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Abstract 14 
 15 
Spatially explicit prediction of soil organic carbon (SOC) serves as a crucial foundation for 16 
effective land management strategies aimed at mitigating soil degradation and assessing carbon 17 
sequestration potential. Here, using more than 1000 in-situ observations, we trained two 18 
machine learning models (random forest, and K-means coupled with multiple linear 19 
regression), and one process-based model (the vertically resolved MIcrobial-MIneral Carbon 20 
Stabilization (MIMICS)) to predict SOC stocks of the top 30 cm of soil in Australia. Parameters 21 
of MIMICS were optimized for different site groupings, using two distinct approaches, plant 22 
functional types (MIMICS-PFT), and the most influential environmental factors (MIMICS-23 
ENV). All models showed good performance in SOC predictions with R2 greater than 0.8 24 
during out-of-sample validation with random forest being the most accurate, and SOC in forests 25 
is more predictable than that in non-forest soils excluding croplands. The performance of 26 
continental-scale SOC predictions by MIMICS-ENV is better than that by MIMICS-PFT 27 
especially in non-forest soils. Digital maps of terrestrial SOC stocks generated using all the 28 
models showed similar spatial distribution with higher values in southeast and southwest 29 
Australia, but the magnitude of estimated SOC stocks varied. The mean ensemble estimate of 30 
SOC stocks was 30.3 t ha-1 with K-means coupled with multiple linear regression generating 31 
the highest estimate (mean SOC stocks at 38.15 t ha-1) and MIMICS-PFT generating the lowest 32 
estimate (mean SOC stocks at 24.29 t ha-1). We suggest that enhancing process-based models 33 
to incorporate newly identified drivers that significantly influence SOC variations in different 34 
environments could be key to reducing the discrepancies in these estimates. Our findings 35 
underscore the considerable uncertainty in SOC estimates derived from different modelling 36 
approaches and emphasize the importance of rigorous out-of-sample validation before applying 37 
any one approach in Australia.  38 
 39 
 40 
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1. Introduction 41 
 42 
Globally, the soil is the largest biogeochemically active terrestrial carbon pool, storing more 43 
organic carbon than plants and the atmosphere combined (Jackson et al., 2017). The turnover 44 
of soil organic carbon (SOC) is a key function in plant growth, maintenance of soil water and 45 
nutrients, soil structure stabilization and other biogeochemical processes (Lefèvre et al., 2017). 46 
Soil can act as either a carbon sink or carbon source depending on the balance of carbon input 47 
through plant litter and root exudates and output through respiration and leaching (Terrer et al., 48 
2021; Panchal et al., 2022). Even a small change in SOC stocks, in any direction, could 49 
significantly affect the atmospheric concentration of CO2 and thereby climate change 50 
(Stockmann et al., 2013).  51 
 52 
Given the importance of SOC, there is now a large and growing interest in estimating spatially 53 
explicit SOC content and stocks. SOC supports critically important soil-derived ecosystem 54 
services, and the amount of SOC indicates the degree of land and soil degradation (Lorenz et 55 
al., 2019). SOC content below a certain limit will lead to the decline of microbial diversity, 56 
water holding capacity and soil productivity (Stockmann et al., 2015). Additionally, with 57 
growing concerns about increasing anthropogenic CO2 emissions, soil carbon sequestration has 58 
emerged as a potential strategy for climate change mitigation (Smith, 2016; Rumpel et al., 59 
2018). Protection of existing SOC and rebuilding depleted stocks through land management are 60 
potential strategies in mitigating climate change (Bossio et al., 2020). However, effective SOC 61 
management requires accurate knowledge of its existing distribution. Reliable estimates of SOC 62 
stocks and their spatial variation serve as a reference point for assessing how close soil is to its 63 
maximum SOC storage capacity and its potential to sequester additional carbon (Six et al., 64 
2002; Georgiou et al., 2022). Precise estimation of contemporary SOC stocks also provides a 65 
baseline map that can be used to calibrate and initialize dynamic-mechanistic models, enabling 66 
the study of how SOC will respond to climate and land-use change (Minasny et al., 2013; 67 
Viscarra Rossel et al., 2014). It is, for example, a prerequisite for accurately predicting future 68 
carbon–climate feedback in Earth system models (ESMs) (Todd-Brown et al., 2013).  69 
 70 
Accurately assessing SOC storage is challenging due to the complexity of carbon formation 71 
and degradation processes in space and time (Keskin et al., 2019). Soil exists as a continuum 72 
containing organic compounds at different stages of decomposition (Lehmann and Kleber, 73 
2015). Soil formation can be described by a function of climate, organisms, relief, parent 74 
material and time (Jenny, 1941). These factors are widely used in SOC studies for digital soil 75 
mapping (McBratney et al., 2003; Viscarra Rossel et al., 2015; Liang et al., 2019). However, 76 
the relationship between SOC storage and these driving variables is complex and spatially 77 
variable (Mishra and Riley, 2015; Viscarra Rossel et al., 2019; Adhikari et al., 2020) leading to 78 
substantial challenges and inherent uncertainties in SOC predictions.  79 
 80 
Mechanistic process-based models and empirical models (including machine learning models) 81 
are two widely employed approaches used to predict SOC stocks and their spatial distribution. 82 
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Conventional process-based models assume first-order kinetics for SOC decomposition, 83 
wherein the rate of C decomposition is dependent on temperature and moisture but independent 84 
of microbial biomass, and equilibrium SOC stock is proportional to carbon input and mean 85 
residence time (Abs and Ferrière, 2020; Wang et al., 2021). ESMs coupled with conventional 86 
SOC models cannot accurately simulate spatial pattern of contemporary soil carbon and show 87 
large divergence in projected SOC dynamics under future climate change (Todd-Brown et al., 88 
2013; Todd-Brown et al., 2014). In addition to the biases introduced by errors in model 89 
parameters and the lack of independent model validation based on observed time series data, 90 
the uncertainties in predicted SOC by ESMs can also result from the lack of explicit 91 
representation of soil microbial activities and metabolic traits (Wieder et al., 2015; Le Neo et 92 
al., 2023). Numerous microbial models have been developed in the past few decades to improve 93 
model performance of SOC predictions (Chandel et al., 2023), but these models have rarely 94 
been incorporated into large-scale modelling frameworks due to the difficulty of constraining 95 
parameters relating to microbial activities and the lack of rigorous validation (Todd-Brown et 96 
al., 2013; Luo et al., 2016). Process-based SOC models are constructed based on our 97 
understanding of the major processes governing SOC dynamics (e.g., carbon input, 98 
decomposition, and loss). However, the disagreement in projections of carbon dynamics by 99 
different models highlights the need to improve our knowledge of SOC cycling (Luo et al., 100 
2016). Machine learning models without any process-level assumptions provide a tool to 101 
identify the most influential controls on SOC variations. Machine learning models can represent 102 
non-linear and non-smooth relationships between predictor and response variables as well as 103 
interactions between different predictors (Heung et al., 2016). Various machine learning 104 
algorithms have been successfully used in digital soil mapping to predict high-resolution 105 
spatially explicit SOC concentration/stocks (Lamichhane et al., 2019).  106 
 107 
Several modelling studies of soil carbon stocks have been conducted in Australia. Wang et al. 108 
(2018a) trained boosted regression trees and random forest models using field observations and 109 
applied the trained random forest model to map the spatial distribution of SOC at two soil depths 110 
(0-5 cm and 0-30 cm) for the semi-arid rangelands of eastern Australia.  Continentally, Viscarra 111 
Rossel et al. (2014) trained the CUBIST model, a form of piecewise linear decision tree, using 112 
more than five thousand observations to produce a high resolution (90 m ´ 90 m) baseline map 113 
of SOC stocks of Australian terrestrial systems and its uncertainty of the top 30 cm soils. Based 114 
on the baseline map, Walden et al. (2023) derived spatially explicit estimates of Australian SOC 115 
stocks and uncertainty including additional data from forests from southeastern Australia and 116 
coastal marine (or blue carbon) ecosystems. SOC content at multiple soil depths along with 117 
associated uncertainties were also estimated using different machine learning algorithms 118 
(Viscarra Rossel et al., 2015; Wadoux et al., 2023). Moreover, the distribution of different soil 119 
carbon compositions (i.e., the particulate, mineral-associated and pyrogenic organic carbon 120 
fractions) and the importance of environmental factors on their variations were also studied 121 
using machine learning (Viscarra Rossel et al., 2019). However, despite the progress made in 122 
SOC modelling, significant uncertainties persist in SOC estimates due to the inherent 123 
complexities of SOC variations and the lack of appropriately sampled SOC observations. All 124 
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these continental estimates were generated using empirical modelling approaches or first-order 125 
biogeochemical models without explicitly representing the important role of soil microbes in 126 
SOC stabilization (Grace et al., 2006; Lee et al., 2021). Estimates from mechanistic SOC 127 
models with explicit representation of microbial metabolism are missing despite offering the 128 
potential to better constrain SOC dynamics under future climate change scenarios in a way that 129 
empirical approaches cannot. 130 

