

1 The Role of Naphthalene and Its Derivatives in the
2 Formation of Secondary Organic Aerosols in the
3 Yangtze River Delta Region, China

4 *Fei Ye¹, Jingyi Li¹, Yaqin Gao², Hongli Wang², Jingyu An^{2,3}, Cheng Huang², Song Guo⁴, Keding
5 Lu⁴, Kangjia Gong¹, Haowen Zhang¹, Momei Qin¹, Jianlin Hu¹*

6 ¹ Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control,
7 Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School
8 of Environmental Science and Engineering, Nanjing University of Information Science &
9 Technology, Nanjing, 210044, China

10 ² State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air
11 Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China

12 ³ Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of
13 Environmental Science and Engineering, Fudan University, Shanghai 200438, China

14 ⁴ State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of
15 Environmental Sciences and Engineering, Peking University, Beijing, 100871, China

16 Correspondence **to:** Jingyi Li (jingyili@nuist.edu.cn), Jianlin Hu (jianlinhu@nuist.edu.cn)

17

18 **Abstract.** Naphthalene (Nap) and its derivatives, including 1-methylnaphthalene (1-MN) and 2-methylnaphthalene (2-MN), serve as prominent intermediate volatile organic compounds (IVOCs) contributing to the formation of secondary organic ~~carbon (SOC)~~aerosol (SOA). In this study, the Community ~~Multi-Scale~~Multiscale Air Quality (CMAQ) model coupled with detailed emissions and reactions of these compounds was utilized to examine their roles in the formation of ~~SOC~~SOA and other secondary pollutants in the Yangtze River Delta (YRD) region during summer.

24 ~~Remarkably, significant~~Significant underestimations of Nap and MN concentrations (by 79% and 85%) were observed at the Taizhou site. ~~To better capture the temporal variations based on the model results using the default emissions. Constrained by the observations, anthropogenic emissions of Nap and MN, their emissions in the YRD~~entire region were ~~scaled up~~multiplied by a factor of 5 and 7, respectively, ~~with constraints based on field measurements. After adjusting their emissions, to better capture the evolution of pollutants. The average concentration of Nap concentrations~~ reached ~~27.25~~27.25 ppt in the YRD, ~~accounting for with Nap contributing~~accounting for 4.1% and ~~98.1%~~13.712.6% (up to ~~13.712.6%~~13.712.6%) of total ~~aromatic~~aromatic emissions and aromatic-derived ~~secondary organic carbon (SOC)~~secondary organic carbon (SOC), respectively. The concentrations of 1-MN and 2-MN were relatively low, ~~with an average of 3 and 6 averaging at 2 ppt in the YRD, and contributed 3.15 ppt. Together, they accounted for only 2.4% of the aromatic-derived SOC. The influences impacts of Nap and MN oxidation on ozone and radicals might be trivial on a~~were insignificant at regional scale scales but were not negligible when considering daily fluctuations, ~~particularly in Shanghai~~locations with high emissions of Nap and Suzhou MN. This study ~~emphasizes the high SOC~~highlights the significant roles of Nap and MN in the formation ~~potentials of Nap and MN~~SOA, which may pose environmental risks and adverse health effects.

40 1 Introduction

41 Secondary organic aerosols (SOA) are formed from the condensation and multiphase
42 evolution of less volatile organic compounds (VOCs), which can be directly emitted or produced
43 from the oxidation of higher volatile organics in the atmosphere. SOA not only affects visibility
44 and human health but also ~~has impacts~~exerts direct effects on the climate ~~directly~~ by absorbing
45 and reflecting solar radiation ~~and indirectly, as well as~~ indirect effects by ~~affecting~~influencing
46 cloud formation ([Chen et al., 2016; Zhang and Ying, 2012](#))[\(Chen et al., 2016; Zhang and Ying,](#)
47 [2012\)](#). Semi-volatile and intermediate-volatile organic compounds (S/IVOCs) have been identified
48 as the key precursors of SOA (Robinson et al., 2007; Hu et al., 2022). IVOCs are categorized by
49 small polycyclic aromatic hydrocarbons (PAHs), intermediate-length alkanes (e.g. ~~n-hexadecane~~),
50 ~~and phenols~~[\(Pye and Seinfeld, 2010\)](#)[n-hexadecane](#), ~~and phenols~~[\(Pye and Seinfeld, 2010\)](#). PAHs
51 are organic compounds containing multiple aromatic rings. [In 2004](#), China ~~was responsible for~~
52 [exhibited](#) the highest annual PAH emissions ~~at (114 Gg with a portion of)~~ [globally, accounting](#)
53 [for 22% of global](#)~~the~~ [total PAH](#) [emissions in 2004](#)[\(Zhang and Tao, 2009\)](#)[worldwide](#) [\(Zhang and](#)
54 [Tao, 2009\)](#). Naphthalene (Nap) and methylnaphthalene (MN), such as 1-methylnaphthalene (1-
55 MN) and 2-methylnaphthalene (2-MN), are the most abundant airborne PAHs (Chen et al., 2016;
56 Fang et al., 2021), ~~which are mainly primarily~~ emitted from ~~the~~ combustion of fossil fuels, biomass
57 burning, and industrial sectors ([Fang et al., 2021](#))[\(Fang et al., 2021\)](#).

58 ~~Chamber studies have identified the gas and particle phase products from Nap reacting with~~
59 ~~hydroxyl radical (OH)~~ ([Huang et al., 2019](#)). ~~Ring retaining products (e.g., 1,4-naphthoquinone)~~
60 ~~with lower volatilities are dominant under low nitrogen oxide (NO_x) conditions, and ring opening~~
61 ~~products (e.g., 2-formylcinnamaldehyde) with higher volatilities are dominant in the presence of~~
62 ~~high NO_x. Chan et al. (2009) evaluated the SOA yields of Nap, 1-MN, 2-MN, and 1,2-dimethyl~~
63 ~~naphthalene in chambers and applied these yields to estimate SOA formation from primary~~

64 ~~emissions of diesel engines and wood burning. The SOA yields were 55–75% under low NO_x~~
65 ~~conditions at a total organic aerosol loading of 15 μg m⁻³, which was more efficient than high NO_x~~
66 ~~conditions (25–45%). In the photo-oxidation period of less than 12 h, these PAHs produced 3–5~~
67 ~~times more SOA than light aromatic compounds and were responsible for up to 54% of total SOA~~
68 ~~from the oxidation of diesel emissions. Huang et al. (2019) applied a tracer method and discovered~~
69 ~~that 14.9% of SOA was owing to the oxidation of Nap and MN in the afternoon during the~~
70 ~~wintertime haze in Beijing. Shakya and Griffin (2010) also reported 36–162 kg day⁻¹ of SOA~~
71 ~~production from the mobile source emitted PAHs (including Nap, 1-MN, and 2-MN) in Houston~~
72 ~~based on the yields from their study and that of Chan et al. (2009). Based on the yield from Shakya~~
73 ~~and Griffin (2010), Liu et al. (2015) showed that Nap contributed 8–52% of the total SOA~~
74 ~~originating from benzene, toluene, C2 benzene, C3 benzene, C4 benzene, and Nap in light-duty~~
75 ~~gasoline vehicle exhausts. All these experimental findings demonstrate the significant role of Nap~~
76 ~~and MN in SOA formation in the environment with anthropogenic influences dominated. However,~~
77 ~~these results might not accurately reflect the actual atmospheric conditions due to the simplicity of~~
78 ~~reaction conditions and the limited precursors involved in chamber studies. Chamber studies have~~
79 identified the gas- and particle-phase products from Nap reacting with hydroxyl radicals (OH[·])
80 (Huang et al., 2019). Ring-retaining products (such as 1,4-naphthoquinone) with lower volatilities
81 dominate under conditions of low nitrogen oxides (NO_x), and ring-opening products (such as 2-
82 formyl cinnamaldehyde) with higher volatilities dominate in the presence of high NO_x. Chan et al.
83 (2009) evaluated the SOA yields of Nap, 1-MN, 2-MN, and 1,2-dimethyl naphthalene in chambers
84 to estimate SOA formation from primary emissions of diesel engines and wood burning. It was
85 found that SOA is more efficiently produced under low-NO_x conditions than high-NO_x conditions,
86 with yields of 55–75% and 25–45%, respectively, at a total organic aerosol loading of 15 μg m⁻³.

During photo-oxidation of less than 12 h, these PAHs produced 3–5 times more SOA than light aromatic compounds, accounting for up to 54% of the total SOA from the oxidation of diesel emissions. Huang et al. (2019) applied a tracer method to determine that 14.9% of SOA was attributed to the oxidation of Nap and MN in the afternoon during wintertime haze in Beijing. Shakya and Griffin (2010) also reported 37–162 kg day⁻¹ of SOA production from the mobile source emitted PAHs (including Nap, 1-MN, and 2-MN) in Houston, based on the yields from their study and that of Chan et al. (2009). By adopting the SOA yields from Shakya and Griffin (2010), Liu et al. (2015) showed that Nap accounted for 8–52% of the total SOA derived from benzene, toluene, C2-benzene, C3-benzene, C4-benzene, and Nap in exhaust emissions from light-duty gasoline vehicles. All these experimental findings demonstrate the significant role of Nap and MN in SOA formation in environments dominated by anthropogenic influences. However, these results might not accurately reflect the actual atmospheric conditions due to the simplicity of reaction conditions and the limited precursors involved in chamber studies (Ling et al., 2022).

Numerical models have been developed and utilized to assess the contribution of S/IVOCs to SOA (Hayes et al., 2015; Pye and Seinfeld, 2010; An et al., 2023). Zhang and Ying (2011) showed that PAHs emitted from anthropogenic sources could produce SOA mass as much as 10% of that from the traditional light aromatics or around 4% of total anthropogenic SOA by using the Community Multiscale Air Quality (CMAQ) model. However, the products from several explicit PAH species (Nap, MN, dimethyl naphthalene, ethyl naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, fluoranthene) were lumped rather than separated for their contributions to SOA due to limited experimental data. Pye and Poulton (2012) utilized the CMAQ model and tracked 10% of peroxy radicals produced from the ARO2 (lumped aromatics in CMAQ) and OH⁺ reaction as for that of Nap without considering the emissions and the accurate OH⁺ reactivity of

110 Nap. According to Cohan et al. (2013), the modeled SOA increased by roughly 1–10% when Nap
111 emissions from on-road gasoline and diesel vehicles were considered. Their simulations showed a
112 lower bound in the SOA production from Nap due to underestimations in the emission inventory
113 in the South Coast Air Basin of California. Majdi et al. (2019) found that Nap and MN contributed
114 2.4% to the total organic aerosol (OA) originating from wildfires over the Euro-Mediterranean
115 region during the summer of 2007 by using a 3D chemistry-transport model (CTM). The
116 contributions of Nap and MN to SOA over a regional scale in China had not been quantified.

117 Zhang and Ying (2011) showed that PAHs emitted from anthropogenic sources could
118 produce SOA mass as much as 10% of that from the traditional light aromatics or approximately
119 4% of the total anthropogenic SOA by using the Community Multiscale Air Quality (CMAQ)
120 model. However, the SOA products of several PAH species such as Nap and MN were lumped
121 together due to limited experimental data for explicit parameterization. Pye and Pouliot (2012)
122 assumed that 10% of ARO2 (lumped aromatic species) reacted with OH[·] to represent SOA
123 formation from PAHs in the CMAQ model, using Nap as a surrogate for parameterization, without
124 considering individual PAH's emissions and OH[·] reactivity. According to Cohan et al. (2013), the
125 modeled SOA increased by roughly 1–10% when Nap emissions from on-road gasoline and diesel
126 vehicles were considered. Their simulations showed a lower limit in the SOA production from
127 Nap due to underestimations in the emission inventory in the South Coast Air Basin of California.
128 Majdi et al. (2019) found that Nap and MN contributed 2.4% of the total organic aerosol (OA)
129 originating from wildfires over the Euro-Mediterranean region during the summer of 2007 by
130 using a 3D chemical-transport model (CTM). The contributions of Nap and MN to SOA at regional
131 scales in China had not been quantified.

132 In this study, SOA formation from Nap, 1-MN, and 2-MN in the Yangtze River Delta (YRD)
133 region during the EXPLORE-YRD -(EXPeriment on the eLucidation of the atmospheric Oxidation
134 capacity and aerosol foRmation, and their Effects in the Yangtze River Delta) campaign period
135 (May 20 – June 18, 2018) was investigated withby using an updated CMAQ model that
136 incorporated explicit SOA schemes for these PAHs. Emission inventories of Nap, 1-MN, and 2-
137 MN were estimated based on different sources and methods and validated against observations.
138 After that, the influences of Nap and MN on secondary organic carbon (SOC), ozone (O₃), and
139 radical concentrations were examined in the locations with high concentrationslevels of Nap and
140 MN as well as at the regional scalewere examined separately. The newly added SOA
141 parameterizations for 1-MN and 2-MN were fitted by both two-product and one-product methods
142 to compare the differences. We findfound that Nap and its derivatives, although accounting for a
143 small fraction of emitted aromatics (5.1%), contributed 12.410.4 % of aromatic-derived SOC in the
144 YRD.

