  109 
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2.3 Snow Modelling Parametrizations and Parameters in SUMMA 110 

SUMMA includes five key processes for snow modelling; 1. Precipitation partitioning; 2. Liquid water flux through 111 

snowpack; 3. Snow albedo; 4. Atmospheric stability; and 5. Thermal conductivity. The precipitation partitioning and 112 

liquid water in snowpack flux are used in the water balance equations, whereas albedo, atmospheric stability, and 113 

thermal conductivity are used in the energy balance equations. The summary of the parameters are listed in Table 1. 114 

 115 

Figure 2 summarizes the water and energy balance fluxes that are calculated in SUMMA. This study employs various 116 

parametrizations of these fluxes for the snowpack simulation, which are detailed below. 117 

 118 

 119 

Figure 2: The water and energy balance fluxes used in the SUMMA snow modelling simulations. 120 

 121 

Each hydrologic process can be expressed by one or more different parameterizations (i.e., equations or formulas). 122 

Each parameterization includes different numbers of parameters. Table 1 summarizes all the parameters together with 123 

their associated range used for snow modeling, on which sensitivity analysis will be conducted. The detailed 124 

explanation of each parameterization is explained in Appendix A. 125 

 126 

 127 

 128 

 129 

 

  

Snowpack 

Precipitation 

Snow Rain 

Solar 

Radiation 

(Albedo) 

Longwave 

Radiation 

Turbulent 

Fluxes 

(Stability) 

(Thermal Conductivity) 

(Partitioning) 

Snowpack Outflow 

(Drainage Parameterization) 

Water balance Energy balance 

4

https://doi.org/10.5194/egusphere-2023-3049
Preprint. Discussion started: 5 March 2024
c© Author(s) 2024. CC BY 4.0 License.



 

   

 
Table 1: Summary and range of parameters used for sensitivity analysis  130 

Flux Parameterizations Parameters (Unit) Default 

value 

Min.  Max.  

Precipitation 

flux 

Function of wet-bulb 

temperature (Marks et al., 

2013) 

Critical temperature (K) 273.16 272.16 274.16 

 

 

Liquid water 

in snowpack 

flux 

 

Gravity drainage (Colbeck, 

1976; Colbeck and 

Anderson, 1982) 

Capillary retention (K) 0.06 0.01 0.1 

Hydraulic conductivity of snow 

(m s-1) 

0.015 0.005 0.05 

Exponent for meltwater flow (-) 3.0 1.0 5.0 

 

 

Atmospheric 

stability 

 

Standard (Anderson, 1976) Critical Richardson Number (-) 0.2 0.1 1.0 

Louisinv (Louis, 1979) Louis79 “b” parameter (-) 9.4 9.2 9.6 

MahrtExp (Mahrt, 1987) Mahrt87 eScale (-) 1.0 0.5 2.0 

Thermal 

conductivity 

smnv 2000 (Smirnova et al., 

2000) 

Fixed thermal conductivity (W 

K-1 m-1) 

0.35 0.10 1.00 

 

 

 

Albedo 

Constant decay (Verseghy, 

1991) 

Constant albedo decay rate (-) 1.0d+6 1.0d+5 5.0d+6 

Variable decay (Yang et al., 

1997) 

Variable albedo decay rate (-) 1.0d+6 1.0d+5 5.0d+6 

Temperature scale growth (-) 0.04 0.02 0.06 

Albedo soot load (-) 0.3 0.1 0.5 

 131 

 132 

2.4 Sensitivity Analysis  133 

Sensitivity analysis is used to evaluate how the model responds to differences in “input factors” in the model 134 

instantiation. The input factors can be the meteorological forcing data, the model parameters, or the subjective 135 

decisions that are made as part of model development (e.g., the choice of process parameterizations). The model 136 

response to differences in input factors are typically characterized using summary statistics of model behavior (e.g., 137 

an average model flux) or summary statistics of model performance (e.g., the sum of squared differences between 138 

model simulations and observations). 139 
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In this study, sensitivity analysis is performed in SUMMA using local or one-at-a-time (OAT) methods as well as the 140 

Morris Method to estimate Elementary Effects to assess the selection of parameterizations (i.e., equations used to 141 

parameterize specific processes), the selection of model parameters used in the parameterizations (i.e., the model 142 

equations), and the model discretization configurations (Clark et al. 2015b). The sensitivity analysis was completed 143 

using the online collaboration environment operated by the Consortium of Universities for the Advancement of 144 

Hydrologic Science, Incorporated (CUAHSI). CUAHSI provides a cloud computing service called CUAHSI 145 