 131 
Our primary objective in this paper is to assess the predictability of SOC concentration 132 
(excluding cropland soils) in Australia and generate a range of estimates of terrestrial SOC 133 
stocks, employing both process-based and empirical modelling, and examine why these 134 
estimates might differ. First, we discern the significance of environmental predictors, both at 135 
continental and biome scales. We then evaluate the performance of random forests, K-means 136 
with multiple linear regression and the vertically resolved MIMICS model with different 137 
parametrization approaches. Finally, we compare the spatial estimates of SOC stocks using 138 
these different approaches across Australia, and discuss their differences and potential 139 
application to future SOC projection. 140 
 141 

2. Materials and Methods 142 
2.1. Model descriptions 143 
2.1.1. Vertically resolved MIMICS 144 
 145 
The MIMICS model (Wieder et al., 2015; Zhang et al., 2020) explicitly considers relationships 146 
between litter quality, functional trade-offs in microbial physiology, and the physical protection 147 
of microbial by-products in forming stable soil organic matter. There are two litter pools: 148 
metabolic (LITm) and structural (LITs) litter (Figure 1), and the partitioning of litter input into 149 
metabolic and structural pools is determined by the chemical properties of the litter. Litter and 150 
SOC turnover are governed by two microbial functional types that exhibit copiotrophic (i.e., r-151 
selected, MICr) and oligotrophic (i.e., K-selected, MICk) growth strategies. The MICr is 152 
assumed to have higher growth and turnover rates, and a preference for consuming labile litter 153 
(LITm), while MICk is characterized by lower growth and turnover rates, and a greater 154 
competitive advantage when consuming low-quality litter (LITs) and chemically recalcitrant 155 
SOC. SOC in MIMICS is divided into three pools: physically protected (SOCp), 156 
(bio)chemically recalcitrant (SOCc) and available (SOCa) carbon (Figure 1).  157 
 158 
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 159 
Figure 1. SOC pools and fluxes represented in MIMICS (adapted from Wieder et al., (2015)). Litter inputs 160 
are partitioned into metabolic and structural litter pools (LITm and LITs) based on litter quality (fmet). 161 
Decomposition of litter and available SOC pool (SOCa) are governed by temperature sensitive Michaelis-162 
Menten kinetics (Vmax (maximum reaction velocity) and Km (half saturation constant)), shown by red lines. 163 
Microbial growth efficiency (MGE) determines the partitioning of C fluxes entering microbial biomass pools 164 
vs. heterotrophic respiration. Turnover of microbial biomass (𝜏, blue) depends on microbial functional types 165 
(MICr and MICk), and is partitioned into available, physically protected and chemically recalcitrant SOC 166 
pools (SOCa, SOCp and SOCc, respectively). 167 
 168 
The decomposition of litter pools and SOC pools follows temperature-sensitive Michaelis-169 
Menten kinetics. Microbial growth efficiency (MGE) determines the partitioning of carbon 170 
fluxes entering microbial biomass pools (MICr and MICk) versus heterotrophic respiration. 171 
Access of microbial enzymes to available substrates depends on soil texture. The equations of 172 
MIMCS are from Wieder et al. (2015), except that the density-dependent microbial turnover 173 
was introduced to MIMCS to minimize an unrealistic oscillation (Zhang et al., 2020). To better 174 
simulate carbon turnover at different soil depths, vertical transport of soil carbon was introduced 175 
into MIMICS considering carbon transported through bioturbation and diffusion among 176 
adjacent soil layers (Wang et al., 2021).  177 
 178 
Vertically resolved MIMICS is run using a daily time step. The soil was divided into 15 layers, 179 
each of 10 cm thickness. All the sites in this study are assumed to be at steady state (i.e., no 180 
interannual variation of SOC). Historical climate, litterfall input and soil properties were all 181 
assumed to be similar to the average conditions. At each site, the initial pool fractions were 182 
0.03, 0.03, 0.14, 0.47 and 0.33 for MICr, MICk, SOCp, SOCc and SOCa, respectively. All pools 183 
were then spun up to finally achieve steady state with the maximal difference in any pool size 184 
between two successive spins being less than 0.05%. 185 
 186 
2.1.2. Machine learning 187 
 188 
Two machine learning algorithms were applied in this study to predict SOC. First, random forest 189 
(RF) is a tree-based ensemble learning method that works by building a set of regression trees 190 
and averaging results (Breiman, 2001). Within the training procedure, the RF algorithm 191 
produces multiple trees. Each regression tree in the forest is independently constructed based 192 
on a unique bootstrap sample (with replacement) from the original training data set. The 193 
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response, as well as the predictor variables are either categorical (classification trees) or 194 
numeric (regression trees). Bootstrap sampling makes RF less sensitive to overfitting and 195 
allows for robust error estimation based on the remaining test set, the so-called Out-Of-Bag 196 
(OOB) sample (Wiesmeier et al., 2014). We used the “ranger” package R (version 4.2.0) for RF 197 
computation. We trained the RF model with different numbers (100, 200, 300, 400 and 500) of 198 
trees and observed that the model's performance remained similar regardless of the number of 199 
trees used. The number of regression trees generated in the forest (num.trees) was finally set as 200 
200, and the number of predictors randomly selected at each node (mtry) was set as default, 201 
which was 2. 202 
 203 
Multiple linear regression (MLR) is widely used in SOC studies but found to be less effective 204 
than machine learning algorithms (Lamichhane et al., 2019). Here, instead of applying MLR 205 
directly with all environmental factors as predictors, our approach involved a preliminary step 206 
where we partitioned all observations into distinct clusters using K-means, an unsupervised 207 
machine learning algorithm. K-means aims to divide the data into a predefined number of 208 
clusters (k), with the objective of maximizing the similarity among data within each cluster. 209 
The underlying assumption here was that sites sharing similar environmental conditions would 210 
exhibit comparable SOC concentration. In cases where certain clusters had fewer observations 211 
than five times the number of predictors, we augmented these clusters by incorporating 212 
observations from other clusters. This augmentation process was guided by the Euclidean 213 
distance between the observation and the cluster centre, ensuring a more robust construction of 214 
the linear regression model. To determine the number of clusters, we applied the coupled K-215 
means and MLR with varying number of clusters. The selection of the optimal number of 216 
clusters was based on the criterion of producing the smallest root mean square error during 217 
independent out-of-sample validation. 218 
 219 
2.2. Relative importance of environmental variables for SOC prediction 220 
 221 
RF-based measures of variable importance have gained widespread popularity as tools for 222 
evaluating the contributions made by predictor variables within a fitted random forest model 223 
(Debeer and Strobl, 2020). In the context of this study, we employed permutation variable 224 
importance (PVI) within the random forest framework to gauge the significance of predictors 225 
(see Section 2.4) in predicting SOC concentration. 226 
 227 
The PVI entails measuring the reduction in a RF model's performance score upon random 228 
shuffling of a single variable values. By doing so, the inherent relationship between the variable 229 
and the SOC concentration is disrupted. Consequently, the disparity in prediction accuracy 230 
observed in a RF model before and after such shuffling serves as a quantitative representation 231 
of the significance of the particular predictor in predicting SOC concentration. The greater the 232 
importance of the predictor, the higher its corresponding PVI value becomes. 233 
 234 
 235 
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2.3. Parameter optimization 236 
 237 

MIMICS parameters were derived from Zhang et al. (2020) and Wang et al. (2021), except that 238 
five parameters (Table 1) which directly control the organic carbon decomposition were 239 
optimized. An effective global optimization algorithm called the shuffled complex evolution 240 
(SCE-UA, version 2.2) method (Duan et al., 1993) was applied for parameter optimization by 241 
minimizing the sum of squared residuals between the observed and modelled values. 242 

 243 
Vertically resolved MIMICS simulated SOC concentration for 15 soil layers with a uniform 244 
layer thickness of 10 cm. As observations only provide one measurement for the top 30 cm soil, 245 
we computed the average of the modelled values spanning the 0-10 cm, 10-20 cm, and 20-30 246 
cm soil layers. This average was then adopted as the modelled SOC concentration for top 30 247 
cm soil, serving as the basis for evaluating the difference between observations and simulations. 248 

 249 
Table 1. The optimized model parameters (dimensionless) and their value range. 250 

Parameter Definition Range 
av A scaling factor for Vmax 0-30 
ak A scaling factor for Km 0-20 
xdesorp A scaling factor for SOC desorption rate 0-3 
xbeta An exponent of the biomass density dependent mortality rate of microbes 1.05-2 
xdiffsoc A scaling factor for SOC diffusion coefficient in soil  0-30 

 251 
Parameters in MIMICS were optimized for different groups divided based on two approaches. 252 
The first approach involved categorizing all observations into four groups based on plant 253 
functional type (PFT). The second approach used the most influential abiotic variables as 254 
predictors (as outlined in Section 2.2) and divided all observations into 6 clusters using the K-255 
means algorithm. The determination of the optimal number of clusters was achieved through 256 
the minimization of the sum of the within-cluster-sum-of-squares-of-all-clusters (WCSSE), a 257 
process facilitated by the "ClusterR" package in R (version 4.2.0). This clustering aimed to 258 
ensure the highest possible similarity among the environmental factors within each cluster. It 259 
was anticipated that SOC ranges within each cluster would be narrow due to the high similarity 260 
of environmental predictors.  261 
 262 

