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Abstract. Global atmospheric carbon dioxide concentrations are largely driven by terrestrial photosynthesis, of which tropical 12 

forests account for one third. Relative to other tropical regions, less is known about the seasonality of African tropical forest 13 

productivity and its synchrony with environmental factors due to a lack of in situ carbon flux data. To help fill this knowledge 14 

gap, we use spaceborne solar-induced chlorophyll fluorescence (SIF), vegetation indices, and climate data to investigate the 15 

seasonality and synchrony of photosynthesis in Africa’s tropical forest ecoregions. We find West African SIF to increase 16 

during the dry season and peak prior to precipitation, as has been observed in the Amazon. In Central Africa, we find a 17 

continental-scale bimodal seasonality in SIF, the minimum of which is synchronous with precipitation, but its maximum is 18 

likely less related to environmental drivers. 19 

1 Introduction 20 

The intra- and inter-annual variability of global atmospheric carbon dioxide concentration is driven largely by changes in the 21 

terrestrial uptake of carbon dioxide through photosynthesis, and tropical forests are playing an increasingly important role in 22 

this variability (Wang et al., 2014). Tropical forests account for about one-third of global photosynthesis, house one half of 23 

Earth’s terrestrial carbon store, and sequester about 15% of anthropogenic carbon dioxide emissions (Gaubert et al., 2019; Pan 24 

et al., 2011; Sitch et al., 2015). They also play important roles in the global water cycle via precipitation recycling and cloud 25 

formation (Lawrence and Vandecar, 2015; Spracklen et al., 2012). Thus, tropical forests are critical to regulating global 26 

climate. 27 

Relative to the Amazon basin of South America, less is known about the seasonality of photosynthesis of African tropical 28 

forests, their drivers, and their responses to changes in climate due to a lack of eddy covariance tower measurements in 29 

structurally intact forests (Malhi, 2012; Merbold et al., 2009; Williams et al., 2007). Responses of African tropical forest 30 

productivity to climate have instead been gleaned from syntheses of (1) field plot measurements that have focused on changes 31 
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in aboveground biomass to assess carbon gains, losses, and the net carbon sink over the three decades preceding 2015; and (2) 32 

satellite remote sensing of leaf area and greenness.  33 

Studies that have focused on field plot measurements had three main findings. First, they found a significant upward trend in 34 

carbon gains (Hubau et al., 2020) that were unaffected by anomalously low precipitation and high temperatures during the 35 

2015/2016 El Nino (Bennett et al., 2021). Second, there was no significant trend in carbon losses, which were also not 36 

significantly affected by the 2015/2016 El Nino, despite there being a strong correlation between precipitation and the net 37 

carbon sink at the continental scale (Williams et al., 2007). Finally, there was no significant trend in the net carbon sink, but 38 

that the net sink, which remained positive, was significantly reduced by the 2015/2016 El Nino. Thus, field-based evidence 39 

suggests that African tropical forests are especially resistant and resilient to climate extremes. 40 

The satellite remote sensing studies have noted a double peak in the seasonality of leaf area and greenness in the Congolian 41 

tropical forests, which is synchronous with precipitation, but little has been published on these seasonalities for West African 42 

tropical forests. What has been debated is whether there is a significant long-term browning trend in Congolian tropical forests 43 

(Zhou et al., 2014) that accompanies observed large-scale and long-term drying (Asefi-Najafabady and Saatchi, 2013; Jiang et 44 

al., 2019; Malhi and Wright, 2004), but the most recent study to address this trend found no widespread long term decline in 45 

leaf area or greenness (Sun et al., 2022). This latest finding supports field observations that have found no significant trend in 46 

the net carbon sink, and further suggests that African tropical forests have been relatively insensitive to changes in climate. 47 

Although these studies have investigated long-term changes in the net carbon sink, greenness, and leaf area, they provide little 48 

insight into the relationship between photosynthesis and environmental factors or how photosynthesis responds to climate 49 

anomalies. For instance, the field investigations do not provide definitive evidence for whether the decrease in the net carbon 50 

sink during the 2015/2016 El Nino was due to decreased photosynthesis, increased respiration, or both. Also, these previous 51 

field-based analyses aggregated measurements annually at the continental scale and the field sampling was more commonly 52 

conducted in coastal forests (Blundo et al., 2021; Lopez-Gonzalez et al., 2011), which tend to have higher annual total rainfall 53 

and extreme variability in monthly precipitation and photosynthetically active radiation (PAR) compared to the interior 54 

