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Summary: This study utilizes deep learning techniques to investigate the Arctic atmospheric 

circulation responses to European radiative forcing, which is both intriguing and significant 

for advancing our understanding of applying convolutional auto-encoder frameworks in 

Arctic climate change research. Overall, the manuscript is well-written, and the authors 

extensively discuss the consistent dynamical responses, although interpreting causality 

remains challenging. Below, I provide a few major and minor comments for the authors' 

consideration. 

Thank you very much for your insightful review. We greatly appreciate your recognition of 

the research topic's intrigue and significance. We acknowledge your point regarding the 

challenges in interpreting causality within our study. Indeed, one of the key contributions of 

our work is to highlight that deriving causality in the context of regional forcing on Arctic 

climate is complex and multifaceted. 

As you have pointed out our presentation of the results and the mechanisms derived from our 

analysis might not have been as clear as necessary. We will revise the manuscript to better 

highlight these aspects. Specifically, we will clarify our methodology and its ability and 

shortage to identify the mechanism through which Arctic responded to the forcing. We will 

highlight our findings more clearly in the updated version of the manuscript.  

 

Major comments: 

 

Baseline machine learning model comparison. This study presents an innovative application 

of convolutional autoencoders (AEs), which appears to be one of the first attempts in studying 

Arctic response to radiative forcing. However, I am still unclear about the motivation behind 

choosing convolutional AEs. For example, the authors mentioned that in Lines 538-539 that 

the FAE is a compelling  method for generating a concise and informative representation, but 

did not elaborate on compare to what. Have the authors compared the performance of 

convolutional AEs with other machine learning or statistical methods? For example, similar 

clustering analyses could be conducted using self-organizing maps (SOMs), which are 

computationally less expensive than training convolutional AEs. SOMs have been used in 

studying atmospheric moisture transport in the Arctic or large-scale atmospheric circulations 

(e.g., Skific et al. 2009; Lee 2017). Additionally, principal component analysis (PCA) or 

empirical orthogonal function (EOF) analysis could be employed for clustering tests. Why not 

start with these simpler methods before diving into complex deep learning models? However, 

if the authors can demonstrate that convolutional AEs outperform SOMs or PCA/EOF, it 

would strengthen the justification for using convolutional AEs in this study. Perhaps the 

authors could consider quickly implementing these simpler methods and comparing the 

results with those obtained from convolutional AEs. 

 



Thank you for these comments and the opportunity to clarify our motivation to choose our 

deep learning approach. Your insights have encouraged us to more thoroughly compare our 

deep learning method with other established conventional techniques. 

Our initial motivation for employing a deep learning approach, particularly convolutional 

operations, comes from their documented success in meteorological applications, as outlined 

in lines 66-80 of our manuscript. The effectiveness of convolutional neural networks (CNNs) 

arises from the way they treat the dataset, taking into account the local context (such as 2D 

and 3D neighborhood structures) which, in our case, is crucial for understanding the spatial 

configurations of weather patterns and their changes over time. They further exploit 

hierarchical feature extraction. This focus is discussed in lines 194-202 in our paper. In 

particular, we highlight our motivation to employ a convolutional auto-encoder architecture, 

inspired by its success in weather prediction by Weyn et al. (2019, 2020). These studies 

illustrate the architecture's proficiency in capturing spatiotemporal patterns within weather 

datasets, a point we emphasize in lines 526-527 of our manuscript. 

The flexibility of deep learning methods, which allows us to customize the latent space to 

align with our specific research goals, is a further motivation to use this approach in our 

research (line 238 of our manuscript). Specifically, our aim is for data points yielding similar 

PMSET patterns to lay more closely in the MCAE latent space, as detailed in lines 251-254. 

In the discussion section lines 549-559, we evaluate the MCAE's latent space representation 

of the dataset. We compare this with the traditional data space representation, which is 

dominated by the seasonal cycle. Additionally, we compare it to the PMSET index 

representation, which focuses solely on PMSET similarities. This level of flexibility in data 

representation, unachievable with conventional methods, further motivate us to use the deep 

learning approach. 

In the opening paragraph of the discussion (lines 528-539), we aimed to assess the data 

representation obtained from the FAE. Particularly, in lines 536-539, we compare 

unsupervised clustering results performed on the data space and the FAE's latent space. This 

comparison reveals that the FAE's latent space allows us to discern datapoints corresponding 

to transitional seasons, such as autumn and spring. This observation leads to our concluding 

remark in lines 538-539, where we state that the FAE offers an effective method for creating a 

concise and informative representation. 