2.4. Data 263 
2.4.1. Predictors of spatial variations of observed SOC concentration 264 
 265 
MIMICS requires gridded mean annual temperature (MAT), carbon input and clay content as 266 
driving variables for a spatial simulation. Gridded mean annual precipitation (MAP) and 267 
vegetation types were also used during calibration and when understanding the drivers and 268 
spatial variability of SOC. Details of gridded data can be found in Table 2. 269 
 270 
Gridded daily maximum temperature, minimum temperature, and precipitation at 0.05° 271 
resolution were obtained from the SILO database (Jeffrey et al., 2001) of Australian climate 272 
data. Mean daily temperature was approximated as the average of maximum and minimum 273 
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daily temperature. MAT was calculated from mean daily temperature from 1991 to 2020, and 274 
MAP was calculated from daily precipitation from 1991 to 2020. 275 
 276 
Carbon input was represented by NPP. Gridded mean annual NPP at 500 m was calculated 277 
based on annual NPP from 2001 to 2020 obtained from MODIS (MOD17A3HGF V6.1) 278 
(Running and Zhao, 2021). NPP was partitioned to above-/belowground part by multiplying by 279 
the root/shoot ratio for different vegetation types (Mokany et al., 2006). Here we did not account 280 
for the faction of NPP that is appropriated by human activities. 281 
 282 
The distribution of vegetation types at 3’’ resolution was obtained from National Vegetation 283 
Information System (NVIS, version 6.0, https://www.dcceew.gov.au/environment/land/native-284 
vegetation/national-vegetation-information-system). Pixels of non-vegetated regions were 285 
removed and 28 types from NVIS were aggregated to just 4 PFT: forest, woodland, shrubland 286 
and grassland.  287 
 288 
Soil bulk density and clay content were obtained from Soil and Landscape Grid National Soil 289 
Attributes Maps (SLGA – Release 2) (Grundy et al., 2015; Viscarra Rossel et al., 2015). Soil 290 
properties were predicted based on machine learning at depths 0-5 cm, 5-15 cm, 15-30 cm, 30-291 
60 cm, 60-100 cm, and 100-200 cm in SLGA. Bulk density and clay content were estimated for 292 
top 30 cm soil as weighted average of first 3 layers in SLGA.  293 
 294 
The initial spatial resolution of the gridded data was maintained when extracting the required 295 
environmental factors for each SOC observation. All data were then resampled to 0.05° 296 
resolution using bilinear interpolation for estimation of terrestrial SOC stocks at continental 297 
scale. 298 
 299 
Table 2. Information of gridded data used in this study. 300 

 Source Spatial Scale Temporal Scale Unit Time Period 
Maximum Temperature SILO ~5 km daily °C 1991-2020 
Minimum Temperature SILO ~5 km daily °C 1991-2020 
Precipitation SILO ~5 km daily mm 1991-2020 
NPP MODIS 500 m annually g C/m2/year 2001-2020 
Vegetation Types NVIS 100 m / / / 
Soil Bulk Density SLGA ~90 m / kg/m3 / 
Soil Clay Content SLGA ~90 m / % / 

 301 
2.4.2. Soil organic carbon observations 302 
 303 
SOC observations for top 30 cm soil in Australia were collected from two datasets. The first 304 
dataset is described in Viscarra Rossel et al. (2014) and Viscarra Rossel et al. (2019). We 305 
removed the observations collected from croplands based on the land-use record in the dataset 306 
and removed those from unvegetated regions based on NVIS vegetation map (see above). A 307 
total of 1070 site observations with only 38 from forest soils were retained. SOC stocks were 308 
reported in t ha-1. To better represent SOC distribution in forest, we obtained additional forest 309 
SOC observations from a second dataset, the Biomes of Australian Soil Environments (BASE) 310 
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described in Bissett et al. (2016). Here, SOC (%) was reported for 0-10 and 20-30 cm. We 311 
estimated SOC for 0-30 cm soil following the method described in Viscarra Rossel et al. (2014). 312 
 313 
To compare the observations with MIMICS outputs, we then converted both simulated SOC 314 
(mg/cm3) and observed SOC (t/ha) in the first dataset (Viscarra Rossel et al. 2014) to SOC 315 
concentration (g C/kg soil) using spatially explicit soil bulk density (BD) from SLGA. The unit 316 
conversion will not affect the results of MIMICS. Soil clay content is extracted from SLGA. 317 
 318 
The spatial distribution of SOC observations from different PFT is shown in Figure 2a. SOC 319 
concentration in top 30 cm is positively skewed, ranging from 1.36 to 59.73 g C/kg soil with 320 
mean value at 9.97 g C/kg soil and median value at 6.11 g C/kg soil. SOC concentration in 321 
grassland, shrubland and woodland show similar distribution patterns (Figure 2b), while SOC 322 
concentration in forest is more variable with a standard deviation at 15.92 g C/kg soil.   323 
 324 
 325 

 326 
 327 
Figure 2. a) Spatial distribution of 1285 soil organic carbon observations used in this study and the plant 328 
functional types which they belong to; b) boxplots of SOC concentration distributions for each plant 329 
functional type. For boxplots, centre lines represent the median value, and upper and lower box boundaries 330 
represent third and first quartile. Whiskers extend to the smallest and largest values within 1.5 times the 331 
interquartile range. 332 
 333 
 334 
 335 
2.5. Model evaluation 336 
 337 
For machine learning models, 70% of the observations were randomly selected as training data 338 
to train the models and the remaining 30% used as test data to validate the predictions of SOC 339 
concentration. For vertically resolved MIMICS, parameters were optimized for each PFT or 340 
environmental group (see Section 2.3 above), and we again randomly selected 70% of 341 
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observations in each group to train the model and used the remaining 30% for validation. To 342 
cross-validate, the procedure was repeated 10 times. 343 
 344 
The performance of models was evaluated using four metrics. Mean Absolute Error (MAE) 345 
indicates how close the average predictions are to average observations. Root Mean Square 346 
Error (RMSE) measures the overall accuracy combining mean, standard deviation differences 347 
(across sites) and (spatial) correlation.	Coefficient of determination (R2) measures the 348 
percentage of variation explained by the model. Lin’s Concordance Correlation Coefficient 349 
(LCCC) (Lawrence and Lin, 1989) measures the level of agreement between predictions and 350 
observations following the 1:1 line. A good model will have MAE and RMSE close to 0 and R2 351 
and LCCC close to 1. 352 
 353 
2.6. Estimation of terrestrial SOC stocks 354 
 355 
SOC concentrations were used to train the models, and we then estimated terrestrial SOC stocks 356 
and their continental-scale spatial distribution in top 30 cm soil utilizing the four models 357 
validated within this study. SOC stock (t ha-1) is calculated using SOC concentration (g C/kg 358 
soil), bulk density (BD, kg/m3) and soil depth (m), 359 
 360 
                               𝑆𝑂𝐶!"#$% = 𝑆𝑂𝐶$#&$'&"()"*#& × 𝐵𝐷 × 𝑑𝑒𝑝𝑡ℎ/100                                 (2) 361 

 362 
In the cases of MIMICS-PFT and MIMICS-ENV, the initial step involved grouping all pixels 363 
into four distinct plant functional groups or six environmental clusters. Since cross-validation 364 
was performed, the machine learning and process-based models were evaluated using test data, 365 
and the models with the optimal performance were subsequently employed at each pixel to 366 
estimate terrestrial SOC stocks. The map of ensemble estimate of SOC stocks was produced as 367 
the average of four model estimates at each pixel. 368 

3. Results 369 
 370 
3.1. Relative importance of environmental predictors of SOC concentration 371 
 372 
Using the PVI in random forest, we identified the significance of environmental factors in 373 
predicting SOC concentration. At the continental scale, soil bulk density contributes most to the 374 
prediction of SOC concentration, following by MAT, NPP and MAP (Figure 3). Soil clay 375 
content and plant functional type exhibit relatively lesser significance in this regard.  376 
 377 
The relative predictor importance for forests and grasslands aligns with the importance at 378 
continental scale. In shrubland and woodland, NPP and MAP emerge as the pivotal factors. 379 
Collectively, across both continental and regional scales, soil bulk density, MAT, and MAP are 380 
the three most influential abiotic factors. 381 
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 382 
Figure 3. Importance of predictors on SOC concentration for different plant functional types. 383 