Congolian rainforest.  55 

Recent advancements in the retrieval of solar-induced chlorophyll fluorescence (SIF) from space provides an observation-56 

based method for monitoring plant physiology and the amount of PAR absorbed by chlorophyll (APARchl) and has been 57 

described as a proxy of photosynthesis (Doughty et al., 2019, 2021b). SIF is a small amount of energy that is re-emitted by 58 

chlorophyll (1%-2%) and is sensitive to leaf physiology (Johnson and Berry, 2021; Porcar-Castell et al., 2021, 2014). Thus, 59 

SIF is directly sensitive to changes in APARchl and can correlate to changes in photosynthetic activity (Yang et al., 2018), 60 

particularly at coarse spatio-temporal resolutions (Magney et al., 2020). For example, spaceborne SIF was found to mimic the 61 

seasonality of photosynthesis estimated at eddy covariance tower sites in the tropical Amazon forest, and more closely tracked 62 

photosynthesis than vegetation indices (Doughty et al., 2019), which have traditionally been used to estimate APARchl and to 63 

model photosynthesis globally (Pei et al., 2022). 64 
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The studies that have utilized spaceborne SIF to investigate tropical Africa have found that (1) temperature and vapor pressure 65 

deficit (VPD) control the productivity of African tropical forests (Madani et al., 2017; Umuhoza et al., 2023); (2) SIF tracks 66 

well the seasonality of photosynthesis, or gross primary productivity (GPP), over Africa (Mengistu et al., 2021); and (3) SIF 67 

has weak to insignificant relationships with VIs and VI-based APARchl (Doughty et al., 2021b). However, these earlier remote 68 

sensing studies have not characterized the relationships between SIF and environmental factors for African tropical forests at 69 

regional scales despite there being important and substantial differences in the seasonalities and variability of environmental 70 

factors. Relatively high spatial resolution spaceborne SIF data acquired from the newest SIF platforms, including TROPOMI, 71 

OCO-2, and OCO-3, is now available and allows us to characterize the relationships between SIF and environmental factors 72 

at finer spatial scales. 73 

Here, we leverage SIF data from these platforms to advance our knowledge on African tropical forest carbon uptake by 74 

inferring the seasonality of photosynthesis for 11 African tropical forest ecoregions from 2019 through 2021. Photosynthesis 75 

and SIF was found to be decoupled from vegetation indices and precipitation in the Amazon due to changes in leaf demography 76 

and physiology (Doughty et al., 2019; Restrepo-Coupe et al., 2013; Wu et al., 2016). An analysis of six subtropical evergreen 77 

species in Africa found the correlation between VIs and leaf nutrients, which are closely related to photosynthesis, to be 78 

seasonally dependent (Van Deventer et al., 2015). Also, studies have found tropical moist forests with more than 2000 mm 79 

mean annual precipitation (MAP) to be radiation-limited rather than water-limited (Doughty et al., 2019; Guan et al., 2015), 80 

and that photosynthesis and SIF of moist Amazon forests were positively associated with VPD (Green et al., 2020).  81 

Thus, we suspected that leaf demography and physiology could be responding similarly in moist African tropical forests to 82 

changes in environmental conditions. Our first hypothesis was that the seasonalities of SIF and vegetation indices in ecoregions 83 

with moist forest (> 2000 mm MAP) would differ substantially but would be more highly correlated in less moist forest (< 84 

2000 mm MAP). Our second hypothesis was that SIF would be more strongly coupled with precipitation in less moist African 85 

forests and that SIF and VPD would be positively correlated in moist forest. 86 

2 Methods 87 

2.1 OCO-2 and OCO-3 SIF 88 

The Orbiting Carbon Observatory-2 (OCO-2) is a NASA satellite that was launched in July 2014, and OCO-3 is a duplicate 89 

of the OCO-2 grating spectrometer that was attached to the Japanese Experimental Module Exposed Facility (JEM-EF) on the 90 

