FROSTBYTE: A reproducible data-driven workflow for probabilistic seasonal streamflow
forecasting in snow-fed river basins across North America

Response to RC2

The manuscript by Louise Arnal et al. presents a new data-driven workflow for
probabilistic seasonal streamflow forecasting in North America, based on snow water
equivalent (SWE) as the sole predictor for streamflow forecasting. A special emphasize of
the work is put on the reproducibility of the workflow, which can not only be found in the
elaborate description of the workflow and the graphical methods but also the collection
of open source Jupyter Notebooks of every workflow step. The probabilistic forecasting
system was used to create ensemble hindcasts for different target periods, which are
relevant for different users such a s snow monitoring experts, forecasters and decision-
makers, and were assessed using deterministic and probabilistic metrics. The discussion
reviewed relevant insights and findings from the analysis in a refreshing setup, focusing
again on the specific users, giving suggestions for future improvements and opportunities
to utilize the presented workflow as well as offering practical guidance. Overall, this work
does not only present a promising probabilistic forecasting system for local streamflow
forecasting in snow-fed river basins, a well-documented workflow, that creates the
opportunity for easy implementation for end users, but also is a great example on how
research can be presented in a transparent and thorough manner, following principles of
open and collaborative science.

We thank the reviewer for their positive and constructive comments on our manuscript.
Their comments are copy-pasted below verbatim in black, and our responses are
underneath each comment in blue.

The following points, remarks and questions are mostly raised for further clarifications, no
major comments.

Minor comments:

Section 2.1.1, line 81: could you elaborate how catchments with ‘limited regulations’ are
defined? Are there specific or more general criteria that label catchments as ‘regulated’?
and how does it vary for the different catchments throughout North America?

In the USA, stations included in HCDN-2009 meet the following criteria: (1) they are
identified as being in current “reference” condition according to the GAGES-II
classification; (2) they have at least 20 years of complete and continuous discharge record
through water year 2009; (3) they have less than 5% impervious surface area; (4) they
were not eliminated during a review by participating State USGS Water Science Centers
(Lins, 2012).



The GAGES-II reference sites were defined based on the following criteria: (1) hydrological
disturbance of the watershed (measured with an index taking into account geospatial
measures of reservoir storage, dam locations and density, freshwater withdrawal, road
density, and the U.S. Environmental Protection Agency’s National Pollutant Discharge
Elimination System (NPDES) discharges) was less than 75% of all other gauged watershed
in its region; (2) the USGS Annual Water Data Reports did not identify the presence of
“regulated” streamflows; (3) the watershed passed a visual screening using satellite
imagery for the presence of human activities that suggested flow diversion, groundwater
withdrawal, and other factors known to influence natural streamflows (Lins, 2012).

In Canada, the requirements for an RHBN station are: (1) minimum of 20 years of data
with few small gaps, and a preference for full-year data instead of seasonal only; (2)
minimal or stable human impacts on the watershed as defined by the agricultural and
urban lands, road density, population density, presence and significance of flow
structures. The RHBN subset, RHBN-N, used in this study, comprises 318 stations and was
created to represent a nationally balanced network that represents the best available
stations among similar watersheds (ECCC, 2021).

We have added a summary of these criteria in the revised manuscript, and we now also
highlight the fact that the selection criteria are not identical between the two datasets.
The revised text is: “For the USA, we use shapefiles and streamflow observations for basins
with limited regulation from the USGS Hydro-Climatic Data Network 2009 (HCDN-2009;
Lins, 2012; Falcone, 2011). HCDN-2009 comprises stations with minimal hydrological
disturbance, measured by the presence of dams, freshwater withdrawal, including from
groundwater, flow diversion, roads and other impervious surface areas, and pollutant
discharges. Moreover, inclusion in the dataset necessitated a minimum of 20 years of
continuous availability of streamflow data. For Canada, we use shapefiles and streamflow
observations for basins with limited regulation from the Water Survey of Canada (WSC)
HYDAT Reference Hydrometric Basin Network (RHBN) subset, called RHBN-N (ECCC, 2021).
The reference hydrologic networks include only stations considered to have minimal or
stable human impacts as defined by the presence of agricultural and urban areas, roads
and a high population density, and the presence of significant flow structures (Whitfield
et al., 2012). Similarly to the HCDN-2009 dataset, a minimum data availability of 20 years
of almost continuous streamflow records was required for a station to qualify. RHBN-N
was created to provide a nationally balanced network suitable for national studies. The
selection criteria for the HCDN-2009 and RHBN datasets exhibit substantial similarity,
albeit with potential methodological nuances that may stem from varying priorities and
contexts”.