We acknowledge the importance of comparing our convolutional auto-encoders with simpler, 

less computationally expensive methods such as SOMs and EOF analysis. Therefore, we 

implemented unsupervised clustering using SOM and EOF and compare their performance 

with our clustering analysis. The EOF analysis was applied to the whole Control and 

Experiment runs data points treating them as one time series. The first five leading EOFs were 

only used for spanning the reduced representation. The corresponding PC deriving from these 

EOFs serves as the features within the reduced representation. The five leading EOFs account 

for 64.7% of the total variance within our dataset. The centers of these classes, along with 

their monthly occurrence frequencies, are depicted in Figure 1 and Figure 2, respectively. 

Moreover, we configured the SOM to categorize the data into six classes, arranged in a 3x2 

grid, over 100 iterations. Due to the sequential nature of SOM training, leveraging the parallel 

processing capabilities of GPUs offers challenges, necessitating reliance on the sequential 

processes of CPUs. Consequently, the SOM training was time-consuming, requiring 

approximately one week on our local server, due to the extensive dataset and its large input 



shape. This extensive training time limited our ability to fine-tune the SOM parameters to 

optimize performance. The class centers of these SOM classes, along with their monthly 

occurrence frequency are illustrated in Figure 3 and Figure 4, respectively. The class centers 

and occurrence frequencies resulting from these conventional clustering approaches are 

similar to those obtained by performing k-means clustering directly on the data space. We will 

elaborate on this comparison in the Appendix section of the revised manuscript.  

Additionally, we will include t-SNE visualizations on different data representations in the 

Appendix to further argue the advantages of our chosen methodology over traditional 

approaches. This visualization aims to provide a compelling argument for the proficiency of 

our method by highlighting the distinct data embeddings and the insights they offer. This 

addition will not only enhance the robustness of our argument but also provide a 

comprehensive evaluation of the convolutional auto-encoder effectiveness in capturing 

complex spatiotemporal patterns in response to the excreted 

We appreciate your constructive feedback, which has guided us to further validate our 

methodology. We believe that these additional comparisons will emphasize the importance of 

using convolutional autoencoders in our research. 

 

 

Figure 1: Mean MSLP fields for clusters derived from k-means clustering (6 clusters) on PC time series derived from the 5 

leading EOFs. The fields for each cluster are plotted as anomalies relative to the mean MSLP field for all data points, 

encompassing both the Control and Experiment runs. 



 

Figure 2: The monthly occurrence frequency of the 6 clusters showed in Figure 1 for the Control (blue) and Experiment (red) 

runs. 

 

Figure 3: Same as Figure 1, but the clusters were derived from applying SOM clustering on the data space. 



 

Figure 4: The monthly occurrence frequency of the 6 clusters showed in Figure 3 for the Control (blue) and Experiment (red) 

runs. 

 

 

What new physical or dynamical insight do we learn? I am curious about the new insights or 

knowledge gained from the new clustering method employed in this study. Lines 566-567 

mention that well-established large-scale circulation patterns (e.g., NAO, AO, PNA) are 

identified, and consistent dynamical responses in the troposphere and stratosphere can be 

demonstrated. I assume that similar conclusions may be drawn from other clustering methods 

as well. Could we uncover new dynamical pathways in which the Arctic responds to 

European radiative forcing differently from previous understandings based on stratosphere-

troposphere coupling? It would be helpful if the authors could create a table summarizing the 

dynamical responses associated with each cluster, indicating which dynamical responses are 

already known and which are new. Similarly, Lines 324-327 discuss the seasonality changes. 

What do these seasonality changes signify physically, and what can we learn from them?” In 

addition, what is the separation of WCVC and FSDC components brings us new insights? 