International Space Station (ISS) in May 2019 (Eldering et al., 2019). They have three bands: an oxygen-A band at 0.765 μm 91 

and carbon dioxide bands at 1.61 μm and 2.06 μm. The swath widths are ~10 km with eight measurements across-track. The 92 

spatial resolution at nadir is slightly different for OCO-2 and OCO-3, about 1.3 km by 2.25 km and 1.6 km by 2.2 km, 93 

respectively.  94 

We used the ungridded, sounding-level data from the Level 2 v10 SIF Lite files that are available for each platform (OCO-2 95 

Science Team et al., 2020; OCO-3 Science Team et al., 2020). We used SIF scaled to 740 nm, which is computed using 96 
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retrievals from the 757 nm and 771 nm spectral windows and a reference spectral shape for SIF (Doughty et al., 2021a). Scaling 97 

to 740 nm can reduce uncertainty and allows for a better comparison among sensors as the various sensors from which we 98 

retrieve SIF have different retrieval windows. Also, we used daily adjusted values, which are scaled from instantaneous SIF 99 

values using the geometry of incoming solar radiation for that day to help account for differences in the timing of data 100 

acquisition and solar illumination angles (Frankenberg et al., 2011; Köhler et al., 2018). 101 

2.2 TROPOMI SIF 102 

The TROPOspheric Monitoring Instrument (TROPOMI) instrument is on board the Copernicus Sentinel-5 Precursor satellite, 103 

which launched in October 2017. It provides near-daily global SIF data since May 2018 at a resolution of 3.5 km by 5.5 km at 104 

nadir and has a swath width of ~2600 km. Here we used the Level 2 TROPOspheric Monitoring Instrument (TROPOMI) 105 

TROPOSIF data product (Guanter et al., 2021). We used daily averaged SIF retrievals from the 743-758 nm retrieval window 106 

as the 735-758 nm window had a higher sensitivity to atmospheric effects (Guanter et al., 2021). These data are also scaled to 107 

740 nm values. We did not filter any of the SIF data from OCO-2, OCO-3, or TROPOMI using a cloud fraction threshold as 108 

SIF is relatively less sensitive to cloud cover than surface reflectance (Guanter et al., 2015) and we wanted to avoid a clear sky 109 

bias (Köhler et al., 2018). 110 

2.3 CHIRPS Precipitation 111 

Climate Hazards group InfraRed Precipitation with Stations (CHIRPS) is a long-term, near-global, daily data set. CHIRPS 112 

incorporates The Climate Hazards Group climatology (CHPclim), 0.05° resolution satellite imagery, and in-situ station data 113 

to produce a 0.05° resolution gridded data set for time series, trend, and drought monitoring (Funk et al., 2015). 114 

2.4 ERA5 Reanalysis 115 

We used monthly averaged data from the ERA5-Land product (Muñoz Sabater, 2019), which is available in a spatial resolution 116 

of 0.1 degrees, for air temperature, photosynthetically active radiation (PAR) at the top of the canopy (PARTOC), VPD, and 117 

volumetric soil moisture. PARTOC was calculated as a fraction (0.48) of the downward shortwave radiation from ERA5 after 118 

being converted from J/m-2 to W/m-2 by dividing the original values by the number of seconds in the month. VPD was 119 

calculated by first applying Tetens equation to air temperature (𝑇𝑎𝑖𝑟) and dew point temperature (𝑇𝑑𝑒𝑤) for temperatures above 120 

0°C (Monteith and Unsworth, 2013): 121 

𝑒𝑠 =  0.61078 × 𝑒𝑥𝑝(
17.267𝑇𝑎𝑖𝑟

237.3+𝑇𝑎𝑖𝑟
) (1) 122 

𝑒𝑎 =  0.61078 × 𝑒𝑥𝑝(
17.267𝑇𝑑𝑒𝑤

237.3+𝑇𝑑𝑒𝑤
) (2) 123 

where 𝑒𝑠 is the saturation vapor pressure or vapor pressure at air temperature, and 𝑒𝑎 is the actual vapor pressure or vapor 124 

pressure at dew point temperature. VPD was then derived as: 125 

𝑉𝑃𝐷 =  𝑒𝑠 − 𝑒𝑎 (3) 126 
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2.5 MODIS Surface Reflectance and Vegetation Indices 127 

