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Abstract. This study presents a detailed theoretical assess-
ment of the information content of passive polarimetric ob-
servations over snow scenes, using a global sensitivity anal-
ysis (GSA) method. Conventional sensitivity studies focus
on varying a single parameter while keeping all other pa-5

rameters fixed. In contrast, the GSA correctly addresses the
covariance of state parameters across their entire parameter
space, hence favoring a more correct interpretation of inver-
sion algorithms and the optimal design of their state vectors.

The forward simulations exploit a vector radiative transfer10

model to obtain the Stokes vector emerging at the top of the
atmosphere for different solar zenith angles, when the bottom
boundary consists of a vertically resolved snowpack of non-
spherical grains. The presence of light-absorbing particulates
(LAPs), either embedded in the snow or aloft in the atmo-15

sphere above in the form of aerosols, is also considered. The
results are presented for a set of wavelengths spanning the
visible (VIS), near-infrared (NIR), and shortwave infrared
(SWIR) region of the spectrum.

The GSA correctly captures the expected, high sensitivity20

of the reflectance to LAPs in the VIS–NIR and to grain size
at different depths in the snowpack in the NIR–SWIR. With
adequate viewing geometries, mono-angle measurements of
total reflectance in the VIS–SWIR (akin to those of the Mod-
erate Resolution Imaging Spectroradiometer, MODIS) re-25

solve grain size in the top layer of the snowpack sufficiently
well. The addition of multi-angle polarimetric observations
in the VIS–NIR provides information on grain shape and mi-
croscale roughness. The simultaneous sensitivity in the VIS–
NIR to both aerosols and snow-embedded impurities can be30

disentangled by extending the spectral range to the SWIR,
which contains information on aerosol optical depth while
remaining essentially unaffected when the same particulates
are mixed with the snow. Multi-angle polarimetric observa-
tions can therefore (i) effectively partition LAPs between the 35

atmosphere and the surface, which represents a notorious
challenge for snow remote sensing based on measurements
of total reflectance only and (ii) lead to better estimates of
grain shape and ice crystal roughness and, in turn, the asym-
metry parameter, which is critical for the determination of 40

albedo. The retrieval uncertainties are minimized when the
degree of linear polarization is used in place of the polarized
reflectance.

The Sobol indices, which are the main metric for the GSA,
were used to inform the choice of state parameters in re- 45

trievals performed on data simulated for multiple instrument
configurations. Improvements in retrieval quality with the ad-
dition of measurements of polarization, multi-angle views,
and different spectral channels reflect the information con-
tent, identified by the Sobol indices, relative to each configu- 50

ration.
The results encourage the development of new remote

sensing algorithms that fully leverage multi-angle and po-
larimetric capabilities of modern remote sensors. They can
also aid flight planning activities, since the optimal exploita- 55

tion of the information content of multi-angle measurements
depends on the viewing geometry. The better characteriza-
tion of surface and atmospheric parameters in snow-covered
regions advances research opportunities for scientists of the
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cryosphere and ultimately benefits albedo estimates in cli-
mate models.

1 Introduction

The quantification of the surface energy balance of snow-
covered regions is of extreme importance for Earth-system5

model simulations aimed at global climate studies (Hansen
and Nazarenko, 2004; Fettweis et al., 2008; van den Broeke
et al., 2011; Rae et al., 2012; van Angelen et al., 2012;
Tedesco et al., 2013; Alexander et al., 2014; Colgan et
al., 2014). Since snow albedo fundamentally depends on the10

optical and microphysical properties of ice crystals (Wis-
combe and Warren, 1980; Aoki et al., 2000; Flanner and Zen-
der, 2006; Bougamont et al., 2007; Dang et al., 2016; He et
al., 2018) and light-absorbing impurities potentially present
in the snowpack (Warren and Wiscombe, 1980; Hansen and15

Nazarenko, 2004; Dumont et al., 2014), better knowledge of
the properties of such components and their evolution is a
high-priority objective for the modeling of the cryosphere
(Tedesco et al., 2013; Dumont et al., 2014).

One fundamental source of uncertainty in the remote sens-20

ing of these properties is the treatment of snow as a collec-
tion of spherical grains (Tanikawa et al., 2020). Although
useful in some contexts, such approximation can underesti-
mate the albedo by a few percent (Xie et al., 2006; Tedesco
and Kokhanovsky, 2007; Libois et al., 2013; Tedesco et25

al., 2013; Dumont et al., 2014; Dang et al., 2016; Räisänen
et al., 2017), a discrepancy that can be exaggerated by snow
albedo feedback processes (Thackeray et al., 2018; Colman,
2013; Hansen and Nazarenko, 2004). To avoid this assump-
tion we employ hexagonal prisms, which have been demon-30

strated (van Diedenhoven et al., 2012) to serve well as ra-
diative proxies for more complex shapes, while having the
advantage of being characterized only by their aspect ra-
tio (AR; with AR> 1 for columns and AR< 1 for plates)
and the microscale roughness (D) of the crystal facets. The35

implementation of this methodology in advanced radiative
transfer (RT) models has produced successful retrievals for
parameters that describe the crystals forming ice clouds
(van Diedenhoven et al., 2014b) and the reflectance proper-
ties of snow-covered surfaces (Ottaviani et al., 2012, 2015)40

from data collected with the NASA Goddard Institute for
Space Studies (GISS) airborne Research Scanning Polarime-
ter (RSP; Cairns et al., 1999).