145 **2 Methods**

146 **2.1 Modified SOA formation pathways of MN**

147 The CMAQ model version 5.2, coupled with the SAPRC07tic atmospheric chemical
148 mechanism and the AERO6i aerosol module, was updated to include the oxidation of 1-MN and
149 2-MN by OH[·] and the corresponding SOA formation pathways. In the original CMAQ model, Nap
150 reacts with OH[·] to form SOA under lowhigh- and highlow-NO_x conditions, which are represented
151 by two different counter species PAHNRXN and PAHHRXNand PAHNRXN, respectively (Fig.
152 S11a). Similar to Nap, 1-MN, and 2-MN were treated explicitly treated as reacting with OH[·] and
153 forming SOA counter species under high NO_x (aMPAHRXN and bMPAHRXN) and low NO_x
154 (aMPAHRXN and bMPAHRXN), along with other products following Zhang and Ying

155 (2012). [Zhang and Ying \(2012\)](#). These counter species were used to calculate the production of
156 SOA through gas-particle partitioning based on yields (α_i) and partitioning coefficients ($K_{\text{om},i}$, m^3
157 μg^{-1}) of condensable organic products derived from chamber experiment data. ~~The detailed~~
158 ~~descriptions~~[Details](#) of gas-particle partitioning ~~to fit for fitting~~ SOA ~~yield through formation using~~
159 one-product and two-product methods are ~~depicted~~[described](#) in the Supplement.

160 ~~In gas-particle partitioning of~~[In](#) the original CMAQ model, a two-product method (SV_PAH1
161 and SV_PAH2) was used to represent the SOA formation from Nap under high- NO_x conditions,
162 ~~which are~~ denoted as APAH1J and APAH2J, respectively (Fig. [S1a1a](#)). Under low- NO_x conditions,
163 a one-product method was used to represent the SOA formation from Nap, denoted as APAH3J.
164 It was assumed that APAH3J ([with](#) a yield of α_3) was non-volatile and resided in the particle phase.
165 Similar to Nap, a two-product method for the ~~oxidation products of~~[SOA formation from](#) 1-MN
166 ~~was added~~ under high- NO_x conditions [was added](#) as shown in Fig. [S1b1b](#), with the SOA species
167 denoted as AaMPAH1J and AaMPAH2J. ~~A~~[Additionally, a](#) one-product method ~~to~~
168 ~~characterize~~[characterizing](#) the ~~oxidation products of~~[SOA formation from](#) 1-MN ~~under high- NO_x~~
169 ~~conditions~~ ~~was also~~ applied to compare ~~the difference~~[differences](#) caused by ~~the~~[different](#) fitting
170 ~~approach~~[approaches](#). As shown in Fig. [S1e1c](#), the semi-volatile organic product SV_aMPAH1'
171 undergoes equilibrium partitioning to form SOA (AaMPAH1J'). Under low- NO_x conditions, a
172 non-volatile SOA product AaMPAH3J is formed ~~by the through~~ oxidation of 1-MN. The SOA
173 ~~pathways~~[scheme](#) of 2-MN ~~follow followed that of~~ 1-MN, with ~~the~~ corresponding ~~SOA~~ products
174 ~~of~~[AbMPAH1J, and](#) AbMPAH2J, ~~(or AbMPAH1J')~~ ~~under high- NO_x conditions~~ and AbMPAH3J
175 ~~under low- NO_x conditions~~, respectively. ~~In addition~~[Moreover](#), all semi-volatile SOA products
176 ~~originating from~~ [MN](#) undergo condensed-phase oligomerization reactions at the same rate ~~of as~~
177 APAH1J and APAH2J ~~and produce~~, [generating anthropogenic](#) non-volatile oligomers (AOLGAJ)

178 ~~that belong to the anthropogenic source.).~~ Other processes and parameters involved in the newly
179 added SOA pathways for 1-MN and 2-MN, such as the dry and wet deposition and the molecular
180 weight of the oxidation products₂ were set to be the same as Nap due to limited experimental data.
181 Details of all the parameters, i.e., α_i , $K_{\text{om},i}$, and $\Delta H_{\text{vap},i}$ are summarized in Table S1.

182 2.2 Model application

183 The simulation domain, which covers Jiangsu, Zhejiang, Anhui, Shanghai, and neighboring
184 provinces, has a horizontal resolution of 4 km \times 4 km (238 \times 268 grids) and a vertical structure of
185 18 layers as shown in Fig. S2S1. Details of the domain setup can be found in previous studies (Li
186 et al., 2021²⁰²²; Li et al., 2022²⁰²¹). The meteorological field was predicted by the Weather
187 Research and Forecasting (WRF) model version 4.0 with the ECMWF Reanalysis v5.0 (ERA5)
188 reanalysis data as ~~the~~ inputs. More details about the WRF configuration ~~were~~^{have} been
189 summarized by Wang et al. (2021)^{Wang et al. (2021)}. A spin-up of two days was used to minimize
190 the influence of initial conditions.

191 Biogenic emissions were generated from the Model for Emissions of Gases and Aerosols
192 from Nature (MEGAN) version 2.1 (~~Guenther et al., 2012~~)^(Guenther et al., 2012). Open biomass
193 burning emissions were based on the Fire INventory from the National Center for Atmospheric
194 Research (FINN) (~~Wiedinmyer et al., 2011~~)^(Wiedinmyer et al., 2011). Anthropogenic emissions
195 were generated from the updated 2017 emission inventory for the YRD (~~Cheng et al., 2021~~)^{(Cheng}
196 et al., 2021) and the Multi-resolution Emission Inventory for China (MEIC,
197 <http://www.meicmodel.org>, last access: 1 June 2023) for the rest of the domain. Currently, there
198 is ~~no available data to use in more~~^{a lack of} localized ~~sources~~^{source profiles} in China. ~~The detailed~~
199 ~~emissions of 1-MN, particularly regarding Nap and 2-MN of different sources. These data~~ were
200 ~~calculated~~^{obtained} from the ~~US~~^{U.S.} Environmental Protection Agency's (EPA's)

repository of organic gas and particulate matter (PM) speciation profiles of air pollution sources (SPECIATEv5.2) ~~and along with the source~~ information reported by An et al. (2021)^{An et al. (2021)} and Li et al. (2014). ~~See the Relevant details of emission calculations can be found in the~~ Supplement ~~for more details about the calculating process.~~. There ~~were~~^{are} two sets of emission data consisting of different Nap and MN emissions ~~in the YRD~~. The emis-orig used the original Nap emissions from the 2017 YRD inventory ~~and as well as~~ the calculated Nap emissions in the rest of the domain and MN emissions ~~in the entire domain~~. We show later that Nap and MN were underestimated ~~in emis-orig~~ and required an adjustment in their emissions to capture the observed concentrations. ~~Therefore, the~~Considering their predominantly anthropogenic origin, their anthropogenic emissions ~~of Nap and MN~~ in the ~~YRD~~entire region from emis-orig were multiplied by 5 and 7, respectively, ~~and unchanged in other regions~~ in the emis-adjust case. All the emission ratios applied in this study are shown in Table S2. According to Fig. ~~S3~~S2, Nap and MN emissions were mainly located in Shanghai, southern Jiangsu, and parts of Zhejiang ~~in the YRD region.~~ After adjustments, the total ~~Nap and MN~~ emission rate ~~over~~of Nap and MN in the YRD region in emis-adjust (~~3.9 kg~~85.0 tons day⁻¹) was approximately ~~fourfold~~4 times higher than that in emis-orig (~~0.9 kg~~18.2 tons day⁻¹). The total MN emission rate ~~over~~in the YRD region in emis-adjust was ~~0.9 kg~~20.3 tons day⁻¹ ~~and was~~ lower than that of Nap. For emis-adjust, the dominant source of MN was residential-related (47.0%), followed by industry process (25.8%) and on-road ~~transport~~transportation (20.8%). ~~On~~Among all sources, on-road ~~transport~~transportation contributed the most to Nap emissions in both emis-orig (78.2%) and emis-adjust (87.5%). It should be noted that uncertainties associated with the emission inventory and source profiles, which are based on sector-specific mass ratios presented in Table S2, may potentially affect both

223 the distribution and source contributions of Nap and MN~~may be influenced by the uncertainties~~
224 ~~in the source profiles.~~

225 Table S3~~1~~ lists the scenarios conducted in this study. In case-1product-orig, the anthropogenic
226 emissions ~~in the YRD used were based on~~ emis-orig along with ~~default Nap and added MN~~
227 ~~emissions, and~~ the SOA parameterization for MN ~~was~~ fitted by the one-product method in Fig.
228 1c and that of Nap fitted by a two-product method in Fig. 1a under high-NO_x conditions. To assess
229 the impacts of different SOA parameterizations, ~~the~~ case-2products-orig ~~shared~~adopted the same
230 setting ~~with~~as case-1product-orig except ~~that a two product method for MN generated~~utilizing a
231 two-product method for MN-derived SOA ~~was employed. Both~~under high-NO_x conditions (Fig.
232 1b). For accurate representations of the fate of Nap and MN in the atmosphere, both case-1product
233 and case-2products ~~used~~employed adjusted emissions (emis-adjust ~~as the emission inventory but~~)
234 along with different SOA parameterizations for MN. ~~In~~SOA formation from Nap and MN under
235 low-NO_x conditions in the above cases were all characterized by a fixed yield as shown in Table
236 S1. Overall, the contributions of Nap, 1-MN, and 2-MN to the aromatic SOC were estimated based
237 on different emission inventories and ~~two~~ SOA ~~parameterization~~-schemes. To evaluate the effects
238 of Nap, 1-MN, and 2-MN on O₃, SOC, and radical concentrations, their emissions in case-1product
239 were set to zero and named ~~base1.~~base_zeroNapMN. A case named base_zeroMN was conducted
240 to quantify the individual effects of Nap and MN by setting the emissions of 1-MN and 2-MN to
241 zero.

242 2.3 Observation data for model validation

243 In May-June 2018, the EXPLORE-YRD field campaign was launched at a rural site in
244 Taizhou (32.558°N, 119.994°E) and simultaneously monitored VOCs (including Nap and MN),
245 O₃, NO_x, ~~SOC~~, organic carbon (OC), OH~~·~~· hydroperoxy radical (HO₂·), and other various

246 pollutants, which provides a good opportunity for model validation and understanding the
247 evolution of air pollution in the YRD (Wang et al., 2020^{2020a}; Huang et al., 2020; Yu et al., 2021;
248 Gao et al., 2022). Details of the measurement method and accuracy for each species refer to these
249 references. The simulated ~~MDA8 daily maximum 8-hour average (MDA8)~~ O₃, fine particulate
250 matter (PM_{2.5}), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), and carbon monoxide (CO) were
251 also compared with the observations from the National Real-Time Urban Air Quality Release
252 Platform of the China Environmental Monitoring Center (<http://106.37.208.233:20035/>, last
253 access on May 17, 2023) in Suzhou, Nanjing, Hangzhou, Hefei, and Shanghai cities as shown in
254 Fig. S2. ~~The statistical metries including NMB, NME, and r were calculated for several air~~
255 ~~pollution species. The model performance benchmarks followed the recommendations by Emery~~
256 ~~et al. (2017) and are listed in Table S4.~~ S1. ~~The statistical metrics including normalized mean bias~~
257 ~~(NMB), normalized mean error (NME), and correlation coefficient (r) were calculated for several~~
258 ~~air pollution species. The benchmarks for model performance followed the recommendations by~~
259 ~~Emery et al. (2017) and are listed in Table S3.~~ The meteorological parameters predicted by WRF
260 have been examined to be robust during the same episode by Wang et al. (2021) Wang et al. (2021).

261 3 Results

262 3.1 Model validation

263 Fig. 1Figure 2 and Fig. S4S3 show the comparison of observed and simulated hourly
264 variations of Nap, MN, O₃, ~~organic carbon (OC)~~ and PM_{2.5} at the Taizhou site during the study
265 period. ~~As shown in Fig. 1, in the original settings, the~~ The concentrations of Nap ~~in case-1 product-~~
266 ~~orig and case-2 products-orig~~ were ~~largely significantly~~ underestimated ~~in emis-orig~~ by 79%
267 compared ~~with to~~ the observations, ~~with the value of NMB being 0.79~~. In contrast, emis-adjust
268 better represented the temporal variations of Nap (NMB=0.01, r=0.68) than emis-orig, with the

269 averaged average concentration increased increasing by 375% a factor of 4 and more comparable
270 to agreeing well with the observations. The concentrations modeled concentration of MN simulated
271 by emis-adjust (1.40E-2 ppb) were 14.0 ppt was also comparable to the observations (1.50E-2
272 ppb observed value (15.0 ppt) and showed a good correlation with between the observations two
273 (r=0.59). For other species, the concentrations of OC and PM_{2.5} were also improved slightly
274 increased in emis-adjust compared to that of emis-orig, although they were underestimated in both
275 scenarios. The NMB and NME of PM_{2.5} satisfied the benchmark benchmarks recommended by
276 Emery et al. (2017) Emery et al. (2017), while the NMB of the maximum daily 8-hour average
277 (MDA8) O₃ exceeded the benchmark criteria. Table S5S4 shows that the concentrations of NO₂
278 and nitric oxide (NO) were underestimated at the Taizhou site suggested by the negative NMB
279 values. The simulated OH radicals compared agreed well with the observation observations while
280 the concentrations of HO₂· were underestimated at the Taizhou site (Fig. S5). It should be
281 noted that the influences of different SOA schemes for MN on the aforementioned species are
282 negligible. The predicted concentrations of MDA8 O₃, PM_{2.5}, SO₂, NO₂, and CO in other cities
283 were also examined as shown in Table S4. Overall, the model agreed well with observations in
284 most of the cities except for a significant underestimation of MAD8 O₃ in Shanghai. We chose the
285 (Table S3). The results from of case-1 product and case-2 products using emis-adjust as the emission
286 data were superior compared to the cases using emis-orig. These findings will be further discussed
287 in the subsequent analysis.

