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We thank the referees for the insightful comments, which have greatly helped us improve the 

manuscript. Below, we repeat the reviewers' remarks in red italics, and add our respective 

responses in normal text. 

 

Reviewer 1:  
 

This paper examines the European radiative forced responses to Arctic climate by using 

a combination method of two machine learning techniques, the k-mean clustering and 

convolution neural network. Specifically, the authors classified six patterns and 

discussed how these six patterns responds to the European radiative forcing. This paper 

is interesting, and the topic is crucial for the community; however, the manuscript is not 

well organized and the results are not well highlighted. Therefore, I do not suggest this 

paper to be published in Weather and Climate Dynamics before a major revision is 

made. 

 

Thank you very much for your valuable review and for recognizing the interest and importance 

of the topic for the community. We appreciate your comments and make efforts to improve 

organization and presentation of our results to highlight the manuscript's contributions more 

effectively. 

To clarify, our study indeed focuses on examining the Arctic climate response to European 

radiative forcing. We analyze the anomalies calculated as the difference between the 

Experiment runs (pre-industrial era climate with European negative radiative forcing) and the 

Control run (pre-industrial era climate without forcing) across key fields such as sea ice 

concentration (SIC), 2-meter temperature, PMSET, EP flux, and zonal mean zonal wind.  

We used a machine learning framework and developed a new analysis method that helped us 

understand the mechanism through which the observed anomalies happened. That is, we 

developed our methodology in a way that helps us answer questions like “what are the main 

mechanisms behind the observed arctic climate response to the forcing.” 

We revised the manuscript to address your concerns, including reorganizing the content for 

better clarity and emphasis on the results. We also provided additional context to further 

illustrate the novelty and significance of our findings to the reader. Specifically, we have 

enhanced the manuscript throughout by adding detailed explanations where necessary to clarify 

the structure and storyline of the paper. The abstract is revised to contain the main contributions 

of the paper. The results section has been restructured to begin with a comparison of the mean 

states of the Control and Experiment runs, followed by analyses of large-scale circulation 

clustering and class contributions. Furthermore, we have introduced Appendices A and C in the 

revised manuscript and enriched the content and analysis in Appendix D. 

Once again, we sincerely thank you for your time and constructive feedback, which we believe 

greatly improved the quality and impact of our manuscript. 

 

 

Major comments: 
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The authors applied multiple encoding methods and clustered them into six groups of 

large-scale circulation patterns. However, the main six patterns in section 3.1 are not 

well-discussed in their physical meaning. Even though the main occurrence seasons are 

described, the dynamical interactions of each pattern are not investigated. Is there any 

existing large-scale circulation pattern that is similar with these group? If not, why and 

how different the patterns found are compared with the existing patterns. For example, 

by composing the same timing and location with surface temperature or other variables, 

can we obtain more meaning from these patterns? This will make the later discussions, 

such as section 3.2, easier since the physical meaning of each pattern is known. 

 

 

 

Thank you for highlighting the importance of discussing the physical meaning and dynamical 

interactions of the identified large-scale circulation patterns. We appreciate the opportunity to 

clarify how our analysis inherently considers these aspects and tries to find the clusters' 

significance in forming the observed anomalies as the result of the forcing. To address your 

comment, we first delineate the analytical framework we employed to investigate the paper's 

main scientific questions. This framework is also further highlighted upon more clearly in the 

revised manuscript. 

 

We considered the large-scale circulation regime as the main mechanism by which our local 

forcing influences remote regions such as the Arctic. This is why we performed clustering to 

group the similar large-scale circulation regimes. As our analysis demonstrates that the forcing 

may not induce new circulation patterns, we examined how changes in the grouped circulation 

regimes within the Experimental run contributed to observed anomalies in key Arctic climate 

variables. Given our focus on Arctic climate variables, we utilized the PMSET pattern 

associated with each circulation as an additional target similarity measure for our clustering. 

The PMSET pattern, indicative of how each circulation regime transfers energy into the Arctic, 

is crucial for determining Arctic climate conditions. Therefore, in our clustering approach, 

circulation regimes within a similar group share not only similar spatiotemporal patterns in 

MSLP and 𝜏300−700 , but also characteristics related to their associated poleward energy 

transport. Moreover, by reformulating the anomalies to attribute them to different circulation 

groups, we identified two main mechanisms through which a circulation cluster can contribute 

to the anomaly: 1) through changes in the occurrence frequency of that cluster as a result of the 

forcing (FSDC), and 2) through slight adjustments in the cluster's mean characteristics as a 

result of the forcing (WCVC). This framework helps us delineate how changes in circulation 

patterns, whether in occurrence frequency or in the cluster's mean characteristics, contribute to 

the observed anomalies in the key climate variables (these points are highlighted in lines 5, 319-

324, 377-387, in the revised manuscript). 

 

We show the cluster centers in the data space for the MSLP field in Figures 9 and 11 of the 

revised manuscript. The class centers give us information on the main cluster spatial patterns. 

It was nice that we saw some cluster centers that are similar to the well-known circulation 

patterns. This means that our clustering with a focus on similarities in data points' 

spatiotemporal patterns and PMSET leads to the circulation regime classification that somehow 

resembles the well-known large-scale circulation patterns. However, we were careful in 

associating our clusters with specific well-known circulation patterns, because they have been 

defined based on different concepts. This argument is added to lines 421-426 of the revised 

manuscript. 

 



3 
 

One of the main goals of the paper is to identify the contributions of various classes to the 

anomalies observed as a consequence of the applied forcing. We aim to understand the 

dynamical interactions of each pattern that lead to the observed anomaly. In addressing them, 

we developed our class contribution formulation, focusing specifically on the dynamic 

interactions of each cluster that lead to the observed anomalies. This approach, as detailed in 

section 2.6 of the manuscript, emphasizes the interplay between class dynamics and the 

resultant climatic effects, rather than solely on generic class interactions. This argument is 

added to in lines 428-434 of the revised manuscript.  

 

In conclusion, we developed a method for clustering circulation regimes, utilizing the 

associated poleward energy transport as a similarity measure. The clusters derived from this 

method differ from those generated by conventional approaches, leading us to be careful in 

associating our clusters with specific, well-recognized circulation patterns. Furthermore, 

through our class contribution method, we explored various class interactions that contributed 

to the observed anomaly, thus analyzing the cluster dynamics in the context of the observed 

anomaly. These insights is emphasized more in the revised manuscript. We are grateful for your 

constructive comment, which undeniably strengthened our manuscript and ensure the clarity 

and impact of our contributions to the community. 

 

 

Another suggestion is that the authors discuss Fig. 13 and 14 in details in section 3.1, 

and point out the most meaningful patterns that we need to focus on. Then in the section 

3.2 and so on, the authors do not need to discuss all the patterns, which makes the 

comparison simpler. 

 

 

Thank you for your constructive suggestions. In response, we reorganized the manuscript to 

enhance its clarity. The revised results section begin by comparing the mean states of the 

Control and Experiment runs (highlighting anomalies) across key climate variables (section 3.1 

of the revised manuscript). We also added the introductory paragraph for the result part, making 

it clearer how this part is structured (lines 319-324 of the revised manuscript). The anomaly 

fields for PMSET, 2m temperature, SIC, zonal mean zonal wind, and atmospheric wave 

propagation, along with the required climatology plots and analysis, have been moved to this 

section. This section is followed by the large-scale circulation clustering and the class 

contribution analysis. We hope that this modification shows the analytical framework of the 

paper more clearly. 