Community JupyterHub (Tarboton et al., 2024), which includes pre-installed Python wrappers around the SUMMA 146 

model (pySumma). 147 

The following sections provide details of the summary statistics examined as well as the Elementary Effects (EE) 148 

method that is used for sensitivity analysis. 149 

2.4.1 The Elementary Effects method (Morris method) 150 

The Elementary Effects (EE) method is a simple yet efficient approach to sifting through numerous input factors in a 151 

model and identifying the significant ones. Morris conceived the concept of elementary effects in 1991, suggesting 152 

the creation of two sensitivity measures to gauge the impact of input factors as negligible, linear and additive, or 153 

nonlinear and intertwined with other factors (Saltelli et al., 2008).  154 

Based on the one‐at‐a‐time method, an individual trajectory is created by perturbing each parameter 𝑝𝑖  by a variation 155 

Δi. The number of perturbations of each trajectory is equal to the number of input factors (i = 1,2, ⋯k). The EE of the 156 

ith parameter (EEi) is calculated as follows: 157 

𝐸𝐸𝑖 =
𝑓(𝑋𝑝𝑖+∆𝑖

) − 𝑓(𝑋|𝑝𝑖)

∆𝑖

 158 

where f(X) denotes the performance metrics used for sensitivity analysis. Here we used four metrics as will be 159 

discussed in the next section. Starting from multiple points within the feasible parameter space, multiple trajectories 160 

(r) are generated to compute the sensitivity indices, i.e., the mean of EEs (𝜇𝑖
∗) denoting the global sensitivity of each 161 

parameter and the standard deviation of EEs (𝜎𝑖) denoting the interaction with other parameters. The equation below 162 

gives the calculations of these indices suggested by Campolongo et al. (2007): 163 

𝜇𝑖
∗ =

1

𝑟
∑𝑟

𝑗=1 |𝐸𝐸𝑖
𝑗
| , 𝜎𝑖 = √

1

𝑟−1
∑𝑟

𝑗=1 (𝐸𝐸𝑖
𝑗

− 𝜇𝑖
∗)2 ,  164 

where 𝐸𝐸𝑖
𝑗
denotes the 𝐸𝐸𝑖  of the jth trajectory. 165 

In summary, to compute each elementary effect, r trajectories of (k+1) points in the input space are required, where k 166 

represents the number of input factors. Each trajectory provides k elementary effects, one per input factor, resulting in 167 

r(k+1) sample points in total. An r = 20 which is twice more than the typical number of trajectories was selected to 168 

generate the sampling data for each of the parametrizations. 169 

Matrices of sampling data were produced using SAFEpython (Pianosi et al., 2015; Noacco et al., 2019) where the 170 

results were further validated against the principles of the Morris method to ensure the generation of accurate values. 171 

The performance metrics used for the sensitivity analysis are discussed in the next section. 172 

2.4.2 Performance metrics 173 

The similarity between the simulated and observed snow depth values over the runtime period was expressed in a 174 

single number using a set of performance/evaluation metrics: The performance metrics used in this study are the Nash-175 

6

https://doi.org/10.5194/egusphere-2023-3049
Preprint. Discussion started: 5 March 2024
c© Author(s) 2024. CC BY 4.0 License.



 

   

 
Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970), the Kling-Gupta Efficiency (2012) (KGE; Gupta et al., 2009; 176 

Kling et al., 2012), the root mean squared log error (RMSLE; Willmott and Matsuura, 2005) and the Mean. These 177 

four metrics provide different evaluation perspectives of flow simulation results, and each will identify in a distinct 178 

manner the extent to which altering a parameter influences the outcome of a decision. Accordingly, using these metrics 179 

together with qualitative sensitivity analysis methods will help identify model configurations that closely predict the 180 

overall system behavior. 181 

Table 2 defines the four performance metrics, where n is the total number of events; 𝑂𝑖  and 𝑆𝑖 are the observed data 182 

and simulated data; 𝑂 is the corresponding mean values; 𝜎𝑜 and 𝜎𝑠 represent the standard deviation of the observed 183 

and simulated values; 𝜇𝑜 and 𝜇𝑠 represent the mathematical expectation of the observed and simulated values, 184 

respectively.  185 

Table 2: Description of the performance metrics 186 

Metrics Equation Scope 

Nash-Sutcliffe Efficiency  

(NSE) 
𝑁𝑆𝐸  =  1  −  

∑𝑛
𝑖 =1 (𝑆𝑖 − 𝑂𝑖)

2

∑𝑛
𝑖 =1 (𝑂𝑖 − 𝑂)

2 
-inf < NSE < 1 

 

Kling-Gupta Efficiency 

2012 (KGE)  

𝐾𝐺𝐸2012 =  1  − 𝐸𝐷 

𝐸𝐷 

=  √(𝑠[1] ⋅ (𝑟 − 1))
2

+ (𝑠[2] ⋅ (𝛾 − 1))
2

+ (𝑠[3] ⋅ (𝛽 − 1))
2
 

s (tuple of length three) = Represents the scaling factors to be 

used for re-scaling of the coefficients. 