288 3.2 Influences of Nap and MN on SOC in Taizhou

289 Figure 23 depicts the diurnal variations of emissions and concentrations of Nap, 1-MN, and
290 2-MN, as well as the corresponding SOC products SOC-Nap, SOC-1MN, and SOC-2MN at the
291 Taizhou site in both case-1 product and case-2 products. The emissions of Nap, 1-MN, and 2-MN

exhibited a bimodal pattern. For Nap, the bimodal characteristics were the most pronounced, accompanied by two peaks that occurred between 8:00~9:00 and 16:00~17:00, respectively. This was likely attributed to the dominant source of Nap from ~~transport~~transportation as described in Sect. 2.2. Nap and MN concentrations were relatively low during the daytime and peaked in the morning and at night, ~~which was~~. This is caused by the fast photochemical removal and increased dilution during the daytime, along with the facilitated accumulation due to low mixing heights at night (Cohan et al., 2013; Huang et al., 2019; Cohan et al., 2013). The simulated diurnal variation of Nap agreed well with observations, but the daytime MN concentration was underpredicted as shown in Fig. S5. The concentrations of SOC generated by Nap, 1-MN, and 2-MN were high during the daytime, especially from 10:00 to 15:00. This was attributed to the removal of Nap and MN by OH radicals to form SOC. The potential removal by ~~nighttime~~ nitrate radicals (NO_3) was negligible in this study, leading to a ~~certain degree of declining trend for~~decline in SOC formation at night. Nap-derived SOC was the most abundant, followed by SOC from 2-MN (~~SOC-2MN~~) and 1-MN (~~SOC-1MN~~). This is attributed to the combined effects of the OH^\cdot reactivity, SOA yields, as well as abundances of the three compounds (Li et al., 2017; Yu et al., 2021). ~~Apart from the highest emissions of Nap, Nap is also more reactive with OH^\cdot and has the highest SOA yield in case 2 products compared to the other two species. In case 1 product, although the SOA yields of MN are the highest, the OH^\cdot reaction rate with Nap is faster than MN. Apart from having the highest emissions, Nap also exhibits greater reactivity with OH^\cdot . Although its SOA yield under high- NO_x conditions is lower than that of MN fitted by the one-product scheme (Fig. S6), its SOA yield under low- NO_x conditions is the highest among the three PAHs (Table S1). Overall, Nap contributed the most to SOC. 2-MN demonstrates higher SOA yields than 1-MN under high- NO_x conditions in both cases, but a lower SOA yield under low- NO_x conditions. Considering the impact~~

315 of a higher emission rate (Fig. 3a and 3c), 2-MN contributed two times more SOC compared to 1-
316 MN. The SOC generated by MN in case-2products was lower than that in case-1product due to
317 the lower SOA yield ~~of MN~~ applied in case-2products ~~as shown in Table S1 (Fig. S6).~~

318 Figure 34 shows the contributions of major aromatic species, i.e., Nap, 1-MN, 2-MN, 1,2,4-
319 trimethyl benzene (B124), xylene (MPO), benzene (BENZ), toluene (TOLU), aromatics with k_{OH}
320 (reaction rate constant with $OH\cdot$) $< 2 \times 10^4$ ppm $^{-1}$ min $^{-1}$ (ARO1) and ARO2MN' (ARO2 excluding
321 Nap and MN) to the total emissions of aromatics and the aromatic-derived SOC in both case-
322 1product and case-2products at the Taizhou site. Among all the species, ARO2MN', MPO, and
323 B124 showed the largest fraction ~~of in~~ emissions, accounting for 58.6%, followed by ARO1 and
324 TOLU (31.8%), and BENZ (6.3%). Nap and MN contributed the least to the total aromatic
325 emissions, with Nap ~~to be being~~ the most abundant species. The daily average concentrations of
326 SOC produced from all the aromatics ~~was were~~ quite similar in case-1product and case-2products,
327 ~~which were 102.0 with the values of 101.3~~ and 100.72 ng m $^{-3}$, respectively (Fig. S6S7). The
328 contribution of ARO2MN', MPO, and B124 to the total aromatic-derived SOC was the most
329 significant, ~~which was ranging from 45.6% to 46.2–45.8%~~. Nap ~~showed indicated~~ a remarkable
330 contribution to SOC, accounting for 8.7–8.8%, ~~although it 2–8.3%, despite constituting~~ only ~~made~~
331 ~~up~~ 2.6% of the total emitted aromatics. 2-MN was also an important SOC precursor, contributing
332 ~~to 1.3–2.2–2.0%~~ of the aromatic-derived SOC. 1-MN ~~was showed~~ the ~~least emitted aromatic~~
333 ~~compound lowest emissions~~, accounting for 0.2% of the total aromatic emissions and less than 1.0%
334 of the aromatic-derived SOC. ~~All of Overall~~, Nap, 1-MN, and 2-MN ~~had exhibited~~ the same trait of
335 contributing ~~much significantly~~ more to SOC than to ~~SOC~~ precursor emissions, especially for Nap.
336 The total contributions of MN and Nap to SOC were higher than that of BENZ, even though their
337 emissions were significantly lower than BENZ. Similar results were also found in field campaigns

338 conducted in Guangzhou (Fang et al., 2021) (Fang et al., 2021) and Beijing (Huang et al.,
339 2019) (Huang et al., 2019) where Nap and MN showed higher contributions. Compared to
340 BENZbenzene and other single-ring monocyclic aromatics, the oxidation products of Nap and MN
341 belong to IVOCs with lower saturation vapor pressure, which is are much less volatile and are more
342 likely to generate SOA through coagulation and absorption efficient at aerosol growth (Gao Wang
343 et al., 2021; Zhao et al., 2014 2020b). Thus, their considerably higher SOA yields and reactivity
344 with OH[·] lead to an important contribution to SOA formation. In general, we We found that 3.3%
345 of aromatic emissions from Nap and derivatives could contribute contributed up to 11.7% 10.9% of
346 SOC generated from aromatics at the Taizhou site.

347 3.3 Regional distributions of Nap and MN and the influences on secondary pollutants

348 In the YRD, the average contribution of Nap to aromatic emissions was 4.1% (Fig. S7), while
349 the Nap-derived SOC accounted for 94.1% of aromatic emissions and contributed 8.0% and 98.1%
350 of the total SOC generated by aromatics in case-1 product and case-2 products, respectively. (Fig.
351 S8). We found extremely high contributions of Nap-derived SOC in areas with high Nap emissions
352 (Fig. S8), reaching up to 13.7 12.6% in case-2 products. 2-MN constituted contributed 0.6% of the
353 total aromatic emissions and contributed up to 3.8 2.5% of the aromatic-derived SOC in case-
354 1 product. Among the three PAHs, 1-MN showed the lowest emissions (about 0.4% of the aromatic
355 emissions) and contributed minimally to the smallest regional average contribution to SOC (0.64–
356 0.97%). The SOC derived from MN in case-2 products was approximately 38% lower than that in
357 case-1 product across the entire YRD region (Fig. S8S9), while minor differences were observed
358 in O₃ and the total SOC showed minor differences in between the two cases with different SOA
359 parameterization of MN (Fig. S9S10). In general, the concentrations of SOC produced by the three
360 PAHs in case-1 product were higher than those in case 2 products, which may minimize the

361 ~~discrepancy between the simulated and observed OC given the existing underestimation of OC at~~
362 ~~least in Taizhou, as shown in Fig. 1 and Fig. S6. Therefore, we opted for that in case-2 products,~~
363 ~~exhibiting similar spatial distribution patterns in both cases. We will focus on~~ the results from
364 case-1 product in the subsequent analysis.

365 ~~The accurate reproduction and quantitative constraints~~Accurate representation of Nap and
366 MN ~~are sources and sinks in model simulations is~~ crucial for ~~understanding~~comprehending the
367 atmospheric oxidation capacity ~~in model simulations.~~ The relative differences between
368 ~~base1~~base zeroNapMN and case-1 product were calculated to evaluate the effects of Nap, 1-MN,
369 and 2-MN on O₃, SOC, and radical concentrations. As shown in Fig. 4a~~5a~~, the SOC concentrations
370 ~~over~~in the YRD ~~region~~ increased by approximately 1.0.9% on average, with the most significant
371 ~~increase~~change observed in areas with high emissions of Nap and MN, such as Shanghai and
372 southern Jiangsu Province, reaching up to 1.7%. The impact on O₃ was relatively limited, with a
373 maximum increase of 0.3%%, primarily attributed to Nap rather than MN (Fig. S11). Similar to
374 SOC, the spatial distribution of O₃ variations was consistent with that of Nap and MN emissions.
375 ~~When~~By considering the oxidation of Nap and MN ~~oxidation was considered~~ in the model, HO₂[·]
376 concentration was enhanced across the domain by up to 1.6% (in Shanghai), likely due to the
377 production of HO₂[·] through the reaction of Nap and MN with OH[·]. However, the variations in
378 OH[·] concentration exhibited regional heterogeneity, with a maximum increase of 0.8%(7%) in
379 Shanghai) and a maximum decrease of 0.3% (in Wenzhou). The areas with elevated OH[·]
380 coincided with the locations experiencing notable increases in O₃. As an OH[·] source in the
381 troposphere, the photolysis of O₃ produces electronically excited O(¹D) atoms that react with water
382 molecules to form fresh OH[·] (Qin et al., 2022; Tan et al., 2019; Qin et al., 2022). Moreover, the
383 areas with elevated OH[·] also exhibited a significant increase in HO₂[·]. HO₂[·] can react with O₃ ~~to~~

384 ~~produce OH[·], thereby offsetting the OH[·] consumption by Nap and MN oxidations (Zhu et al.,~~
385 ~~2020), or NO to produce OH[·], thereby offsetting the OH[·] consumption by Nap and MN oxidation~~
386 ~~(Zhu et al., 2020). In the areas with decreased OH[·], the increase~~increases of O₃ and HO₂[·] ~~was not~~
387 ~~significant~~were insignificant, resulting in ~~fewer newly generated~~a reduced generation of OH[·] to
388 compensate for the OH[·] consumption by Nap and MN. ~~Similar to O₃, variations in OH[·] and HO₂[·]~~
389 were primarily influenced by Nap rather than MN (Fig. S11).

390 To ~~minimize the potential obfuscation of~~avoid obscuring the true magnitude by averaging
391 over the entire episode ~~average variation, the hourly, daily~~ relative differences of SOC, O₃, and
392 radicals at the Shanghai and Suzhou sites, which exhibit significant variations, are ~~depicted~~shown
393 in Fig. 4b5b and Fig. 4c, ~~respectively~~5c. Overall, the influences of Nap and MN varied daily. At
394 the Shanghai site, the most pronounced effects ~~of~~on OH[·] and HO₂[·] were observed, with increases
395 of up to 1.79% and 3.78%, respectively. At the Suzhou site, the maximum daily variations of OH[·]
396 and HO₂[·] (1.5% and 2.9%) were ~~marginally~~slightly lower than those in Shanghai; ~~whereas,~~
397 However, the ~~maximum~~ daily ~~variations of~~ SOC and O₃ were elevated by up to 3.0% and 1.1% ~~at~~
398 ~~the~~in Suzhou ~~site~~, respectively. It was found that both OH[·] and HO₂[·] displayed bimodal variations
399 at the two sites, with the most pronounced changes of 0.7–1.0% and 1.6–2.2% occurring in the
400 morning, respectively (Fig. S12). The concentrations of SOC and O₃ were elevated in the daytime,
401 reaching peak increments of 2.1–2.3% and 0.4–0.5% at noon. Consequently, the influences of Nap
402 and MN on SOC, O₃, and the atmospheric oxidation capacity were substantial at the daily scale in
403 those regions.