 

One of the findings of the paper is the varied contributions of different clusters to the observed 

anomalies across different seasons and locations. Therefore, in most case, one cannot identify 

one cluster as the sole source of the observed anomaly. This has been highlighted with some 

examples in lines 694-709. Moreover, we put all the main class contributions results in Table 

A3 to make a more concise version of this part of the paper available. 

 

These modifications made the paper more accessible and emphasize the novelty and 

significance of our contributions.  

 

 

 

The authors have too many figures and no clear storyline is provided. Also, the tittle is 

about Arctic climate responses to European Radiative forcing, which is too broad and 
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no specific results. The authors should summarize the main responses with a more 

specific title and describe the corresponding physical process, rather than discuss all 

the results a little bit. In section 3.1, the authors should decide which patterns to focus 

and try to understand the physical meaning of the patterns. For instance, the patterns 

have stronger occurrence in summer are not important for poleward wave propagation. 

Or in Lines 685-694, the authors focus mainly on one pattern and discuss the possible 

dynamical process of it, which should be more emphasized or considered as the main 

conclusion of this manuscript. 

 

 

Thank you for your valuable feedback, which has highlighted the need for a clearer storyline 

and a more focused analysis within our manuscript. We acknowledge the complexity introduced 

by the extensive results, which may have obscured the central storyline of our study. In 

response, we reorganized the paper to make the analytical framework of the paper more clear 

and strengthen the storyline. Specifically we added the an introductory paragraph at the 

beginning of each section of the results part (lines 319-324, 377-387, and 428-434) 

 

We change the title to “Arctic Climate Response to European Radiative Forcing: A Deep 

Learning Study on Circulation Pattern Changes”. Incorporating a reference to circulation 

patterns in the title of the paper should underscore their pivotal role in our research, providing 

a more precise and insightful descriptor of our study’s focus. By emphasizing this aspect, the 

title better communicates the core analytical approach. 

 

As mentioned above, the main focus of the study is to evaluate the effect of different circulation 

clusters on the observed anomalies. This perspective also guides our writing approach, where 

we identify the most significant patterns in the anomalies and attempt to attribute them to 

specific clusters. In some case, as you also noted (lines 749-763 in the revised manuscript), the 

observed anomalies (the anomalies over Barents-Kara sea in autumn) can be attributed to a 

single cluster. Then, the discussion about attributing the anomaly to the main contributors is 

reduced to one cluster. However, in most cases, the situation is more complex, with different 

clusters playing a role. We found it a plausible explanation for the intermittency of certain 

mechanisms proposed in the literature, such as the role of the Barents-Kara sea’s SIC reduction 

in autumn in polar vortex disturbances (lines 671-672, 685-690, and 758-763). This is why in 

discussions on the attribution of significant observed anomalies, we typically consider more 

than one cluster. However, as you suggested, adopting another perspective for discussing the 

results could involve focusing on a single cluster at a time and detailing its contributions to the 

anomalies (this approach is considered in forming Table A3 of the revised manuscript). 

However, while this approach facilitates a deeper understanding of each cluster's interactions, 

it complicates the task of comparing the relative contributions of the clusters to the observed 

anomalies. This is because the emphasis shifts towards the clusters themselves, rather than 

attributing the observed anomalies across multiple clusters. 

 

In our discussion, we demonstrate the capability of our methodology to identify potential 

mechanisms behind each significant anomaly. Some examples include: 

 

• Lines 634-644 of the revised manuscript: Our method successfully attributed the SIC 

loss in Northeast Canada during autumn to mechanisms hidden in seasonal mean 

anomalies. This has been more highlighted at the end of the paragraph (lines 641-644) 

• Lines 645-656 of the revised manuscript: This section illustrates our method's ability to 

attribute an anomaly associated with a single cluster to changes in both the occurrence 
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frequency of the cluster and the main characteristics of the class. Ultimately, we can 

explain how these changes, driven by the forcing, impact the observed anomaly. 

• Lines 657-665 of the revised manuscript: We attributed the 'warm Arctic and cold 

midlatitude' pattern to changes in the main characteristics of C1. 

• Lines 666-693 of the revised manuscript: C3 is identified as the main factor contributing 

to sea ice loss in the Barents-Kara seas during autumn, primarily driven by discrepancies 

in class characteristics in the Experimental run. This sea ice reduction coincides with a 

disturbed polar vortex in the lower stratosphere, aligning with increased disturbances in 

stratospheric dynamics. Although a reduction in C3's occurrence frequency in autumn 

slightly decreases upward wave propagation, this effect is minor compared to the 

dominant increase in wave propagation driven by changes in the class's mean 

characteristics. Overall, the influence of C3 on stratospheric dynamics, though pivotal, 

is part of a broader interplay of various factors, indicating that its singular contribution 

is less dominant than the collective influence of other classes. Some sentence parts are 

added to the paragraph to make argument more clear (lines 671-673,and 685-690). 

• Lines 694-699 of the revised manuscript: This section provides an example of how 

different classes interact to form the observed anomaly, particularly, focus on how 

different clusters contribute to forming the stratospheric dynamics in autumn. 

• Lines 710-724 of the revised manuscript: We discuss our method's limitations in 

identifying mechanisms and offer possible explanations for these limitations. 

 

In the revised manuscript, we also incorporate Table A3 which provides a concise summary of 

the main findings derived from our methodology, emphasizing our study's contributions to 

understanding the complex mechanisms driving the observed anomalies in the Arctic. This 

table, alongside a refined narrative, ensure that our methodology's capabilities and limitations 

are presented in a coherent and accessible manner. 

 

We believe that the revised manuscript present a more focused, comprehensible exploration of 

our research findings. 

 

In section 2.4, the authors trained the AAE with only Control run data and lead to the 

conclusion in Lines 219-220, “This implies that the negative forcing over Europe does 

not introduce new discernible spatiotemporal patterns in the Northern Hemisphere 

extratropical large-scale circulation.” However, this conclusion seems to be overstated. 

The difference of reconstruction loss distribution (Fig.3) between the Control and 

Experiment runs are limited, indicating the same encoder can be used for both Control 

and Experiment runs. That is, if there are new discernible spatiotemporal patterns in 

the Experiment run data, they can also be captured by the encoder of the Control run. I 

suggest the authors also do another way round (train with Experiment) to confirm that 

the pattern found in both data can be inter-changeably used. Also, I would suggest to 

weaken the sentence in Lines 219-220. 

 

 

 

Thank you very much for this suggestion and for engaging so deeply with our methodology. 

We appreciate the opportunity to further discuss the logic behind our approach and consider 

your valuable feedback. 