r = Pearson Correlation Coefficient 

𝛽  =  𝜇𝑠/𝜇𝑜 

𝛾 =
𝐶𝑉𝑠

𝐶𝑉𝑜

=
𝜎𝑠/𝜇𝑠

𝜎𝑜/𝜇𝑜

 

-inf < KGE (2012) < 

1 

 

 

 

 

Root Mean Squared Log 

Error (RMSLE) 𝑅𝑀𝑆𝐿𝐸  =   (
1

𝑛
∑

𝑛

𝑖=0

(𝑙𝑛 𝑙𝑛 (
𝑆𝑖

𝑂𝑖

) )
2

)

1
2

 
0 ≤ RMSLE ≤ inf 

 

Mean (average snow 

depth) 
𝑀𝑒𝑎𝑛 =  

1

𝑛
∑

𝑛

𝑖=0

(𝑆𝑖) 0 ≤ Mean < inf 

The NSE is a commonly used metric that normalizes model performance into an interpretable scale (Knoben et al., 187 

2019). One main drawback of the NSE is that it punishes a higher variance in the observed values (Roberts et al., 188 

2018). Gupta et al. (2009) developed KGE (2009) in the context of hydrologic modelling to explain the relative 189 

significance of correlation, bias, and variability to address issues associated with the NSE. Further, Kling et al. (2012) 190 

proposed KGE (2012) as an enhanced version of KGE (2009) in order to prevent cross-correlation between variability 191 

ratios and bias. Larger values of NSE and KGE indicate a stronger agreement between observations and simulations. 192 

When the metric values for NSE, Mean, and RMSLE are all zero, or for KGE when the value is -0.41, it indicates that 193 

the model simulations have the same explanatory power as the mean of the observations (Knoben et al., 2019). The 194 

RMSLE limits the impact of outliers by more evenly weighting high and low values. Smaller values indicate a stronger 195 

correspondence between observations and simulations (Roberts et al., 2018). 196 

Performance metrics were calculated utilizing the HydroErr Python package (Roberts et al., 2018). The metrics were 197 

computed for each simulation run, with the number of simulations for each parametrization being r(k+1), as described 198 
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in section 3.3.1. This enabled the calculation of Elementary Effects for each parametrization. Bootstrapping was used 199 

as a resampling technique to estimate the variability of mean Elementary Effects and to develop confidence bounds. 200 

The method involved randomly selecting a sample from the original data set and generating multiple resampled data 201 

sets of the same size as the original data set. Then, the mean Elementary Effects were calculated for each resampled 202 

data set, resulting in a distribution of the means. Confidence bounds were then determined by calculating the 25th, 203 

50th, and 75th percentiles. 204 

3 Results and Discussion 205 

 206 

In this section, we outline our systematic approach to analyzing parameter sensitivities within our snow modeling 207 

study. We begin by utilizing SUMMA to conduct simulations under varying parameter perturbations. These 208 

preliminary simulations enable identifying potentially sensitive parameters, offering initial insights into their impact 209 

on snow depth predictions. Subsequently, we quantitatively assess sensitivities using sensitivity indices derived from 210 

diverse performance metrics (Mean, KGE, MSE, and RMSLE). This comprehensive analysis highlights the agreement 211 

between simulations and observations across different parameterizations, revealing the potential influence of specific 212 

parameters on specific performance metrics. Additionally, we employ the Morris Method to estimate Elementary 213 

Effects, aiming to further explore the magnitudes and patterns of sensitivities. This method aids in characterizing 214 

parameter impacts and contributes to a deeper understanding of the complex interplay between parameters and 215 

simulation results. Overall, our approach enables a comprehensive examination of parameter sensitivities based on 216 

specific performance metrics, providing specific parameters influence on the snow model. 217 

 218 

3.1 Snow depth perturbation 219 

SUMMA was used to run the parameters listed in Table 1 by altering one parameter at a time while maintaining a 220 

default value for other parameters. Figure 4 illustrates the result of these simulations for 12 parameters and 221 

parametrizations used for snow modelling in the Reynolds Mountain East research catchment. These snow depth 222 

perturbation graphs are helpful to gain an initial understanding of potentially high and low sensitivity parameters. 223 

Based on these initial sensitivity experiments, it is expected that the most sensitive parameter would be the critical 224 

temperature and thermal conductivity of snow (Smnv2000 method), followed by the liquid water drainage parameters 225 

(capillary retention and exponent of meltwater flow), and the critical Richardson Number (Standard atmospheric 226 

stability method), respectively. Furthermore, it can be observed that snow depth calculation is relatively insensitive to 227 

changes in snow albedo, as well as to the atmospheric stability methods of MahrtExp and Louisinv. 228 
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 229 
 230 