404 4 Discussion

405 Our results revealed that the contributions of Nap and MN to the total aromatic emissions
406 were minimal, which were 5.1% in the YRD and 3.3% at the Taizhou site. However, the SOC

407 produced by Nap and MN ~~constituted 12.1~~accounted for 10.4% of the total aromatic-derived SOC
408 in this region and ~~11.7~~10.9% at the Taizhou site. Given the overestimation of other aromatic
409 species in the current model (Table S5S4), the contributions of Nap and MN to aromatic SOC
410 ~~might~~may be underestimated. ~~Yu et al. (2021)~~Yu et al. (2021) demonstrated an augmented fraction
411 of SOC derived from a yield method to that using the EC tracer method after the inclusion of Nap
412 and MN oxidation (from 25.3% to 39.5%) during the same episode at the Taizhou site. That is to
413 say, Nap and MN ~~contributed~~contribute 35.9% of the total SOC estimated by using the SOA yield
414 multiplied by the consumption of VOCs, which ~~was~~is higher than the value (~~11.7~~10.9) in this
415 study. Other field studies have also found significant SOA formation from Nap and MN among
416 aromatics in the Pearl River Delta region (12.4%) (~~Fang et al., 2021~~)(Fang et al., 2021) and in
417 Beijing during haze days (10.2±1.3%) (~~Huang et al., 2019~~)(Huang et al., 2019), with relatively
418 smaller contributions to emissions of aromatics by less than 2% and 7%, respectively. This study
419 highlights the ~~erucial~~important roles of Nap and MN, which exhibit high SOA
420 ~~production~~formation potentials with trace amounts emitted into the atmosphere. In addition, the
421 average concentrations of Nap and MN in this study were ~~27~~25 and ~~9~~7 ppt during summer over
422 the YRD region (Fig. S8S9), respectively. Previous studies have confirmed that the concentrations
423 of Nap and MN exhibited a seasonal variation, with maxima in winter and minima in summer,
424 attributed to the increased heating and cooking activities in households during the cold season
425 (~~Tang et al., 2020; Huang et al., 2019; Fang et al., 2021; Tang et al., 2020~~). Consequently, the
426 ambient concentration of Nap and MN, along with the potential SOA production may be more
427 severe in winter. Cleaner fuel types and household cleaning products are recommended for
428 vehicular and domestic usage.

429 The ~~urgent demand for enhancing the~~improvement in simulation and assessment of Nap and
430 MN chemistry is ~~necessitated~~crucial. Firstly, the characterization of Nap and MN from local
431 sources and additional field observations are indispensable to reduce the disparities between the
432 modeled and observed Nap and MN concentrations. Secondly, the SOA parameterizations of Nap
433 and MN, including the enthalpy of vaporization and SOA yields, are derived from limited chamber
434 experiments and require further validation. Previous studies have reported that the SOA yields
435 obtained from chamber studies were contingent on OH[·] exposure, NO_x levels, relative humidity,
436 and seed particles, which may not represent the actual atmospheric conditions (Yu et al., 2021;
437 Ling et al., 2022). Thirdly, chlorine radicals (Cl), NO₃ radicals, and O₃ also play an important role
438 in the atmospheric reactions of Nap and MN ([Wang et al., 2005](#); Cohan et al., 2013; ~~Matthieu et~~
439 ~~al., 2014~~; Riva et al., 2015; ~~Wang et al., 2005; 2014~~; Aleman, 2006), which were missing in the
440 current study due to the lack of parameterization.— The formation of gas- and particle-phase
441 products through reactions between Cl atoms and Nap has been confirmed. For instance,
442 chloronaphthalene and chloroacenaphthenone have been identified as potential SOA markers for
443 the Cl-initiated oxidation of Nap in the ambient atmosphere ([Riva et al., 2015](#)).[\(Riva et al., 2015\)](#).
444 As important sources of Cl atoms, abundant nitryl chloride (ClNO₂) and molecular chlorine (Cl₂)
445 ~~were~~are attributed to sea salt, coal combustion, biomass burning (Le Breton et al., 2018), and
446 urban-originated ~~transports~~transport (Li et al., 2021; Tham et al., ~~2013~~[2014](#)). Consequently, the
447 Cl-initiated SOA formation process may be pronounced in specific regions, such as the marine
448 boundary layer and industrial areas. Using the rate constant of Cl with Nap ((4.22±0.46)×10⁻¹²)
449 (~~Matthieu et al., 2014~~)[\(Riva et al., 2014\)](#) and corresponding SOA yields (0.91±0.05) (~~Riva et al.,~~
450 ~~2015~~), ~~which is approximately~~[\(Riva et al., 2015\)](#), ~~which is up to~~ three times higher than those
451 determined from OH-initiated oxidation (Chan et al., 2009; Shakya and Griffin, 2010), we

452 estimated the potential SOA formation from the reaction of Nap and Cl atoms via a yield method
453 (Huang et al., 2019; Yu et al., 2021). ~~Assuming a global average Cl concentration of 1×10^4~~
454 ~~molecules cm⁻³ and a tropospheric lifetime of 275 days as determined by Matthieu et al. (2014),~~
455 ~~SOA generated from Nap initiated by Cl atoms is three times higher than that from the oxidation~~
456 ~~by OH[·] with a 12 h average daytime concentration of 2×10^6 molecules cm⁻³ and a tropospheric~~
457 ~~lifetime of 6 hours. Assuming a 12-h average daytime OH[·] concentration of 2×10^6 molecules cm⁻³~~
458 ~~and a photooxidation age of 6 h, the SOA generated from Nap oxidation by Cl atoms can reach up~~
459 ~~to 56% of that from the Nap + OH pathway in highly polluted regions with a Cl/ OH ratio greater~~
460 ~~than 0.8 (Choi et al., 2020)~~. This suggests that the omission of Cl-initiated chemistry in this study
461 might lead to an underestimation of Nap-derived SOA by approximately ~~75~~³⁶%. Given the
462 underestimation of anthropogenic chlorine emissions in China (~~Li et al., 2021~~; Choi et al., 2020;
463 [Li et al., 2021](#)), further studies are recommended to estimate chlorine emissions with finer spatial
464 resolution and the impacts on Nap SOA under atmospherically realistic conditions. Lastly, a
465 precise depiction of Nap and MN chemistry is crucial for gaining a deeper understanding of the
466 health implications of these noxious compounds. The health risks associated with inhalation
467 exposure to outdoor Nap and other PAHs have been assessed by calculating the incremental
468 lifetime cancer risk (ILCR) values in China and the United States (Han et al., 2020; Zhang et al.,
469 2016). Nonetheless, there has been no systematic evaluation of the health risks resulting from
470 exposure to PAH-derived SOA and by-products, despite previous studies verifying the
471 toxicological impacts (e.g. oxidation potential, OP) of Nap-derived SOA (~~Lima-de-Albuquerque~~
472 ~~et al., 2021~~; Wang et al., 2018; Tuet et al., 2017a; Tuet et al., 2017b; [Lima de Albuquerque et al.,](#)
473 [2021](#)). More precise measurements of the OP of ~~the~~ different ~~individual~~ SOA [components](#) are
474 needed ~~in order~~ to evaluate the overall oxidative potentials of ambient SOA ~~using individual~~

475 ~~intrinsic OP of different types of SOA in conjunction with SOA loadings in models~~. Future studies
476 are needed to develop rational parameterization schemes for assessing the health risks associated
477 with Nap- and MN-derived SOA.

478 **5 Conclusions**

479 In this study, we investigated the impacts of Nap, 1-MN, and 2-MN oxidation on the
480 formation of SOC, O₃, and radicals from May 20 to June 18, 2018, in the YRD using a revised
481 CMAQ model and explicit emission inventories. The ~~simulating~~ results of case-1 product, using
482 the adjusted emissions (emis-adjust) and a one-product method ~~to fit~~for fitting MN ~~yields~~SOA,
483 best ~~reproduced~~captured the observed evolution of Nap (NMB=0.01) and MN (NMB=-0.07) when
484 compared ~~with~~to the default case (NMB=-0.79 for Nap, NMB=-0.85 for MN). The primary sources
485 of Nap and MN were transportation and residential-related ~~and thus led to~~sectors, resulting in a
486 bimodal emission pattern ~~for their emissions. Whereas the Nap and MN~~. The concentrations of
487 Nap and MN were ~~relatively low~~lowest during the daytime ~~and peaked, peaking~~ in the morning,
488 ~~the generated~~ and at night. Their SOC ~~peaked in~~concentrations reached the maximum value during
489 the daytime ~~affected by~~due to the ~~photochemistry~~photooxidation of Nap and MN and ~~the evolution~~
490 ~~of the~~ boundary layer. ~~All of~~evolution. Nap, 1-MN, and 2-MN ~~had exhibited~~ the same trait of
491 contributing ~~much~~ more to aromatic-derived SOC than to ~~SOC precursor~~ emissions of aromatic
492 hydrocarbons, especially for Nap. ~~In general, we found that 3.3% of aromatic emissions from Nap~~
493 ~~and derivatives could contribute up to 11.7% SOC generated from aromatics at the Taizhou site.~~
494 The average concentration of Nap ~~concentrations reached 27~~was 25 ppt in the YRD, accounting
495 for 4.1% and ~~98.1%~~ (up to ~~43.7~~12.6%) of total ~~aromatics~~aromatic emissions and aromatic-derived
496 SOC, respectively. The concentrations of 1-MN and 2-MN were relatively low, with ~~an~~ average
497 values of 3 and 6 ppt ~~in the YRD, and~~and 5 ppt, respectively. Together, they contributed ~~3.1~~only

498 2.4% of the aromatic-derived SOC. At the regional scale, the impacts of Nap and MN oxidation
499 on O₃ and radical concentrations were limited. However, substantial increases still occurred in
500 areas with high Nap and MN emissions and, which cannot be disregarded. The high SOA
501 formation potential of Nap and MN and its impact on secondary pollutants
502 proved in this study implied highlight the significance importance of such considering these IVOCs
503 except for alongside traditional VOCs when implementing air pollution control policies, energy
504 use strategies, and health risks evaluation.

505

506 **Code and data availability**

507 The codes used for all the analyses are available on reasonable request to the corresponding author.
508 All data used in this research are freely available and may be downloaded from the links and cited
509 references given in the methods section.

510 **Author contributions**

511 F.Y., J.L., and J.H. designed the research and conducted the simulations. Y.G., H.W., S.G., and
512 K.L. collected the observed data. J.A. and C.H. provided emission data. F.Y. led data
513 analysis and drafted the main text. J.L., J.H., and M.Q. analyzed the data. All authors
514 discussed contributed to interpreting the results. F.Y. prepared the manuscript and all authors
515 helped improve and editing the manuscript.

516 **Competing interests**

517 The authors declare no competing interests.

518 **Disclaimer**

519 Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims
520 made in the text, published maps, institutional affiliations, or any other geographical representation
521 in this paper. While Copernicus Publications makes every effort to include appropriate place
522 names, the final responsibility lies with the authors.

523 **Acknowledgements**

524 This work was financially supported by the National Key R&D Program of China
525 (2022YFE0136200) and the National Natural Science Foundation of China (No. 42077199).

526 **References**

527 Aleman, G.: The kinetics and mechanisms of chlorine atom reactions with alkylbenzenes and
528 alkynaphthalenes, *M.S.*, California State University, Fullerton., [148 pp.](#), 2006.
529 An, J., Huang, C., Huang, D., Qin, M., Liu, H., Yan, R., Qiao, L., Zhou, M., Li, Y., Zhu, S., Wang,
530 Q., and Wang, H.: Sources of organic aerosols in eastern China: a modeling study with high-
531 resolution intermediate-volatility and semivolatile organic compound emissions, *Atmos. Chem. Chem.*
532 Phys., 23, 323-344, [10.5194/acp-23-323-2023](#), 2023.
533 An, J., Huang, Y., Huang, C., Wang, X., Yan, R., Wang, Q., Wang, H., Jing, S. a., Zhang, Y., Liu,
534 Y., Chen, Y., Xu, C., Qiao, L., Zhou, M., Zhu, S., Hu, Q., Lu, J., and Chen, C.: Emission inventory
535 of air pollutants and chemical speciation for specific anthropogenic sources based on local
536 measurements in the Yangtze River Delta region, China, *Atmospheric Chemistry and*
537 *Physics*, [Atmos. Chem. Phys.](#), 21, 2003-2025, [10.5194/acp-21-2003-2021](#), 2021.
538 Chan, A. W. H., Kautzman, K. E., Chhabra, P. S., Surratt, J. D., Chan, M. N., Crouse, J. D., Kürten,
539 A., Wennberg, P. O., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from
540 photooxidation of naphthalene and alkynaphthalenes: implications for oxidation of intermediate
541 volatility organic compounds (IVOCs), *Atmos. Chem. Phys.*, 9, 3049-3060, [10.5194/acp-9-3049-2009](#),
542 2009.
543 Chen, C.-L., Kacarab, M., Tang, P., and Cocker, D. R.: SOA formation from naphthalene, 1-
544 methylnaphthalene, and 2-methylnaphthalene photooxidation, *Atmospheric Environment*, [Atmos.](#)
545 *Environ.*, 131, 424-433, [10.1016/j.atmosenv.2016.02.007](#), 2016.
546 Cheng, Y., Yu, Q.-q., Liu, J.-m., Du, Z.-Y., Liang, L.-l., Geng, G.-n., Zheng, B., Ma, W.-l., Qi, H.,
547 Zhang, Q., and He, K.-b.: Strong biomass burning contribution to ambient aerosol during heating
548 season in a megacity in Northeast China: Effectiveness of agricultural fire bans?, *Science of The Sci.*
549 Total *Environment*, [Environ.](#), 754, [10.1016/j.scitotenv.2020.142144](#), 2021.
550 <https://doi.org/10.1016/j.scitotenv.2020.142144>, 2021.
551 Choi, M. S., Qiu, X., Zhang, J., Wang, S., Li, X., Sun, Y., Chen, J., and Ying, Q.: Study of
552 Secondary Organic Aerosol Formation from Chlorine Radical-Initiated Oxidation of Volatile
553 Organic Compounds in a Polluted Atmosphere Using a 3D Chemical Transport Model,
554 *Environmental Science & Technology*, [Environ. Sci. Technol.](#), 54, 13409-13418,
555 10.1021/acs.est.0c02958, 2020.
556 Cohan, A., Eiguren-Fernandez, A., [Miguel, A. H. J. I. J. o. E.](#), and [Dabub, D.](#): *Pollution*: Secondary

557 organic aerosol formation from naphthalene roadway emissions in the South Coast Air Basin of
558 California, *International Journal of Environment and Pollution*, 52, 206-224,
559 [10.1504/IJEP.2013.058461](https://doi.org/10.1504/IJEP.2013.058461) *Int. J. Environ. Pollut.*, 52, 206-224, 2013.