We used the 500-m daily MCD43A4 surface reflectance product (Schaaf and Wang, 2015) to compute four vegetation indices: 128 

the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), the Near-infrared Reflectance of 129 

Vegetation (NIRv), and the Land Surface Water Index (LSWI). NDVI has been traditionally used to assess vegetation 130 

greenness (Rouse et al., 1974), but it tends to saturate in areas with a high leaf area index such as the tropics (Huete et al., 131 

1997b). EVI accounts for atmospheric effects and canopy background and is less prone to saturation, so it is often used in areas 132 

with dense vegetation (Huete et al., 1997a). NIRv is a recently developed indicator that overcomes the tendency of NDVI to 133 

saturate by multiplying NDVI by the near infrared band, which is highly sensitive to leaf cellular structure (Badgley et al., 134 

2017). LSWI is computed using the shortwave infrared band, which is sensitive to leaf water and soil moisture (Xiao et al., 135 

2002). These equations are as follows: 136 

𝐸𝑉𝐼 =  2.5 ×
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+6∗𝑅𝐸𝐷+7.5∗𝐵𝐿𝑈𝐸+1
 (4) 137 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
 (5) 138 

𝑁𝐼𝑅𝑣 =  𝑁𝐷𝑉𝐼 × 𝑁𝐼𝑅 (6) 139 

𝐿𝑆𝑊𝐼 =  
𝑁𝐼𝑅−𝑆𝑊𝐼𝑅

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅
 (7) 140 

where NIR is the near infrared band, RED is the red band, BLUE is the blue band, and SWIR is the shortwave infrared band. 141 

2.6 Copernicus Forest Cover 142 

We used the 100-m Copernicus Land Cover dataset for the year 2019 (Buchhorn et al., 2020) to identify forest cover (data 143 

after 2019 is not available). For our analyses, we used only SIF soundings and MODIS pixels that fell within the forested areas. 144 

To help ensure that our spaceborne data were acquired over forest and to reduce the likelihood of mixed pixels and soundings 145 

with mixed land cover types, we converted the forest land cover raster data to polygon and created a 2.5 km inner buffer. 146 

2.7 Ecoregions 147 

We used the Terrestrial Ecoregions of the World boundaries (Olson et al., 2001) to distinguish between Africa’s tropical forest 148 

types. We combined the Nigerian Lowland Forests and the Niger Delta Swamp Forest ecoregions, which are adjacent to each 149 

other, in our analyses due to the sparsity of forest and spaceborne data for these forests. 150 

3 Results 151 

We noticed that the wettest ecoregions also had the highest variability in monthly total 152 

rainfall, and that there was a dissimilarity in our results among the wettest ecoregions 153 

with a high variability in monthly precipitation and the drier ecoregions with low 154 
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variability. Thus, we classified the 11 ecoregions into three groups according to their 155 

precipitation regime, monthly variability, and mean annual rainfall (Table S1). Four 156 

ecoregions in West Africa were characterized by seasonalities that had distinctive single 157 

wet and dry periods each year, high monthly variability (sd ≥ 120 mm), and relatively high 158 

mean annual rainfall (> 2400 mm). We classified these ecoregions as West African moist 159 

tropical forest, which included the Cameroonian Highlands, Cross-Sanaga-Bioko Coastal 160 

Forest, Nigerian Lowlands and Niger Delta, and Western Guinean Lowlands. The six Central 161 

African ecoregions were characterized by seasonalities that typically had a double-peak 162 

pattern, low monthly variability (sd ≤ 100 mm), and relatively lower mean annual rainfall 163 

(< 2200 mm). We classified these forests as Central African tropical forests. The 164 

precipitation regime of the Eastern Guinean ecoregion in West Africa had mean annual 165 

rainfall (1544 mm) and monthly rainfall variability (81 mm) that was more similar to the 166 

Central African ecoregions.  167 

 168 

3.1 West African moist tropical forests 169 

3.1.1 Seasonality of SIF, environmental factors and VIs 170 

We first evaluated the synchrony between SIF and precipitation for each ecoregion using lag correlations, and we found that 171 

the lag correlations were bimodal or plateaued for the West African moist tropical forests (Fig 1). SIF had a distinctive double-172 

peak seasonality across all 11 ecoregions, but in the West African moist tropical forests the first peak in SIF was distinctively 173 

larger than the second and preceded peak precipitation (Fig. 2). SIF increased at the beginning of each year along with 174 

precipitation as temperature, PAR, and VPD decreased, but SIF peaked prior to peak precipitation and minimums in 175 

temperature, PAR, and VPD. The second, smaller peak in SIF tended to occur as precipitation decreased and PAR increased, 176 

but before large increases in VPD. Minimum SIF coincided with minimum precipitation and peaks in temperature, PAR, and 177 