Figure 3: Snow depth perturbation plots for all parameters and available parameterization used in snow modelling 231 

processes (November 2005 to June 2006). The gray areas represent observed snow depth values, while the blue, 232 

orange, and green lines represent simulated snow depth values for the minimum, default, and maximum values of a 233 

parameter, respectively. 234 

 235 

 236 

3.2 Confidence intervals and marginal errors 237 

 238 

To quantify the magnitude and rank of sensitivity associated with each parameter, a more comprehensive One-at-A-239 

Time sensitivity analysis is conducted to generate sensitivity indices for every parameter. Table 4 summarizes the 240 

mean of the 95% confidence interval ± marginal error of the performance metrics. This helps to determine the result's 241 

precision and reliability and to assess the statistical significance of the results. The margin of error for four 242 
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performance metrics is relatively small, indicating a more precise estimate. 243 

  244 

The reported values of Mean snow depth, NSE, KGE (2012), and RMSLE performance metrics provide a measure of 245 

how well the simulations using each parameterization capture the observed snow depth values. Overall, the 246 

performance results show a high degree of consistency between the simulated and observed snow depth data based on 247 

mean metric, regardless of the parametrizations. However, ranking of each parameter's sensitivity from least to most 248 

accurate slightly differs depending on the performance metric used. In general, the results suggest that the Louisinv 249 

parameterization/method is capable of providing more accurate predictions for estimating atmospheric stability as 250 

compared to the MahrtEXP and Standard methods, which show lower Mean, NSE, and KGE scores and a higher 251 

RMSLE score. The relatively higher accuracy of Louisinv is likely due to the iterative nature of the Louisinv method, 252 

which allows for a more precise calculation of the bulk Richardson number and eddy diffusivities for heat and 253 

moisture. It can also be observed that the accuracy of predictions is almost identical for constant and variable albedo 254 

decay rates. This suggests that the temporal changes in snow properties used for albedo calculation can be adequately 255 

captured through the accumulation and melting period decay curves at Reynolds Mountain East. Overall, the 256 

MahrtExp method is associated with the least accurate prediction, while the thermal conductivity and variable albedo 257 

decay parametrization are associated with the highest prediction accuracy. 258 

 259 

Table 4: Performance metrics associated with each parametrization 260 

Flux Parameterization Mean KGE (2012) NSE RMSLE 

Precipitation 

flux 

Function of wet-bulb temperature 

(Marks et al., 2013) 0.933 ± 0.017 0.830 ± 0.017 0.939 ± 0.008 0.097 ± 0.005 

Liquid water 

in snowpack 

flux 

 

Gravity drainage (Colbeck, 1976; 

Colbeck and Anderson, 1982) 
0.916 ± 0.008 0.819 ± 0.008 0.933 ± 0.008 0.101 ± 0.005 

Atmospheric 

stability 

 

Standard (Anderson, 1976) 
0.931 ± 0.005 0.819 ± 0.010 0.940 ± 0.006 0.102 ± 0.005 

Louisinv (Louis, 1979) 
0.924 ± 0.000 0.826 ± 0.000 0.944 ± 0.000 0.098 ± 0.000 

MahrtExp (Mahrt, 1987) 
0.861 ± 0.002 0.747 ± 0.003 0.880 ± 0.002 0.137 ± 0.001 

Thermal 

conductivity 

smnv 2000 (Smirnova et al., 2000) 

1.023 ± 0.015 0.850 ± 0.004 0.949 ± 0.003 0.085 ± 0.003 

Albedo Constant decay (Verseghy, 1991) 
0.933 ± 0.002 0.834 ± 0.002 0.949 ± 0.001 0.094 ± 0.001 

Variable decay (Yang et al., 1997) 
0.938 ± 0.002 0.835 ± 0.002 0.952 ± 0.001 0.093 ± 0.001 

 261 

 262 

3.3 Qualitative sensitivity analysis 263 

Figure 5 shows a scatter plot of all snow model parameters, where the mean snow depth is plotted against each 264 

parameter range. The purpose of this plot is to qualitatively visualize parameters with potentially high and low 265 

sensitivities, which can be useful for screening and ranking them. Parameters with higher variability are considered to 266 
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be more sensitive. Based on the observed patterns, it is expected that the constant and variable albedo parameters, as 267 

well as the hydraulic conductivity of the snowpack, will be the least sensitive. On the other hand, the critical 268 

temperature, thermal conductivity, capillary retention, and exponent for meltwater flow are likely to be the most 269 

sensitive parameters. Moreover, in cases where there is a discernible pattern in each parameter, it becomes possible to 270 

identify the optimum value that can lead to the highest level of agreement between the simulation and observation. 271 