3.2. Data clustering based on environmental factors 384 
 385 
To develop the calibration groups for MIMICS-ENV, we partitioned the top three important 386 
abiotic factors, which are soil bulk density, MAT and MAP, into six distinct clusters using K-387 
means (see Section 2.3). The resulting characteristics and spatial distribution of SOC belonging 388 
to these six clusters are illustrated in Figure 4. 389 
 390 
Notably, a substantial majority of forests were assigned to clusters 2 and 6 (Figure 4a), while 391 
woodland, shrubland, and grassland observations were distributed across the remaining four 392 
clusters. Among these clusters, cluster 5 exhibits the lowest SOC concentration, while SOC of 393 
cluster 1 and 3 display a comparable pattern but spread across different biomes. Conversely, 394 
distribution of SOC concentration in clusters 2, 4, and 6 shows more pronounced variability 395 
(Figure 4c). 396 
 397 
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 398 
Figure 4. a) Fraction of different PFT in each cluster divided based on environmental factors; b) spatial 399 
distribution of SOC observations from different environmental clusters and c) density plot of observed SOC 400 
concentration for different clusters. 401 
 402 
3.3.  Evaluation of model performance 403 
 404 
All models employed in this study (RF, K-means + MLR, MIMICS-PFT and MIMICS-ENV) 405 
predicted SOC concentration well for both training data and test data (Figure 5). As anticipated,  406 
sample data versus in-sample training or calibration data. When using test data, the mean value 407 
of R2 for all models ranges from 0.82 to 0.94, mean LCCC ranges from 0.90 to 0.97, mean 408 
RMSE ranges from 2.88 to 4.51 g C/kg soil, and mean MAE ranges from 1.55 to 2.57 g C/kg 409 
soil. 410 
 411 
The machine learning models outperformed MIMICS in predicting SOC concentration, 412 
regardless of the optimisation approach taken. Particularly, the RF model demonstrated the most 413 
accurate predictions characterized by higher R2 and LCCC values and lower RMSE and MAE 414 
values for both training and test data. While MIMICS-ENV displayed performance similar to 415 
that of MIMICS-PFT in SOC concentration predictions based on RMSE and MAE, the former 416 
exhibited slightly superior median R2 and LCCC values but with a higher variability (Figure 5).  417 
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 418 
Figure 5. Performance metrics of SOC concentration predictions. Units for MAE and RMSE are g C/kg soil. 419 
Centre line represents median value, and upper and lower box boundaries represent third and first quartile of 420 
metrics from cross-validation. Whiskers extend to the smallest and largest values within 1.5 times the 421 
interquartile range. 422 
 423 
SOC concentration in forest soil exhibited significantly higher predictability than those in non-424 
forest (woodland, shrubland and grassland) soil, evidenced by higher R2 (ranging from 0.58 to 425 
0.91) and LCCC (ranging from 0.75 to 0.95) for test data (Figure 6). Machine learning models 426 
surpassed MIMICS in predicting SOC concentration for both forest and non-forest soils. 427 
Notably, MIMICS-ENV outperformed MIMICS-PFT in SOC concentration predictions, 428 
particularly in non-forest soils. 429 
 430 
 431 
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   432 
 433 
Figure 6. Performance metrics of SOC concentration predictions for forest and non-forest (woodland, 434 
shrubland and grassland) soils in test (out-of-sample) data. Unit for MAE and RMSE is g C/kg soil. Centre 435 
line represents median value, and upper and lower box boundaries represent third and first quartile of metrics 436 
from cross-validation. Whiskers extend to the smallest and largest values within 1.5 times the interquartile 437 
range. 438 
 439 
3.4. Estimations of terrestrial SOC stocks  440 

 441 
Using the best fitted models after cross-validation (see Section 2.6 for details), we estimated 442 
the total amount of SOC stocks in the top 30 cm for the whole Australia continent at a spatial 443 
resolution of 0.05° by 0.05°. The optimized parameters used for MIMICS-PFT and MIMICS-444 
ENV at continental scale are shown in Table 3. 445 
 446 
 447 
 448 
 449 
 450 
 451 
 452 
 453 
 454 
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Table 3. Optimized parameter ranges of MIMICS for cross-validation. Values in brackets were used for 455 
estimating SOC stocks at continental scale. See Table 1 for further explanations of each parameter.  456 

Model PFT/Cluster av ak xdesorp xbeta xdiffsoc 

MIMICS-
PFT 

Grassland 
4.36-18.11 

(5.45) 
4.42-19.11 

(5.62) 
1.90-3.0 
(2.97) 

1.06-1.42 
(1.06) 

16.21-29.90 
(29.3) 

Shrubland 
12.15-17.91 

(12.46) 
14.46-18.87 

(16.80) 
1.54-2.92 

(2.58) 
1.14-1.27 

(1.24) 
20.21-29.96 

(29.73) 

Woodland 
8.41-17.01 

(10.92) 
9.35-16.99 

(12.73) 
1.12-1.23 

(1.10) 
1.12-1.23 

(1.18) 
20.17-29.96 

(23.91) 

Forest 
3.15-8.56 

(4.70) 
12.61-19.69 

(13.53) 
0.39-3.0 
(1.36) 

1.42-1.88 
(1.35) 

11.55-27.70 
(10.20) 

MIMICS-
ENV 

Cluster 1 
5.23-13.82 
(10.189) 

6.08-17.80 
(11.93) 

1.62-2.85 
(1.84) 

1.07-1.20 
(1.07) 

0.00-29.81 
(28.80) 

Cluster 2 
3.56-10.76 

(7.60) 
7.36-18.24 

(15.70) 
1.01-2.94 

(2.07) 
1.05-1.07 

(1.05) 
3.61-12.75 

(6.91) 

Cluster 3 
8.31-10.52 

(8.48) 
15.98-19.91 

(19.66) 
1.84-2.83 

(2.25) 
1.36-1.52 

(1.52) 
10.83-29.45 

(26.25) 

Cluster 4 
2.47-5.52 

(5.10) 
6.44-16.80 

(13.52) 
0.54-1.78 

(0.92) 
1.21-1.74 

(1.42) 
14.75-28.91 

(20.37) 

Cluster 5 
12.24-20.57 

(19.55) 
10.90-17.56 

(17.56) 
2.89-3.0 
(2.98) 

1.05-1.06 
(1.05) 

25.32-29.83 
(25.75) 

Cluster 6 
3.25-7.18 

(6.40) 
7.73-18.23 

(15.86) 
1.91-2.97 

(2.73) 
1.05-1.09 

(1.09) 
6.19-28.57 

(15.47) 
 457 
Descriptive statistics of predicted terrestrial SOC stocks at 0-30 cm soil depth are shown in 458 
Table 4. Forests have the largest mean SOC stocks ranging from 70.3 to 113.9 t ha-1 by all 459 
models, and shrubland is estimated to have the lowest mean SOC stocks. The distributions of 460 
predicted continental SOC stocks by all models are positively skewed with most estimated SOC 461 
stocks less than 50 t ha-1 (Figure 7a), and SOC stocks at peak density predicted by MIMICS-462 
ENV and MIMICS-PFT are smaller than those predicted by the two machine learning 463 
approaches. 464 
 465 
As expected, all models consistently projected larger SOC stocks in the southeast region, 466 
southwest corner and Tasmania, and consistently indicated lower SOC stocks in central and 467 
western Australia (Figure 7b). Among the models, K-means coupled with multiple linear 468 
regression consistently provided the highest SOC estimations across all vegetation types, while 469 
MIMICS-PFT model consistently yielded the lowest mean SOC stocks.  470 
 471 
The ensemble estimate of SOC stocks (Figure 7c) shows a similar distribution pattern as that 472 
generated by single model. SOC stocks of the ensemble range from 10.0 to 180.4 t ha-1 with an 473 
average value of 30.3 t ha-1.  Coefficient of variation calculated as the ratio of standard deviation 474 
to mean across the four estimates (Figure 7d) is positively correlated with the ensemble mean 475 
estimate. That is, soils with higher SOC stocks exhibit greater variability in SOC predictions 476 
among different models. Note also that the variability of estimates tends to be smaller in areas 477 
with denser numbers of observations (Figure 7d).   478 
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 479 

 480 
 481 
Figure 7. Estimated Australian terrestrial SOC stocks (t ha-1) for top 30 cm soil and ensemble statistical 482 
characteristics: a) density plot of estimated terrestrial SOC stocks by all models, noting that only stocks less 483 
than 200 t ha-1 are shown for better comparison of the distribution; b) estimated SOC stocks by each model; 484 
c) estimated SOC stocks of the ensemble; d) coefficient of variation of the ensemble estimates of SOC stocks. 485 
Grey points represent locations of SOC observations. 486 
 487 
Table 4. Descriptive statistics of estimated terrestrial SOC stocks (t ha-1) at 0-30 cm soil. Min. and Max. are 488 
minimum and maximum value, respectively. 1st Qu and 3rd Qu are first and third quartile, respectively. 489 
 490 

 PFT Min. 1st Qu median mean 3rd Qu Max. 