560 Emery, C., Liu, Z., Russell, A. G., Odman, M. T., Yarwood, G., and Kumar, N.: Recommendations
561 on statistics and benchmarks to assess photochemical model performance, *J. Air Waste
562 Manage.* Assoc., 67, 582-598, 10.1080/10962247.2016.1265027, 2017.

563 Fang, H., Luo, S., Huang, X., Fu, X., Xiao, S., Zeng, J., Wang, J., Zhang, Y., and Wang, X.:
564 Ambient naphthalene and methylnaphthalenes observed at an urban site in the Pearl River Delta
565 region: Sources and contributions to secondary organic aerosol, *Atmospheric Environment*, [Atmos.
566 Environ.](https://doi.org/10.1016/j.atmosenv.2021.118295), 252, 10.1016/j.atmosenv.2021.118295, 2021.

567 ~~Gao, Y., Li, M., Wan, X., Zhao, X., Wu, Y., Liu, X., and Li, X.: Important contributions of alkenes
568 and aromatics to VOCs emissions, chemistry and secondary pollutants formation at an industrial
569 site of central eastern China, *Atmospheric Environment*, 244, 10.1016/j.atmosenv.2020.117927,
570 2021.~~

571 Gao, Y., Wang, H., Liu, Y., Zhang, X., Jing, S., Peng, Y., Huang, D., Li, X., Chen, S., Lou, S., Li,
572 Y., and Huang, C.: Unexpected High Contribution of Residential Biomass Burning to Non-
573 Methane Organic Gases (NMOGs) in the Yangtze River Delta Region of China, *Journal of
574 Geophysical Research: Atmospheres*, [J. Geophys. Res.-Atmos.](https://doi.org/10.1029/2021jd035050), 127, 10.1029/2021jd035050, 2022.

575 Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and
576 Wang, X., *J. G. M. D.*: The Model of Emissions of Gases and Aerosols from Nature version 2.1
577 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, *Geosci.
578 Model Dev.*, 5, 1471-1492, [10.5194/gmd-5-1471-2012](https://doi.org/10.5194/gmd-5-1471-2012), 2012.

579 Han, F., Guo, H., Hu, J., Zhang, J., Ying, Q., and Zhang, H.: Sources and health risks of ambient
580 polycyclic aromatic hydrocarbons in China, *Sci Total Environ.*, 698, 134229,
581 10.1016/j.scitotenv.2019.134229, 2020.

582 Hayes, P. L., Carlton, A. G., Baker, K. R., Ahmadov, R., Washenfelder, R. A., Alvarez, S.,
583 Rappenglück, B., Gilman, J. B., Kuster, W. C., de Gouw, J. A., Zotter, P., Prévôt, A. S. H., Szidat,
584 S., Kleindienst, T. E., Offenberg, J. H., Ma, P. K., and Jimenez, J. L.: Modeling the formation and
585 aging of secondary organic aerosols in Los Angeles during CalNex 2010, *Atmospheric Chemistry
586 and Physics*, [Atmos. Chem. Phys.](https://doi.org/10.5194/acp-15-5773-2015), 15, 5773-5801, 10.5194/acp-15-5773-2015, 2015.

587 Hu, W., Zhou, H., Chen, W., Ye, Y., Pan, T., Wang, Y., Song, W., Zhang, H., Deng, W., Zhu, M.,
588 Wang, C., Wu, C., Ye, C., Wang, Z., Yuan, B., Huang, S., Shao, M., Peng, Z., Day, D. A.,
589 Campuzano-Jost, P., Lambe, A. T., Worsnop, D. R., Jimenez, J. L., and Wang, X.: Oxidation Flow
590 Reactor Results in a Chinese Megacity Emphasize the Important Contribution of S/IVOCs to
591 Ambient SOA Formation, *Environ. Sci. Technol.*, 56, 6880-6893, 10.1021/acs.est.1c03155, 2022.

592 Huang, D. D., Kong, L., Gao, J., Lou, S., Qiao, L., Zhou, M., Ma, Y., Zhu, S., Wang, H., Chen, S.,
593 Zeng, L., and Huang, C.: Insights into the formation and properties of secondary organic aerosol
594 at a background site in Yangtze River Delta region of China: Aqueous-phase processing vs.
595 photochemical oxidation, *Atmospheric Environment*, [Atmos. Environ.](https://doi.org/10.1016/j.atmosenv.2020.117716), 239, 117716,
596 <https://doi.org/10.1016/j.atmosenv.2020.117716>, 2020.

597 Huang, G., Liu, Y., Shao, M., Li, Y., Chen, Q., Zheng, Y., Wu, Z., Liu, Y., Wu, Y., Hu, M., Li, X.,
598 Lu, S., Wang, C., Liu, J., Zheng, M., and Zhu, T.: Potentially Important Contribution of Gas-Phase
599 Oxidation of Naphthalene and Methylnaphthalene to Secondary Organic Aerosol during Haze
600 Events in Beijing, *Environ. Sci. Technol.*, 53, 1235-1244, 10.1021/acs.est.8b04523, 2019.

601 Le Breton, M., Hallquist, Å. M., Pathak, R. K., Simpson, D., Wang, Y., Johansson, J., Zheng, J.,
602 Yang, Y., Shang, D., Wang, H., Liu, Q., Chan, C., Wang, T., Bannan, T. J., Priestley, M., Percival,

603 C. J., Shallcross, D. E., Lu, K., Guo, S., Hu, M., and Hallquist, M.: Chlorine oxidation of VOCs at
604 a semi-rural site in Beijing: significant chlorine liberation from ClNO₂ and subsequent gas- and
605 particle-phase Cl–VOC production, *Atmos. Chem. Phys.*, 18, 13013-13030, 10.5194/acp-18-
606 13013-2018, 2018.

607 Li, J., Zhang, M., Wu, F., Sun, Y., and Tang, G.: Assessment of the impacts of aromatic VOC
608 emissions and yields of SOA on SOA concentrations with the air quality model RAMS-CMAQ,
609 *Atmospheric Environment*, *Atmos. Environ.*, 158, 105-115, 10.1016/j.atmosenv.2017.03.035,
610 2017.

611 Li, J., Zhang, N., Wang, P., Choi, M., Ying, Q., Guo, S., Lu, K., Qiu, X., Wang, S., Hu, M., Zhang,
612 Y., and Hu, J.: Impacts of chlorine chemistry and anthropogenic emissions on secondary pollutants
613 in the Yangtze river delta region, *Environmental Pollution*, *Environ. Pollut.* 287, 117624,
614 <https://doi.org/10.1016/j.envpol.2021.117624>, 2021.

615 Li, L., Xie, F., Li, J., Gong, K., Xie, X., Qin, Y., Qin, M., and Hu, J.: Diagnostic analysis of regional
616 ozone pollution in Yangtze River Delta, China: A case study in summer 2020, *Sci. Total Environ.*,
617 812, 151511, 10.1016/j.scitotenv.2021.151511, 2022.

618 Li, M., Zhang, Q., Streets, D. G., He, K. B., Cheng, Y. F., Emmons, L. K., Huo, H., Kang, S. C.,
619 Lu, Z., Shao, M., Su, H., Yu, X., and Zhang, Y.: Mapping Asian anthropogenic emissions of non-
620 methane volatile organic compounds to multiple chemical mechanisms, *Atmos. Chem. Phys.*, 14,
621 5617-5638, 10.5194/acp-14-5617-2014, 2014.

622 Lima de Albuquerque, Y., Berger, E., Tomaz, S., George, C., and *Géloën*, A.: Evaluation of
623 the Toxicity on Lung Cells of By-Products Present in Naphthalene Secondary Organic Aerosols,
624 *Life (Basel)*, 11, [10.3390/life11040319](https://doi.org/10.3390/life11040319), 2021.

625 Ling, Z., Wu, L., Wang, Y., Shao, M., Wang, X., and Huang, W.: Roles of semivolatile and
626 intermediate-volatility organic compounds in secondary organic aerosol formation and its
627 implication: A review, *J. Environ. Sci. (China)*, 114, 259-285, 10.1016/j.jes.2021.08.055, 2022.

628 Liu, T., Wang, X., Deng, W., Hu, Q., Ding, X., Zhang, Y., He, Q., Zhang, Z., Lü, S., Bi, X., Chen,
629 J., and Yu, J.: Secondary organic aerosol formation from photochemical aging of light-duty
630 gasoline vehicle exhausts in a smog chamber, *Atmospheric Chemistry and Physics*, *Atmos. Chem.
631 Phys.*, 15, 9049-9062, 10.5194/acp-15-9049-2015, 2015.

632 Majdi, M., Sartelet, K., Lanzafame, G. M., Couvidat, F., Kim, Y., Chrit, M., and Turquety, S.:
633 Precursors and formation of secondary organic aerosols from wildfires in the Euro-Mediterranean
634 region, *Atmospheric Chemistry and Physics*, *Atmos. Chem. Phys.*, 19, 5543-5569, 10.5194/acp-
635 19-5543-2019, 2019.

636 *Matthieu, Riva, Robert, M., Healy, Pierre Marie, Flaud, Emilie, Perraudin, and A, J. J. J. o. P. C.:
637 Kinetics of the Gas Phase Reactions of Chlorine Atoms with Naphthalene, Acenaphthene, and
638 Acenaphthylene, 2014.*

639 Pye, H. O. and Pouliot, G. A.: Modeling the role of alkanes, polycyclic aromatic hydrocarbons,
640 and their oligomers in secondary organic aerosol formation, *Environ. Sci. Technol.*, 46, 6041-
641 6047, 10.1021/es300409w, 2012.

642 Pye, H. O. T. and Seinfeld, J. H.: A global perspective on aerosol from low-volatility organic
643 compounds, *Atmospheric Chemistry and Physics*, *Atmos. Chem. Phys.*, 10, 4377-4401,
644 10.5194/acp-10-4377-2010, 2010.

645 Qin, M., Hu, A., Mao, J., Li, X., Sheng, L., Sun, J., Li, J., Wang, X., Zhang, Y., and Hu, J.:
646 *PM_{2.5}* and *O₃* relationships affected by the atmospheric oxidizing capacity in the
647 Yangtze River Delta, China, *Sci. Total Environ.*, 810, 152268,
648 <https://doi.org/10.1016/j.scitotenv.2021.152268>, 2022.

649 Riva, M., Healy, R. M., Flaud, P.-M., Perraudin, E., Wenger, J. C., and Villenave, E.: [Kinetics of](#)
650 [the Gas-Phase Reactions of Chlorine Atoms with Naphthalene, Acenaphthene, and](#)
651 [Acenaphthylene, J. Phys. Chem. A, 118, 3535-3540, 10.1021/jp5009434, 2014.](#)

652 Riva, M., Healy, R. M., Flaud, P.-M., Perraudin, E., Wenger, J. C., and Villenave, E.: Gas-
653 and Particle-Phase Products from the Chlorine-Initiated Oxidation of Polycyclic Aromatic
654 Hydrocarbons, [J. Phys. Chem. A, 119, 11170-11181, 10.1021/acs.jpca.5b04610, 2015.](#)

655 Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M., Grieshop, A.
656 P., Lane, T. E., Pierce, J. R., and Pandis, S. N.: Rethinking organic aerosols: semivolatile emissions
657 and photochemical aging, [Science, 315, 1259-1262, 10.1126/science.1133061, 2007.](#)

658 Shakya, K. M. and Griffin, R. J.: Secondary Organic Aerosol from Photooxidation of Polycyclic
659 Aromatic Hydrocarbons, [Environmental Science & Technology, Environ. Sci. Technol., 44, 8134-](#)
660 [8139, 10.1021/es1019417, 2010.](#)

661 Tan, Z., Lu, K., Hofzumahaus, A., Fuchs, H., Bohn, B., Holland, F., Liu, Y., Rohrer, F., Shao, M.,
662 Sun, K., Wu, Y., Zeng, L., Zhang, Y., Zou, Q., Kiendler-Scharr, A., Wahner, A., and Zhang, Y.:
663 Experimental budgets of OH, $\text{HO} ₂$, and HO_2 , and
664 $\text{RO} ₂$ radicals and implications for ozone formation in the Pearl River
665 Delta in China 2014, [Atmospheric Chemistry and Physics, Atmos. Chem. Phys., 19, 7129-7150,](#)
666 [10.5194/acp-19-7129-2019, 2019.](#)

667 Tang, T., Cheng, Z., Xu, B., Zhang, B., Zhu, S., Cheng, H., Li, J., Chen, Y., and Zhang, G.: Triple
668 Isotopes ($\delta^{13}\text{C}$, $\delta^{2}\text{H}$, and $\Delta^{14}\text{C}$) Compositions and Source Apportionment of Atmospheric
669 Naphthalene: A Key Surrogate of Intermediate-Volatility Organic Compounds (IVOCs),
670 [Environmental Science & Technology, Environ. Sci. Technol., 54, 5409-5418,](#)
671 [10.1021/acs.est.0c00075, 2020.](#)