Another major challenge is the determination of light-
absorbing particulate (LAP) content and its partitioning be-45

tween LAPs deposited in snow versus those suspended above
in the form of atmospheric aerosols (Warren, 2013). Be-
cause the polarization state of light is also sensitive to
this partitioning (Ottaviani, 2022), remote sensors like the
RSP; the Second-generation Global Imager (SGLI; Tanaka50

et al., 2018); the polarimeters launched aboard the Plankton,

Aerosol, Cloud, ocean Ecosystem (PACE) mission (Werdell
et al., 2019; Hasekamp et al., 2018); and the upcoming Multi-
viewing, Multi-channel, Multi-polarization imaging mission
(3MI) (Biron et al., 2013; Marbach et al., 2013) offer aug- 55

mented retrieval capabilities.
Zhang et al. (2023) have recently evaluated the perfor-

mance of a snow kernel introduced into an inverse algo-
rithm in retrieving the microphysics of aerosols above snow,
based on observations of the Polarization and Directionality 60

of the Earth’s Reflectances (POLDER) spaceborne sensor,
which flew from 2004 to 2013. However, their study does
not address the retrieval of the microphysical properties of
the snowpack and the distribution of LAPs between the snow
and the atmosphere or information content aspects. This pa- 65

per extends the studies presented in Ottaviani (2022), exam-
ining these details via a global sensitivity analysis (GSA) of
simulated top-of-the-atmosphere (TOA) polarimetric obser-
vations.

Section 2 explains the setup of the RT calculations needed 70

to generate the look-up table (LUT) of the Stokes vectors at
the TOA produced for random combinations of the input pa-
rameters and outlines the adaptation of the GSA formalism
to the scopes of this analysis. The results of the GSA are pre-
sented in Sect. 3 along with inverse retrievals of spaceborne 75

observations simulated for different observational configu-
rations. We first consider pure-snow scenes to highlight the
sensitivity to the ice crystal properties. We then address more
realistic remote sensing scenarios where the atmosphere is al-
lowed to contain a layer of absorbing aerosols, and the snow- 80

pack contains impurities. The paper concludes with some
recommendations for operational retrievals.

2 Methods

2.1 Radiative transfer simulations

The plane-parallel RT code employed to generate the LUT is 85

based on the general doubling–adding formalism described
by De Haan et al. (1987). It features consistent treatment
of the radiative effects deriving from atmospheric molecu-
lar scattering, aerosols and clouds, and any surface whose
reflectance is known in its analytical form or in terms of its 90

bidirectional reflectance distribution function (BRDF) prop-
erties and the polarization counterpart (BPDF). The code has
been used for decades to model measurements from the RSP
over a variety of Earth scenes, including those containing ice
crystals in clouds (van Diedenhoven et al., 2013) and ground 95

snow (Ottaviani et al., 2012, 2015).
Recognizing the similarities to the polarimetric signatures

of ice crystals in cirrus clouds (Ottaviani et al., 2012, 2015),
the snowpack is modeled as an optically semi-infinite collec-
tion of non-spherical ice crystals at the bottom of the atmo- 100

sphere so that the reflectance of the actual underlying surface
is irrelevant. As with other media, the photon penetration
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Figure 1. Model for the snow–atmosphere system. The snowpack
is described as a thin layer sitting on an optically semi-infinite
layer, for a total thickness of 1 m. The parameters in each layer are
varied independently. The atmosphere is allowed to contain light-
absorbing aerosols (τ555

C ) in the lowest layer (first 2 km above the
surface). See Table 1 for the complete list of model parameters and
their ranges of variability.

depth in snow depends on wavelength (Kokhanovsky, 2022;
Libois et al., 2013), so different instrumental channels effec-
tively probe different depths, and this fact must be taken into
account during multi-spectral retrievals (Li et al., 2001). In
contrast to retrievals of grain size for mono-layer snowpacks5

(Nolin and Dozier, 1993; Painter et al., 2003), such an ap-
proach has been exploited to retrieve grain size in both a thin
surface layer and a thick layer below using measurements
from the Moderate Resolution Imaging Spectroradiometer
(MODIS; Aoki et al., 2007; Painter et al., 2009). For this10

reason, the snowpack in our model is vertically resolved in a
thick bottom layer capped by a thin top layer (see Fig. 1).

To span a wide spectral range as required by remote sens-
ing applications, we consider channels at 411, 469, 555, 670,
864, 1589, and 2266 nm, which in the case of the RSP sen-15

sor are all equipped with polarization capabilities. Except
for minimal differences in the precise centerband values, the
channels in this set are also available from heritage instru-
ments, such as the Moderate Resolution Imaging Spectro-
radiometer (MODIS), to favor atmospheric correction both20

over land and over the ocean. However, in many cases these
sensors provide only total reflectance and at a single view per
pixel. We include the MODIS band at 2112 nm in the list of

channels despite it being very close to 2266 nm because these
wavelengths lie on the shoulder of a major absorption band 25

where radiative differences can arise very quickly. Moreover,
this channel will be available from 3MI with polarization ca-
pabilities.

Absorbing aerosols are climatologically relevant because
deposition events can cause large variations in albedo (Du- 30

mont et al., 2014; Hansen and Nazarenko, 2004; Khan et
al., 2023; Warren and Wiscombe, 1980). To examine the ca-
pability of different observational configurations (see Sect. 3)
to distinguish them from impurities in the snow, both the
lowest atmospheric layer (located within the first 2 km above 35

the snowpack) and the snow are allowed to contain variable
amounts of the same spherical LAP with properties typical
of soot (n= 1.80–0.6i, reff= 0.11 µm, veff= 0.38) (Dubovik
et al., 2002).

Finally, the presence of exclusively absorbing gases (H2O, 40

O3, etc.) in the background atmosphere is neglected because
it does not affect the conclusions drawn from the sensitivity
study presented below. The complete list of the descriptive
parameters and their bounds in the LUT can be found in Ta-
ble 1. 45

The optical properties of the hexagonal prisms are pro-
duced via a geometric optics (GO) code (Macke et al., 1996;
van Diedenhoven et al., 2012) as a function of the aspect
ratio (AR), microscale roughness (D), and effective radius
(reff) and are integrated over a power-law size distribution 50

(Geogdzhayev and van Diedenhoven, 2016). The microscale
roughness represents the standard deviation of the distribu-
tion of angles used to randomly perturb the orientation of
the ice crystal facet encountered by the incident beam in the
GO calculations (van Diedenhoven et al., 2014a). Previous 55

attempts to fit the surface contribution to the signal measured
by airborne polarimeters have shown that D& 0.25 (Otta-
viani, 2012, 2015). Such roughness is sufficient to extinguish
the halo peaks characteristic of more pristine crystals (van
Diedenhoven et al., 2012). 60