VPD. PAR exhibited a relatively strong seasonality with minimums occurring mid-year due to high cloud cover during peak 178 

precipitation. 179 
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 180 

Figure 1. Lag correlation plots between precipitation and SIF, EVI, and NDVI for 11 tropical forest ecoregions. Positive values 181 
indicate a shift of the precipitation forward in time, and negative values indicate a shift of the precipitation backward in time.  182 
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 183 

Fig. 2. Environmental conditions and solar-induced chlorophyll fluorescence for 11 African tropical forest ecoregions. 184 
Photosynthetically active radiation (PAR) is the amount of PAR at the top of the canopy (PARTOC). West African ecoregions are 185 
outlined in red. 186 

NDVI and EVI did not mimic the double-peak seasonality we observed with SIF in the West African moist tropical forests 187 

(Fig. 3). Although SIF, NDVI, and EVI increased at the beginning of each year as precipitation increased, NDVI and EVI 188 

plateaued until substantial decreases in the dry season during the last quarter of the year.  189 
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 190 

Figure 3. Monthly mean NDVI, EVI, SIF, and precipitation for 11 tropical forest ecoregions of Africa for 2019 - 2021. The shaded 191 
region delineates the year 2020. NDVI, EVI, and SIF share the left y-axis. West African ecoregions are outlined in red. 192 

3.2 Central African tropical forests 193 

3.2.1 Seasonality of SIF, environmental factors, and VIs 194 

The seasonality of SIF and environmental factors in the Central African tropical forest differed remarkably from those in the 195 

West African moist tropical forest (Fig. 1). In Central Africa, the peaks and minimums in SIF tended to be similar in magnitude 196 

(Fig. 2) and were synchronous with precipitation, but there were some notable differences in the seasonalities of VPD. In the 197 

Atlantic Equatorial Coast Forest, VPD was relatively stable as the drier periods coincided with reduced temperature and PAR. 198 

In the Central Congolian Lowland Forest, VPD had a distinct double-peak seasonality that juxtaposed precipitation and SIF. 199 

In the four other Congolian ecoregions, there were large annual peaks in VPD that occurred at the beginning of the year when 200 

precipitation was low and temperatures high, but interestingly the magnitude of the decrease in SIF during this time was similar 201 

to the mid-year decrease in SIF when VPD was low. 202 
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Unlike the West African moist tropical forest, we found the seasonality of EVI to mimic SIF with a double-peak pattern in the 203 

Central African tropical forest (Fig 3). The same was true for NDVI, except in the Northeastern Congolian Lowland where 204 

NDVI plateaued during the wet season. 205 

3.2.2 Relationship between SIF, environmental factors and VIs 206 

When investigating the relationship between SIF and environmental factors, we found that SIF was significantly negatively 207 

correlated with VPD in each ecoregion but was significantly positively correlated with precipitation (Figs. S1 and S2). The 208 

correlations between SIF and VPD or precipitation were always higher than the correlations between SIF and temperature or 209 

PAR, which were often insignificant, particularly in the Congo. These results were robust regardless of whether Pearson’s or 210 

Spearman’s correlation was used for the analyses. 211 

We found EVI, NIRv, and NDVI to also be negatively related to VPD across all sites, except for the Atlantic Equatorial Coastal 212 

Forest where the relationships were not significant. Like SIF, these vegetation indices were positively associated with 213 

precipitation in each ecoregion. The correlation between EVI, NIRv, and NDVI with temperature and PAR were generally 214 

negative or insignificant across all sites. 215 

When assessing whether SIF and the vegetation indices were more strongly correlated to VPD or precipitation at each site, we 216 

found that the conclusion may depend on which correlation test was used. For instance, in the Nigerian Lowland and Niger 217 