In line with the previous comment: line 85 references a screening approach by Whitfield
et al 2012 for Canada but it would be interesting for the reader to know if the classification
of catchment with or without regulated catchments is comparable to the one of the USGS
data set



See our response above.

Figure 1 d): to clarify, this shows all stations of SCDNA, even the ones that were not used
in the study? As only precipitation data is considered for the manuscript, would it not be
clearer to only show the incorporated stations?

We agree that this is not clear and we will reproduce all maps of Fig. 1 to only include
SWE, precipitation, and streamflow stations, and river basins actually used in this study.

Figure 1c): some of the SWE data products seem to overlap in some locations. Was the
data for these locations compared to get a general feeling of the SWE data and its quality?
Just curious.

In several provinces and territories of Canada, such as in Alberta, British Columbia and the
Yukon, co-located automated snow stations (snow pillows and scales) and manual snow
surveys are collected. While the pillows/scales are in more open areas, the surveys tend
to be a mix of open and forested. The co-located measurements usually agree well, but
are not identical. It should however be noted that the automatic and manual data have a
different spatial representativeness and report at a different temporal frequency — i.e.,
the snow surveys consist of multi-point manual data collected along a given transect.

Part of the issue could also be the scale of the map that cannot reproduce the variability
of the snow measurements network in terms of position and elevation. For example, the
Alberta Government mountain snow surveys are 20-50 km apart, so they would appear
as overlapping circles on the map. There are some surveys that are in close proximity, but
at different elevations, so they capture SWE changes across an elevation gradient. There
are also academic research sites/snow surveys that are in close proximity to the Alberta
surveys. This might be resolved to a certain extent with the new maps created for Fig. 1,
including only stations actually used in this study (see our response above).

In terms of data quality, snow monitoring experts and data providers follow standard
operating procedures, which include quality assurance (QA)/quality control (QC)
protocols. In addition to the quality standards applied by all the different data providers,
a systematic QC procedure is described in Vionnet et al. (2021b; cited in the manuscript)
and has been applied to all the snow data used in this study, with the exception of the
Pacific Northwest National Laboratory SNOTEL bias-corrected and quality-controlled
(BCQC) dataset.

We have added some text to the manuscript for readers who may be similarly curious: “All
SWE data used for this study were quality controlled (QC). In addition to the quality
standards applied by the different data providers, a systematic QC procedure is described
in Vionnet et al. (2021b) and was applied to all the snow data used in this study, with the
exception of the already bias-corrected and quality-controlled SNOTEL dataset. Several
SWE stations appear to be overlapping on Fig. 1 (c). In various Canadian provinces and



territories like Alberta, British Columbia, and the Yukon, automated snow stations and
manual snow surveys are collected in co-located locations. While the measurements from
these stations generally agree, they are not identical due to differences in spatial
representativeness and temporal frequency. In addition, the stations overlap may partly
be due to the scale of the map which does not allow to accurately display the variability
of the snow measurements network in terms of position and elevation”.

Figure 2: this is a very informative and well designed overview figure! | would suggest
referencing it more often in the manuscript (e.g. the volume aggregation of the target
periods in line 169)

Thank you, we’re glad you like the figure! This is a great idea and we added references to
the figure throughout the methods sub-sections, when we thought the figure would be
particularly useful to understand the text.