The asymmetry parameters of columns and plates of re-
ciprocal ARs are very similar (Ottaviani et al., 2015; van
Diedenhoven et al., 2014a). To enable retrievals of repre-
sentative crystal shapes and test the sensitivity to the mixing
proportion, we therefore assume that the population of grains 65

is composed of a fraction f of plates (superscript “P”) with
aspect ratio ARP and a fraction (1− f ) of columns (super-
script “C”) with aspect ratio ARC

= 1 /ARP. The fraction is
allowed to vary independently in each layer. For ice crystals
of a given AR, the extinction and scattering efficiencies are 70

Qext =
Cext

A
, (1)

Qsca =
Csca

A
, (2)

where Cext and Csca are the extinction and scattering coeffi-
cient, andA is the projected area of the hexagonal prism (van
Diedenhoven et al., 2014a). The extinction and scattering ef- 75
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Table 1. Model parameters and their lower and upper bounds. The parameters describing the top and bottom snow layer are denoted with su-
perscripts T and B and are varied independently. Soot-like LAPs are characterized by n= 1.80–0.6i, reff= 0.11 µm, and veff= 0.38 (Dubovik
et al., 2002; Torres et al., 2017).

Parameter Symbol Bounds

Aspect ratio ART, ARB 0.037–1.0

Microscale roughness DT, DB 0.2–0.7

Snow grain mixing proportion (area fraction of columns) f T, f B 0.0–1.0

Snow grain effective radius rT
eff, r

B
eff 56–2560 µm

Top layer snow density ρT 0.07–0.4 g cm−3

Bottom layer snow density ρB 0.25–0.5 g cm−3

LAP concentration in snow CT
BC, CB

BC 0–1 ppmw

Aerosol optical depth (555 nm) τ555
C 0.0–0.4

Top layer thickness ZT 0.01–0.05 m

ficiencies of the mixture are

Qmix
ext = f ·Q

C
ext+ (1− f ) ·Q

P
ext, (3)

Qmix
sca = f ·Q

C
sca+ (1− f ) ·Q

P
sca, (4)

and the corresponding phase function and asymmetry param-
eter are5

Pmix
=

(
f ·PC

·QC
sca+ (1− f ) ·P

P
·QP

sca

)
/Qmix

sca , (5)

gmix
=

(
f · gC

·QC
sca+ (1− f ) · g

P
·QP

sca

)
/Qmix

sca . (6)

The projected area of the mixture is assumed to be that of
the column crystals so that the extinction cross section, the
scattering cross section, and the single-scattering albedo of10

the mixture are

Cmix
ext =Q

mix
ext ·A

C, (7)

Cmix
sca =Q

mix
sca ·A

C, (8)

SSAmix
=Qmix

sca /Q
mix
ext . (9)

The impurities in the snowpack are externally mixed with15

the snow grains (Tanikawa et al., 2020). Their optical prop-
erties are calculated by Mie calculations inherent to the RT
code, as is done for the aerosols, and are assumed to fol-
low lognormal aerosol size distributions (Hansen and Travis,
1974). Using the layer-resolved inherent optical properties20

above, together with the optical depths, the RT code simu-
lates the TOA reflectances (RI , RQ, RU ) corresponding to
the first three parameters (I , Q, U ) of the Stokes vector, de-
scribing the linear state of light polarization. Circular polar-
ization is represented by the fourth element (V ), which gen-25

erally has negligible relevance to remote sensing applications
(Kawata, 1978), so it is omitted from the analysis. The mod-
eled reflectances can be output for any viewing geometry. We

choose observations along the principal plane for which the
collection of scattering angles is maximized. 30

The GSA considers the total reflectance (RI ); the polar-

ized reflectance (Rp =
√
R2
U +R

2
Q); and also the degree of

linear polarization (DoLP=Rp/RI ), which in RSP-like in-
struments is measured at a much higher accuracy than Rp
(Knobelspiesse et al., 2012; Cairns et al., 1999). 35

2.2 Global sensitivity analysis formalism

To illustrate the pitfalls of conventional sensitivity studies
applied to hyperdimensional state spaces, Fig. 2 shows the
sensitivity of RI , Rp, and DoLP to ART in the SWIR (see
also Ottaviani, 2022), for two different values of rT

eff. For 40

rT
eff = 1280 µm (solid lines) the signals are essentially un-

affected by variations in ART; conversely, detectable dif-
ferences arise for rT

eff = 56 µm (dashed lines). Similarly, the
DoLP grows with rT

eff, but the curves for the two ARs are
distinguishable only for small radii. Because the sensitivity 45

to ART depends on rT
eff and since the sensitivity of any pa-

rameter can similarly depend on the set of all other values
kept fixed, it is necessary to use a method like the GSA to
properly quantify the information content of the model.

The GSA framework relies on the computation of the so- 50

called Sobol indices (Sobol, 1990). For a model function
g(X) of the n state variables X1, . . . ,Xn (in our case, the
parameters in Table 1), which is square-integrable over a pa-
rameter space Kn, there exists a functional decomposition in
terms of a Haar wavelet basis given by 55

g(X)= go+
∑n

i=1
gi (Xi)+

∑n

i<j
gi,j

(
Xi,Xj

)
+ . . .+ g1,2,...,n (X1,X2, . . . ,Xn) . (10)
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Figure 2. Sensitivity of RI , Rp, and DoLP (columns) to ART, for rT
eff = 1280 µm (solid lines) and rT

eff = 56 µm (dashed lines). The re-
maining parameters are DT

= 0.35, ρT
= 0.1 g cm−3, and ZT

= 3 cm (top layer), as well as rB
eff= 320 µm, ARB

= 1.0, DB
= 0.35, and

ρB
= 0.3 g cm−3 (bottom layer). The three rows are for the three SWIR wavelengths (1589, 2112, and 2266 nm).