Delta Forest the Spearman’s r for SIF and VPD was -0.73 and for SIF and precipitation r was 0.57, but when using Pearson’s, 218 

the r value was -0.65 and 0.66, respectively. Thus, when using Spearman’s, one would conclude that SIF was more strongly 219 

correlated with VPD than precipitation in this case, but when using Pearson’s, one would conclude that the differences in the 220 

correlations were negligible, so we reported correlation matrices for each method (Figs. S1 and S2). 221 

However, when we compared differences in correlation coefficients for VPD and precipitation across all sites, we found that 222 

the correlation between SIF and VPD strengthened and the correlation between SIF and precipitation weakened as mean annual 223 

precipitation increased and the variability of monthly total precipitation increased (Fig. 4), regardless of whether Pearson’s or 224 

Spearman’s correlation was used. Thus, SIF was increasingly related to VPD and less related to precipitation in forests with 225 

higher annual total rainfall and higher variability in monthly precipitation. Conversely, we found NDVI to be increasingly 226 

related to precipitation and less related to VPD in these same forests. However, this relationship is likely due to a saturated 227 

NDVI signal that mimics the seasonality of precipitation in West African moist tropical forest, as no significant correlation 228 

was found for EVI. 229 

 230 

https://doi.org/10.5194/egusphere-2023-3022
Preprint. Discussion started: 15 April 2024
c© Author(s) 2024. CC BY 4.0 License.



11 

 

231 

 232 
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Figure 4. Regressions of the differences in the correlation coefficients for SIF, EVI, and NDVI vs VPD and precipitation using 233 
Pearson’s and Spearman’s correlation tests for each ecoregion. Differences are r for VPD minus r for precipitation. Top two rows 234 
are differences in Pearson’s correlation coefficient, and bottom two rows are differences in Spearman’s correlation coefficient. 235 

3.2.3 Synchrony in minimum and maximum SIF, EVI, and environmental factors 236 

The ecoregions of Central Africa straddle the equator, so we evaluated whether the double-peak seasonality in SIF, EVI, and 237 

environmental factors were occurring locally, or whether the double peaks that we observed at the ecoregion scale were due 238 

to the peaks alternating in time between the northern and southern regions. For SIF and EVI, we found that the double-peak 239 

seasonality was largely a continental-scale phenomenon (Fig. 5, top two rows). Except for some forests at the northern and 240 

southern most fringes, Central African tropical forests exhibited a double-peak seasonality in SIF and EVI. 241 
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 242 

Fig. 5. Differences in normalized SIF, EVI, precipitation, volumetric soil water, and VPD. Shown are the changes from January to 243 
April (first column), April to July (second column), July to October (third column), and October to January (fourth column). 244 

For precipitation, soil moisture, and VPD, the double-peak seasonality was mostly constrained to the southern portions of the 245 

Central African forest (Fig. 5, bottom three rows), with the northern regions more commonly experiencing increasing 246 

precipitation from January to April, April to July, and July to October with a single decrease occurring between October and 247 

January. These different precipitation regimes for the northern and southern regions of the Central Africa forests create a clear 248 

north-south divide in the timing of minimum SIF, EVI, precipitation, and soil moisture and maximum VPD (Fig. 6, first 249 
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column). In the northern region, these minimums and maximums in VPD occur in the beginning of the calendar year following 250 

the southern solstice, and in the southern region they coincide with the mid-year northern solstice. 251 

Interestingly, we did not find a similar bimodal north-south timing in maximum SIF, EVI, precipitation, soil moisture, or 252 

minimum VPD. Maximum SIF and EVI had bimodal distributions, but these distributions did not have clear geographical 253 

patterns. Maximum precipitation, soil moisture, and minimum VPD occurred nearly exclusively in the last quarter of the year. 254 

 255 

Fig. 6. Month in which minimum and maximum SIF, EVI, precipitation, volumetric soil water, and VPD occur in tropical African 256 
forests. 257 
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3.3 Robustness of the SIF signal 258 

OCO-2 and OCO-3 agreed well with TROPOMI across an aggregate of the ecoregions, and the OCOs agree well with each 259 

other (Figs. 7 and S3). At the ecoregion level, the OCOs can better capture the seasonality of TROPOMI SIF in ecoregions 260 

with large intact forests due to a larger volume of OCO data at larger spatial scales, albeit with a slight high bias (Fig. S4). The 261 

higher bias of the OCO-2 and OCO-3 retrievals relative to TROPOMI could be related to the nadir viewing angle of the OCOs 262 

and differences in the retrieval windows, instrument characteristics, bias correction, and/or footprint size. 263 