 

We understand your concern regarding our conclusion and the potential benefits of training an 

auto-encoder with Experiment run data as well. Our initial choice to train the AAE exclusively 
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with Control run data was driven by the aim to investigate whether the Experiment run 

introduces any new spatiotemporal patterns that could not be captured by a model trained on 

the Control run. Moreover, in light of your feedback, we softened the statement in Lines 223-

224 of the revised manuscript to more accurately reflect the limitations and scope of our 

findings. More specifically, we revised it from “This implies that the negative forcing over 

Europe does not introduce new discernible spatiotemporal patterns in the Northern Hemisphere 

extratropical large-scale circulation.” to “This implies that the negative forcing over Europe 

may not introduce new discernable spatiotemporal patterns in the Northern Hemisphere 

extratropical large-scale circulation.” 

 

Your suggestion to also train a separate auto-encoder with Experiment run data to assess the 

interchangeability of patterns captured in both Control and Experiment runs is indeed an 

interesting approach. While it does not directly investigate whether there is any new 

spatiotemporal pattern in the Experiment run, it could potentially provide additional insights 

into the similarity or divergence of spatiotemporal patterns between the two scenarios.  

 

We implemented training an auto-encoder with solely Experiment run data points as a 

supplementary analysis. The reconstruction loss of this auto-encoder, calculated by inputting 

data points from both the Experiment and Control runs, is illustrated in Figure 1 of our reply. 

Similar to AAE, the new auto-encoder managed to reconstruct data points from both the Control 

and Experiment runs with comparable levels of accuracy. This outcome suggests a notable 

degree of pattern interchangeability between the Control and Experiment runs, as captured by 

the new model (this argument is added to lines 224-226 and 598-600 of the revised manuscript). 

We also added the resulting reconstruction loss and associated discussion in the Appendix A of 

the revised paper. This not only addressed your suggestion but also strengthened our 

conclusions by providing a more comprehensive understanding of the spatiotemporal pattern 

dynamics between Control and Experiment runs. 

 
Figure 1: Reconstruction loss distribution for the Control (C) and Experiment (E) runs generated by an auto-encoder, with a 

similar architecture as AAE, trained only on the Experiment run data points with the same training strategy as AAE. 
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There is little discussion on the mean states between Control and Experiment runs. The 

authors should first discuss how different it is when the forcing is imposed through 

traditional methods, such as composite or even EOF/PCA. Since the authors directly 

start using the six patterns for explaining the forced signature, the results are hard to 

follow. The authors should give a basic state of how the forced signal look like. And why 

we need to use such complicated methods to study the forced signal? 

 

Thank you for your insightful comments. We agree that addressing them before applying our 

method will significantly enhance the reader's comprehension of our findings. 

We revised the manuscript to begin the results section with a detailed discussion of the mean 

states and anomalies of various climate variables (PMSET, 2m temperature, SIC, zonal mean 

zonal wind, and EP flux) as observed in the Control and Experiment runs. This section title is 

“Mean anomalies exerted by the forcing” in line 325 of the revised manuscript. The mean state 

of the different climate variables are discussed at the beginning of the related sections in the 

pre-print version are revised and transferred to this section. Starting our results section by 

discussion on the climate variables mean states and anomalies, set a clear foundation for 

subsequent analyses on large-scale circulation and cluster contributions. We have also added 

an introductory paragraph to each section of the results part of the paper, emphasizing the 

rationale for the analysis and the analytical framework of the paper. We believe this approach 

greatly improved the clarity of our analytical framework and storyline. 

We also implemented EOF based clustering for comparison purposes. The EOF analysis was 

applied to the whole Control and Experiment runs data points treating them as one time series. 

The first five leading EOFs were only used for spanning the reduced representation. The 

corresponding PC deriving from these EOFs serves as the features within the reduced 

representation. The five leading EOFs account for 64.7% of the total variance within our 

dataset. The centers of these classes, along with their monthly occurrence frequencies, are 

depicted in Figure 2 and Figure 3 here, respectively (Figures D5 and D6 in the revised 

manuscript). The class centers and occurrence frequencies resulting from this clustering 

approach are similar to those obtained by performing k-means clustering directly on the data 

space. We elaborated on this comparison in the Appendix D of the revised manuscript (also 

introduced in lines 266-268 of the revised manuscript). 

Additionally, we included t-SNE visualizations on different data representations in the 

Appendix D to further argue the advantages of our chosen methodology over traditional 

approaches (see Appendix D of the revised manuscript- Figure D11). This visualization 

provided a compelling argument for the proficiency of our method by highlighting the distinct 

data embeddings and the insights they offer discussed in Appendix D of the revised manuscript. 

We are confident that the addition of these analyses and the reorganization of our results section 

not only strengthened our argument but also significantly improved the overall quality of our 

manuscript. 
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Figure 2: Mean MSLP fields for clusters derived from k-means clustering (6 clusters) on PC time series derived from the 5 

leading EOFs. The fields for each cluster are plotted as anomalies relative to the mean MSLP field for all data points, 

encompassing both the Control and Experiment runs. 

 

Figure 3: The monthly occurrence frequency of the 6 clusters showed in Figure 2 for the Control (blue) and Experiment (red) 

runs. 

     

Other comments are following: 

  

B1-04 is similar with Fig. B3-01; however, their occurrence seasons are so different. 

Why? Same for the Fig. B5-05. Are they corresponding to the C1 and C2 in Fig.6? Even 

though the methods are different, the results should match between each other in certain 

degree. 

 

Thank you for pointing out the similarities and differences in occurrence seasons between the 

Figures B1, B3 and 6 of preprint version of the manuscript (corresponded to Figures D9, D3 
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and 9 in the revised manuscript, respectively). Your question highlights a key aspect of different 

clustering methodologies, which is the dependency of clustering outcomes on the chosen 

representation space. Different representation spaces can influence which data points are 

considered close to each other according to the specific geometry of that space (lines 872-885 

of Appendix D in the revised manuscript). Clustering algorithms like k-means then group data 

points based on their proximity in the chosen representation space. For instance, the clustering 

performed on PMSET indices (Figure D9 of the revised manuscript) is guided solely by 

similarities in PMSET indices. That is, data points with similar PMSET indices lie closer 

together in this representation. This contrasts with the clustering performed on data space 

(Figure D3 of the revised manuscript), where the Euclidean pixel-wise distance between data 

points dictates the data points proximity and the resulting clustering.  

 

As you mentioned, there are similarities between Class 04 in Figure D9 and Class 01 in Figure 

D3 of the revised manuscript, suggesting they could be perceived as negative phases of each 

other if viewed as EOF patterns. However, they have different monthly occurrence frequency. 

It is important to notice that they are not EOF patterns, nor do they originate from clustering 

with the identical focus, as discussed in the previous paragraph. Cluster 04 in Figure D9 of the 

revised manuscript is derived from clustering data points based on their similarities in PMSET 

indices, meaning that data points forming this cluster primarily exhibit similar PMSET 

characteristics. On the other hand, Cluster 01 in Figure D3 of the revised manuscript represents 

one of the mean states of winter circulation. It emerges from clustering based on data space, 

which primarily groups the seasonal cycle. 