Section 2.1.1%, line 127: while it is mentioned that the SWE and streamflow data is used
regardless of whether the years have complete records (due to the following gap filling
process, max allowable gap length listed as 15days in line 164) | wonder whether there
was a limit of how much missing data was seen as acceptable in total? A few days per year
or even a few weeks or months throughout the total record? Figure A2 in the Appendix
suggests that some were heavily gap filled compared to the original timeseries?

*Note that there is a typo and the reviewer refers to Section 2.2.1 here, and not Section
2.1.1. The same is true for the reviewer comment below.

No total maximum allowable gap length was applied to sub-select stations. For the
streamflow data, we expected the datasets to be nearly complete due to the quality
checks done in the production of the HCDN-2009 and RHBN datasets, where 20 years of
(near) complete streamflow data were required for a station to qualify (see answer
above). For the SWE data, several stations had large data gaps and may indeed have been
heavily gap filled during the quantile mapping gap filling step. Selecting a maximum gap
length threshold would require additional thorough analysis of the gap length vs. the
quality of the gap filling, and this was not done as the gap filling is not the focus of this
manuscript.

However, we did explore the impact of the length of the window used for gap filling the
SWE data (from +/- 1 to +/- 7 days) on the quality of the artificial gap filling. The findings
indicate that extending the window to +/- 7 days yielded greater benefits by significantly
increasing the amount of filled gaps in the data, while having a fairly low impact on the
quality of the filled data. From this, we infer from this that setting a maximum threshold
for allowable missing data would excessively reduce the number of SWE stations (since
PCA requires a complete dataset) and adversely affect the quality of the hindcasts.



We now discuss the impact of this methodological decision in the text (in the SWE pre-
processing Section 2.2.3) and added this point as a topic that warrants further attention
in the “Workflow developers” discussion (Section 4.4): “It is important to note that no
threshold was set to define a total maximum allowable gap length for each station.
Consequently, certain stations may have undergone substantial gap filling, as can be seen
on Fig. A2. However, we speculate that setting such a threshold would have been
counterproductive, as it would have significantly decreased the number of SWE stations
available as predictors, thereby affecting the quality of the hindcasts produced”, and
“Subsequent studies could investigate how various methodological choices influence the
quality and the effectiveness of the gap filling, using the artificial gap filling function. This
could involve examining the consequences of implementing a total maximum allowable
gap length to sub-select stations, or adjusting the window used for the gap filling through
guantile mapping”.

Section 2.1.1, line 145 and section 2.2.2: gap filling through linear interpolation, could the
authors elaborate on potential limitations of this approach for both streamflow and SWE?
And the potential consequences of those limitations for the regime classification approach
using the streamflow as well as for defining the statistics for the CDF construction in case
of the SWE gap filling using quantile mapping later?

The linear interpolation could potentially have consequences for both the streamflow and
the SWE gap-filled data. Regarding streamflow, it might have resulted in missed flow
peaks, especially for smaller basins with higher response times. However, employing three
metrics for peak flow events identification and nival basin selection, and the selection of
the circular statistics method with a regularity threshold of 0.65, could have potentially
mitigated some of these effects. Furthermore, the linear interpolation step was deemed
essential for the streamflow dataset to ensure effective filling of the data gaps. As for SWE,
it could have affected the construction of CDFs for donor and target stations during the
guantile mapping step, possibly resulting in inaccuracies in the gap-filled data. However,
we speculate that using a station’s own data for gap filling via temporal interpolation might
yield better results that using another station’s data, especially given the relatively gradual
temporal variations in SWE.

We have added some text to discuss this in the revised manuscript: “The streamflow linear
interpolation could have impacted the regime classification, leading to missed flow peaks,
especially for smaller river basins with faster response times. Nevertheless, all stations
had nearly complete datasets, as this was a requirement for selection in the creation of
both datasets (see Section 2.1.1). Furthermore, the use of three metrics for peak flow
event identification, coupled with the utilization of the circular statistics method with a
regularity threshold of 0.65, could potentially have mitigated some of these issues”, and
“linear interpolation might have impacted the construction of CDFs for donor and target
stations, possibly introducing inaccuracies into the gap-filled data. Nevertheless, we
speculate that utilizing a station's own data for gap filling via temporal interpolation could



yield superior results compared to utilizing data from other stations, especially given the
relatively gradual temporal variations in SWE”.