672 Tham, Y. J., Yan, C., Xue, L., Zha, Q., Wang, X., and Wang, T. J. C. S. B.: Presence of high nitril
673 chloride in Asian coastal environment and its impact on atmospheric photochemistry, [2013 Chin.](#)
674 [Sci. Bull., 59, 356-359, 10.1007/s11434-013-0063-y, 2014.](#)

675 Tuet, W. Y., Chen, Y., Fok, S., Gao, D., Weber, R. J., Champion, J. A., and Ng, N. L.: Chemical
676 and cellular oxidant production induced by naphthalene secondary organic aerosol (SOA): effect
677 of redox-active metals and photochemical aging, [Sci. Rep., 7, 15157, 10.1038/s41598-017-15071-](#)
678 [8, 2017a.](#)

679 Tuet, W. Y., Chen, Y., Xu, L., Fok, S., Gao, D., Weber, R. J., and Ng, N. L.: Chemical oxidative
680 potential of secondary organic aerosol (SOA) generated from the photooxidation of biogenic and
681 anthropogenic volatile organic compounds, [Atmospheric Chemistry and Physics, Atmos. Chem.](#)
682 [Phys., 17, 839-853, 10.5194/acp-17-839-2017, 2017b.](#)

683 Wang, H., Chen, X., Lu, K., Hu, R., Li, Z., Wang, H., Ma, X., Yang, X., Chen, S., Dong, H., Liu,
684 Y., Fang, X., Zeng, L., Hu, M., and Zhang, Y.: NO₃ and N₂O₅ chemistry at a suburban site during
685 the EXPLORE-YRD campaign in 2018, [Atmospheric Environment, Atmos. Environ., 224,](#)
686 [10.1016/j.atmosenv.2019.117180, 2020a.](#)

687 Wang, L., Arey, J., and Atkinson, R.: Reactions of Chlorine Atoms with a Series of Aromatic
688 Hydrocarbons, [Environmental Science & Technology, Environ. Sci. Technol., 39, 5302-5310,](#)
689 [10.1021/es0479437, 2005.](#)

690 [Wang, M., Chen, D., Xiao, M., Ye, Q., Stolzenburg, D., Hofbauer, V., Ye, P., Vogel, A. L., Mauldin,](#)
691 [R. L., Amorim, A., Baccarini, A., Baumgartner, B., Brilke, S., Dada, L., Dias, A., Duplissy, J.,](#)
692 [Finkenzeller, H., Garmash, O., He, X.-C., Hoyle, C. R., Kim, C., Kvashnin, A., Lehtipalo, K.,](#)
693 [Fischer, L., Molteni, U., Petäjä, T., Pospisilova, V., Quéléver, L. L. J., Rissanen, M., Simon, M.,](#)
694 [Tauber, C., Tomé, A., Wagner, A. C., Weitz, L., Volkamer, R., Winkler, P. M., Kirkby, J., Worsnop,](#)

695 [D. R., Kulmala, M., Baltensperger, U., Dommen, J., El-Haddad, I., and Donahue, N. M.: Photo-](#)
696 [oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic Compounds, Environ. Sci.](#)
697 [Technol., 54, 7911-7921, 10.1021/acs.est.0c02100, 2020b.](#)

698 Wang, S., Ye, J., Soong, R., Wu, B., Yu, L., Simpson, A. J., and Chan, A. W. H.: Relationship
699 between chemical composition and oxidative potential of secondary organic aerosol from
700 polycyclic aromatic hydrocarbons, [Atmospheric Chemistry and Physics, Atmos. Chem. Phys.](#), 18,
701 3987-4003, 10.5194/acp-18-3987-2018, 2018.

702 Wang, X., Li, L., Gong, K., Mao, J., Hu, J., Li, J., Liu, Z., Liao, H., Qiu, W., Yu, Y., Dong, H., Guo,
703 S., Hu, M., Zeng, L., and Zhang, Y.: Modelling air quality during the EXPLORE-YRD campaign
704 – Part I. Model performance evaluation and impacts of meteorological inputs and grid resolutions,
705 [Atmospheric Environment, Atmos. Environ.](#), 246, 10.1016/j.atmosenv.2020.118131, 2021.

706 Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and
707 Soja, A. J.: The Fire INventory from NCAR (FINN): a high resolution global model to estimate
708 the emissions from open burning, [Geosci. Model Dev.](#), 4, 625-641, 10.5194/gmd-4-625-2011,
709 2011.

710 Yu, Y., Wang, H., Wang, T., Song, K., Tan, T., Wan, Z., Gao, Y., Dong, H., Chen, S., Zeng, L., Hu,
711 M., Wang, H., Lou, S., Zhu, W., and Guo, S.: Elucidating the importance of semi-volatile organic
712 compounds to secondary organic aerosol formation at a regional site during the EXPLORE-YRD
713 campaign, [Atmospheric Environment, Atmos. Environ.](#), 246, 10.1016/j.atmosenv.2020.118043,
714 2021.

715 Zhang, H. and Ying, Q.: Secondary organic aerosol formation and source apportionment in
716 Southeast Texas, [Atmospheric Environment, Atmos. Environ.](#), 45, 3217-3227,
717 10.1016/j.atmosenv.2011.03.046, 2011.

718 Zhang, H. and Ying, Q.: Secondary organic aerosol from polycyclic aromatic hydrocarbons in
719 Southeast Texas, [Atmospheric environment, Atmos. Environ.](#), 55, 279-287, 2012.

720 Zhang, J., Wang, P., Li, J., Mendola, P., Sherman, S., and Ying, Q.: Estimating population exposure
721 to ambient polycyclic aromatic hydrocarbon in the United States - Part II: Source apportionment
722 and cancer risk assessment, [Environ. Int.](#), 97, 163-170, 10.1016/j.envint.2016.08.024, 2016.

723 Zhang, Y. and Tao, S.: Global atmospheric emission inventory of polycyclic aromatic
724 hydrocarbons (PAHs) for 2004, [Atmospheric Environment, Atmos. Environ.](#), 43, 812-819,
725 10.1016/j.atmosenv.2008.10.050, 2009.

726 [Zhao, Y., Hennigan, C. J., May, A. A., Tkacik, D. S., de Gouw, J. A., Gilman, J. B., Kuster, W. C.,](#)
727 [Berbon, A., and Robinson, A. L.: Intermediate Volatility Organic Compounds: A Large Source of](#)
728 [Secondary Organic Aerosol, Environmental Science & Technology, 48, 13743-13750,](#)
729 [10.1021/es5035188, 2014.](#)

730 Zhu, J., Wang, S., Wang, H., Jing, S., Lou, S., Saiz-Lopez, A., and Zhou, B.: Observationally
731 constrained modeling of atmospheric oxidation capacity and photochemical reactivity in Shanghai,
732 China, [Atmospheric Chemistry and Physics, Atmos. Chem. Phys.](#), 20, 1217-1232, 10.5194/acp-20-
733 1217-2020, 2020.