 

To identify similarities in patterns, one should compare clustering results that share a similar 

focus. For instance, k-means clustering on data space, as shown in Figures D3 of the revised 

manuscript, and clustering on the FAE latent space, Figures D7 of the revised manuscript, both 

primarily reveal the seasonal cycle as the dominant pattern within the dataset. Consequently, 

the class centers in these representations are somewhat comparable. A case in point is Cluster 

06 in Figure D3 of the revised manuscript and Cluster 06 in Figure D7 of the revised manuscript 

can be perceive as similar clusters. Similarly, clustering based on PMSET indices (Figures D9 

and D10 of the revised manuscript) and clustering on the MCAE latent space exhibit 

resemblances because both approaches utilize PMSET indices as a similarity measure at 

different levels. For example, Cluster C5 in Figure 9 of the revised manuscript and Class 04 in 

Figure D9 of the manuscript show some similarities. 

 

The divergent outcomes from clustering across different representation spaces underscores the 

sensitivity of clustering outcomes to the representation space. Conventional clustering 

methodologies only focus on data point similarities using standard measures of similarity, such 

as Euclidean pixel-wise distance between data points or PCA-reduced space representation. 

One of the main contributions of this paper is to introduce a method that can produce a 

representation of the data points that can effectively distance the data points based on both the 

similarities among the data points and their alignment with a target objective similarity, here 

the PMSET patterns. We emphasized on this contribution in the revised version (lines 377-387, 

421-426 and Appendix D of the revised manuscript) and further used t-SNE visualization to 

provide deeper insights into how various clustering methods perform across different 

representations (Appendix D). 

 

 

Line 231, why 40 indices in total? 4 latitudes with 5 PMSET values and two levels of 

troposphere? It is easy to miss the two levels of troposphere. 
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Our decision to choose these specific indices was driven by a desire to comprehensively capture 

the three-dimensional spatial patterns of the PMSET associated with the data points, which is 

crucial for understanding the dynamics of the atmosphere energy transport in our study. 

 

To elaborate, the five PMSET indices per profile are intended to represent the main 

characteristics of the PMSET profiles. Furthermore, the choice of four latitudes was aimed at 

capturing the latitudinal progression of the PMSET. Additionally, incorporating two vertical 

levels within the troposphere was intended to provide insights into the vertical dynamics of the 

PMSET. The two vertical levels allow us to observe how PMSET values change with altitude, 

offering insight into the vertical distribution of atmospheric energy transport.  

 

We appreciate the opportunity to clarify this in our manuscript. We added this in line 237-238 

of the revised manuscript. 

 

 

Line 349, how does the authors consider the “statistically significant increases” in Fig. 

10? 

 

As we mentioned in line 123-126 of the revised manuscript, the independent two sample t-test 

and Welch’s unpaired t-test were used throughout the study to determine the statistical 

significance levels when samples have equal or unequal variances, respectively, and samples 

with p-value less than 0.05 were considered statistically significant. Using the same 

methodology, the doted points in Figure 7 of the revised manuscript (Figure 10 in the preprint 

version) are consider statistically significant 

 

Line 359-361, “between the daily mean PMSET” of upper and lower troposphere? 

 

Exactly. We appreciate your highlighting this point. In the revised version of our manuscript, 

we refined this sentence to more precisely express that our analysis involves comparing the 

daily mean PMSET values between the upper and lower levels of the troposphere (lines 441-

442 of the revised manuscript). 

 

 

As a final remark, we would like to highlight the main contributions of our paper, which we 

better emphasized on the final revision of the manuscript: 

 

1- We introduced a deep-learning-based method that generates an effective representation of 

data points. This representation accounts for both the similarities among the data points and 

their alignment with a target objective similarity, here the PMSET patterns, to effectively 

distance the data points. This method was applied to data points consisting of 8 consecutive 

days of MSLP and 𝜏300−700, capturing dynamic patterns in the circulation data points. 

 

2- We developed a formulation for class contribution, focusing on the dynamic interactions of 

different circulation patterns that lead to observed anomalies. By reformulating the anomalies 

to attribute them to different circulation groups, we identified two main mechanisms through 

which a circulation cluster can contribute to the anomaly: (1) through changes in the occurrence 

frequency of that cluster as a result of the forcing (FSDC), and (2) through slight adjustments 

in the cluster's mean characteristics as a result of the forcing (WCVC). This framework 
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delineates how changes in circulation patterns, whether in occurrence frequency or in the 

cluster's mean characteristics, contribute to the observed anomalies in key climate variables. 

 

3- We utilized this advanced methodological approach to understand the role of different 

circulation patterns in forming the anomalies. These patterns were grouped based on similarities 

in their spatiotemporal behavior and their associated PMSET patterns. This grouping and the 

class contribution formulation helped us understand how these interactions lead to observed 

anomalies resulting from negative radiative forcing over Europe. Among the main findings are: 

• In most cases, the change in a cluster's main behavior is more significant than changes 

in the occurrence frequency of that cluster when considering the cluster's contribution 

to the anomaly. For example, the decreased occurrence frequency of a cluster associated 

with a high-pressure system over Northern Eurasia and Scandinavia in autumn, 

observed in the Experiment run, led to reduced upward wave propagation. However, a 

slight adjustment in the mean behavior of this cluster in the Experiment run resulted in 

an increase in upward wave propagation. This increased wave propagation dominates 

the cluster's contribution to the observed anomaly in upward wave propagation (we 

incorporate this argument to the paper abstract). 

• Our method's capability to attribute observed anomalies, such as the SIC loss in the 

Barents-Kara Seas in autumn, the warm Arctic and cold mid-latitude in winter, and 

others. 
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Reviewer 2:  
 

Title: Arctic Climate Response to European Radiative Forcing: A Deep Learning 

Approach  

Authors: Sina Mehrdad, Dörthe Handorf, Ines Höschel, Khalil Karami, Johannes 

Quaas, Sudhakar Dipu, and Christoph Jacobi 

Summary: This study utilizes deep learning techniques to investigate the Arctic 

atmospheric circulation responses to European radiative forcing, which is both 

intriguing and significant for advancing our understanding of applying convolutional 

auto-encoder frameworks in Arctic climate change research. Overall, the manuscript is 

well-written, and the authors extensively discuss the consistent dynamical responses, 

although interpreting causality remains challenging. Below, I provide a few major and 

minor comments for the authors' consideration. 

Thank you very much for your insightful review. We greatly appreciate your recognition of the 

research topic's significance. We acknowledge your point regarding the challenges in 

interpreting causality within our study. Indeed, one of the key contributions of our work is to 

highlight that deriving causality in the context of regional forcing on Arctic climate is complex 

and multifaceted. 

As you have pointed out our presentation of the results and the mechanisms derived from our 

analysis might not have been as clear as necessary. We revised the manuscript to better highlight 

these aspects. Specifically, we have enhanced the manuscript throughout by adding more 

detailed explanations where necessary to clarify the structure and storyline of the paper. The 

abstract is revised to contain the main contributions of the paper. The results section has been 

restructured to begin with a comparison of the mean states of the Control and Experiment runs, 

followed by analyses of large-scale circulation clustering and class contributions. Furthermore, 

we have introduced Appendices A and C in the revised manuscript and enriched the content 

and analysis in Appendix D.  