Section 2.2.3, line 190: for clarification, the ‘original’ SWE data gets gap filled twice in
different ways? First by linear interpolation to be able to get the statistics for the CDF
construction and then the ‘original’ SWE data gets gap filled with a separate quantile
mapping approach again? Or were there specific values that were not be able to be gap
filled before?

The SWE data was first gap filled with linear interpolation prior to constructing the CDFs.
The gap filled data were then gap filled through quantile mapping, as the linear
interpolation could not fill all the gaps in this dataset.

We have clarified this in the revised manuscript, referring readers to the graphical
methods: “After applying linear interpolation, we then utilize quantile mapping to fill the
remaining gaps using data from neighbouring stations (see Fig. 2)".

Was there a specific reason (other than that SWE is used for the PCA) that streamflow did
not undergo the same two step gap filling process as SWE (linear and then quantile

mapping)?

Streamflow did not have as many gaps, again due to the quality checks done in the
production of the HCDN-2009 and RHBN datasets, and a one-step process was deemed
sufficient for this variable.

This sentence was added to the revised manuscript: “Due to the data availability quality
checks conducted during the production of the HCDN-2009 and RHBN streamflow
datasets, a one-step gap filling process was considered sufficient for streamflow, in
contrast to the two-step gap filling performed for SWE (see Section 2.2.3)".

Section 2.2.4, line 212: for clarification, “comprising ten years for training the regression
model and an additional year for generating the hindcast, using the leave-one-out cross-
validation approach.”

this is the leave-one-out cross-validation approach definition?

This is indeed the definition of the leave-one-out cross-validation, with additional
information on the minimum number of years required for training the model.

We rephrased the sentence and added a definition of the leave-one-out cross-validation
to clarify the text. The revised text is: “We use a leave-one-out cross-validation approach
for forecasting, whereby each data point in the dataset is sequentially withheld as a
validation set, while the model is trained on the remaining data points. We require a



minimum of eleven years of overlapping data in total, comprising ten years for training
the regression model and an additional year for generating the hindcast”.

Section 2.2.4, line 215: are the total 11 years used for the PC or the split dataset (10-1)?
Line 226 refers to the first but just to check

The PCA is done for the total 11 years, after which the dataset is split for forecasting. We
discuss the effect of these methodological decisions compared to operational forecasting
approaches on L469-477 of the original manuscript.

Section 2.2.4, line 224: “We conduct a PCA and fit a new model for each predictor-
predictand combination” — does this mean an OSL model for every target period? Or just
one OSL model for per location for all target periods?

Hindcasts are indeed generated using an independent regression model for each river
basin, initialization date, target period, and year left out. This is mentioned in Section
2.2.4, on L224-225 of the initial manuscript: “We conduct a PCA and fit a new model for
each predictor-predictand combination”. This was also noted by Reviewer 1.

We have now clarified this point in the text: “An independent regression model is used to
produce an ensemble hindcast for each river basin, initialization date, target period, and
year left out”.

Section 2.2.5, line 240: for clarification: target periods listen in line 169 are not the same
as the ‘periods of interest’ introduced in this line? And the verification will be on the
‘periods of interest’” or the initial introduced target periods? (KGE result description
suggests the latter)

Parts of the results are shown for all target periods, namely the KGE” decomposition, the
reliability index, and the CRPSS boxplots. The CRPSS maps and the ROC AUC (Fig. 7 and 8)
show results for the ‘periods of interest’ only.