The Haar wavelets form a basis for the space of all square-
integrable functions (L2). Because the simulated reflectances
are bounded and smooth over the sample space and the sam-
ple space is compact, the model functions for our simula-
tions are square-integrable (i.e., the decomposition in Eq. 105

exists). Squaring both sides of the equation, integrating over
the whole parameter space, and using the orthogonality prop-
erties of the basis, one obtains∫
Kn
g2(X)dX− g2

0 =
∑n

s=1∑n

i1<...<is

∫
Kn
g2
i1,...,is

(
Xi1 , . . . ,Xis

)
dXi1 , . . . ,dXis . (11)

If each variable Xi is uniformly distributed over the parame-10

ter space Kn, the left-hand side exactly defines the variance
of the model function g(X):∫
Kn
g2(X)dX− g2

0 = VY , (12)

whereas the integrals∫
Kn
g2
i1,...,is

(
Xi1 , . . . ,Xis

)
dXi1 . . .dXis = Vi1,...,is (13)15

are the variances of the functions gi1,...,is
(
Xi1 , . . . ,Xis

)
.

Combining the decomposition in Eq. (11) with Eqs. (12)

and (13) gives the decomposition of the total variance:

VY =
∑n

i=1
Vi +

∑n

i<j
Vi,j +

∑n

i<j<k
Vi,j,k

+ . . .+V1,...,n. (14)

Each Vi term in the first sum corresponds to the “main- 20

effect” contribution of the variable Xi to the model output.
The Vi,j terms quantify the pairwise interactions betweenXi
and Xj , Vi,j,k the triplet-wise interactions among Xi , Xj ,
and Xk , and so on (Saltelli et al., 2008). Dividing both sides
of Eq. (14) by the total variance, one obtains 25

1 =
∑n

i=1
Si +

∑n

i<j
Si,j +

∑n

i<j<k
Si,j,k

+ . . .+ S1,...,n, (15)

where the “total-effect” Sobol index for the parameter Xj ,

STj = 1−
∑

j /∈{i1,...,is}
Si1,...,is , (16)

quantifies the complete contribution of Xj to the total vari-
ance over the entire parameter space, both directly and 30

through interactions among parameters. The Sobol indices
are calculated at each angle with the Python software pack-
age SALib (Herman and Usher, 2017; Iwanaga et al., 2022),
which uses the quasi-Monte Carlo estimators presented in
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Figure 3. Total reflectance RI (gray lines) at 555 nm simulated for
20 random combinations of the state parameters, as a function of the
viewing zenith angle along the principal plane (SZA: 65◦). The total
standard deviation for this ensemble of curves σRI is shown by the
blue-shaded region, and the red-shaded region corresponds to the
absolute total-effect Sobol index σRIT associated with variations in

τ555
C . The fact that σRIT covers a large portion of σRI indicates that

a large amount of the variation in RI is due to τ555
C .

Saltelli et al. (2010). To compare the indices at different
wavelengths, they are converted into absolute quantities by
multiplying by the total variance at that angle:

σ YTj =
√
STj ·VY . (17)

A visual interpretation of the Sobol indices is given in Fig. 3,5

where the gray curves show the total reflectance at 555 nm
output by the radiative transfer model for 20 random com-
binations of input parameters, computed for a solar zenith
angle (SZA) of 65◦. The region shaded in blue represents
the total variance of the model curves and the area in red10

the absolute total-effect Sobol index σRIT relative to τ 555
C . A

comparison between σRI =
√
VRI and σRIT reveals that a sig-

nificant portion of the total variance of the model is due to
variations in τ 555

C .
The sensitivities are evaluated against the 1σ uncertainty15

corresponding to the square root of the diagonal elements of
the measurement error covariance matrix (Knobelspiesse et
al., 2012). Full measurement covariance matrices, which in-
clude off-diagonal elements expressing cross-correlation ef-
fects, can be hard to assess (Gao et al., 2023). In line with20

other studies that consider the uncertainty in multi-angle po-
larimeters (Hasekamp, 2010; Lebsock et al., 2007; Stamnes
et al., 2018; Ottaviani et al., 2012), we also neglect such ele-
ments that in any case do not affect our main conclusions.

The light gray areas in Fig. 4 (see also discussion in the25

next section) correspond to a 3 % (0.5 %) radiometric (po-
larimetric) accuracy, nominally achievable by modern space-
borne sensors like the polarimeters launched on board PACE.

The dark gray areas correspond instead to the higher accu-
racy of RSP-like sensors (1.5 % radiometric and 0.2 % po- 30

larimetric). Note that the uncertainty in Rp is rather different
in the two cases, since the error model used for the areas in
light gray includes a term proportional to R2

I . This term is a
result of a filter-wheel-type design, where the measurements
needed to compile the Stokes vector of any given scene are 35

not acquired simultaneously (Dubovik et al., 2019; Knobel-
spiesse et al., 2012), and is large over bright surfaces, as is
the case for snow in the VIS–NIR.

If σTi is less than the threshold at all angles, the associ-
ated parameter is ruled out as a meaningful contributor to 40

model variance and excluded from the plot. The SALib pack-
age also gives relative confidence intervals for each Sobol
index, which are converted to absolute confidence intervals
around σTi. A sample size m = 216 (specified as a power of
2 as required by the software package) was chosen for a total 45

of (n+1)m= 1 048 575TS1 runs (where n= 14 is the number
of parameters), which ensures that for all σT curves which lie
above the uncertainty threshold, the confidence interval also
lies above the uncertainty threshold.

As discussed below, values of σTi above the uncertainty 50

threshold do not necessarily guarantee retrievability, which
is impacted by model uncertainty and other sources of er-
ror unaccounted for in the covariance matrices used here. In
this respect, the retrievals can be considered to be a best-case
scenario (Rodgers, 2000; Knobelspiesse et al., 2012). 55

3 Results and discussion

3.1 Pure snow

As a first example of the application of the GSA, in Fig. 4
we show the angular variations in the absolute total Sobol in-
dices computed for a pure-snow scene. Although such an ide- 60

alized case is not commonly encountered in real-world sce-
narios, this exercise is useful for isolating and understanding
the sensitivity to the parameters describing the ice crystals;
the effects of LAPs are then discussed in the next section.
In both cases, we consider optically semi-infinite snowpacks 65

since the focus of this paper is on the remote sensing of snow;
heterogeneous pixels constitute an added layer of complexity
and will be the subject of future studies.