Thank you for your insightful feedback. To respond to your comment first we need to note a 

key aspect of different clustering methodologies, which is the dependency of clustering 

outcomes on the chosen representation space. Different representation spaces can influence 

which data points are considered close to each other according to the specific geometry of that 

space. Clustering algorithms like k-means then group data points based on their proximity in 

the chosen representation space. For instance, the clustering performed on PMSET indices 

(Figure B1) is guided solely by similarities in PMSET indices. That is, data points with 

similar PMSET indices lie closer together in this representation. Conventional clustering 

methodologies only focus on data point similarities using standard measures of similarity, 

such as Euclidean pixel-wise distance between data points or PCA-reduced (Principal 

Component Analysis) space representation. One of the main contributions of this paper is to 

introduce a deep-learning based method that generates an effective representation of data 

points. This representation accounts for both the similarities among the data points and their 

alignment with a target objective similarity, here the PMSET patterns, to effectively distance 

the data points. 

  

In the offered representation, both the similarity in data points' spatiotemporal patterns and the 

associated PMSET pattern play a role in the data points' proximity in the representation and 



consequently determine the clustering results. The expression in lines 566-567 emphasizes the 

fact that with a focus on the similarity in data points spatiotemporal patterns and the 

associated PMSET pattern, we were able to have patterns with a similar focus as the well-

established circulation regime. While similar patterns might be recognizable through other 

clustering techniques, our method enhances the interpretability and relevance of these patterns 

by grounding them in the specific context of PMSET dynamics. Thus, the new insight we 

offer is not merely the identification of these patterns but a deeper understanding of their 

dynamical significance, facilitated by a clustering approach that integrates physical relevance 

with data-driven techniques.  

 

Thank you for pointing out the need for a more detailed discussion on the physical 

significance of seasonality changes and the insights gained from separating the WCVC and 

FSDC components in our analysis. Our findings indicate that the applied forcing may not 

necessarily induce new circulation patterns. Instead, we explored how alterations in the 

grouped circulation regimes within the Experimental run have contributed to observed 

anomalies in critical Arctic climate variables. We attribute these changes within the grouped 

circulation regimes to the applied forcing, as it is the only transient perturbation in the 

Experiment run.  

 

One of the main goals of the paper is to identify the contributions of various classes to the 

anomalies observed as a consequence of the applied forcing. We tried to understand the 

dynamic interactions of each pattern that led to the observed anomaly. In addressing them, we 

developed our class contribution formulation. We reformulated the anomalies to attribute 

them to different circulation groups. We identified two main mechanisms through which a 

circulation cluster can contribute to the anomaly: 1) through changes in the occurrence 

frequency of that cluster as a result of the forcing (FSDC), and 2) through slight adjustments 

in the cluster's mean characteristics as a result of the forcing (WCVC). This framework helps 

us delineate how changes in circulation patterns, whether in occurrence frequency or in the 

cluster's mean characteristics, contribute to the observed anomalies in the key climate 

variables. This approach not only enhances our understanding of the dynamical interactions 

leading to the observed anomalies but also offers valuable insights into the complex ways in 

which atmospheric circulation responds to external forcing. It underscores the importance of 

considering both the occurrence and the mean characteristics of circulation patterns in 

assessing their impact on climate anomalies. 

 

Regarding uncovering new dynamical pathways, we utilized this advanced methodological 

approach to understand the role of different circulation patterns in forming the anomalies. 

These patterns were grouped based on similarities in their spatiotemporal behavior and their 

associated PMSET patterns. This grouping and the class contribution formulation helped us 

understand how these interactions lead to observed anomalies resulting from negative 

radiative forcing over Europe. Among the main findings are: 

• In most cases, the change in a cluster's main behavior is more significant than changes 

in the occurrence frequency of that cluster when considering the cluster's contribution 

to the anomaly. For example, the decreased occurrence frequency of a cluster 

associated with a high-pressure system over Northern Eurasia and Scandinavia in 

autumn, observed in the Experiment run, led to reduced upward wave propagation. 

However, a slight adjustment in the mean behavior of this cluster in the Experiment 

run resulted in an increase in upward wave propagation. This increased wave 

propagation dominates the cluster's contribution to the observed anomaly in upward 

wave propagation. 



• Our method's capability to attribute observed anomalies, such as the SIC loss in the 

Barents-Kara Seas in autumn, the warm Arctic and cold mid-latitude in winter, and 

others. 

 

We will highlight this argument more in the revised version. Moreover, we will try to put all 

the most meaningful results in a more compact format like a table. This approach will not 

only make the information more concise but also emphasize our contributions more 

effectively. These modifications will undoubtedly make the paper more accessible and 

emphasize the novelty and significance of our contributions.  