K-means 
+ MLR 

grassland 4.2 17.9 21.2 41.5 42.5 601.1 
shrubland 7.2 16.4 19.3 23.6 24.4 472.2 
woodland 7.1 20.1 26.1 33.3 33.7 483.1 

forest 18.0 51.3 95.2 113.9 153.4 474.0 
all 4.2 18.1 23.6 38.2 36.7 601.1 

Random 
Forest 

grassland 10.4 18.5 26.0 30.4 37.2 125.3 
shrubland 10.3 17.0 19.6 21.4 24.4 104.4 
woodland 10.5 20.3 25.8 28.2 32.4 122.1 

forest 29.3 55.0 82.3 78.4 97.0 161.7 
all 10.3 18.9 25.0 29.8 33.7 161.7 

MIMICS-
PFT 

grassland 10.8 16.4 24.1 25.1 33.3 58.7 
shrubland 6.5 12.2 15.5 16.5 20.6 56.5 
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woodland 7.8 17.4 21.2 22.1 25.9 61.4 
forest 17.9 44.5 77.4 70.3 88.5 109.9 

all 6.5 15.7 21.2 24.3 28.9 109.9 

MIMICS-
ENV 

grassland 6.8 13.7 18.7 29.9 27.6 124.0 
shrubland 6.7 13.4 16.7 18.3 20.2 131.9 
woodland 8.1 18.0 24.0 27.5 28.0 131.6 

forest 15.8 35.7 90.4 79.4 106.5 134.1 
all 6.7 15.0 20.2 28.9 27.5 134.1 

Ensemble 

grassland 11.4 17.1 21.1 31.7 36.3 180.4 
shrubland 10.0 15.2 17.3 20.0 21.7 170.4 
woodland 11.0 18.8 24.4 27.8 30.0 168.0 

forest 22.0 46.8 93.1 85.5 112.7 166.3 
all 10.0 17.2 22.2 30.3 31.5 180.4 

 491 

4. Discussion 492 
4.1. Relative importance of predictors on SOC variations 493 
 494 
Extensive research has been conducted to discern the factors that govern SOC 495 
concentration/stocks. Among the commonly employed predictors for SOC spatial variations, 496 
climate, organisms, topography, parent material, and soil properties are prominent (Wiesmeier 497 
et al., 2019). Within this study, we conducted a comparative assessment of the significance of 498 
key variables, namely MAT, MAP, NPP, soil clay content and bulk density, in driving variations 499 
in SOC in Australia. Although the number of predictors utilized in our approach is fewer than 500 
that employed in most digital mapping methodologies, our models show good performance in 501 
predicting SOC in Australia (Figure 5 and 6) and its strength lies in the potential for a more 502 
direct comparison between empirical and process-based models. 503 
 504 
Consistent with the result by Hobley et al., (2015) on the soils from eastern Australia, this study 505 
identified soil bulk density as an important predictor of SOC concentration at continental scale 506 
(Figure 3). However, the relationship is largely interactive between soil bulk density and soil 507 
carbon concentration (Murphy, 2015). Higher concentrations of soil organic matter facilitate 508 
soil aggregation formation and increase soil porosity, which results in lower bulk density. 509 
Meanwhile, a soil with reduced bulk density exhibits higher permeability for water and oxygen, 510 
which enhances plant root growth and SOC dynamics. Physically, the bulk density of organic 511 
matter is less than 1 g cm-3, much lower than soil mineral solids with a density of 2.66 g cm-3, 512 
therefore lower bulk density soils usually have higher SOC concentration (Marshall and 513 
Holmes, 1988).  514 
 515 
Across the Australia continent, MAT emerges as the second most influential factor governing 516 
SOC variations, followed by NPP, MAP, and clay content. This sequence of significance 517 
diverges from the findings of Walden et al. (2023), where the order of importance was observed 518 
as NPP > clay content > MAP > MAT on a continental scale in Australia. The number of 519 
predictors used in their study is much higher than that in our study, which may affect the 520 
contribution of given predictors in SOC variation (Guo et al., 2019). This discrepancy might 521 
however be attributable to the utilization of observations encompassing both terrestrial and blue 522 
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carbon ecosystems in their study. Clay emerges as key driver mainly in the groups where aquatic 523 
plants (e.g., seagrass, tidal marsh) appeared. The more extensive dataset encompassing the 524 
eastern coastline, characterized by greater variability and abundance of NPP input, potentially 525 
elevates NPP to a dominant role in influencing SOC variations within their study.         526 
 527 
For SOC in different vegetation types (Figure 3), soil bulk density and MAT are more important 528 
than other factors in forest, and all factors except clay content showed similar importance in 529 
predicting SOC concentration in grassland. NPP and MAP dominate the SOC variations in 530 
woodland and shrubland. Climate conditions as represented by MAT and MAP exert their 531 
impact on SOC in all vegetation types. It was proposed that the primary climatic determinant 532 
of SOC variation hinges on the primary constraint affecting SOC production and turnover 533 
(Hobley et al., 2016). In this study, most shrublands and woodlands are distributed in arid and 534 
semi-arid regions characterized by limited precipitation, which leads to water stress in surface 535 
soil, limiting plant productivity and reducing soil C input (Hobley et al., 2015). Consequently, 536 
MAP and NPP exhibited relatively higher influence on SOC variations in soils under these 537 
vegetation types. In contrast, forest SOC observations are mainly distributed in areas with 538 
relatively lower temperatures, therefore experience constrained microbial metabolism, leading 539 
to reduced decomposition rates and the high accumulation of SOC (Wynn et al., 2006). 540 
Consequently, MAT emerges as a key factor influencing SOC variations in forests. Furthermore, 541 
it is noteworthy that soil bulk density plays a crucial role in determining SOC distribution within 542 
forest, where it is found to be significantly lower compared to other vegetation types. This lower 543 
soil bulk density likely improves oxygen availability to soil microbial communities, and 544 
facilitates the formation of microaggregates to enhance the preservation of SOC within the soil 545 
matrix (Bronick and Lal, 2005). Consequently, it effectively contributes to elevated SOC 546 
concentration levels in forested areas. 547 
  548 
PFT is the only categorical predictor for SOC concentration in this study. SOC is mainly derived 549 
from plant C input through above-/belowground tissues, and SOC turnover and storage are 550 
influenced by plant traits like plant growth rate and chemical and physical composition (De 551 
Deyn et al., 2008; Faucon et al., 2017). With shared representation of similar plant traits, PFT 552 
is widely used in process-based models (Poulter et al., 2015; Famiglietti et al., 2023). It was 553 
found that the vertical distribution of SOC is highly related to PFT due to the different root 554 
distribution and above- and belowground allocation (Jobbágy and Jackson, 2000). However, 555 
our study is limited by the absence of SOC observations at multiple soil depths, restricting the 556 
analysis to the spatial distribution of SOC at 30 cm soil depth. The influence of PFT on SOC 557 
concentration at this particular depth appears relatively insignificant (Figure 3), casting doubt 558 
on the effectiveness of optimizing parameters of process-based models for individual PFT 559 
(Cranko Page et al., 2023). Considering this, employing the top 3 influential abiotic predictors, 560 
soil bulk density, MAT, and MAP, we partitioned all observations into six distinct clusters using 561 
K-means. It was anticipated that SOC ranges within each cluster would be narrow due to the 562 
high similarity of these three predictors within each group. However, the distribution of SOC 563 
in clusters 2, 4, and 6 exhibited considerable variability (Figure 4). Given that these clusters are 564 
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predominantly composed of forests, it becomes apparent that these three abiotic factors alone 565 
are insufficient to fully characterize the intricacies of forest SOC concentration. It was found 566 
that elevation and evapotranspiration also drive the variation of forest SOC in Australia (Walden 567 
et al., 2023), and taking them into account might potentially increase the predictability of forest 568 
SOC. 569 