 264 

Fig 7. Monthly mean SIF from TROPOMI, OCO-2, and OCO-3 for 11 African tropical ecoregions for 2019 - 2021. OCO-2 and 265 
OCO-3 error bars and blue shaded region under the TROPOMI line are +/- the standard error of the mean. The shaded region 266 
delineates the year 2020. 267 

 268 
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4 Discussion 269 

4.1 West African moist tropical forest 270 

There were stark similarities in the timing of SIF, VIs, and precipitation in the moist Amazon and West African moist African 271 

forests, despite their apparent opposing responses to VPD. For both forest types, SIF and the VIs increased as precipitation 272 

increased after a distinct two- or three-month dry period, and SIF and the VIs peaked prior to peak precipitation and as PARTOC 273 

declined. These similarities indicate that there are similar changes in leaf physiology and demography in both the moist 274 

Amazon and West African moist tropical forests, with new leaf flush and increased productivity as the dry season is alleviated 275 

by increased rainfall. 276 

However, we observed three main differences in the precipitation regimes of these West African moist forests and the Amazon 277 

forests. First, annual peak monthly precipitation for West African moist tropical forests was frequently as high as 400 mm - 278 

600 mm, much higher than what has been observed in moist Amazon forests. These periods of intense rainfall in Africa cause 279 

reductions in PARTOC that are much larger than those seen in the Amazon, and may suppress APARchl, photosynthesis, and 280 

SIF as the ecosystem becomes light-limited. The alleviation of this light limitation in the weeks after peak precipitation could 281 

explain the second peak in SIF despite any noticeable changes in the VIs. 282 

Second, the distribution of rainfall in a year was sometimes bimodal for the West African moist tropical forests, particularly 283 

for the Nigerian Lowland and Niger Delta Forest and the Western Guinean Lowland Forest, which likely contributed to the 284 

variability seen in the monthly SIF data for these ecoregions. Conversely, the precipitation regimes in the Amazon have been 285 

reported to be much less variable and are normally distributed (Liang et al., 2020). 286 

Third, minimum precipitation in West African moist tropical forests occurs during the southern solstice around December, 287 

when the solar zenith angle and diffuse radiation is highest for that region, and maximum precipitation occurs between the 288 

northern solstice and southward equinox when PAR at the top of the atmosphere (PARTOA) is highest. Minimum and maximum 289 

precipitation for moist Amazon forests occurs during the southward and northward equinox, respectively. 290 

Although we confirmed our first hypothesis that SIF in more moist ecoregions is less related to precipitation, we were surprised 291 

to find that SIF had a more negative relationship with PAR and VPD in West African moist tropical forests than those in 292 

Central Africa. We expected these forests to be radiation-limited rather than water-limited due to their high mean annual total 293 

rainfall. Instead, we found substantial decreases in SIF that were synchronous with increased PAR and VPD immediately 294 

following the wet season. These observations were contrary to what has been observed in the moist forests of the Amazon, 295 

where positive relationships exist between SIF, photosynthesis, and VPD due to newly flushed leaves during the dry season, 296 

which have higher photosynthetic capacity and compensate for stomatal closure due to increased VPD (Green et al., 2020; Wu 297 

et al., 2016). For West African moist tropical forest, our findings indicate that leaf abscission and leaf flush are synchronous 298 

with increasing and decreasing VPD. 299 
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4.2 Central African tropical forest 300 

Correlative analyses of SIF, EVI, and environmental factors for Central African tropical forests at the continental or 301 

ecoregional scale indicate that SIF and EVI are synchronous with precipitation (Fig. 1). Such synchrony and high correlations 302 

allude that SIF and EVI, and thus the productivity of Central African tropical forests, are driven by precipitation. However, 303 

the drivers of the seasonality of SIF and EVI are much more complex.  304 

For instance, we observed that the physiology and phenology of the entire Central African tropical forest region acts in concert, 305 

with a bimodal seasonality in SIF and EVI that occurs lockstep across the entire continent (Fig. 5, first two rows). This 306 

continental phenomenon occurs despite north-to-south differences in precipitation, soil moisture, and VPD regimes (Fig. 5, 307 

last three rows). Studies have shown that Central African tropical forests are extraordinarily resistant to precipitation anomalies 308 