 

Linking the responses to European radiative forcing. I noticed that the discussion on the 

results seems to focus less on the direct response to radiative forcing and more on the 

subsequent atmospheric circulation responses and PMSET. For example, how does the 

European radiative forcing lead to increased upward EP flux for cluster 3 in SON (Figure 17)? 

Or how does the localized radiative forcing in Europe give rise to changes in 2m temperature 

across the entire Northern Hemisphere, as depicted in Figure 13? Some of the temperature 

increases appear contradictory to the cooling effect of aerosol negative forcing (or specifically 

here, the cloud forcing). 

Thank you for highlighting the need for a clearer connection between the response to 

European radiative forcing and the observed atmospheric circulation change in our analysis. 

We considered the large-scale circulation regime as the main mechanism by which our local 

forcing influences remote regions such as the Arctic. This is why we performed clustering to 

group the similar large-scale circulation regimes, and analyzed the impact of changes in these 

grouped circulation regimes on the observed anomaly, as a consequence of the applied 

forcing. Given our focus on Arctic climate variables, we utilized the PMSET pattern 

associated with each circulation as an additional target similarity measure for our clustering. 

The PMSET pattern, indicative of how each circulation regime transfers energy into the 

Arctic, is crucial for determining Arctic climate conditions.  

Our analysis reveals that while the forcing may not introduce new circulation patterns, it can 

modify existing circulation patterns in two significant ways: by altering the occurrence 

frequency of a pattern (the FSDC component of the class contribution) or by changing the 

mean characteristics of the circulation pattern (the WCVC component of the class 

contribution). Consequently, we calculated each class's contribution to the observed anomaly. 

As mentioned in line 287 and equation 2 of the manuscript, the sum of these class 

contributions yield the observed anomaly. Each class's contribution can then be decomposed 

into two parts: WCVC and FSDC. This decomposition enables us to attribute different aspects 

of the anomaly to specific clusters and to the particular type of change within that cluster, 

whether it's a change in frequency or in mean characteristics. In response to your comment, 

we will enhance the manuscript to more explicitly draw these connections between European 

radiative forcing and its effect on Arctic climate via changes in atmospheric circulation. 

Thank you for your insightful questions about the specific impacts of European radiative 

forcing on different atmospheric dynamics. These phenomena indeed highlight the complex 

and nonlinear responses of the climate system to localized radiative forcing. We demonstrated 

that the increased upward EP flux for C3 during SON is primarily attributed to the adjustment 

in the mean characteristics of this cluster in the experimental run (WCVC component), 

despite the reduced occurrence frequency of this cluster, which is commonly known to 



decrease upward wave propagation. However, this reduction is not the dominant factor in this 

class's contribution (for more details, see lines 609-629). Furthermore, we attributed the 

observed warm Arctic and cold midlatitude pattern to changes in the mean characteristics of 

C1, as detailed on lines 600-607 of the manuscript. 

As expected, the forcing does not always yield uniform results; its effects differ depending on 

the present circulation regime. Unlike linear analyses, which evenly attribute the anomaly 

across all clusters or data points, our approach captures the nonlinear behavior of the climate 

system. This means that the forcing leads to different contributions by each class depending 

on how the forcing change the cluster behavior, and the sum of these contributions is equal to 

the observed anomaly (see equation 2). 

Thanks to your feedbacks, we acknowledge that the presentation of this content within the 

paper may not have been sufficiently clear. In general we are committed to revise the 

manuscript structure to better represent our analytical framework. 

 

Minor comments: 

Lines 58-60: perhaps the authors considering to cite two new studies on this topic: Xu et al. 

(2023) and Liang et al. (2024). 

Thank you very much for recommending the studies by Xu et al. (2023) and Liang et al. 

(2024). We agree that these recent contributions are highly relevant to our work and can 

enrich the context of the manuscript. We will incorporate these studies in the revised version 

of our manuscript. 

  

Line 123 and Figure 1: why there are statistically significant radiative forcing increase in 

eastern Siberia, Asia, and North Pacific? 

You've raised an interesting point. These increases are indeed noteworthy and could be 

attributed to dynamical feedback mechanisms related to the atmospheric circulation change by 

European radiative forcing. While we acknowledge the importance and potential implications 

of these observed increases, a detailed exploration of their causes and consequences lies 

beyond the current scope of our research. 