For instance, the simulation of snow depth will improve for the values of the exponent for meltwater flow greater than 272 

2, but will not significantly improve for the thermal conductivity values greater than  0.8 [W K-1 m-1]. 273 

 274 
 275 

Figure 4: Qualitative sensitivity of parameters and parametrizations used in snow modelling process. Scatter plot of 276 

the Mean as the performance metric against parameter ranges. 277 

 278 
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3.4 Quantitative sensitivity analysis 279 

To further examine the accuracy of these qualitative findings, a quantitative sensitivity analysis was employed as 280 

discussed in section 3.2.2. The Morris Method was used to estimate the Elementary Effects (EEs) for each of the 281 

model parameters. The variance in the ranking of parameters’ accuracy prediction by different performance metrics 282 

prompted us to develop Elementary Effect functions using all the metrics and compare the sensitivity results. This 283 

was done to identify a system-scale performance metric that can consistently describe the observed sensitivities 284 

through scattered and perturbation plots.  285 

A bar plot depicting the mean of Elementary Effects was developed accordingly and is shown in Figure 6. The plot 286 

shows a sensitivity analysis of all parameters and parametrizations using four different performance metrics. The 287 

parameters are sorted in descending sensitivity order, from the highest to the lowest, as determined by the mean snow 288 

depth. At a first glance, it can be seen that the performance metrics, which were predicting the accuracy of simulations 289 

relatively closely, exhibit substantially different degrees of sensitivity for each parameter.  290 

 291 
Figure 5: Mean of Elementary Effects estimated using four performance metrics; (a) Mean, (b) RMSLE (c) KGE, and 292 

(d) NSE.  293 

 294 

It can be observed that the critical temperature for rainfall, which determines the partitioning of incoming precipitation 295 

into rain and snow, is the most sensitive parameter in determining the depth of the snowpack. This prediction is 296 

consistent with previous observations made through perturbation plots in Figures 3 and 4, where a significant 297 

fluctuation in snow depth was observed by changing the critical temperature within its range. It was interesting to note 298 

that regardless of the performance metrics chosen, parameters such as the hydraulic conductivity of snow, and the 299 

constant and variable albedo decay rates, were consistently identified as the least sensitive in snow process modeling. 300 

This observation leads to the conclusion that different performance metrics can be effective in determining the 301 
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sensitivity indices of the least sensitive parameters. The discrepancy lies in quantifying the magnitude and rank of 302 

parameters with relatively higher sensitivities. 303 

A very interesting result in Figure 5 is the difference in sensitivity for parameters in the thermal conductivity 304 

parameterization for the performance metrics that quantify differences in the mean (top left subplot in Figure 5) from 305 

the performance metrics that quantify differences in the simulated and observed time series (i.e., the RMSLE, KGE, 306 

and NSE, shown in the top-right, bottom-left, and bottom right subplots of Figure 5). These differences in model 307 

sensitivity can be explained through inspection of Figure 3, where the differences between the simulations with lowest 308 

thermal conductivity (blue line) have differences with the observations that are of opposing sign to the model 309 

simulations with the highest thermal conductivity (green line). Importantly, even though the snow depth time series 310 

are quite different, the performance metrics are quite similar. These results are a manifestation of equifinality, where 311 

different model trajectories can have similar performance. In this case, the impact of thermal conductivity parameters 312 

on the time series performance metrics are much smaller than would be expected from visual inspection of the impacts 313 

of thermal conductivity parameters on the snow depth time series. 314 

To further quantify the rank and magnitude of the sensitivities, the means of Elementary Effects were bootstrapped to 315 

create a box and whisker plot, as shown in Figure 6. The parameters in the box and whisker plot are sorted to display 316 

the water balance fluxes (i.e., precipitation partitioning and liquid water flow) first, followed by the energy balance 317 

fluxes (i.e., atmospheric stability, thermal conductivity, and albedo).  318 

Overall, it is noticeable that water balance fluxes exhibit higher sensitivity than energy balance in simulating snow 319 

processes.    320 

 321 
 322 

Figure 6: Mean of Elementary Effects developed using the Mean performance metric. The boxes show the 323 

interquartile range (25th, 50th, and 75th percentiles) and the whiskers represent the maximum and minimum limits of 324 

the mean of EEs. 325 

 326 

Accordingly, the critical temperature of rain is the most sensitive parameter among the water balance parameters, 327 

while the thermal conductivity of snowpack is the most sensitive parameter among the energy balance parameters. As 328 
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expected, the albedo parameters, whether constant or variable, are among the least sensitive components in the snow 329 

modelling processes.  Figure 6 also shows that the parameters associated with the drainage of liquid from the 330 

snowpack, namely capillary retention, and exponent of meltwater flow, have almost equally high sensitivities. In 331 

contrast, the hydraulic conductivity of the snowpack seems to be among the least influential parameters in determining 332 

the depth of snow. The insensitivity of the latter parameter is in alignment with the observations from perturbation 333 