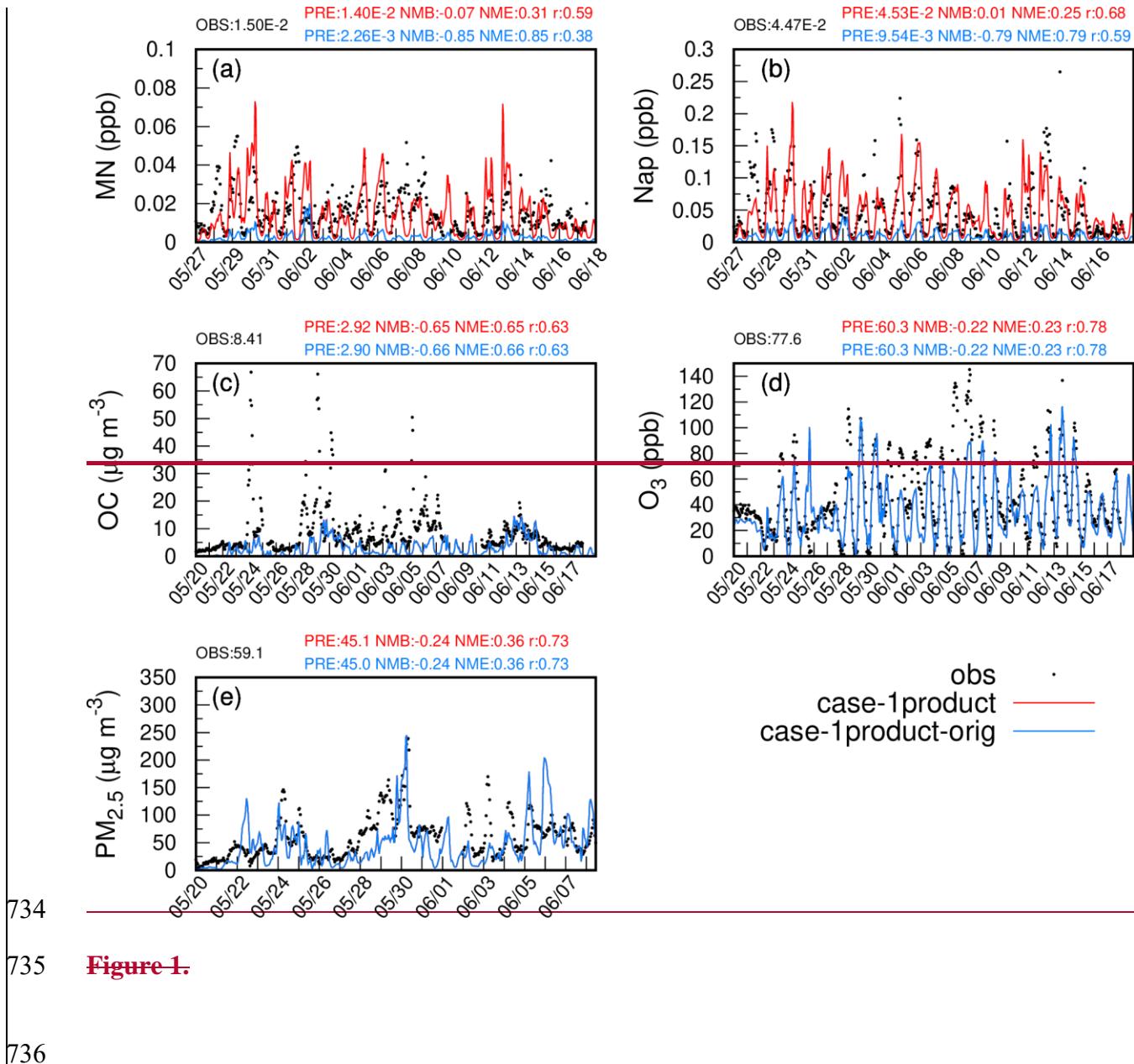
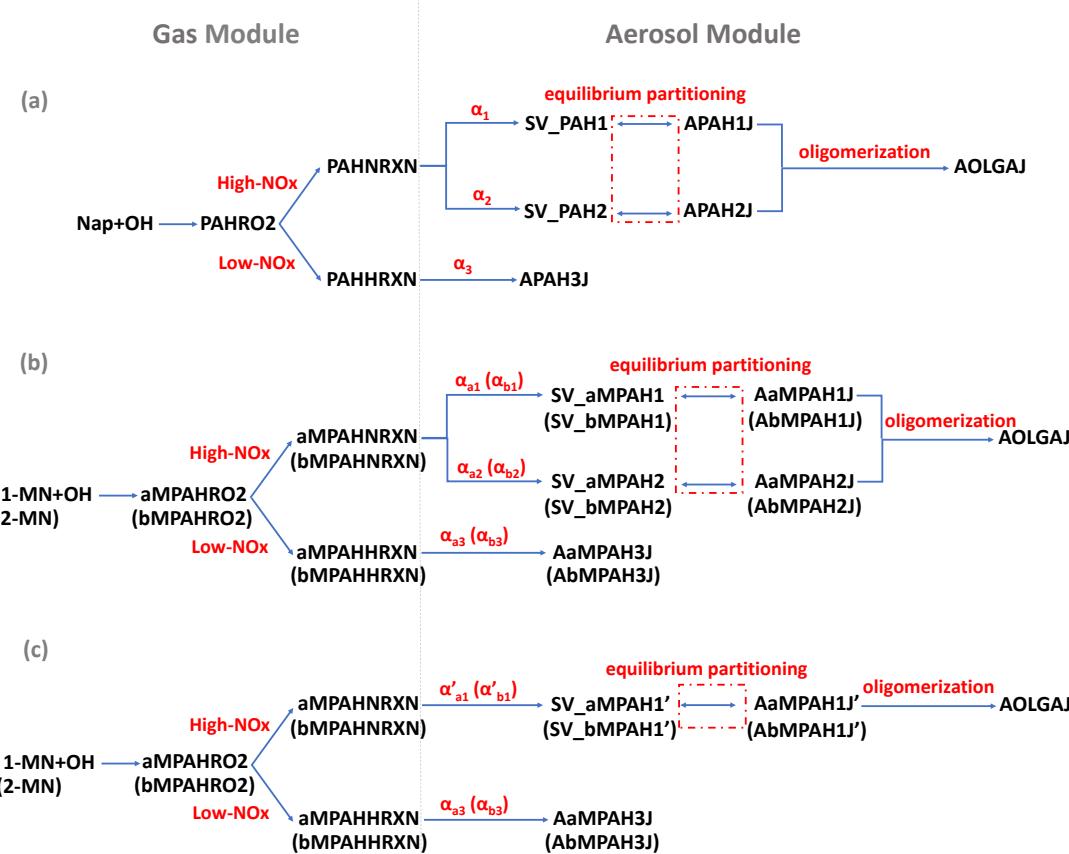
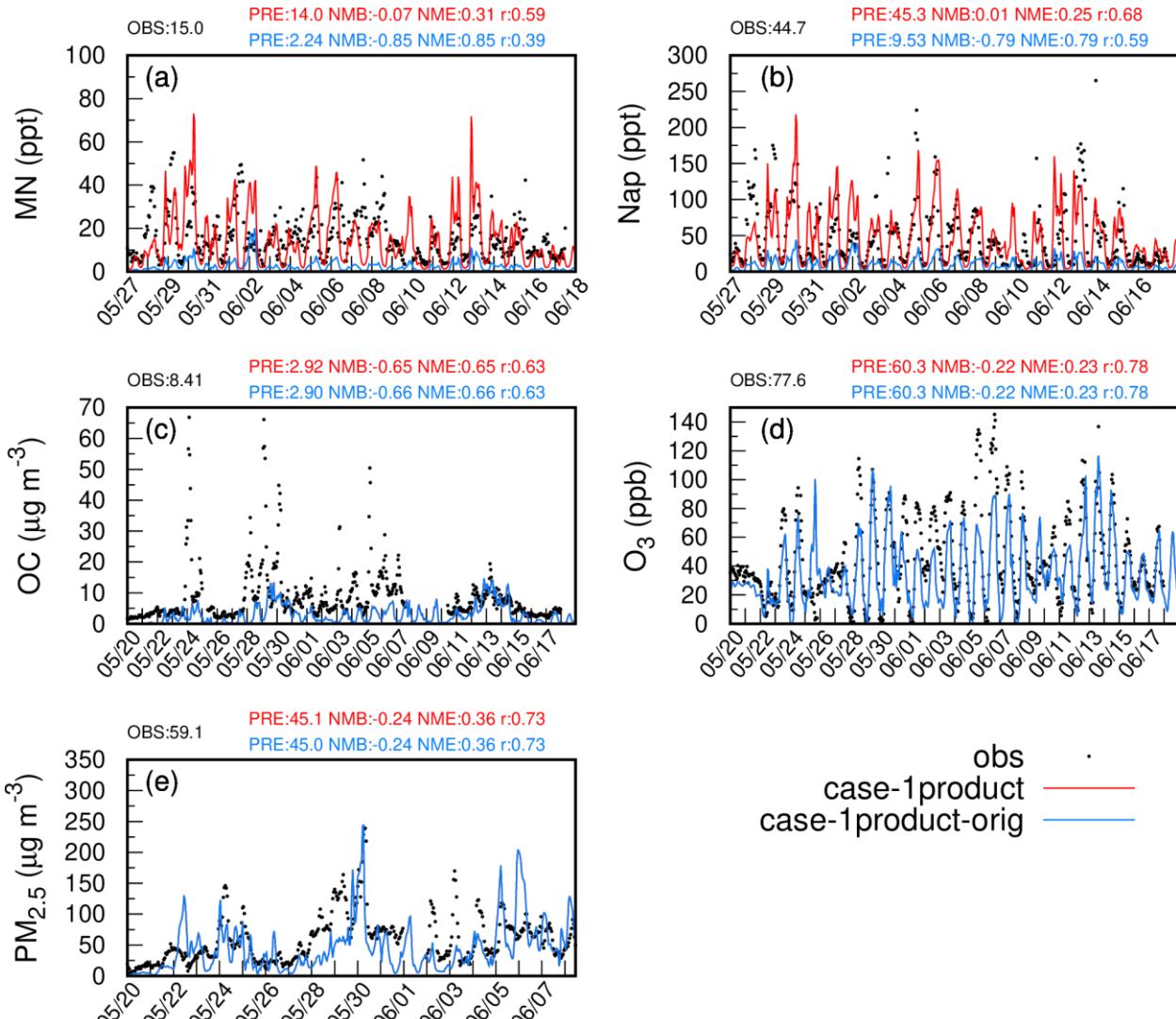
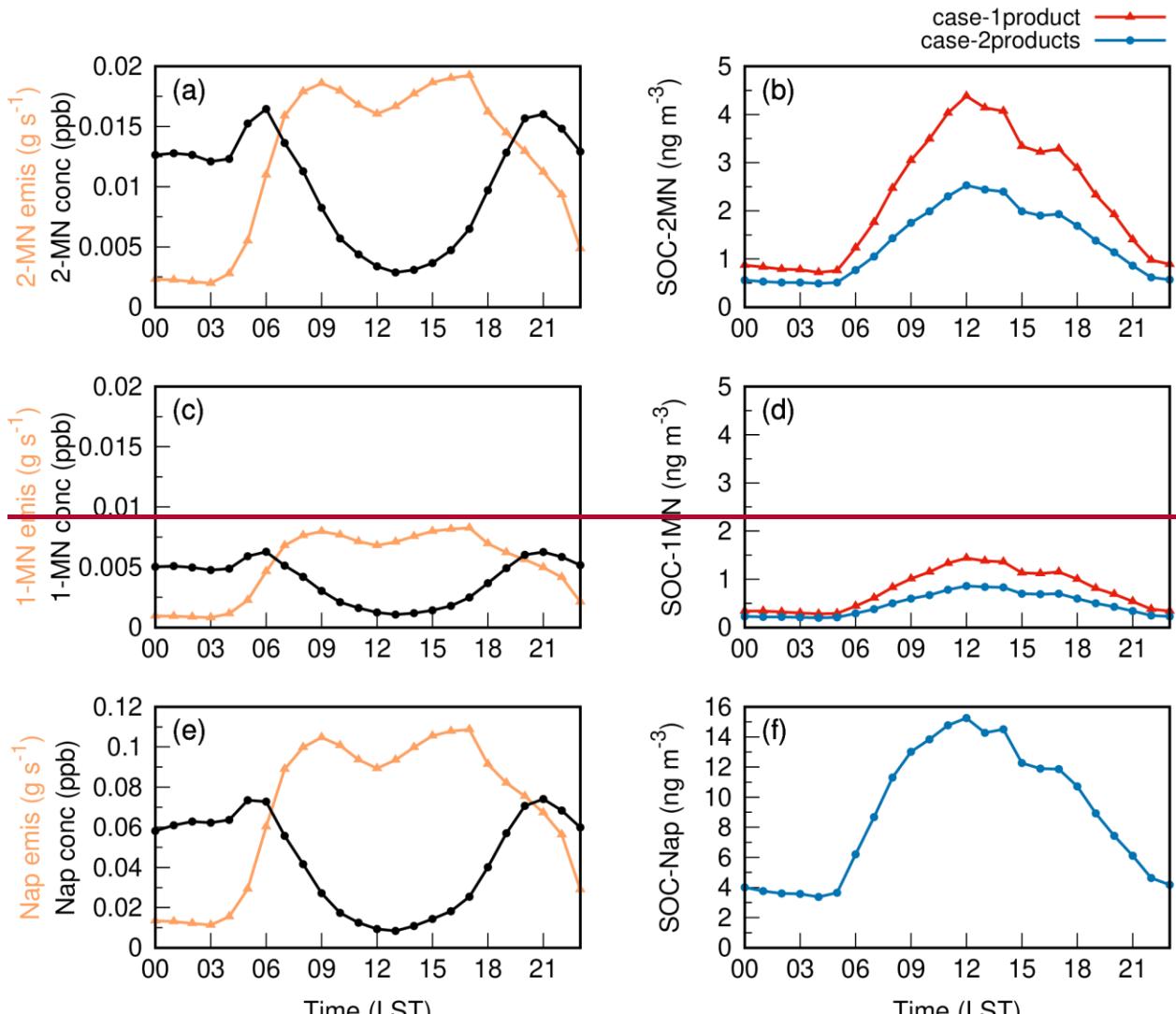



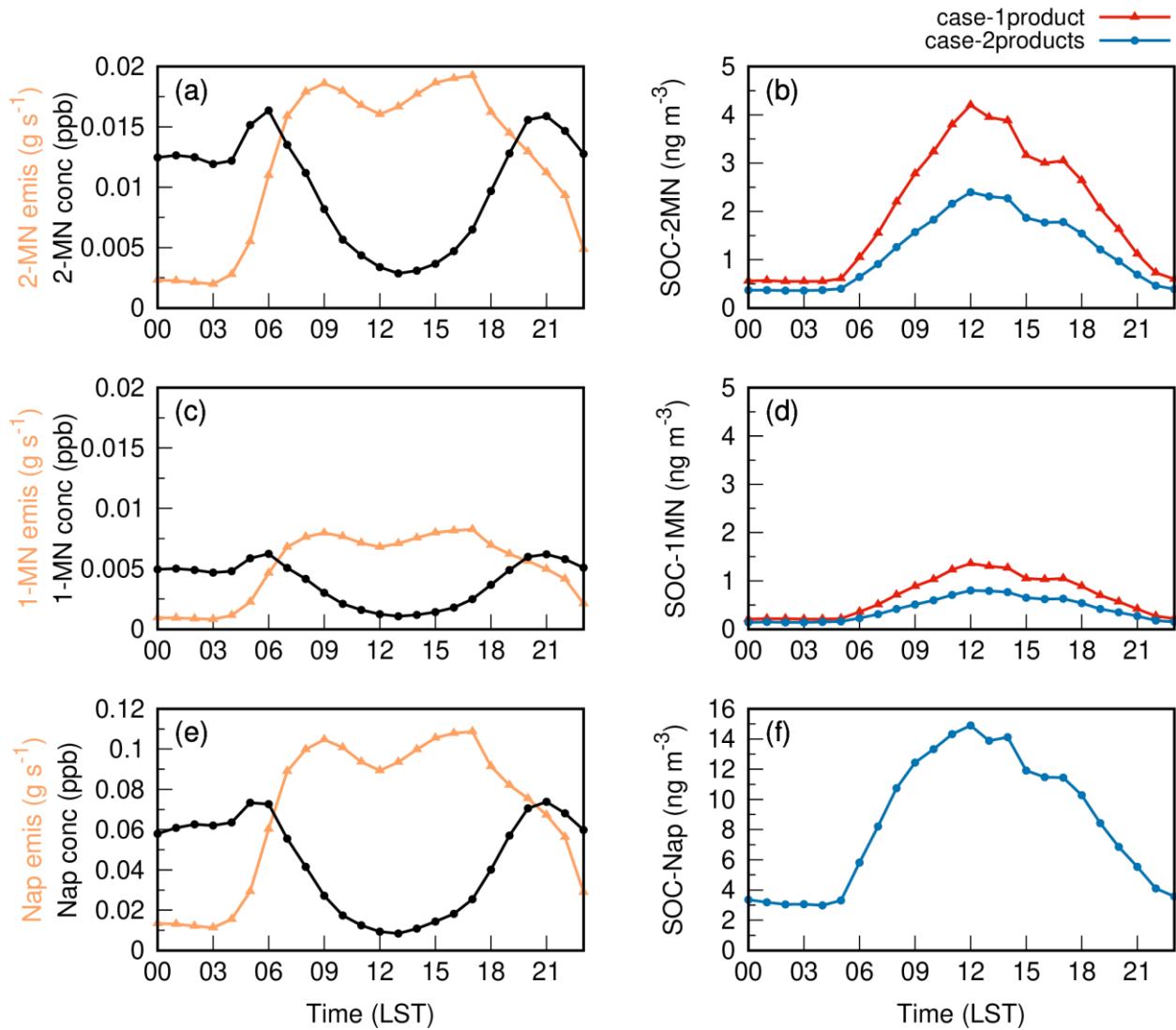
Figure 1.

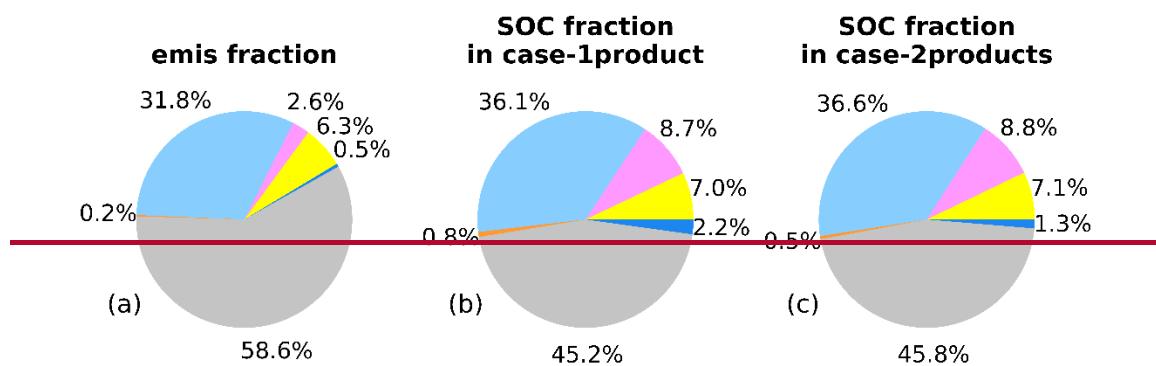

Table 1. Settings of the scenarios.