 

Lines 161-162: why 8 days? Does this indicate a certain physical process dominating? 

The choice of an 8-day period for our data points was motivated by a combination of 

methodological considerations and preliminary testing to identify a timeframe that captures 

dynamic atmospheric processes. In our initial tests, we observed that an 8-day period yielded 

the best performance regarding the DL algorithm reconstruction loss and overfitting measure 

(line 163 of the manuscript). This performance could be due to its efficieny to capture 

atmospheric dynamics or just related to our deep learning architecture. The choice of 8 days 

aligns well with our deep-learning architecture, particularly the use of 3D convolutional 

pooling and upsampling within our autoencoder architecture. The binary nature of the number 

8 (2^3) potentially enhances processing efficiency and effectiveness within this architecture.  

 



Line 230: the maximum PMSET? Or both maximum and minimum PMSETs? 

Thank you for your keen observation. Indeed, our analysis considers both the maximum and 

minimum PMSETs, not solely the maximum PMSET. We will correct this typo in the revised 

manuscript.  

 

Lines 246-248: could the authors provide a figure to demonstrate this grid transformation? 

Thank you for suggesting the inclusion of a figure to demonstrate the transformation applied 

to angular features in the MCAE's latent space (explained in lines 246-248). To address the 

continuity challenge between angles close to 0 and 360 degrees, we indeed transform each 

angular feature into two dimensions using sine and cosine functions. This approach 

effectively preserves the circular nature of angular measurements, ensuring that values close 

in angular space (for example, 355° and 5°) remain proximate in the transformed two-

dimensional space, despite their apparent numerical distinction. 

For instance, an angular feature represented by a value within the 0-360 degree range can 

create discontinuity issues where angularly adjacent values appear numerically distant. By 

converting each angle into a pair of coordinates, using the sine and cosine of the angle, we 

create a two-dimensional representation where the proximity of angles accurately reflects 

their true angular relationship. In Figure 5, points A and B are represented by their angles, θ1 

and θ2, respectively. Despite θ2 being numerically far from θ1, their two-dimensional 

representations (using sine and cosine) on the unit circle are close, accurately reflecting the 

angular proximity. 

We initially opted for a written description of the transformation in the paper. However, in 

response to your valuable feedback, we will consider the possibility of adding a similar figure 

that represents the transformation to enhance clarity and understanding. 

 

Figure 5 visualization of the transformation applied to angular features to address the angular continuity challenge 

 

Lines 298 and 301: Are there any reference papers for WCVC and FSDC? 

The concepts of the Within-Cluster Variability Contribution (WCVC) and Frequency-

weighted Seasonal Deviation Contribution (FSDC) introduced in our study represent novel 

contributions to the field. These were developed as part of our class contribution formulation, 

aimed at examining the dynamic interactions of circulation patterns and their roles in 

producing the observed anomalies in the Experiment run. This approach allows us to attribute 

anomalies to specific changes within circulation clusters, either through variations in their 



occurrence frequency (FSDC) or adjustments in their mean characteristics (WCVC) in 

response to radiative forcing. 

Given the innovative nature of this framework, there are no direct reference papers that 

discuss WCVC and FSDC in the context we have applied them. To the best of our knowledge, 

our study is the first to formalize these concepts as distinct mechanisms through which 

atmospheric circulation clusters can influence climate anomalies. 

In section 2.6 of our manuscript, we comprehensively explained these concepts. We believe 

that our work may serve as a foundation for future research in this area, potentially 

encouraging further studies that attribute anomalies to different components of the system. 

  

 

Figure 8: it seems the signal-to-noise ration is quite small. How could the authors say these 

responses are important? 

As emphasized in lines 339-344 of the manuscript, in Figure 8, our primary objective is to 

demonstrate the effectiveness of our clustering methodology in identifying and classifying 

similar atmospheric patterns across different simulations and throughout different seasons. 

The class centers were calculated relative to the seasonal mean fields depicted in the figure's 

first row. The low variation in class center patterns across seasons underscores the robustness 

and consistency of our clustering approach, even without explicitly incorporating information 

about the seasonal cycle into the network. 

Regarding the signal-to-noise ratio mentioned, it's crucial to recognize that the subtlety of the 

variations among the class centers highlights the method's sensitivity and precision in 

capturing the dynamics of the climate system. We appreciate this opportunity to clarify the 

intention and findings related to Figure 8. 