(Asefi-Najafabady and Saatchi, 2013), long-term declines in annual total precipitation (Jiang et al., 2019; Malhi and Wright, 309 

2004; Sun et al., 2022), and anomalies in the El Niño–Southern Oscillation and Madden–Julian Oscillation (Bennett et al., 310 

2021; Raghavendra et al., 2020). Thus, the continental-scale bimodal seasonality of SIF and EVI are likely more related to 311 

solar insolation and angle than climate (Calle et al., 2010; van Schaik et al., 1993). 312 

Nevertheless, the timing of minimum SIF and EVI are synchronous with minimum precipitation (Fig. 6, first two columns). 313 

Given the numerous studies that have highlighted the insensitivity of Central African tropical forests to precipitation anomalies, 314 

it is likely that the minimums in precipitation and solstice-related maximums in solar zenith angle serve as phenological queues 315 

for leaf abscission rather than directly inducing water-stress related declines in productivity. This explanation is supported by 316 

field observations, which found a north-south bimodal timing in peak leaf flush Central African tropical forests (van Schaik et 317 

al., 1993). Similarly, the timing of maximum SIF and EVI are likely less related to environmental factors (Fig. 6, last two 318 

columns) and could be more related to localized characteristics, such as herbivory, disturbance, topography, species 319 

composition, forest structure and age, soil characteristics, or other potential biotic and abiotic factors. 320 

4.3 Future work 321 

In deciduous ecosystems, SIF, photosynthesis, and vegetation indices are typically well correlated because both are driven by 322 

strong seasonalities in leaf area, canopy chlorophyll, and phenology (Doughty et al., 2021b). However, in evergreen 323 

ecosystems, including boreal needleleaf and tropical broadleaf, SIF and GPP can exhibit seasonal dynamics that do not well 324 

match vegetation indices because SIF and GPP are sensitive to changes in leaf demography, leaf physiology, and APARchl 325 

(Doughty et al., 2021b, 2019; Gonçalves et al., 2020; Pierrat et al., 2022). For instance, it was found that spaceborne SIF had 326 

very low to no significant correlation with EVI and NDVI across tropical evergreen broadleaf forest in South America, Africa, 327 

and Southeast Asia (Doughty et al., 2021b), but that the seasonality of SIF in the Amazon and Africa well matched eddy 328 

covariance tower GPP (Doughty et al., 2019; Mengistu et al., 2021). 329 

Anecdotally, we would expect the seasonality of SIF to also well match GPP in African tropical evergreen broadleaf forests, 330 

but such a comparison is not possible due to the absence of eddy towers in in-tact African tropical forests that are large enough 331 
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to not cause mixed-pixel effects with high temporal resolution satellite data. Ideally, a future eddy tower network in Africa 332 

would be established in tropical forests across a precipitation gradient and include West African moist tropical forests and 333 

Central African tropical forests. Litter-fall traps and phenology cameras at the tower sites would enable us to determine to 334 

what degree observed changes in GPP are attributable to climate and leaf demography and physiology and could be directly 335 

compared to spaceborne SIF and surface reflectance to validate our satellite observations. 336 

Another topic that can be addressed is whether there is a significant long-term trend in SIF in the Central African tropical 337 

forests, as it has been debated whether there is a browning trend in these forests (Sun et al., 2022; Zhou et al., 2014). As the 338 

global spaceborne SIF record continues to lengthen over time, analyses of the SIF data records will allow us to not only address 339 

whether there are long-term changes in greenness or leaf area but provide a clue as to whether there is a long-term trend in 340 

photosynthesis. Similarly, the SIF data record has not yet been levered to address whether anomalies in SIF occur during 341 

periods of La Nina or El Nino or during precipitation anomalies. 342 
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All data used in our paper is publicly available. OCO-2 SIF Lite files can be accessed at 344 

https://doi.org/10.5067/XO2LBBNPO010 (OCO-2 Science Team et al., 2020), and OCO-3 data can be accessed at 345 
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