(Figure 4) and scattered plots (Figure 5). 334 

The third panel of the boxplots in Figure 6 compares the sensitivity of three different atmospheric stability 335 

parametrizations, showing that the critical Richardson number (Standard method) is the most sensitive among the 336 

three methods. The reason for the high sensitivity of the Standard method may be attributed to the Richardson number 337 

being in the numerator with an exponential power, as opposed to the other two methods, where the atmospheric 338 

stability has an inverse relationship with the Richardson number. This sensitivity analysis denotes that water balance 339 

parametrizations (i.e., critical temperature of rain) are much more sensitive than the energy balance (i.e., variable 340 

albedo decay rate), as demonstrated by the comparison of the highest and lowest ends of flux spectrums. 341 

 342 

The study's new insights suggest that water balance parameterizations are more sensitive than energy balance fluxes. 343 

This finding highlights the importance of accurately representing the water balance processes in snow models, which 344 

can improve the accuracy of snowmelt predictions. Additionally, the study suggests that modular and flexible 345 

frameworks such as SUMMA enable identifying and isolating sensitive parameters, thereby improving the sensitivity 346 

analysis of snow models. 347 

 348 

4 Conclusion 349 

This work presents the results of a sensitivity study of model simulations of snow processes in the Reynolds Mountain 350 

East research catchment using a flexible, extensible, and modular hydrological framework. Through the analysis 351 

conducted in this study, the following conclusions can be drawn: 352 

 353 

● The use of a modular and flexible framework enables identifying and isolating parameters and parametrizations, 354 

which in turn enables comprehensive sensitivity analysis. 355 

● The sensitivity of performance metrics to perturbations in model parameters is contaminated by equifinality. We 356 

illustrate some cases in this paper where parameter perturbations lead to similar performance metrics for quite 357 

different snow depth time series. Given that many published parameter sensitivity studies are based on the 358 

sensitivity of performance metrics to model parameters, the conclusions from many model sensitivity analysis 359 

studies may not be trustworthy. It is hence crucial to select metrics for sensitivity analysis that accurately represent 360 

the system-scale behavior. This would improve quantifying the magnitude and ranking of sensitivity indices. 361 

● In the specific case of snow modeling in the Reynolds Mountain East research catchment, water balance fluxes are 362 

generally more sensitive than energy balance fluxes. Among the parameters, the critical temperature of rain is the 363 

most sensitive, while the albedo decay rate is the least sensitive. 364 

There are several limitations of this study that can be explored in future research. This study used Elementary Effects 365 

to conduct the sensitivity analysis. Although the Elementary Effect method is useful for models with a large number 366 

of uncertainty factors, it does not quantify the relative importance of inputs. Additionally, the sensitivity analysis was 367 

performed by isolating each snow modeling parameter and analyzing its effect on the system individually. This 368 

approach limited the potential interactions between fluxes and may have affected the sensitivity rank and magnitude 369 

of the parameters. Application of methods like variance-based sensitivity analysis methods can address these 370 

limitations. 371 
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Appendix A 389 

4.1.1 Precipitation Partitioning  390 

The parameterization to partition precipitation into rain and snow is a function of wet-bulb temperature (Clark et al., 391 

2015c; Marks et al., 2013), parametrized as a linear function that describes the temporal variability of the wetbulb 392 

temperature over a model time step. The minimum and maximum wetbulb temperature over a model time step are 393 

defined as 394 

𝑇𝑚𝑎𝑥 = 𝑇𝑤𝑒𝑡 + 𝑇𝑟𝑎𝑛𝑔𝑒/2 395 

𝑇𝑚𝑖𝑛 = 𝑇𝑤𝑒𝑡 − 𝑇𝑟𝑎𝑛𝑔𝑒/2 396 

where 𝑇𝑤𝑒𝑡  is the wetbulb temperature and  𝑇𝑟𝑎𝑛𝑔𝑒  defines the temporal variability of the wetbulb temperature over a 397 

model time step. The fraction of precipitation that falls as rain, 𝑓𝑟𝑎𝑖𝑛, is then defined based on a critical value of the 398 

wetbulb temperature, 𝑇𝑐𝑟𝑖𝑡 , as 399 

𝑓𝑟𝑎𝑖𝑛 = {0 𝑇𝑚𝑎𝑥 < 𝑇𝑐𝑟𝑖𝑡  
𝑇𝑚𝑎𝑥 − 𝑇𝑐𝑟𝑖𝑡

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

 𝑇𝑚𝑖𝑛 ≤ 𝑇𝑐𝑟𝑖𝑡 ≤  1 𝑇𝑚𝑖𝑛 > 𝑇𝑐𝑟𝑖𝑡  𝑇𝑚𝑎𝑥 400 

and the fraction of precipitation that falls as snow, 𝑓𝑠𝑛𝑜𝑤 = 1 − 𝑓𝑟𝑎𝑖𝑛. The default value for 𝑇𝑐𝑟𝑖𝑡  is 0°C.  401 