 

Figures 9 and Figure 10: combine these two figure into one figure? 

Thank you for the suggestion to combine Figures 9 and 10. We see the value in combining 

these figures, and we will undertake this in the revised version.   

 

Figure 12: the arrows are hardly seen. Perhaps the authors can try to enhance the visibility of 

the arrows. 

Thank you for pointing out the visibility issue with the arrows in Figure 12. We appreciate 

your suggestion and will enhance the visibility of the arrows in the revised version of the 

figure. 

 

Lines 458-460: but the seasonal distribution changes? 

Thank you for bringing attention to the subtle change in the seasonal distribution of sudden 

stratospheric warming (SSW) occurrences. Table A3 indicates a subtle shift in the seasonal 



distribution of SSW occurrences in the Experiment run, with a decrease by one occurrence in 

autumn and a compensatory increase by one occurrence in winter. 

As illustrated in Figure 16, the autumn season shows an increase in the zonal mean zonal 

wind in the high-latitude upper stratosphere and a decrease in the lower stratosphere. This 

pattern of variability does not directly correlate with the slight decrease in SSW occurrences 

in autumn, suggesting that the observed changes in zonal wind patterns cannot solely be 

attributed to the frequency of SSW events. 

Similarly, during winter, we observed an increase in high-latitude middle atmospheric zonal 

mean zonal wind, coinciding with an increase in occurrences of SSW events. Generally, an 

increase in SSW events would be expected to have a converse effect, namely a decrease in the 

zonal mean zonal wind. Therefore, attributing the observed change in wind patterns directly to 

the singular additional SSW occurrence is not straightforward. 

This analysis leads us to conclude that while the seasonal distribution of SSW occurrences 

experiences minor adjustments, these changes do not significantly alter our findings regarding 

our upper atmospheric analysis. 

 

Figure 17: the EP flux divergence does not exactly match the pattern of zonal wind anomalies 

in some seasons and clusters. How could we relate the EP flux change to zonal wind change? 

Thank you for highlighting this subtle observation. It is important to note that the EP flux 

divergences are the momentum deposited by the resolved waves in the model. In addition to 

the resolved Rossby waves the changes in the zonal wind can be influenced by the non-

resolved parameterized gravity waves (GWs). Changes in the zonal mean zonal wind due to 

the resolved waves may affect the parameterized momentum depositions by the GWs. This in 

turn, could affect the prevailing zonal flow and induce changes in the residual circulation 

below the breaking level. Such dynamics might explain the anomalies of the zonal mean zonal 

wind far away from the regions of significant EP fluxes (Cohen et al., 2013; Limpasuvan et 

al., 2016; Chandran et al., 2014). We appreciate your insightful comment and will further 

clarify this in our revised manuscript. 

  

Lines 540-542: the authors mentioned that the external forcing can modify the circulation 

patterns. But in Lines 778-680, the authors conclude that the radiative forcing only alter the 

existing circulation patterns, and does not introduce new patterns. These two sentences seem 

contradictory somewhat. Could the authors clarify and reconcile these statements? 

Thank you for highlighting the need for clarification between our discussion on the general 

effects of external forcings on circulation patterns and our specific findings related to negative 

radiative forcing over Europe. 

In the general context (lines 540-543), we mention "External forcings can modify circulation 

patterns in complex and nonlinear ways (Gillett and Fyfe, 2013; Hannachi et al., 2017) by 

introducing new spatiotemporal patterns, changing the preferred circulation patterns, altering 

their frequencies, or by a combination of them." However, when focusing on the specific 

context of negative radiative forcing over Europe (lines 678-680), we mentioned "Our study 

revealed that negative radiative forcing over Europe, resembling the heterogeneous radiative 



forcing exerted by aerosols, influences the climate system by altering existing circulation 

patterns and their frequencies without introducing new patterns." Therefore, while external 

forcings, in general, have the capacity to induce a wide range of modifications in circulation 

regimes, our research specifically found that negative radiative forcing over Europe modifies 

the circulation by adjusting existing patterns and their frequencies, rather than introducing 

entirely new circulation patterns. 

  

Line 689: upper troposphere lower stratosphere —> upper troposphere and lower 

stratosphere? 

Thank you for pointing out this error. We will correct it in the revised version of the 

manuscript.  
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