4.2. Model evaluation and comparison with other studies 570 
 571 
Although the predictors used for machine learning models are not exactly same as the inputs of 572 
MIMICS, the missing factors (e.g., MAP) were used for parameter optimization of MIMICS-573 
ENV, making the predictions dependent on similar information and so comparable to some 574 
extent.  Besides, our study presented clear evaluation metrics for out-of-sample validation, 575 
enabling a more robust assessment of model performance when applied to new datasets. 576 
 577 
Based on the performance metrics of test data, the machine learning models performed 578 
remarkably well (Figure 5). The R2 suggested that both machine learning models can explain 579 
more than 90% of SOC variability across sites, and random forest did the best job with greatest 580 
R2 and LCCC, and lowest MAE and RMSE. Random forest algorithms were widely adopted in 581 
predicting spatial-temporal SOC dynamics and produced moderately good performance 582 
regionally and globally. For example, Wang et al. (2022) applied random forest to estimate SOC 583 
stocks in south-eastern Australia and explained 69% of the variation of current SOC stocks. 584 
Nyaupane et al. (2023) trained a random forest model using global SOC observations and 585 
explained 61% of SOC variation. The good performance of random forest might be attributed 586 
to reduced susceptibility to over-fitting and better capacity to manage the hierarchical non-587 
linear relationships that exist between SOC and environmental predictors (Wang et al., 2018b). 588 
Other machine learning methods have been applied to predict continental SOC stocks in 589 
Australia. For example, Walden et al. (2023) trained regression-tree algorithm CUBIST to 590 
predict SOC stocks for top 30 cm soil using the harmonised datasets. The mean LCCC and 591 
RMSE for out-of-sample validation in their study was 0.78 and 0.20 respectively when log10 592 
transformed SOC (t ha-1) values were used. Wadoux et al. (2023) applied quantile regression 593 
forest to predict SOC stocks at multiple soil depths. The prediction accuracy decreased 594 
dramatically for deeper depth intervals with the greatest R2 (0.53) at 0-5 cm soil. The better 595 
results in this study may be attributed to the removal of cropland ecosystems, which are clearly 596 
highly managed and so less predictable. Agricultural practices greatly affect SOC stocks in 597 
Australia and add the complexity to the relationship between SOC and environmental factors 598 
(Luo et al., 2010). Models using environmental predictors without representation of land use 599 
management are unlikely to be able to fully capture the SOC dynamics in croplands (Abramoff 600 
et al., 2022).   601 
 602 
Although MIMICS was not as accurate as machine learning models in simulating spatial 603 
variation of SOC concentration in Australia, it did well at continental scale with mean R2 at 604 
0.82 and 0.84 for MIMICS-PFT and MIMICS-ENV, respectively (Figure 5), much greater than 605 
the values (<0.4) obtained by Abramoff et al. (2022) who applied a different microbial explicit 606 
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model to Australian SOC dataset. Georgiou et al. (2021) found that there was a mismatch 607 
between observations and MIMICS in the role of different environmental controls on SOC 608 
variability at global scale. In their study, NPP and MAT had the most explanatory power for 609 
SOC stocks from MIMICS, while clay content had the most explanatory power for global SOC 610 
observations, which limits the predictability of SOC using MIMICS in their study. However, in 611 
our study, NPP and MAT rather than clay content played a greater role in observed SOC 612 
variations, perhaps contributing to a better performance of MIMICS in Australia. It also means 613 
that SOC estimates in our study are highly sensitive to the estimates of NPP. In this study, we 614 
used MODIS NPP product (Running and Zhao, 2021) and did not account for the loss of NPP 615 
due to human activities, which may likely influence the optimized estimates of some model 616 
parameters, and the uncertainties of simulated SOC concentration. Future studies would ideally 617 
use multiple NPP products to quantify the impacts of NPP uncertainties in simulating SOC 618 
variation in Australia.  619 
 620 
The modest performance of process-based model MIMICS relative to machine learning models 621 
could potentially be attributed to the absence of explicit representation of MAP. The 622 
augmentation of MAP within parameter optimization in MIMICS-ENV did allow improved 623 
performance compared to MIMICS-PFT, particularly within non-forest regions where the 624 
importance of MAP rivals or surpasses that of temperature. Precipitation is a determinant of 625 
plant productivity, especially in arid and semi-arid regions. Besides, arid regions with limited 626 
precipitation are characterized by lower weathering rate limiting the formation of mineral-627 
associated soil carbon (Doetterl et al., 2015). Hence, we assume that introducing the effect of 628 
moisture to MIMICS could contribute to more accurate prediction of SOC, as compared with 629 
just taking MAP into account for parametrization, especially in arid and semiarid regions.  630 
 631 
All models produced lower MAE and RMSE for non-forest SOC but higher R2 and LCCC for 632 
forest SOC (Figure 6). SOC in forest is more abundant and variable compared to SOC in other 633 
vegetation types even when climate conditions are similar, which leads to greater absolute error 634 
in the estimated forest SOC than in other vegetation types. However, in terms of the consistency 635 
and concordance between the pattern of observations and predictions, all models show higher 636 
ability to predict SOC in forest. Forests, given that they are less perturbed ecosystems, might 637 
show greater SOC predictability due to the reduced influence of direct anthropogenic 638 
disturbances. Grasslands, shrublands, and woodlands, predominantly situated in Australian 639 
rangelands may experience extensive grazing and land management. Primarily, grazing reduces 640 
soil carbon input by consumption of aboveground biomass and accelerate SOC decomposition 641 
through input of nutrient-enriched animal waste. This introduces additional uncertainties to our 642 
modelled SOC estimates, since C input is represented solely by NPP without accounting for the 643 
impact of grazing and land managements. Moreover, the cascading effects of grazing extend to 644 
potential alterations in plant composition and structural attributes, inducing consequential shifts 645 
in litter properties that modulate soil carbon decomposition kinetics (Lunt et al., 2007; Bai and 646 
Cotrufo, 2022). The disturbances triggered by grazing manifest in soil carbon pools, leading to 647 
a state of disequilibrium rather than adhering to the assumption of SOC convergence toward 648 
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equilibrium, as embraced in this study's framework. Notably, forests, as relatively undisturbed 649 
natural ecosystems, demonstrate a better coherence with the equilibrium assumption, rendering 650 
their SOC more amenable to prediction through environmental drivers. 651 
 652 
4.3. Spatial prediction of SOC stocks in Australia 653 
 654 
We produced gridded SOC stocks across Australia using the models validated in this study and 655 
an ensemble estimate as the average of four models (Figure 7). Among the models, K-means 656 
coupled with multiple linear regression produced the largest mean SOC stocks both at 657 
continental scale and for all vegetation types. In contrast, RF and MIMICS with different 658 
parameterization approaches produced lower SOC stock estimations (Table 4). The mean 659 
terrestrial SOC stocks estimated by random forest and MIMICS are comparable with that 660 
estimated by Australian baseline map, which was generated using machine learning algorithm, 661 
reporting mean SOC stocks at 29.7 t ha-1 with 95% confidence limits of 22.6 and 37.9 t ha-1 662 
(Viscarra Rossel et al., 2014). However, SOC stocks might be underestimated by these methods 663 
because of the scarcity of data from the most productive temperate forest both in the baseline 664 
map (Bennett et al., 2020) and in our study. Parameter optimization process of MIMICS and 665 
the training process of random forest are greatly affected by data used to train the model. Most 666 
SOC observations in this study were sourced from arid and semiarid regions, characterized by 667 
relatively low SOC content. As a result, the models' ability to predict SOC stocks beyond the 668 
observed data range is somewhat constrained. PFT was found to be less important than other 669 
environmental factors in driving spatial SOC variations (Figure 3), so it was perhaps not 670 
surprising that applying parameters optimized for each plant functional type to the regions with 671 
same PFT but broader climate conditions led to inferior results than applying parameters 672 
optimized for each environmental group.  673 
 674 
The utilization of linear regression in K-means + MLR generated SOC estimates beyond the 675 
range of observations, particularly in eastern Australia where environmental conditions deviate 676 
from the training data. The mean SOC stocks estimated by K-means + MLR (38.2 t ha-1) are 677 
higher than those of the other models employed in this study, and align closely with the mean 678 
value 36.2 t ha-1 reported by Walden et al. (2023) who updated the Australian baseline SOC 679 
map (Viscarra Rossel et al., 2014) by incorporating additional SOC observations from forests 680 
and coastal marine ecosystems. However, caution is required when interpreting extreme values 681 
derived from the K-means + MLR, such as the instance of grassland SOC stocks reaching 601 682 
t ha-1 (Table 4). These values raise concerns about the reliability of this approach when 683 
extrapolating out-of-sample. Though there is a positive relationship between NPP and SOC 684 
observations in this study, SOC accumulation cannot continuously increase linearly in the 685 
regions where environmental conditions seem highly conducive to SOC formation. The greater 686 
amount of carbon input in eastern Australia might trigger the acceleration of microbial 687 
decomposition because of a priming effect, and lead to a decreased accumulation of SOC stocks 688 
(Ren et al., 2022). The existence of SOC saturation also implies that SOC cannot be 689 
accumulated without limit (Georgiou et al., 2022; Viscarra Rossel et al., 2023). In light of these 690 
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complexities, applying linear regression to predict SOC stocks, especially under the extreme 691 
environmental conditions, should be undertaken with care.  692 
 693 
Continentally, higher SOC stocks were estimated for the southwest corner and southeast 694 
Australia (Figure 7), aligning with other SOC maps for Australia (Wadoux et al., 2023; Walden 695 
et al., 2023). These regions are characterized by lower temperature and higher precipitation, 696 
therefore high SOC accumulation appeared because of high carbon input of NPP and low 697 
decomposition rate. However, the high variability of SOC estimates among the four models in 698 
these regions should be highlighted (Figure 7d), along with the difference of magnitudes 699 
between the estimates in this study and other Australian SOC products (Viscarra Rossel et al., 700 
2014; Walden et al., 2023). Despite inherent differences in model structures, the scarcity of 701 
observations in these regions likely contributes to the large uncertainties in SOC estimates. 702 
Forest has the largest mean SOC stocks ranging from 70.3 to 113.9 t ha-1 estimated by four 703 
models in this study. Around 75% of the forest SOC is from soil under Eucalypt open forest, 704 
and mean SOC stocks under this type of forest were estimated to be 87.5 t ha-1 (63.8 -119.6 t 705 
ha-1 for 95% confidence interval) (Walden et al., 2023). Shrublands are estimated to have the 706 
lowest mean SOC stocks, and more than 90% of shrub SOC observations are from soil under 707 
Acacia shrubland and Chenopod shrubland, which rank at the bottom of SOC stocks among 708 
different vegetation types (Walden et al., 2023). The low SOC in shrubland is probably due to 709 
low carbon input because of limited rainfall (MAP < 280 mm). Though the mean SOC stocks 710 
in non-forest regions are much smaller than that for forest, the greater area of vegetation cover 711 
results in considerable total SOC stocks, highlighting the importance of carbon building and 712 
maintaining via improved managements in these areas. Greater variability of SOC estimates 713 
among different models appears in the regions where SOC stocks are higher (Figure 7). The 714 
sparsity of SOC observations is a primary contributor to the uncertainties associated with SOC 715 
estimates in these regions, highlighting the importance on continual collection of data to better 716 
constrain models’ behaviour. This imperative is especially pronounced in regions covered by 717 
forests, as forested soils exhibit substantial SOC stocks, amplifying the significance of abundant 718 
and accurate data acquisition in these specific ecosystems. 719 