4.1.2 Liquid Water Flow 402 

The storage and transmission of liquid water in the snowpack in SUMMA is parameterized as gravity drainage based 403 

on the (Colbeck, 1976; Colbeck and Anderson, 1982) and calculated as follows: 404 

𝑞 = 𝑘 (
𝜃𝑙𝑖𝑞 − 𝜃𝑟𝑒𝑠

∅ −  𝜃𝑟𝑒𝑠

)
𝑐

 405 

 406 

where q is the drainage flux, 𝑘 is the conductivity of snowpack [m s-1], 𝜃𝑙𝑖𝑞  is the current volumetric water content [-407 

], 𝜃𝑟𝑒𝑠 is the residual volumetric water content [-], ∅ is the available fraction of pore spaces [-], and c is non-linearity 408 

coefficient [-]. As such, the liquid water flow in snow is controlled by 𝑘,  𝜃𝑟𝑒𝑠,  c.  409 
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4.1.3 Snow Albedo 410 

Two semi-empirical options are implemented in SUMMA for the snow albedo parameterization: 411 

 412 

●  Variable Decay: This option is derived from Biosphere-Atmosphere Transfer Scheme (BATS) described by 413 

Yang et al. (1997) where the albedo decay rate varies as snow properties change over time. BATS represents 414 

the albedo separately for visible and near-infrared wavelengths as different wavelengths of solar radiation 415 

are absorbed and reflected differently by the snowpack. The direct-beam albedo in BATS is set equal to the 416 

diffuse albedo plus an additive factor at high solar zenith angles meaning that the diffuse albedo is the average 417 

reflectivity of the snow surface over all angles of incidence, while the additive factor represents the additional 418 

reflectivity of the snow surface at low solar zenith angles (Clark et al 2015a, 2015c; Yang et al., 1997). The 419 

variable decay albedo parameterization is given as 420 
𝑑𝛼

𝑑𝑡
= 𝜅𝛼 421 

𝜅 =  𝜅0 (𝑟1 + 𝑟2 + 𝑟3) 422 

 423 

where, 𝛼 is the snow surface albedo, 𝜅0 is the time delay scaling factor, 𝑟1 represents effects of grain growth due to 424 

vapor diffusion, 𝑟2 represents the additional effects of grain growth when the snow temperature is near the freezing 425 

point, and 𝑟3 is an adjustable parameter representing effects of dirt and soot. 426 

 427 

● Constant Decay: This option is derived from the Canadian Land Surface Scheme (CLASS) described by 428 

Verseghy (1991) where the albedo decay rate, which controls the rate at which the snow albedo adjusts to 429 

changes in snow properties, is temporally constant. CLASS uses two decay curves, one for periods of 430 

accumulation and the other for melting periods which is because the physical processes that affect snow 431 

albedo, such as grain growth and meltwater formation, are different during these two periods. This approach 432 

assumes that the direct beam and diffusive albedos are identical, as the difference between the two is only 433 

distinct at high solar zenith angles when shortwave radiation fluxes are small (Clark et al., 2015a, 2015c; 434 

Verseghy, 1991). The constant decay albedo parameterization is given simply as 435 

𝜅 = 𝜅0  436 

4.1.4 Atmospheric Stability 437 

A considerable amount of the energy involved in snowmelt or ice ablation is transferred from the atmosphere through 438 

turbulent fluxes (see Figure 2). The turbulent transfer process in the surface boundary layer generates sensible and 439 

latent heat fluxes, which are recognized as important contributors to the energy input for melting snow cover (Morris, 440 

1989). These fluxes can be expressed as the covariance of fluctuations in vertical velocity. While it is feasible to 441 

directly measure these covariances and obtain accurate estimates of the fluxes, such measurements are seldom 442 

accessible. In numerous experimental and modeling studies, it becomes essential to represent these fluxes through 443 

parameterization. Three options are implemented in SUMMA for the atmospheric stability parametrization based on 444 

the bulk Richardson number: 445 

 446 

● Critical Richardson Number (Standard): This option is the default atmospheric stability option in SUMMA 447 

and derived from Anderson (1976) which calculates atmospheric stability based on the vertical gradient of 448 

potential temperature and the horizontal wind speeds. The bulk Richardson number (Ri) is defined as the 449 

ratio of the potential energy available for turbulence to the kinetic energy associated with the vertical shear 450 

of the horizontal wind. This method assumes that the eddy diffusivity for heat is constant and depends only 451 

on the bulk Richardson number. Implementing this method in SUMMA is based on the use of atmospheric 452 

stability classes, which are assigned based on the value of the bulk Richardson number (Anderson, 1976; 453 