The results are for principal-plane observations and
SZA= 65◦. Note that the top x axis in the first row reports 70

the conversion to scattering angles, which is useful for con-
necting scanning viewing zenith angles (VZAs) to forward-
scattering and backscattering directions in the discussions
that follow. The different wavelengths are in different rows,
and only state parameters exhibiting sensitivity over the 1σ 75

instrument uncertainty threshold are included. The GSA cor-
rectly captures the known dependence of the reflectance on
the top-layer grain size in the SWIR (increasing with view-
ing zenith angle in the forward-scattering half-plane; see also

Anja Kesting
Sticky Note
We found a typo in the equation. Correct to:“A sample size m = 216 (specified as a power of 2 as required by the software package)was chosen, for a total of (n+2)m = 1 048 576 runs, where n = 14 is the number ofparameters (Saltelli et al., 2008).”
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Figure 4. Absolute total Sobol index σT for RI , Rp, and DoLP (different columns) as a function of the viewing zenith angle along the
principal plane and for a SZA of 65◦, computed for a pure snowpack under a clear atmosphere (CT

BC = C
B
BC = 0 ppmw, τ555

C = 0). The
indices with their 90 % confidence intervals are only given for parameters with variance above the instrument uncertainty thresholds.
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Fig. 2) due to the large absorption by ice at these wavelengths
(Wiscombe and Warren, 1980; Dang et al., 2016), which is
exploited in retrieval schemes (Stamnes et al., 2007; Painter
et al., 2009, 2003; Nolin and Dozier, 1993). The lack of sen-
sitivity of RI to grain size in the VIS is explained by the fact5

that pure snow is highly reflective (i.e. non-absorbing) at vis-
ible wavelengths, which therefore are normally not used for
size retrievals.

The exact penetration depth of each wavelength in the
snowpack depends on grain size, snow density, and impurity10

content. For pure snow of typical densities and grain sizes,
the VIS wavelengths penetrate deeper (10–25 cm) than NIR
(3–20 cm) and SWIR (0–2 cm) wavelengths (Kokhanovsky,
2022; Libois et al., 2013; Li et al., 2001). Multiple scattering
quickly randomizes polarization as the incident light pene-15

trates into a dense medium (van Diedenhoven et al., 2013),
explaining why no detectable sensitivity to any of the param-
eters is found for Rp and DoLP in the VIS within the con-
sidered uncertainties. The situation is different in the SWIR,
again because of the strong ice absorption. The very limited20

penetration depth allows the polarization signatures deter-
mined by the single-scattering properties of the ice crystals at
the very top of the snowpack to be preserved, especially for
observations of the DoLP, which are typically achieved with
higher measurement accuracy. Besides the evident sensitiv-25

ity to rT
eff and DT in this wavelength regime, an interesting

result concerns the 2266 nm RSP channel, which seems to ac-
cess detectable sensitivity to ART not present for the nearby
MODIS channel at 2112 nm. Furthermore, the reduced un-
certainty in RSP-like sensors reveals sensitivity of the polar-30

ized reflectance measured at 864 nm to DT and ART (Otta-
viani et al., 2015).

All simulated measurements are insensitive to the mixing
proportion (f ) of columns and plates in both layers, which
can be explained by the similarity of the scattering properties35

for crystals with reciprocal ARs (see Fig. A3). Because of its
large physical thickness, the bottom layer is optically semi-
infinite regardless of ρB. Directional changes in the light
scattered downward in response to variations inD and AR do
not prevent its fast extinction, and the fraction of upwelling40

photons supplied by the bottom layer stays pretty constant so
that RI is insensitive to ρB.

Finally, we note that the LUT includes random selections
for the thickness of the top layer and for the snow density
in both layers. Other than the minimal information contained45

in the DoLP at 2266 nm (blue and cyan curves, nearly over-
lapped), the Sobol indices reveal that these parameters can-
not be independently retrieved. The optical depth of the top
layer largely determines the observed signal but is propor-
tional to the product of ρT and ZT, which is invariant when50

one parameter is divided by the same factor used to multi-
ply the other. The same argument is even more valid for the
semi-infinite bottom layer, which prohibits passive optical
measurements from accessing information on its thickness
or density.55

The results of the GSA are particularly useful for in-
forming the choice of parameters to be included in the
state vector of inverse retrievals. As an example, we gen-
erated synthetic TOA observations with the RT code,
including random noise added according to the speci- 60

fications of different sensors. As explained in Sect. 2,
the snowpack consists of a mixture of crystals (f T

=

f B
= 0.5). Fresher snow (smaller grains) is simulated in

the top layer (rT
eff = 150 µm, ZT

= 3 cm, ρT
= 0.2 g cm−3,

and ART
= 0.05 for plates; corresponding 1/ART

= 20 for 65

columns; and DT
=0.3 as found by Ottaviani et al., 2015).

More compact, larger, and rounder grains are located in the
bottom layer (rB

eff = 250 µm, ρB
= 0.30 g cm−3, ARB

= 0.15
for plates and 6.67 for columns, DB

= 0.40), which is opti-
cally semi-infinite (τ ≈ 2000). For the reasons given at the 70

end of Sect. 3, the thickness of the top layer and density of
both layers were not included in the set of retrievables and,
together with the other parameters excluded from the state
vector, are constrained to the values used to generate the syn-
thetic observations. 75

Using the LMFit Python library (Newville et al., 2014),
a Levenberg–Marquardt nonlinear least-squares optimal es-
timation scheme (Levenberg, 1944; Marquardt, 1960) was
then implemented to retrieve the input parameters. We first
consider the configuration of an RSP-like instrument. In 80

satellite imagery, every pixel is characterized by its own set
of viewing zenith and azimuth angles. The RSP is instead
a scanner, and we chose the principal plane as a scanning
direction because it guarantees that the viewing geometries
span the largest range of scattering angles. 85

To highlight the merits of polarization, we compare re-
trievals that consider the measurement vectors to be the sim-
ulated (i) total reflectance, (ii) total reflectance and polar-
ized reflectance, and (iii) total reflectance and DoLP. These
retrievals are repeated considering VIS, VIS–NIR, or VIS– 90

NIR–SWIR wavelengths. The SWIR combination consists of
1589 and 2266 nm. All available viewing angles (150 mea-
surements for RSP, roughly between ±70◦ TS2 ) are used for
the total reflectance. Figure 4 shows that the DoLP and Rp
are largely unaffected by variations in any of the parameters 95

(except rT
eff) for angles in the backscattering half-plane. If Rp

or DoLP for these angles is included in the retrieval, the min-
imization algorithm attempts to fit very small changes in Rp
or the DoLP, which cannot be distinguished from the noise,
and the retrieval quality for all parameters (other than rT

eff) de- 100

grades.CE1 Consequently, we subsampled the measurements
of Rp and DoLP to positive viewing zenith angles, which
in our reference system correspond to the forward-scattering
half-plane.