5. Conclusion 720 
 721 
We compared the performance of two machine learning models, and one process-based 722 
microbial model employing two parameterization approaches, to explain the spatial variation 723 
of SOC concentration in the top 30 cm soil in Australia. We found that climate conditions and 724 
NPP contribute more than soil clay content in predicting SOC concentration in Australia. 725 
 726 
Validation results affirm that with appropriate filtering of data (e.g. removing highly managed 727 
crop ecosystems) models can predict SOC concentration at a continental scale with reasonably 728 
high reliability, achieving explained variances exceeding 80% for out-of-sample test data, with 729 
random forest showing highest prediction accuracy. Notably, all models show higher R2 in 730 
prediction of SOC in forest than in non-forest soils. MIMICS, with parameters optimized for 731 
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different environmental clusters, performed better in SOC prediction than MIMICS with 732 
parameters optimized for different PFT, especially in non-forest regions. 733 
 734 
All models broadly agree on the spatial distribution of SOC stocks, with higher SOC stocks 735 
concentrated in the southeast and southwest regions of Australia. However, the variations in 736 
estimated values need to be acknowledged, particularly in highly productive regions. Among 737 
these estimates, K-means algorithm coupled with multiple linear regression yields the highest 738 
mean SOC stocks estimate, while the MIMICS-PFT model generates the lowest estimate. 739 
Considerable disagreement of the maximum and minimum SOC stock values predicted by all 740 
models exists partly because models are less constrained by observations in these environments, 741 
highlighting the need for continued observational campaigns. 742 
 743 
Our investigation has revealed significant disparities in estimated SOC stocks when different 744 
methodologies were employed. This highlights the need for a critical re-evaluation of land 745 
management strategies that heavily depend on SOC estimates derived from a single approach. 746 
The incorporation of an ensemble of SOC estimates is more likely to effectively capture 747 
elements of the uncertainty associated with SOC estimations, providing a more robust basis for 748 
informing strategies in soil carbon management and climate change mitigation. 749 

Code availability 750 
 751 
Source Code of vertically resolved MIMICS can be accessed at the CSIRO data portal 752 
https://doi.org/10.25919/843a-w584 (Wang et al., 2021). Codes for data analysis and machine 753 
learning can be accessed by contacting the correspondence author. 754 

Data availability 755 
 756 
The SOC observations described in Viscarra Rossel et al. (2014) are not publicly available but 757 
are available from Raphael A. Viscarra Rossel (r.viscarra-rossel@curtin.edu.au) on reasonable 758 
request. All other data used in this study are publicly accessible and the specific references of 759 
these databases are provided in Section 2.4. 760 

Author contribution 761 
 762 
Conceptualization: LW, GA, Y-PW, AP; Methodology: LW, GA, Y-PW; Investigation: LW, 763 
RAVR; Formal analysis and Visualization: LW; Writing-original draft preparation: LW; 764 
Writing-review & editing: LW, GA, Y-PW, AP, RAVR. 765 

Competing interests 766 
 767 
The co-author Raphael A. Viscarra Rossel is a member of the editorial board of SOIL. 768 

https://doi.org/10.25919/843a-w584


 24 

Acknowledgements 769 
 770 
LW thanks the China Scholarship Council and the University of New South Wales for financial 771 
support during her PhD study. RAVR and Y-PW thank the Australian Research Council’s 772 
Discovery Projects scheme (project DP210100420) for funding. LW, GA and AP thank the ARC 773 
Centre of Excellence for Climate Extremes for supporting this work (CE170100023).  774 
 775 
 776 
 777 

Reference 778 
 779 
Abramoff, R. Z., Guenet, B., Zhang, H., Georgiou, K., Xu, X., Viscarra Rossel, R. A., Yuan, W. 780 

and Ciais, P.: Improved global-scale predictions of soil carbon stocks with Millennial Version 781 
2. Soil Biol Biochem, 164, 108466, https://doi.org/10.1016/j.soilbio.2021.108466, 2022. 782 

Abs, E. and Ferrière, R.: Modeling microbial dynamics and heterotrophic soil respiration: Effect 783 
of climate change. Biogeochemical cycles: ecological drivers and environmental impact, 784 
103-129, https://doi.org/10.1002/9781119413332.ch5, 2020. 785 

Adhikari, K., Mishra, U., Owens, P., Libohova, Z., Wills, S., Riley, W., Hoffman, F. and Smith, 786 
D.: Importance and strength of environmental controllers of soil organic carbon changes with 787 
scale. Geoderma, 375, 114472, https://doi.org/10.1016/j.geoderma.2020.114472, 2020. 788 

Bai, Y. and Cotrufo, M. F.: Grassland soil carbon sequestration: Current understanding, 789 
challenges, and solutions. Science, 377, 603-608, doi: 10.1126/science.abo2380, 2022. 790 

Bennett, L. T., Hinko-Najera, N., Aponte, C., Nitschke, C. R., Fairman, T. A., Fedrigo, M. and 791 
Kasel, S.: Refining benchmarks for soil organic carbon in Australia’s temperate forests. 792 
Geoderma, 368, 114246, https://doi.org/10.1016/j.geoderma.2020.114246, 2020. 793 

Bissett, A., Fitzgerald, A., Meintjes, T., Mele, P. M., et al.: Introducing BASE: the biomes of 794 
Australian soil environments soil microbial diversity database. GigaScicence, 5, s13742–795 
016–0126–5. https://doi.org/10.1186/s13742-016-0126-5, 2016. 796 

Bossio, D., Cook-Patton, S., Ellis, P., Fargione, J., Sanderman, J., Smith, P., Wood, S., Zomer, 797 
R., Von Unger, M. and Emmer, I.: The role of soil carbon in natural climate solutions. Nat 798 
Sustain, 3, 391-398, https://doi.org/10.1038/s41893-020-0491-z, 2020. 799 

Breiman, L.: Random forests. Machine learning, 45, 5-32, 800 
https://doi.org/10.1023/A:1010933404324, 2001. 801 

Bronick, C. J. and Lal, R: Soil structure and management: a review. Geoderma, 124, 3-22, 802 
https://doi.org/10.1016/j.geoderma.2004.03.005, 2005. 803 

Cranko Page, J., Abramowitz, G., De Kauwe, M. G. and Pitman, A. J.: Are plant functional 804 
types fit for purpose? Geophys Res Lett, 51, e2023GL104962, 805 
https://doi.org/10.1029/2023GL104962, 2024. 806 

Chandel, A. K., Jiang, L. and Luo, Y.: Microbial Models for Simulating Soil Carbon Dynamics: 807 
A Review. J Geophys Res-Biogeo, e2023JG007436, https://doi.org/10.1029/2023JG007436, 808 
2023. 809 

https://doi.org/10.1016/j.soilbio.2021.108466
https://doi.org/10.1002/9781119413332.ch5
https://doi.org/10.1016/j.geoderma.2020.114472
https://doi.org/10.1186/s13742-016-0126-5
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1029/2023GL104962
https://doi.org/10.1029/2023JG007436


 25 

De Deyn, G. B., Cornelissen, J. H. and Bardgett, R. D.: Plant functional traits and soil carbon 810 
sequestration in contrasting biomes. Ecol Lett, 11, 516-531, https://doi.org/10.1111/j.1461-811 
0248.2008.01164.x, 2008. 812 

Debeer, D. and Strobl, C.: Conditional permutation importance revisited. BMC bioinformatics, 813 
21, 1-30, https://doi.org/10.1186/s12859-020-03622-2, 2020. 814 

Doetterl, S., Stevens, A., Six, J., Merckx, R., Van Oost, K., Casanova Pinto, M., Casanova-815 
Katny, A., Muñoz, C., Boudin, M. and Zagal Venegas, E.: Soil carbon storage controlled by 816 
interactions between geochemistry and climate. Nat Geosci, 8, 780-783, 817 
https://doi.org/10.1038/ngeo2516, 2015. 818 

Duan, Q., Gupta, V. K. and Sorooshian, S.: Shuffled complex evolution approach for effective 819 
and efficient global minimization. J Optim Theory Appl, 76: 501-521, 820 
https://doi.org/10.1007/BF00939380, 1993. 821 

Famiglietti, C. A., Worden, M., Quetin, G. R., Smallman, T. L., Dayal, U., Bloom, A. A., 822 
Williams, M. and Konings, A. G.: Global net biome CO2 exchange predicted comparably 823 
well using parameter–environment relationships and plant functional types. Glob Change 824 
Biol, 29, 2256-2273, https://doi.org/10.1111/gcb.16574, 2023. 825 

Faucon, M.-P., Houben, D. and Lambers, H.: Plant functional traits: soil and ecosystem services. 826 
Trends Plant Sci, 22, 385-394, https://doi.org/10.1016/j.tplants.2017.01.005, 2017. 827 

Georgiou, K., Malhotra, A., Wieder, W. R., Ennis, J. H., Hartman, M. D., Sulman, B. N., Berhe, 828 
A. A., Grandy, A. S., Kyker-Snowman, E. and Lajtha, K.: Divergent controls of soil organic 829 
carbon between observations and process-based models. Biogeochemistry, 156, 5-17, 830 
https://doi.org/10.1007/s10533-021-00819-2, 2021. 831 

Georgiou, K., Jackson, R. B., Vindušková, O., Abramoff, R. Z., Ahlström, A., Feng, W., Harden, 832 
J. W., Pellegrini, A. F., Polley, H. W. and Soong, J. L.: Global stocks and capacity of mineral-833 
associated soil organic carbon. Nat Commun, 13, 3797, https://doi.org/10.1038/s41467-022-834 
31540-9, 2022. 835 

Grace, P. R., Post, W. M. and Hennessy, K.: The potential impact of climate change on 836 
Australia’s soil organic carbon resources. Carbon Balance Manag, 1, 1-10, 837 
https://doi.org/10.1186/1750-0680-1-14, 2006. 838 