We clarified the text in Section 3.3 to: “The CRPSS maps show results for each basin’s
period of interest only, in order to be able to compare results across river basins for a
single lead time”, and the text in Section 3.4 was changed to: “Unlike plots for the KGE”
and its decomposition, the reliability index, and the CRPSS (boxplots only), these plots
show results for each basin’s period of interest only".

Section 2.2.5, line 241: with every nival basin potentially having different ‘periods of
interest’ does this have an effect on the hindcast verification if general or averaged results
over the 62 stations are presented as not every ‘period of interest’ has the same number
of samples?



This is a very good point and the varying sample sizes may indeed affect the variability or
“noise” in the results. We will add the number of basins for each period of interest on the
figure and in the text so this information is transparent.

Table 1 once again a very informative and clear table that | am sure many readers will
appreciate!

Thank you!

Figure 4 and corresponding description (line 280-285): as Figure 4 is the first figure in that
specific presentation style it might be nice for the reader to get a more in depth guide how
to interpret it for the different target periods and the lead periods presented (despite lines
280-285, there was still some confusion when analyzing it the first time)

We agree that this is a useful addition, thank you for the suggestion. The improved text
now reads: “Fig. 4 shows the hindcast performance in terms of the Kling-Gupta Efficiency
(KGE") and its decomposition into correlation, variability, and bias in the different
subplots. In each subplot, results are shown for each hindcast target period (coloured
lines), as a function of hindcast initialization dates (x-axis). Looking at the KGE" for
hindcasts produced for the target period September 15t to 30t (purple line) as an example,
we observe the evolution in performance over time, from hindcasts initialized on 1°
January (left-most dot) to those initialized on 1% September (right-most dot). The
hindcasts’ lead time decreases progressively from left to right within each subplot”.

section 4: nice to a see a refreshing take on a discussion
Thank you, we’re glad you enjoyed it.

section 4.2: maybe a reference back to both hypotheses in line 244 would be good to
remind the reader of them

Good idea, we now refer readers back to Section 2.2.5 when mentioning the two
hypotheses in discussion section 4.1 and 4.2.

the presented work is focusing on catchments with limited regulations and the discussion
includes a separate focus on decision-makers: do the authors think that this work can also
be helpful for decision-makers (e.g. water managers) working in more regulated
catchments?

This question is also based on the explanation in section 2.2.2 in line 160, where it is stated
that streamflow was “converted into volumes that capture the spring freshet and that may
be of interest of water users (e.g., for water supply management, hydropower generation,
irrigation scheduling, early warnings of floods and droughts)”.



Or is there a category of catchments that would fall in between non regulated and
regulated where the suggested probabilistic framework could still work?

This is an interesting suggestion. This study focused solely on forecasting the streamflow
of unregulated rivers. Regulation in the sense here, alters the relationship between the
hydro-meteorological drivers of streamflow and streamflow. In those regulated river
basins, it would still be valuable to predict streamflows upstream of the regulation (e.g.,
the inflows to a reservoir, streamflows upstream of a city, or of a regulated river), where
predictability comes from upstream SWE stations, for water management decision-
making downstream (e.g., for hydropower generation, flood early warning, riverine
transportation). These forecasts can also be useful in the context of naturalized flows,
whereby the streamflow without regulation or abstraction is of interest and needed for
decision-making.

We have added some reflection on this topic to the revised manuscript, in the “Decision-
makers” discussion (Section 4.1): “This study focused solely on forecasting streamflows in
unregulated river basins, which may include river basins upstream of a regulation, such as
a reservoir or an urbanized area. Regulation alters the relationship between the hydro-
meteorological drivers of streamflow and streamflow. In those regulated river basins, it is
however still valuable to predict streamflows upstream of the regulation (e.g., the inflows
to a reservoir, streamflows upstream of a city, or of a regulated river segment), where
predictability comes from upstream SWE stations, for water management decision-
making downstream (e.g., for water supply management, hydropower generation,
irrigation scheduling, early warnings of floods and droughts, riverine transportation). This
methodology could additionally add value in regulated catchments where the naturalized
flow is used for water management decision-making”.