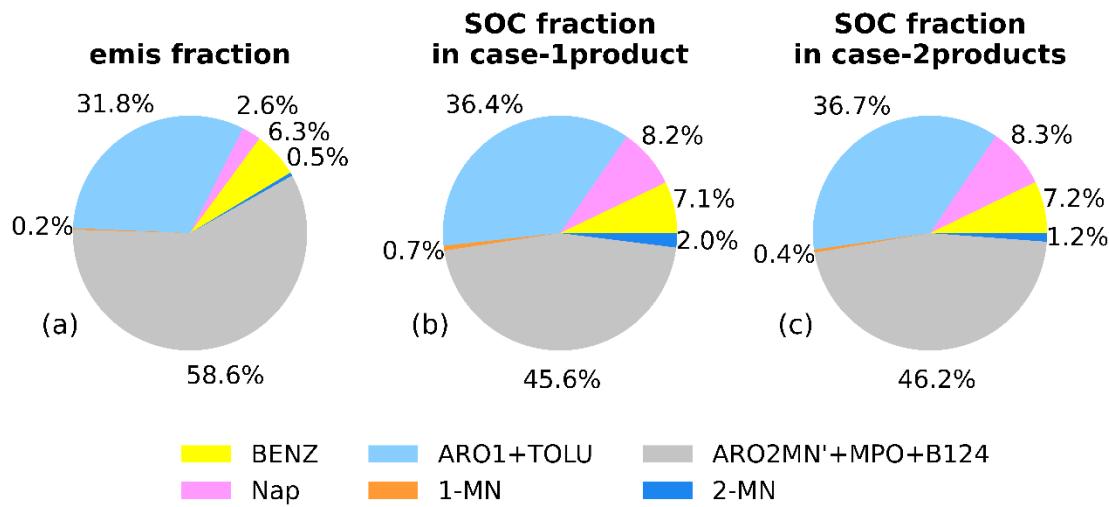
<u>Case</u>	<u>Emission setting</u>	<u>parameterization</u> <u>for MN</u>
<u>case-1product-orig</u>	<u>Nap emissions in the YRD were based on the 2017 YRD inventory; Nap emissions in the rest of the domain and MN emissions in the entire domain were calculated using sector-specific mass ratios and total emissions of non-methane volatile organic compounds (emis-orig)</u>	<u>one-product method</u>
<u>case-2products-orig</u>		<u>two-product method</u>
<u>case-1product</u>	<u>The anthropogenic emissions of Nap and MN in the entire domain from emis-orig were multiplied by 5 and 7, respectively (emis-adjust)</u>	<u>one-product method</u>
<u>case-2products</u>		<u>two-product method</u>
<u>base_zeroNapMN</u>	<u>Emissions of Nap and MN were set to zero based on emis-adjust</u>	<u>one-product method</u>
<u>base_zeroMN</u>	<u>Emissions of MN were set to zero based on emis-adjust</u>	<u>one-product method</u>



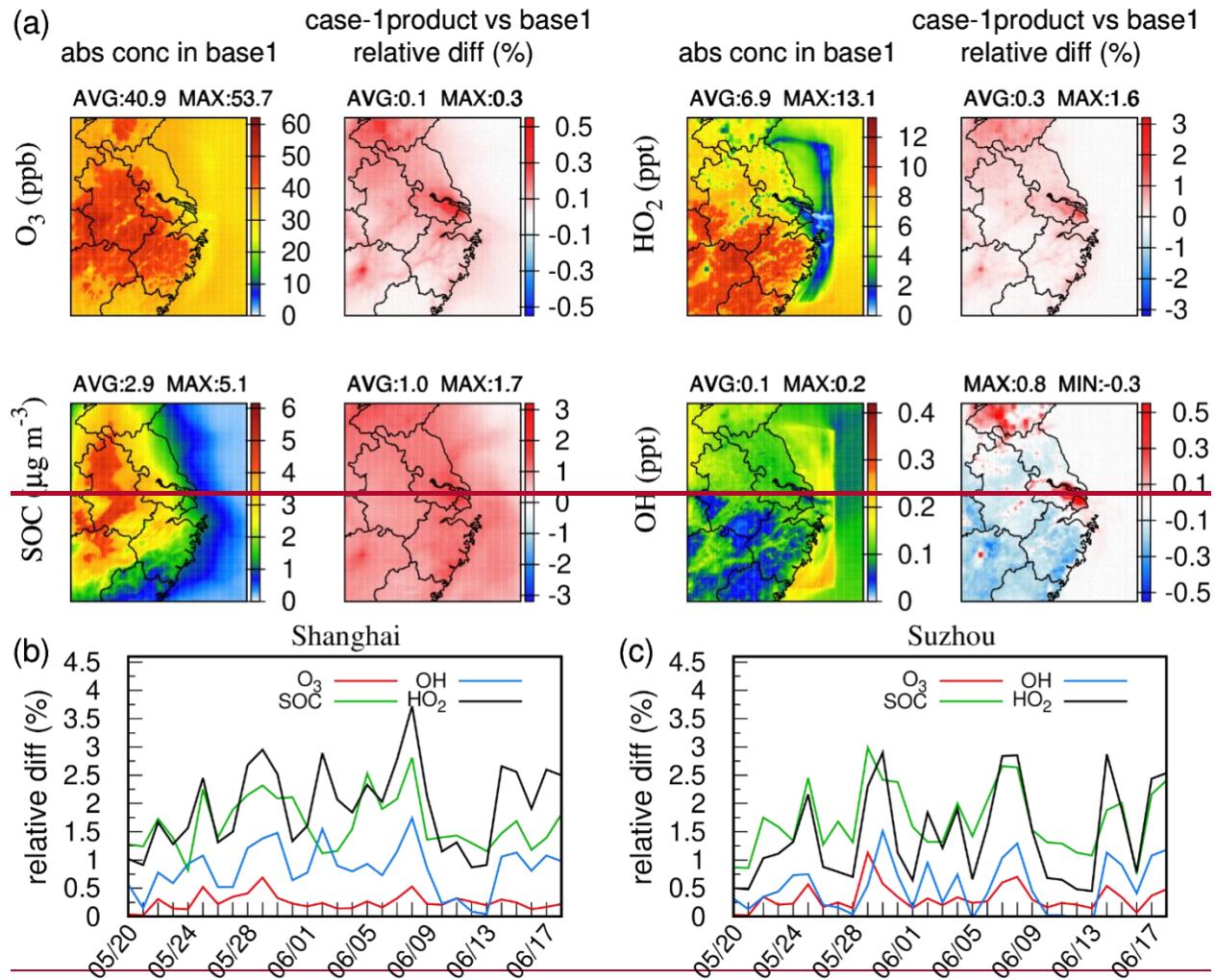
739
740
741
742
743
744
745
746
747

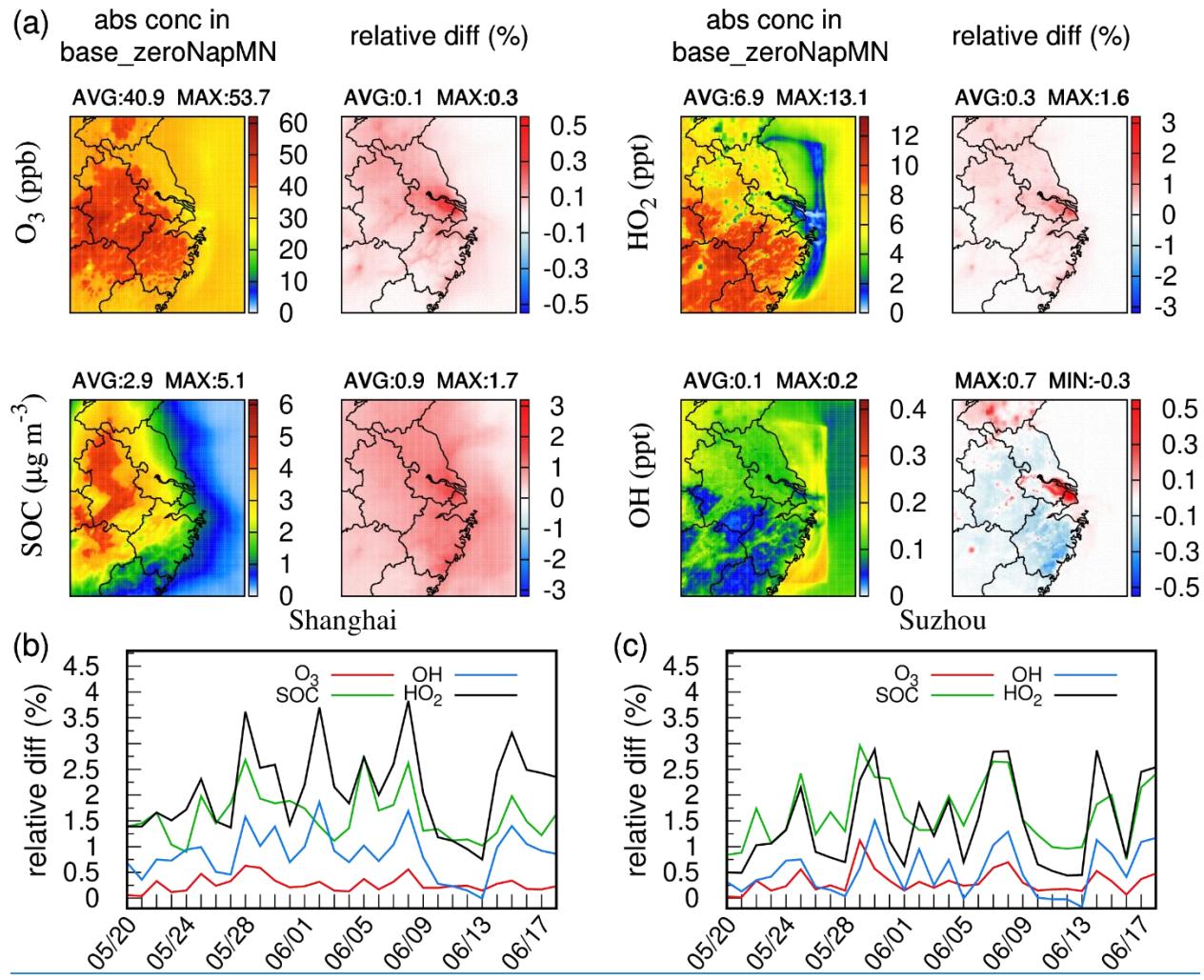

Figure 1. SOA schemes for naphthalene (Nap), 1-methylnaphthalene (1-MN), and 2-methylnaphthalene (2-MN) in the updated CMAQ model. (a) pre-existing Nap-derived SOA formation pathways fitted by two products under high NO_x; (b) newly added SOA formation pathways for 1-MN and 2-MN fitted by two products under high NO_x; (c) newly added SOA formation pathways for 1-MN and 2-MN fitted by one product under high NO_x. SOA formation from Nap and MN oxidation by OH radicals under low-NO_x conditions is represented by a fixed yield. Parameters for 2-MN are indicated in brackets in (b) and (c). The values of α refer to Table S1.


748 **Figure 2.** Observed and simulated hourly concentrations of MN, Nap, OC, PM_{2.5}, and O₃ based
 749 on emis-adjust (red) and emis-orig (blue) at the Taizhou site. Model performances ~~off~~for daily MN,
 750 Nap, OC, PM_{2.5}, and MDA8 O₃ are shown in blue for case-1product-orig and in red for case-
 751 1product. OBS and PRE represent ~~averaged concentrations~~the average of observations and
 752 predictions, respectively. Note that the red and blue lines overlap in (c)-(e).


754
755

756
757 **Figure 23.** Diurnal variations of emissions (yellow line) and predicted concentrations (black line)
758 for 2-MN (a), 1-MN (c), and Nap (e), as well as the corresponding SOC concentrations (b, d, f) at
759 the Taizhou site. [Note that the red and blue lines overlap in \(f\).](#)




760

761

762 **Figure 34.** Contributions of the major aromatic species to (a) the total emissions of aromatics
 763 (weight fraction) and the aromatic-derived SOC in (b) case-1 product and (c) case-2 products at the
 764 Taizhou site. ~~These~~ The aromatic species ~~are~~ include Nap, 1-MN, 2-MN, BENZ, the sum of toluene
 765 and aromatics with $k_{OH} < 2 \times 10^4 \text{ ppm}^{-1} \text{ min}^{-1}$ (ARO1+TOLU), and the sum of xylenes, 1,2,4-
 766 trimethyl benzene and aromatics with $k_{OH} > 2 \times 10^4 \text{ ppm}^{-1} \text{ min}^{-1}$ excluding Nap and MN
 767 (ARO2MN'+MPO+B124).

771 **Figure 45.** (a) AbsoluteAverage concentrations of SOC, O_3 , OH , and HO_2 in
772 base1, base_zeroNapMN and changes in case-1product relative to base1,
773 respectively, base_zeroNapMN. Daily relative changes in case-1product compared to base1
774 at base_zeroNapMN in (b) Shanghai and (c) Suzhou.