Figure 5 summarizes the values of the state parameters and 105

their uncertainty obtained from the inversion. The solid lines
represent the “true” values used in the forward simulations.
In contrast, the dashed lines are the initial guess for each pa-
rameter, randomly sampled within the bounds listed in Ta-

Anja Kesting
Sticky Note
“roughly between ±60°” is a slightly better estimate when the RSP sensor is actuallymounted on the aircraft, whose superstructure can obstruct (“vignette”) the most extremeangles. Conceptually, the correction does not change anything.
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ble 1. The retrievals were repeated a few times to test the
stability of the results against the different initial guesses.

In this simplistic scenario of a pure snowpack and a clear
atmosphere, Fig. 4 indicates that RI , Rp, and DoLP in the
VIS are insensitive to all parameters (except for RI to rB

eff at5

670 nm), and retrievals attempted with these data alone are
unsuccessful. The addition of NIR measurements of RI and
Rp (if the accuracy of the latter matches RSP levels) gives ac-
cess to information on grain shape and microscale roughness,
as confirmed with real data (Ottaviani et al., 2012, 2015).10

The retrieval becomes optimal when polarization capa-
bilities in the SWIR are also included. Using RI +Rp or
RI+DoLP leads to similar performances, with the inversions
converging to the true values within the error bars for all pa-
rameters except for rB

eff, which is in any case retrieved mod-15

erately well.
We next turn our attention to retrievals simulated for in-

struments with spectral and angular configurations different
from those of the RSP. A MODIS-like sensor is mimicked by
considering mono-angle measurements of total reflectance in20

the VIS–NIR–SWIR. The addition of 16-angle polarimetric
measurements in the VIS–NIR mimics POLDER. The view-
ing geometries for the simulations are taken from actual data
collected over Greenland for a pixel near Summit Station
(72◦ N, 39◦W) on 8 April 2007 and for SZA≈ 65◦, which25

corresponds to the SZA used to generate Fig. 4. All available
angular measurements are considered for the total reflectance
in the VIS–NIR, subsampled to the same range as in the RSP-
like case.

The results obtained using these two different instrument30

configurations are compared to those of the RSP in Fig. 6.
Retrievals using MODIS-like data can recover the top-layer
grain size (Stamnes et al., 2007; Hori et al., 2007; Painter et
al., 2009, 2003; Nolin and Dozier, 1993) but fail to resolve
all other parameters in a satisfactory manner. Information on35

grain shape is still accessible to the MODIS NIR channel but
for the viewing zenith angle away from nadir, which exempli-
fies the utility of multi-angular measurements. Observations
of Rp contain information on DT in the NIR, although the
larger uncertainty assigned to the simulated spaceborne mea-40

surements limits the retrieval quality compared to the RSP-
like case. Finally, we note that all these retrievals are robust
against different choices of the initial guess for each param-
eter.

3.2 Scenes containing snow impurities and aerosols45

In this section, we expand the analysis to include more re-
alistic scenes characterized by the presence of LAPs both in
the snowpack and as atmospheric aerosols. We also consider
different SZAs.

Light-absorbing impurities in the snow are often found50

in very significant amounts in North America, China, and
the Arctic (Warren, 2019). In Greenland, especially on the
plateau, the concentrations are typically much smaller and

therefore difficult to detect via remote sensing (Warren,
2013). Since they anyway have a significant impact on snow 55

visible albedo (Warren and Wiscombe, 1980; Dang et al.,
2016), their accurate determination is especially important
for climate modeling (Antwerpen et al., 2022; Wang et
al., 2020; Alexander et al., 2014; Ryan et al., 2019). To target
these challenging retrievals, the results of the GSA are com- 60

puted for maximum LAP loads of 0.4 for τ 555
C and 1 ppmw

for CT
BC and CB

BC (Fig. 7), where the subscript “BC” indi-
cates the specific type of black-carbon LAP considered in
this paper, with fixed microphysical and optical properties.
More sporadic events like thick burning plumes or exception- 65

ally dirty snow are addressed in Appendix A, where the same
calculations are repeated with extended ranges of τ 555

C (up to
1.2) and CT

BC and CB
BC (up to 10 ppmw). At these higher LAP

amounts, the sensitivity of polarimetric measurements in the
SWIR to aerosol optical depth is even more pronounced (see 70

Fig. A1 and related discussion).
The sensitivity to top- and bottom-layer parameters can be

interpreted in terms of the penetration depths discussed in
Sect. 3.1. The top-layer thickness ranges between 1 and 5 cm
in the LUT, explaining why the DoLP is (weakly) sensitive 75

to rB
eff in the SWIR at 2266 nm but not at 1589 and 2112 nm,

for which the ice absorption is slightly larger.
The total reflectance in the VIS–NIR shows the expected

sensitivity to LAPs. The added sensitivity to τ 555
C reflects

the additional information provided by polarization. The fact 80

that the polarized reflectance and the DoLP measured in the
SWIR are insensitive to the concentration of LAPs in the
snowpack implies that polarimetry can also be exploited to
(i) extend heritage aerosol retrievals performed over other
land surfaces to snow surfaces and (ii) inform the vertical 85

partitioning of LAPs between the atmosphere and the surface
(Ottaviani, 2022).