Clark et al. 2015a, 2015c;). The atmospheric stability correction (F) for the stable condition can be calculated 454 
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by using the following formula: 455 

 456 

𝐹 = {(1 − 5𝑅𝑖)
2     𝑅𝑖 < 𝑅𝑖𝑐  0                     𝑅𝑖 ≥ 𝑅𝑖𝑐   457 

 458 

where, 𝑅𝑖 is the bulk Richardson Number [-]. 459 

 460 

● Louis79 “b” parameter (Louisinv): This option is derived from Louis (1979), who parameterizes the 461 

atmospheric stability correction (F) for stable conditions as: 462 

𝐹 =
1

(1 + 𝑏′𝑅𝑖)
2
 463 

where, 𝑏′ = Louis (1979) “b” parameter / 2 [-]. 464 

 465 

● Mahrt87 eScale (MahrtExp): This option is derived from Mahrt (1987), who considers spatial averaging of 466 

subgrid processes. where the atmospheric stability correction (F) for stable conditions is given as: 467 

𝐹 =  𝑒  (−𝑚 𝑅𝑖) 468 

where, m = Mahrt exp coefficient [-]. 469 

 470 

4.1.5 Thermal Conductivity  471 

Four empirical options are implemented in SUMMA to parameterize the thermal conductivity of snow: 472 

 473 

tyen 1965: This option is derived from Yen (1965) who conducted experiments to measure the effective thermal 474 

conductivity (K) of naturally compacted snow at different densities. The results of Yen's experiments showed that the 475 

effective thermal conductivity of ventilated snow strongly depends on the square of its density plus the effect of dry 476 

airflow. Yen concluded that turbulence introduced by the air stream reduces the resistance for the simultaneous transfer 477 

processes of heat and mass (i.e., water vapor diffusion) and increases the thermal conductivity of snow. Accordingly, 478 

as the density of snow and mass flow rate of dry air increases, the effective thermal conductivity also increases. In the 479 

absence of airflow, Yen’s equation reduces to a relationship between the effective thermal conductivity and the snow 480 

density. 481 

 482 

𝐾 =  3.217 × 10−6 𝛾𝑠
2 483 

 484 

where, 𝛾𝑠 is the bulk density of snow [kg.m-3]. 485 

 486 

● melr 1977: This option is derived from Mellor (1977) who described heat transfer in a dry snowpack as a 487 

process involving conduction (e.g., in the network of ice grains and bonds, and airspaces and pores), 488 

convection and radiation (e.g., across pores which were assumed negligible), and water vapor diffusion 489 

through voids; however, considering empirical curves of the snow thermal conductivity developed by a 490 

number of researchers, he concluded that engineering applications the thermal conductivity of the dense snow 491 

and bubbly ice can be assumed to be proportional to the square of the snow density (discounting finer details 492 

or complications). Accordingly, SUMMA adopted a fit to the quadratic snow density versus thermal 493 

conductivity data provided by Mellor (Mellor 1977; Clark et al. 2015a, 2015c). 494 

 495 

𝐾 =  2.576 × 10−6 𝛾𝑠
2 + 7.4 × 102 496 

 497 

● jrdn 1991: This option is derived from Jordan (1991) who proposed to estimate the effective thermal 498 

conductivity of snow by accounting for ice and air conduction and vapour diffusion through the voids. 499 
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Accordingly, Jordan’s parametrization includes a thermal conductivity term with a polynomial relationship 500 

to the snow density together with constant values for the conductivity of air and ice in the snowpack. 501 

Adjustable parameters in Jordan’s equation have been selected so that the effective thermal conductivity fits 502 

the data of Yen (1962) and extrapolates to ice conductivity when the snow density is that of ice. 503 

 504 

𝐾 =  𝐾𝑎 + (7.75 × 10−5 𝛾𝑠 + 1.105 × 10−6 𝛾𝑠
2)(𝐾𝑖 − 𝐾𝑎) 505 

 506 

where, 𝐾𝑎 is thermal conductivity of air = 0.023 [W K-1 m-1] and 𝐾𝑖 is thermal conductivity of ice = 2.29 [W K-1 m-1].   507 

 508 

● smnv 2000: This option is derived from Smirnova et al. (2000) where a constant value for the thermal 509 

conductivity of snow (set equal to 0.35 W K-1 m-1) was considered which lies within the range of this variable 510 

for old and new snow as per a study. 511 

 512 

 513 

  514 
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