 

Major comments: 

 

Baseline machine learning model comparison. This study presents an innovative 

application of convolutional autoencoders (AEs), which appears to be one of the first 

attempts in studying Arctic response to radiative forcing. However, I am still unclear 

about the motivation behind choosing convolutional AEs. For example, the authors 

mentioned that in Lines 538-539 that the FAE is a compelling  method for generating a 

concise and informative representation, but did not elaborate on compare to what. Have 

the authors compared the performance of convolutional AEs with other machine 

learning or statistical methods? For example, similar clustering analyses could be 

conducted using self-organizing maps (SOMs), which are computationally less 

expensive than training convolutional AEs. SOMs have been used in studying 

atmospheric moisture transport in the Arctic or large-scale atmospheric circulations 

(e.g., Skific et al. 2009; Lee 2017). Additionally, principal component analysis (PCA) 
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or empirical orthogonal function (EOF) analysis could be employed for clustering tests. 

Why not start with these simpler methods before diving into complex deep learning 

models? However, if the authors can demonstrate that convolutional AEs outperform 

SOMs or PCA/EOF, it would strengthen the justification for using convolutional AEs in 

this study. Perhaps the authors could consider quickly implementing these simpler 

methods and comparing the results with those obtained from convolutional AEs. 

Thank you for these comments and the opportunity to clarify our motivation to choose our deep 

learning approach. Your insights have encouraged us to more thoroughly compare our deep 

learning method with other established conventional techniques. 

Our initial motivation for employing a deep learning approach, particularly convolutional 

operations, comes from their documented success in meteorological applications, as outlined in 

lines 70-84 of our revised manuscript. The effectiveness of convolutional neural networks 

(CNNs) arises from the way they treat the dataset, taking into account the local context (such 

as 2D and 3D neighborhood structures) which, in our case, is crucial for understanding the 

spatial configurations of weather patterns and their changes over time. They further exploit 

hierarchical feature extraction. This focus is discussed in lines 198-206 in our revised paper. In 

particular, we highlight our motivation to employ a convolutional auto-encoder architecture, 

inspired by its success in weather prediction by Weyn et al. (2019, 2020). These studies 

illustrate the architecture's proficiency in capturing spatiotemporal patterns within weather 

datasets, a point we emphasize in lines 578-580 of our revised manuscript. 

The flexibility of deep learning methods, which allows us to customize the latent space to align 

with our specific research goals, is a further motivation to use this approach in our research 

(line 244-245 of our revised manuscript). Specifically, our aim is for data points yielding similar 

PMSET patterns to lay more closely in the MCAE latent space, as detailed in lines 258-260 of 

the revised manuscript. In the discussion section lines 603-613, we evaluate the MCAE's latent 

space representation of the dataset. We compare this with the traditional data space 

representation, which is dominated by the seasonal cycle. Additionally, we compare it to the 

PMSET index representation, which focuses solely on PMSET similarities. This level of 

flexibility in data representation, unachievable with conventional methods, further motivate us 

to use the deep learning approach. Moreover, additional insights are gained by comparing the 

t-SNE visualization of different representations of the data space to the MCAE latent space, as 

shown in Figure D11 and Appendix D of the manuscript. 

In the opening paragraph of the discussion (lines 580-592 of the revised manuscript), we aimed 

to assess the data representation obtained from the FAE. Particularly, in lines 588-592 of the 

revised manuscript, we compare unsupervised clustering results performed on the data space 

(k-means and SOM) and the FAE's latent space. This comparison reveals that the FAE's latent 

space allows us to discern datapoints corresponding to transitional seasons, such as autumn and 

spring. This observation leads to our concluding remark in lines 590-592 of the manuscript, 

where we state that the FAE offers an effective method for creating a concise and informative 

representation. 

We acknowledge the importance of comparing our convolutional auto-encoders with simpler, 

less computationally expensive methods such as SOMs and EOF analysis. Therefore, we 

implemented unsupervised clustering using SOM and EOF and compare their performance with 

our clustering analysis (lines 262-277, and Appendix D of the revised paper). The EOF analysis 
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was applied to the whole Control and Experiment runs data points treating them as one time 

series. The first five leading EOFs were only used for spanning the reduced representation. The 

corresponding PC deriving from these EOFs serves as the features within the reduced 

representation. The five leading EOFs account for 64.7% of the total variance within our 

dataset. The centers of these classes, along with their monthly occurrence frequencies, are 

depicted in Figure 4 and Figure 5 below, respectively (Figures D5 and D6 in the revised 

manuscript). Moreover, we configured the SOM to categorize the data into six classes, arranged 

in a 3x2 grid, over 100 iterations. Due to the sequential nature of SOM training, leveraging the 

parallel processing capabilities of GPUs offers challenges, necessitating reliance on the 

sequential processes of CPUs. Consequently, the SOM training was time-consuming, requiring 

approximately one week on our local server, due to the extensive dataset and its large input 

shape. This extensive training time limited our ability to fine-tune the SOM parameters to 

optimize performance. The class centers of these SOM classes, along with their monthly 

occurrence frequency are illustrated in Figure 6 and Figure 7 below, respectively (Figures D1 

and D2 in the revised manuscript). The class centers and occurrence frequencies resulting from 

these conventional clustering approaches are similar to those obtained by performing k-means 

clustering directly on the data space. We elaborate on this comparison in the Appendix D of the 

revised manuscript.  

Additionally, we included t-SNE visualizations on different data representations in the 

Appendix D (Figure D11 of the revised manuscript) to further argue the advantages of our 

chosen methodology over traditional approaches. This visualization aims to provide a 

compelling argument for the proficiency of our method by highlighting the distinct data 

embeddings and the insights they offer. This addition will not only enhance the robustness of 

our argument but also provide a comprehensive evaluation of the convolutional auto-encoder 

effectiveness in capturing complex spatiotemporal patterns in response to the excreted. The 

argument in this regard is added to Appendix D of the revised manuscript.  

We appreciate your constructive feedback, which has guided us to further validate our 

methodology. We believe that these additional comparisons emphasize the importance of using 

convolutional autoencoders in our research. 
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Figure 4: Mean MSLP fields for clusters derived from k-means clustering (6 clusters) on PC time series derived from the 5 

leading EOFs. The fields for each cluster are plotted as anomalies relative to the mean MSLP field for all data points, 

encompassing both the Control and Experiment runs. 

 

Figure 5: The monthly occurrence frequency of the 6 clusters showed in Figure 4 for the Control (blue) and Experiment (red) 

runs. 
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Figure 6: Same as Figure 4, but the clusters were derived from applying SOM clustering on the data space. 

 

Figure 7: The monthly occurrence frequency of the 6 clusters showed in Figure 6 for the Control (blue) and Experiment (red) 

runs. 

 

 

What new physical or dynamical insight do we learn? I am curious about the new 

insights or knowledge gained from the new clustering method employed in this study. 

Lines 566-567 mention that well-established large-scale circulation patterns (e.g., 

NAO, AO, PNA) are identified, and consistent dynamical responses in the troposphere 

and stratosphere can be demonstrated. I assume that similar conclusions may be drawn 

from other clustering methods as well. Could we uncover new dynamical pathways in 

which the Arctic responds to European radiative forcing differently from previous 

understandings based on stratosphere-troposphere coupling? It would be helpful if the 
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authors could create a table summarizing the dynamical responses associated with each 

cluster, indicating which dynamical responses are already known and which are new. 

Similarly, Lines 324-327 discuss the seasonality changes. What do these seasonality 

changes signify physically, and what can we learn from them?” In addition, what is the 

separation of WCVC and FSDC components brings us new insights? 