To examine the dependence on solar illumination, Fig. 8
was produced for a SZA of 45◦. At this smaller SZA, the an-
gles of maximum σDoLP

T shift toward larger viewing angles. 90

Additionally, σRIT in the VIS–NIR increases for all parame-
ters. These differences are only minor; the lack of apprecia-
ble changes with SZA, at least in this range typical of high
latitudes, is therefore attractive in the context of remote sens-
ing applications. 95

In the VIS–NIR, σRIT exhibits an essentially flat behav-
ior well above the detection thresholds at all viewing zenith
angles for many of the parameters, with shallow maxima at
around nadir except for ART and τ 555

C . In the SWIR, σRIT

and σ
Rp
T for rT

eff and τ 555
C peak at the largest viewing zenith 100

angles. The DoLP now includes sensitivity to DT, still oc-
curring in the forward-scattering half-plane but with peaks at
smaller angles. Multi-angle polarization measurements can
therefore greatly supplement those of total reflectance, espe-
cially when retrieving parameters that express marked angu- 105

lar differences in σT.
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Figure 5. State parameters (different panels) retrieved from the inversion of RSP-like TOA observations, generated for a SZA of 65◦ along
the principal plane. The scene consists of a pure snowpack and a clean atmosphere (see text). The inversions are repeated with and without
the inclusion of polarization and at different wavelength combinations. The solid and dashed gray lines are the true values and the initial
guesses for each parameter.

Figure 6. Similar to Fig. 5 but for inversion results of simulated
MODIS-, MODIS+POLDER-, and RSP-like observations.

Figure 9 provides an alternative display of the informa-
tion contained in Figs. 7 and 8, for a SZA of 65◦ (top panel)
and SZA of 45◦ (bottom panel). These heatmaps can aid in
the choice of appropriate viewing geometries and channel
combinations when designing retrieval algorithms and ob- 5

servational strategies. The intensity of each cell’s color is
proportional to the maximum value of σRIT (left columns),

σ
Rp
T (middle columns), and σDoLP

T (right columns) across all
VZAs, and the number reports the angular location of these
maxima. Numbers close to 0 represent nadir-looking direc- 10

tions, and large positive angles correspond to the forward-
scattering directions (see top x axis in Figs. 7 and 8). It is ev-
ident that measurements in the forward-scattering half-plane
are sensitive to the properties of aerosols and the top snow
layer, while nadir-looking geometries favor the determina- 15

tion of parameters deeper in the snowpack. It is also clear
that the addition of accurate polarimetric measurements in
the VIS–SWIR benefits the retrieval of aerosol and surface
properties, especially if they are present at multiple angles.

The simulated retrievals in Sect. 3.1 were duplicated with 20

the inclusion of LAPs. The impurity concentration in the
snowpack was set to CT

BC = C
B
BC = 2.0× 10−3 ppmw, typi-

cal of the Greenland plateau (Warren, 2019). The atmosphere
contains aerosols with τ 555

C = 0.10. Figure 10 summarizes
the state parameters and their uncertainty for each type of re- 25
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Figure 7. Same as Fig. 4 but for variable amounts of LAPs within the snowpack and in the atmosphere above.
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Figure 8. Same as in Fig. 7 but for a solar zenith angle of 45◦.
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Figure 9. Heatmaps of the maximum value of σRIT , σ
Rp
T , and σDoLP

T across all viewing angles, for each parameter (row) and wavelength
(column) combination. The top panel is for a SZA of 65◦ and the bottom panel for a SZA of 45◦. The number in each box is the viewing
zenith angle at which the maximum occurs. Only parameters with sensitivity over the uncertainty thresholds are included.

Figure 10. Same as Fig. 5 but with LAPs included in the retrievals.
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trieval, at different measurement vector and wavelength com-
binations.

Retrievals which use RI +DoLP from only VIS and NIR
channels are in general not successful and fail to determine
the vertical distribution of impurities because they are chal-5

lenged by the simultaneous sensitivity to multiple parame-
ters. Improvements are observed when measurements in the
SWIR are included due to selective sensitivity to rT

eff and
τ 555

C .
Unsurprisingly, the best performance is achieved by in-10

cluding both total reflectance and DoLP in the VIS–NIR–
SWIR. The uncertainties decrease by an order of magnitude
when compared to measurements of total reflectance only,
confirming that polarimetric measurements in the SWIR are
valuable for determining the vertical partitioning of LAPs.15

Initializing the inversion with first guesses close to the true
values helps to decrease the uncertainty in CT

BC and CB
BC re-

trieved from the VIS–NIR–SWIR combination ofRI andRp,
but the best performance is still obtained using RI +DoLP.

We next repeat the retrievals using MODIS and20

MODIS+POLDER-like measurements. For the latter, we
use the DoLP in the VIS–NIR in place of Rp because the
DoLP manifests detectable sensitivity to LAPs. Figure 11
shows that in the MODIS-like case the inversion struggles
to retrieve all parameters except rT

eff, and the considerable25

uncertainties can severely impact the accuracy of derived
albedo estimates. The addition of multi-angle polarimetric
data enables a better determination of all parameters, even at
lower angular resolution than the RSP’s (Wu et al., 2015),
since the angular radiative behavior of the different system30

components is rather smooth. One exception concerns the
vertical profile of impurities in the snow: only when assum-
ing a uniform concentration in the two layers is the retrieval
successful (not shown).