Thank you for your insightful feedback. We revised section 3.2 and Appendix D of the revised 

manuscript in response to this. To respond to your comment first we need to note a key aspect 

of different clustering methodologies, which is the dependency of clustering outcomes on the 

chosen representation space. Different representation spaces can influence which data points 

are considered close to each other according to the specific geometry of that space. Clustering 

algorithms like k-means then group data points based on their proximity in the chosen 

representation space. For instance, the clustering performed on PMSET indices (Figure D9 of 

the revised manuscript) is guided solely by similarities in PMSET indices. That is, data points 

with similar PMSET indices lie closer together in this representation. Conventional clustering 

methodologies only focus on data point similarities using standard measures of similarity, such 

as Euclidean pixel-wise distance between data points or PCA-reduced (Principal Component 

Analysis) space representation. One of the main contributions of this paper is to introduce a 

deep-learning based method that generates an effective representation of data points. This 

representation accounts for both the similarities among the data points and their alignment with 

a target objective similarity, here the PMSET patterns, to effectively distance the data points. 

(this argument is highlighted on lines 421-426 and Appendix D of the revised manuscript) 

  

In the offered representation, both the similarity in data points' spatiotemporal patterns and the 

associated PMSET pattern play a role in the data points' proximity in the representation and 

consequently determine the clustering results. The expression in lines 620-621 emphasizes the 

fact that with a focus on the similarity in data points spatiotemporal patterns and the associated 

PMSET pattern, we were able to have patterns with a similar focus as the well-established 

circulation regime. While similar patterns might be recognizable through other clustering 

techniques, our method enhances the interpretability and relevance of these patterns by 

grounding them in the specific context of PMSET dynamics. Thus, the new insight we offer is 

not merely the identification of these patterns but a deeper understanding of their dynamical 

significance, facilitated by a clustering approach that integrates physical relevance with data-

driven techniques (the clustering motivation and deviation from other clustering method is 

emphasized in lines 377-387 and Appendix D of the revised manuscript)  

 

Thank you for pointing out the need for a more detailed discussion on the physical significance 

of seasonality changes and the insights gained from separating the WCVC and FSDC 

components in our analysis. Our findings indicate that the applied forcing may not necessarily 

induce new circulation patterns. Instead, we explored how alterations in the grouped circulation 

regimes within the Experimental run have contributed to observed anomalies in critical Arctic 

climate variables. We attribute these changes within the grouped circulation regimes to the 

applied forcing, as it is the only transient perturbation in the Experiment run.  

 

One of the main goals of the paper is to identify the contributions of various classes to the 

anomalies observed as a consequence of the applied forcing. We tried to understand the 

dynamic interactions of each pattern that led to the observed anomaly. In addressing them, we 

developed our class contribution formulation. We reformulated the anomalies to attribute them 

to different circulation groups. We identified two main mechanisms through which a circulation 

cluster can contribute to the anomaly: 1) through changes in the occurrence frequency of that 

cluster as a result of the forcing (FSDC), and 2) through slight adjustments in the cluster's mean 
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characteristics as a result of the forcing (WCVC). This framework helps us delineate how 

changes in circulation patterns, whether in occurrence frequency or in the cluster's mean 

characteristics, contribute to the observed anomalies in the key climate variables. This approach 

not only enhances our understanding of the dynamical interactions leading to the observed 

anomalies but also offers valuable insights into the complex ways in which atmospheric 

circulation responds to external forcing. It underscores the importance of considering both the 

occurrence and the mean characteristics of circulation patterns in assessing their impact on 

climate anomalies (this has been more emphasized in lines 399-413 of the revised manuscript). 

 

Regarding uncovering new dynamical pathways, we utilized this advanced methodological 

approach to understand the role of different circulation patterns in forming the anomalies (see 

lines 321-324 of the revised manuscript). These patterns were grouped based on similarities in 

their spatiotemporal behavior and their associated PMSET patterns. This grouping and the class 

contribution formulation helped us understand how these interactions lead to observed 

anomalies resulting from negative radiative forcing over Europe. Among the main findings are: 

• In most cases, the change in a cluster's main behavior is more significant than changes 

in the occurrence frequency of that cluster when considering the cluster's contribution 

to the anomaly. For example, the decreased occurrence frequency of a cluster associated 

with a high-pressure system over Northern Eurasia and Scandinavia in autumn, 

observed in the Experiment run, led to reduced upward wave propagation. However, a 

slight adjustment in the mean behavior of this cluster in the Experiment run resulted in 

an increase in upward wave propagation. This increased wave propagation dominates 

the cluster's contribution to the observed anomaly in upward wave propagation (we 

incorporate this argument to the paper abstract). 

• Our method's capability to attribute observed anomalies, such as the SIC loss in the 

Barents-Kara Seas in autumn, the warm Arctic and cold mid-latitude in winter, and 

others. 

 

We highlighted this argument more in the revised version. Moreover, we tried to put all the 

most meaningful results in a more compact format in Table A3 of the revised manuscript. This 

approach will not only make the information more concise but also emphasize our 

contributions more effectively. These modifications will undoubtedly make the paper more 

accessible and emphasize the novelty and significance of our contributions. In Table A3, 

however, we did not specify whether these results were previously known because most of the 

proposed mechanisms involve a combination of different interactions. In the discussion section 

of the paper, we evaluate our class contribution patterns alongside proposed mechanisms. For 

example, the mechanism linking sea ice loss in the Barents-Kara Seas during autumn to 

disturbances in the polar vortex or relating the blocking over Scandinavian region to the 

disturbed polar vortex (lines 666-693 of the revised manuscript), and the role of high pressure 

over Eurasia in Arctic temperature variations observed in the C1 class contribution (lines 657-

665 of the revised manuscript). We also discuss the ability of our methodology to identify 

potential mechanisms behind each significant anomaly. Some examples include: 

 

• Lines 634-644 of the revised manuscript: Our method successfully attributed the SIC 

loss in Northeast Canada during autumn to mechanisms hidden in seasonal mean 

anomalies. This has been more highlighted at the end of the paragraph (lines 641-644) 

• Lines 645-656 of the revised manuscript: This section illustrates our method's ability to 

attribute an anomaly associated with a single cluster to changes in both the occurrence 

frequency of the cluster and the main characteristics of the class. Ultimately, we can 

explain how these changes, driven by the forcing, impact the observed anomaly. 



19 
 

• Lines 657-665 of the revised manuscript: We attributed the 'warm Arctic and cold 

midlatitude' pattern to changes in the main characteristics of C1. 

• Lines 666-693 of the revised manuscript: C3 is identified as the main factor contributing 

to sea ice loss in the Barents-Kara seas during autumn, primarily driven by discrepancies 

in class characteristics in the Experimental run. This sea ice reduction coincides with a 

disturbed polar vortex in the lower stratosphere, aligning with increased disturbances in 

stratospheric dynamics. Although a reduction in C3's occurrence frequency in autumn 

slightly decreases upward wave propagation, this effect is minor compared to the 

dominant increase in wave propagation driven by changes in the class's mean 

characteristics. Overall, the influence of C3 on stratospheric dynamics, though pivotal, 

is part of a broader interplay of various factors, indicating that its singular contribution 

is less dominant than the collective influence of other classes. Some sentence parts are 

added to the paragraph to make argument more clear (lines 671-673,and 685-690). 

• Lines 694-699 of the revised manuscript: This section provides an example of how 

different classes interact to form the observed anomaly, particularly, focus on how 

different clusters contribute to forming the stratospheric dynamics in autumn. 

• Lines 710-724 of the revised manuscript: We discuss our method's limitations in 

identifying mechanisms and offer possible explanations for these limitations. 

 

Linking the responses to European radiative forcing. I noticed that the discussion on the 

results seems to focus less on the direct response to radiative forcing and more on the 

subsequent atmospheric circulation responses and PMSET. For example, how does the 

European radiative forcing lead to increased upward EP flux for cluster 3 in SON (Figure 

17)? Or how does the localized radiative forcing in Europe give rise to changes in 2m 

temperature across the entire Northern Hemisphere, as depicted in Figure 13? Some of the 

temperature increases appear contradictory to the cooling effect of aerosol negative forcing 

(or specifically here, the cloud forcing). 

Thank you for highlighting the need for a clearer connection between the response to European 

radiative forcing and the observed atmospheric circulation change in our analysis. We 

considered the large-scale circulation regime as the main mechanism by which our local forcing 

influences remote regions such as the Arctic. This is why we performed clustering to group the 

similar large-scale circulation regimes, and analyzed the impact of changes in these grouped 

circulation regimes on the observed anomaly, as a consequence of the applied forcing. Given 

our focus on Arctic climate variables, we utilized the PMSET pattern associated with each 

circulation as an additional target similarity measure for our clustering. The PMSET pattern, 

indicative of how each circulation regime transfers energy into the Arctic, is crucial for 

determining Arctic climate conditions (this argument is added to lines 319-324 and 377-387 of 

the revised manuscript).  

Our analysis reveals that while the forcing may not introduce new circulation patterns, it can 

modify existing circulation patterns in two significant ways: by altering the occurrence 

frequency of a pattern (the FSDC component of the class contribution) or by changing the mean 

characteristics of the circulation pattern (the WCVC component of the class contribution). 

Consequently, we calculated each class's contribution to the observed anomaly. As mentioned 

in line 300 and equation 2 of the revised manuscript, the sum of these class contributions yield 

the observed anomaly. Each class's contribution can then be decomposed into two parts: WCVC 

and FSDC. This decomposition enables us to attribute different aspects of the anomaly to 

specific clusters and to the particular type of change within that cluster, whether it's a change 
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in frequency or in mean characteristics. In response to your comment, We added the argument 

in lines 319-324 and 377-387 to enhance the manuscript to more explicitly draw these 

connections between European radiative forcing and its effect on Arctic climate via changes in 

atmospheric circulation. 

Thank you for your insightful questions about the specific impacts of European radiative 

forcing on different atmospheric dynamics. These phenomena indeed highlight the complex 

and nonlinear responses of the climate system to localized radiative forcing. We demonstrated 

that the increased upward EP flux for C3 during SON is primarily attributed to the adjustment 

in the mean characteristics of this cluster in the experimental run (WCVC component), despite 

the reduced occurrence frequency of this cluster, which is commonly known to decrease upward 

wave propagation. However, this reduction is not the dominant factor in this class's contribution 

(for more details, see lines 666-693). Furthermore, we attributed the observed warm Arctic and 

cold midlatitude pattern to changes in the mean characteristics of C1, as detailed on lines 657-

665 of the manuscript. 

As expected, the forcing does not always yield uniform results; its effects differ depending on 

the present circulation regime. Unlike linear analyses, which evenly attribute the anomaly 

across all clusters or data points, our approach captures the nonlinear behavior of the climate 

system. This means that the forcing leads to different contributions by each class depending on 

how the forcing change the cluster behavior, and the sum of these contributions is equal to the 

observed anomaly (see equation 2). 

Thanks to your feedbacks, we acknowledge that the presentation of this content within the paper 

was not sufficiently clear. In general we revised the manuscript structure to better represent our 

analytical framework of the paper. 

 

Minor comments: 

Lines 58-60: perhaps the authors considering to cite two new studies on this topic: Xu 

et al. (2023) and Liang et al. (2024). 

Thank you very much for recommending the studies by Xu et al. (2023) and Liang et al. (2024). 

We agree that these recent contributions are highly relevant to our work and can enrich the 

context of the manuscript. We incorporated these studies in the revised version of our 

manuscript (lines 48, 57, 60, 673, and 688 of the revised manuscript). 

  

Line 123 and Figure 1: why there are statistically significant radiative forcing increase 

in eastern Siberia, Asia, and North Pacific? 

You've raised an interesting point. These increases are indeed noteworthy and could be 

attributed to dynamical feedback mechanisms related to the atmospheric circulation change by 

European radiative forcing. While we acknowledge the importance and potential implications 

of these observed increases, a detailed exploration of their causes and consequences lies beyond 

the current scope of our research. 

 

Lines 161-162: why 8 days? Does this indicate a certain physical process dominating? 
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The choice of an 8-day period for our data points was motivated by a combination of 

methodological considerations and preliminary testing to identify a timeframe that captures 

dynamic atmospheric processes. In our initial tests, we observed that an 8-day period yielded 

the best performance regarding the DL algorithm reconstruction loss and overfitting measure 

(line 166 of the revised manuscript). This performance could be due to its efficiency to capture 

atmospheric dynamics or just related to our deep learning architecture. The choice of 8 days 

aligns well with our deep-learning architecture, particularly the use of 3D convolutional pooling 

and upsampling within our autoencoder architecture. The binary nature of the number 8 (2^3) 

potentially enhances processing efficiency and effectiveness within this architecture.  

 

Line 230: the maximum PMSET? Or both maximum and minimum PMSETs? 

Thank you for your keen observation. Indeed, our analysis considers both the maximum and 

minimum PMSETs, not solely the maximum PMSET. We corrected this typo in the revised 

manuscript (line 236 of the revised manuscript).  

 

Lines 246-248: could the authors provide a figure to demonstrate this grid 

transformation? 

Thank you for suggesting the inclusion of a figure to demonstrate the transformation applied to 

angular features in the MCAE's latent space (explained in lines 252-255 of the revised 

manuscript). To address the continuity challenge between angles close to 0 and 360 degrees, 

we indeed transform each angular feature into two dimensions using sine and cosine functions. 

This approach effectively preserves the circular nature of angular measurements, ensuring that 

values close in angular space (for example, 355° and 5°) remain proximate in the transformed 

two-dimensional space, despite their apparent numerical distinction. 

For instance, an angular feature represented by a value within the 0-360 degree range can create 

discontinuity issues where angularly adjacent values appear numerically distant. By converting 

each angle into a pair of coordinates, using the sine and cosine of the angle, we create a two-

dimensional representation where the proximity of angles accurately reflects their true angular 

relationship. In Figure 8, points A and B are represented by their angles, θ1 and θ2, respectively. 

Despite θ2 being numerically far from θ1, their two-dimensional representations (using sine 

and cosine) on the unit circle are close, accurately reflecting the angular proximity. 