4 Conclusions35

The information content of polarimetric simulations over
snow scenes was evaluated using a global sensitivity anal-
ysis (GSA) method, which accounts for the correlated sensi-
tivity to model parameters across the entire parameter space.
A comprehensive look-up table (LUT) was created with an40

advanced vector radiative transfer model, spanning wave-
lengths from the VIS to the SWIR. The snow–atmosphere
system is vertically resolved and accounts for the presence
of light-absorbing particulates (LAPs) both embedded in the
snow and aloft in the atmosphere above the snowpack. The45

Sobol indices computed from the LUT are the primary met-
rics for the GSA and show the expected sensitivity of total re-
flectance in the VIS–NIR to LAPs and in the SWIR to snow
grain size. In contrast to measurements of total reflectance
only, polarimetric measurements inform the vertical distri-50

bution of LAIs in the system thanks to differential sensitiv-
ity present especially in the SWIR. Retrievals of grain shape

Figure 11. Same as Fig. 6 but for a scene containing LAPs in the
snow and in the atmosphere.

from polarimetric measurements in the NIR can be improved
by the addition of SWIR channels, leading to better estimates
of the asymmetry parameter and, in turn, of the albedo in cli- 55

mate models. The angular dependence of the sensitivity (es-
pecially of the DoLP) emphasizes the advantages of exploit-
ing sensors with multi-angular capabilities. The findings are
largely independent of the solar zenith angle at least at high
latitudes, an additional advantage for remote sensing appli- 60

cations.
The information content analysis was used to inform

the choice of state parameters to be retrieved in sample
Levenberg–Marquardt inversions, which were tested on syn-
thetically generated polar scenes for different instrument 65

configurations. The retrievals indeed confirm that mono-
angle measurements of total reflectance in the VIS–SWIR
(i.e., MODIS) can adequately resolve the grain size in the top
layer, while access to more complex descriptors for the snow
grains (in our case the aspect ratio and microscale roughness 70

of hexagonal prisms) is achieved by the addition of multi-
angle, polarimetric measurements in the NIR–SWIR. Such
observations also make it possible to differentiate LAPs in
the snow from absorbing aerosol layers, a task that can im-
prove the characterization of processes like aerosol deposi- 75

tion in climate models and, again, albedo simulations.
The findings generally promote the use of the DoLP

over the polarized reflectance and indicate that observa-
tions from the VIS all the way to the SWIR minimize the
uncertainties when attempting to distinguish impurities in 80

snow from absorbing aerosols. The GSA can be extended to
LUTs that consider a whole suite of aerosol optical proper-
ties, region-specific impurity amounts, and more elaborate
mixing schemes (Tanikawa et al., 2020) or optically thin
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snowpacks with different underlying land cover types. How-
ever, the methods and results outlined in this paper provide
cryospheric scientists with guidelines for selecting appropri-
ate viewing geometries during data collection and for de-
veloping advanced retrieval algorithms applied to airborne5

and spaceborne data over snow. This perspective is particu-
larly exciting considering the higher accuracies enabled by
recent technological progress, like those of the polarimeters
on PACE and 3MI.

Appendix A10

This Appendix discusses a few aspects that could not be in-
cluded directly in the main text of the paper without unnec-
essarily interrupting the flow.

Figure A1 is the same as Fig. 7 but considers a larger range
of aerosol optical depth (up to 1.2) and impurity density (up15

to 10 ppmw), which can occur as a result of burning biomass
plumes or extremely “dirty” snow. With higher concentra-
tions of LAPs, the absolute Sobol indices for the visible and
NIR wavelengths increase (see Eq. 17) because BC absorp-
tion causes large variations in the total reflectance and, to a20

more limited extent, in the polarized reflectance, especially
at larger viewing zenith angles (see also Fig. 3 in Ottaviani,
2022). Larger DoLP signals also lead to a minor increase in
the uncertainty threshold, but the list of parameters with iden-
tified sensitivity in Fig. 7 remains the same.25

A curious aspect concerns the growing sensitivity to reff,
as the concentration of snow impurities increases, as shown
with the sensitivity studies performed over specific “slices”
of the LUT in Fig. A2. Size measurements are achieved by
exploiting absorption. Pure snow is highly reflective in the30

VIS–NIR, and these wavelengths cannot be exploited to re-
trieve the effective radius of the snow grains, as shown by the
solid lines. However, for high concentrations of impurities in
the snowpack, the total reflectance and DoLP in the VIS–
NIR do show dependence on rT

eff (dashed lines). The reason35

for this behavior is that the impurities in the model are ex-
ternally mixed with snow (Tanikawa et al., 2020) and occupy
the empty spaces between grains; the absorption occurring in
these negative spaces is therefore partly correlated with the
dimension of the crystals.40

The differences in the Sobol indices compared to Fig. 7 are
only minor. Polarimetric measurements in the SWIR show
selective sensitivity to rT

eff, to DT, and (even more promi-
nently) to τ 555

C . The general conclusions drawn in the main
text therefore remain unaffected if a larger range of LAPs is45

considered. As reported in Sect. 3, the GSA finds no sensi-
tivity to the column-to-plate fraction for mixtures of columns
and plates with an aspect ratio (AR) of 1/AR. This fact is ex-
plained by the very similar asymmetry parameters of grains
with reciprocal aspect ratios (van Diedenhoven et al., 2014a),50

as shown in Fig. A3 for columns with ART
= 19.553 (black)

and plates with ART
= 1/19.553= 0.051 (red).
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Figure A1. Same as Fig. 7 but for a larger range of aerosol optical depth (up to 1.2) and impurity density (up to 10 ppmw).
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Figure A2. Sensitivity of RI , Rp, and DoLP (columns) to rT
eff in the VIS–NIR (rows) for pure snow (solid lines) and for snow containing

impurities in the top layer with CT
BC = 5 ppmw (dashed lines). The remaining parameters are DT

= 0.35, ρT
= 0.1 g cm−3, ZT

= 3 cm,
rB
eff = 320 µm, ARB

= 1.0, DB
= 0.35, ρB

= 0.3 g cm−3, and CB
BC = 0 ppmw. Calculations are for the principal plane and a SZA of 65◦.

Figure A3. Comparison of RI , Rp, and DoLP (columns) for a pure snowpack consisting of column crystals with ART
= 19.553 (red) and

plate crystals with ART
= 1/19.553= 0.051 (blue) at different wavelengths (rows). The remaining parameters are fixed at rT

eff = 1280 µm,
DT
=DB

= 0.35, ρT
= 0.26 g cm−3, ZT

= 3 cm, rB
eff = 320 µm, ARB

= 1.0, and ρB
= 0.4 g cm−3. Again, calculations are for the principal

plane and a SZA of 65◦.
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Code availability. The radiative transfer code and the code used
to perform the GSA, based on the SALib Python package
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Data availability. The complete look-up table of the forward sim-5

ulations is stored on a dedicated NASA server at GISS in the form
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