We initially opted for a written description of the transformation in the paper. However, in 

response to your valuable feedback, we added Appendix C, which explain this transformation. 

Figure C1 in Appendix C of the revised manuscript visualizes the transformation process, 

enhancing clarity and aiding understanding for our readers. 
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Figure 8 visualization of the transformation applied to angular features to address the angular continuity challenge 

 

Lines 298 and 301: Are there any reference papers for WCVC and FSDC? 

The concepts of the Within-Cluster Variability Contribution (WCVC) and Frequency-weighted 

Seasonal Deviation Contribution (FSDC) introduced in our study represent novel contributions 

to the field. These were developed as part of our class contribution formulation, aimed at 

examining the dynamic interactions of circulation patterns and their roles in producing the 

observed anomalies in the Experiment run. This approach allows us to attribute anomalies to 

specific changes within circulation clusters, either through variations in their occurrence 

frequency (FSDC) or adjustments in their mean characteristics (WCVC) in response to radiative 

forcing. 

Given the innovative nature of this framework, there are no direct reference papers that discuss 

WCVC and FSDC in the context we have applied them. To the best of our knowledge, our study 

is the first to formalize these concepts as distinct mechanisms through which atmospheric 

circulation clusters can influence climate anomalies. 

In section 2.6 of our manuscript, we comprehensively explained these concepts. We believe 

that our work may serve as a foundation for future research in this area, potentially encouraging 

further studies that attribute anomalies to different components of the system. 

  

 

Figure 8: it seems the signal-to-noise ration is quite small. How could the authors say 

these responses are important? 

As emphasized in lines 414-420 of the manuscript, in Figure 11 of the revised manuscript 

(Figure 8 in preprint version), our primary objective is to demonstrate the effectiveness of our 

clustering methodology in identifying and classifying similar atmospheric patterns across 

different simulations and throughout different seasons. The class centers were calculated 

relative to the seasonal mean fields depicted in the figure's first row. The low variation in class 

center patterns across seasons underscores the robustness and consistency of our clustering 

approach, even without explicitly incorporating information about the seasonal cycle into the 

network. 

Regarding the signal-to-noise ratio mentioned, it's crucial to recognize that the subtlety of the 

variations among the class centers highlights the method's sensitivity and precision in capturing 
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the dynamics of the climate system. We appreciate this opportunity to clarify the intention and 

findings related to Figure 8. 

 

Figures 9 and Figure 10: combine these two figure into one figure? 

Thank you for suggesting the combination of Figures 6 and 7 (corresponding to Figures 9 and 

10 in the preprint version) in the revised manuscript. We understand the potential benefits of 

consolidating these figures for a more streamlined presentation. However, after careful 

consideration, we have decided to keep these figures separate. Figure 6 presents the 

climatology, while Figure 7 focuses specifically on the anomalies. Combining these figures 

could potentially obscure the distinct and critical information each aims to convey, particularly 

given the differing nature of the data they represent. We appreciate your feedback and hope this 

explanation clarifies our rationale for the layout choices in our revised manuscript. 

 

Figure 12: the arrows are hardly seen. Perhaps the authors can try to enhance the 

visibility of the arrows. 

Thank you for pointing out the visibility issue with the arrows in Figure 13 of the revised 

manuscript (Figure 12 in preprint version). We appreciate your suggestion and enhanced the 

visibility of the arrows in the revised version of the figure. 

 

Lines 458-460: but the seasonal distribution changes? 

Thank you for bringing attention to the subtle change in the seasonal distribution of sudden 

stratospheric warming (SSW) occurrences. Table A4 in the revised manuscript indicates a 

subtle shift in the seasonal distribution of SSW occurrences in the Experiment run, with a 

decrease by one occurrence in autumn and a compensatory increase by one occurrence in 

winter. 

As illustrated in Figure 16 of the revised manuscript, the autumn season shows an increase in 

the zonal mean zonal wind in the high-latitude upper stratosphere and a decrease in the lower 

stratosphere. This pattern of variability does not directly correlate with the slight decrease in 

SSW occurrences in autumn, suggesting that the observed changes in zonal wind patterns 

cannot solely be attributed to the frequency of SSW events. 

Similarly, during winter, we observed an increase in high-latitude middle atmospheric zonal 

mean zonal wind, coinciding with an increase in occurrences of SSW events. Generally, an 

increase in SSW events would be expected to have a converse effect, namely a decrease in the 

zonal mean zonal wind. Therefore, attributing the observed change in wind patterns directly to 

the singular additional SSW occurrence is not straightforward. 

This analysis leads us to conclude that while the seasonal distribution of SSW occurrences 

experiences minor adjustments, these changes do not significantly alter our findings regarding 

our upper atmospheric analysis. This argument was added to the revised manuscript in lines 

350-355. 
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Figure 17: the EP flux divergence does not exactly match the pattern of zonal wind 

anomalies in some seasons and clusters. How could we relate the EP flux change to 

zonal wind change? 

Thank you for highlighting this subtle observation. It is important to note that the EP flux 

divergences are the momentum deposited by the resolved waves in the model. In addition to 

the resolved Rossby waves the changes in the zonal wind can be influenced by the non-resolved 

parameterized gravity waves (GWs). Changes in the zonal mean zonal wind due to the resolved 

waves may affect the parameterized momentum depositions by the GWs. This in turn, could 

affect the prevailing zonal flow and induce changes in the residual circulation below the 

breaking level. Such dynamics might explain the anomalies of the zonal mean zonal wind far 

away from the regions of significant EP fluxes (Cohen et al., 2013; Limpasuvan et al., 2016; 

Chandran et al., 2014). We appreciate your insightful comment and will further clarify this in 

our revised manuscript. This argument was added to line 528-535 of the revised manuscript.  

  

Lines 540-542: the authors mentioned that the external forcing can modify the 

circulation patterns. But in Lines 778-680, the authors conclude that the radiative 

forcing only alter the existing circulation patterns, and does not introduce new patterns. 

These two sentences seem contradictory somewhat. Could the authors clarify and 

reconcile these statements? 

Thank you for highlighting the need for clarification between our discussion on the general 

effects of external forcings on circulation patterns and our specific findings related to negative 

radiative forcing over Europe. 

In the general context (lines 593-595), we mention "External forcings can modify circulation 

patterns in complex and nonlinear ways (Gillett and Fyfe, 2013; Hannachi et al., 2017) by 

introducing new spatiotemporal patterns, changing the preferred circulation patterns, altering 

their frequencies, or by a combination of them." However, when focusing on the specific 

context of negative radiative forcing over Europe (lines 741-744), we mentioned "Our study 

revealed that negative radiative forcing over Europe, resembling the heterogeneous radiative 

forcing exerted by aerosols, influences the climate system by altering existing circulation 

patterns and their frequencies without introducing new patterns." Therefore, while external 

forcings, in general, have the capacity to induce a wide range of modifications in circulation 

regimes, our research specifically found that negative radiative forcing over Europe modifies 

the circulation by adjusting existing patterns and their frequencies, rather than introducing 

entirely new circulation patterns. 

  

Line 689: upper troposphere lower stratosphere —> upper troposphere and lower 

stratosphere? 

Thank you for pointing out this error. We corrected it in the revised version of the manuscript 

(line 753).  
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