Grundy, M., Viscarra Rossel, R. A., Searle, R., Wilson, P., Chen, C. and Gregory, L.: Soil and 839 
landscape grid of Australia. Soil Res, 53, 835-844, https://doi.org/10.1071/SR15191, 2015. 840 

Guo, Z., Adhikari, K., Chellasamy, M., Greve, M. B., Owens, P. R. and Greve, M. H.: Selection 841 
of terrain attributes and its scale dependency on soil organic carbon prediction. Geoderma, 842 
340, 303-312, https://doi.org/10.1016/j.geoderma.2019.01.023, 2019. 843 

Heung, B., Ho, H. C., Zhang, J., Knudby, A., Bulmer, C. E. and Schmidt, M. G.: An overview 844 
and comparison of machine-learning techniques for classification purposes in digital soil 845 
mapping. Geoderma, 265, 62-77, https://doi.org/10.1016/j.geoderma.2015.11.014, 2016. 846 

Hobley, E., Wilson, B., Wilkie, A., Gray, J. and Koen, T.: Drivers of soil organic carbon storage 847 
and vertical distribution in Eastern Australia. Plant Soil, 390, 111-127, 848 
https://doi.org/10.1007/s11104-015-2380-1, 2015. 849 

https://doi.org/10.1111/j.1461-0248.2008.01164.x
https://doi.org/10.1111/j.1461-0248.2008.01164.x
https://doi.org/10.1038/ngeo2516
https://doi.org/10.1038/s41467-022-31540-9
https://doi.org/10.1038/s41467-022-31540-9


 26 

Hobley, E. U., Baldock, J. and Wilson, B.: Environmental and human influences on organic 850 
carbon fractions down the soil profile. Agric Ecosyst Environ, 223, 152-166, 851 
https://doi.org/10.1016/j.agee.2016.03.004, 2016. 852 

Jackson, R. B., Lajtha, K., Crow, S. E., Hugelius, G., Kramer, M. G. and Piñeiro, G.: The 853 
ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annual review 854 
of ecology, evolution, and systematics, 48, 419-445, https://doi.org/10.1146/annurev-855 
ecolsys-112414-054234, 2017. 856 

Jeffrey, S. J., Carter, J. O., Moodie, K. B. and Beswick, A. R.: Using spatial interpolation to 857 
construct a comprehensive archive of Australian climate data. Environ Model Softw, 16, 309-858 
330, https://doi.org/10.1016/S1364-8152(01)00008-1, 2001. 859 

Jenny, H.: Factors of soil formation: a system of quantitative pedology, Agron. J., 33, 857-858, 860 
https://doi.org/10.2134/agronj1941.00021962003300090016x, 1941. 861 

Jobbágy, E. G. and Jackson, R. B.: The Vertical Distribution of Soil Organic Carbon and Its 862 
Relation to Climate and Vegetation. Ecol Appl, 10, 423-436, https://doi.org/10.1890/1051-863 
0761(2000)010[0423:TVDOSO]2.0.CO;2, 2000. 864 

Keskin, H., Grunwald, S. and Harris, W. G.: Digital mapping of soil carbon fractions with 865 
machine learning. Geoderma, 339, 40-58, https://doi.org/10.1016/j.geoderma.2018.12.037, 866 
2019. 867 

Lamichhane, S., Kumar, L. and Wilson, B.: Digital soil mapping algorithms and covariates for 868 
soil organic carbon mapping and their implications: A review. Geoderma, 352, 395-413, 869 
https://doi.org/10.1016/j.geoderma.2019.05.031, 2019. 870 

Lawrence, I. and Lin, K.: A concordance correlation coefficient to evaluate reproducibility. 871 
Biometrics, 45, 255-268, https://doi.org/10.2307/2532051, 1989. 872 

Le Noë, J., Manzoni, S., Abramoff, R., Bolscher T., Bruni, E., Cardinael, R., Ciais, P., Chenu, 873 
C., Clivot, H., Derrien, D., Ferchaud, F., Garnier, P., Goll, D., Lashermes, G., Martin, M., 874 
Rasse, D., Rees, F., Sainte-Marie J., Salmon, E., Schiedung, M., Schimel, J., Wieder, W., 875 
Abiven, S., Barre, P., Cecillon, L. and Guenet, B.: Soil organic carbon models need 876 
independent time-series validation for reliable prediction. Commun Earth Environ, 4, 158, 877 
https://doi.org/10.1038/s43247-023-00830-5, 2023. 878 

Lee, J., Viscarra Rossel, R. A., Zhang, M., Luo, Z. and Wang, Y. P.: Assessing the response of 879 
soil carbon in Australia to changing inputs and climate using a consistent modelling 880 
framework. Biogeosciences, 18, 5185-5202, https://doi.org/10.5194/bg-18-5185-2021, 2021. 881 

Lefèvre, C., Rekik, F., Alcantara, V. and Wiese, L.: Soil organic carbon: the hidden potential, 882 
Food and Agriculture Organization of the United Nations (FAO), http://www.fao.org/3/a-883 
i6937e.pdf, 2017. 884 

Lehmann, J. and Kleber, M.: The contentious nature of soil organic matter. Nature, 528, 60-68, 885 
https://doi.org/10.1038/nature16069, 2015. 886 

Liang, Z., Chen, S., Yang, Y., Zhou, Y. and Shi, Z.: High-resolution three-dimensional mapping 887 
of soil organic carbon in China: Effects of SoilGrids products on national modeling. Sci Total 888 
Environ, 685, 480-489, https://doi.org/10.1016/j.scitotenv.2019.05.332, 2019. 889 

https://doi.org/10.1146/annurev-ecolsys-112414-054234
https://doi.org/10.1146/annurev-ecolsys-112414-054234
https://doi.org/10.1038/s43247-023-00830-5
https://doi.org/10.5194/bg-18-5185-2021
http://www.fao.org/3/a-i6937e.pdf
http://www.fao.org/3/a-i6937e.pdf


 27 

Lorenz, K., Lal, R. and Ehlers, K.: Soil organic carbon stock as an indicator for monitoring land 890 
and soil degradation in relation to United Nations' Sustainable Development Goals. Land 891 
Degrad Dev, 30, 824-838, https://doi.org/10.1002/ldr.3270, 2019. 892 

Lunt, I. D., Eldridge, D. J., Morgan, J. W. and Witt, G. B.: A framework to predict the effects 893 
of livestock grazing and grazing exclusion on conservation values in natural ecosystems in 894 
Australia. Australian Journal of Botany, 55, 401-415, https://doi.org/10.1071/BT06178, 895 
2007. 896 

Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V., Carvalhais, N., Chappell, A., 897 
Ciais, P., Davidson, E. A. and Finzi, A.: Toward more realistic projections of soil carbon 898 
dynamics by Earth system models. Global Biogeochem Cycles ,30, 40-56, 899 
https://doi.org/10.1002/2015GB005239, 2016. 900 

Luo, Z., Wang, E. and Sun, O. J.: Soil carbon change and its responses to agricultural practices 901 
in Australian agro-ecosystems: a review and synthesis. Geoderma, 155, 211-223, 902 
https://doi.org/10.1016/j.geoderma.2009.12.012. 2010. 903 

Marshall, T. J. and Holmes, J. W.: Soil physics, 2nd ed., Cambridge University Press, New York, 904 
1988. 905 

McBratney, A. B., Santos, M. M. and Minasny, B.: On digital soil mapping. Geoderma, 117, 3-906 
52, https://doi.org/10.1016/S0016-7061(03)00223-4, 2003. 907 

Minasny, B., McBratney, A. B., Malone, B. P. and Wheeler, I.: Digital mapping of soil carbon. 908 
Advances in agronomy, 118, 1-47, https://doi.org/10.1016/B978-0-12-405942-9.00001-3, 909 
2013. 910 

Mishra, U. and Riley, W.: Scaling impacts on environmental controls and spatial heterogeneity 911 
of soil organic carbon stocks. Biogeosciences, 12, 3993-4004, https://doi.org/10.5194/bg-12-912 
3993-2015, 2015. 913 

Mokany, K., Raison, R. J. and Prokushkin, A. S.: Critical analysis of root: shoot ratios in 914 
terrestrial biomes. Glob Change biol, 12, 84-96, https://doi.org/10.1111/j.1365-915 
2486.2005.001043.x, 2006. 916 

Murphy, B. W.: Impact of soil organic matter on soil properties – a review with emphasis on 917 
Australian soils. Soil Research, 53, 605-635, https://doi.org/10.1071/SR14246, 2015. 918 

Nyaupane, K., Mishra, U., Tao, F., Yeo, K., Riley, W. J., Hoffman, F. M. and Gautam, S.: 919 
Observational benchmarks inform representation of soil organic carbon dynamics in land 920 
surface models. Biogeosci Discuss, 2023, 1-28, https://doi.org/10.5194/bg-2023-50, 2023. 921 

Panchal, P., Preece, C., Penuelas, J. and Giri, J.: Soil carbon sequestration by root exudates. 922 
Trends Plant Sci, 27, 749-757, https://doi.org/10.1016/j.tplants.2022.04.009, 2022. 923 

Poulter, B., MacBean, N., Hartley, A., Khlystova, I., Arino, O., Betts, R., Bontemps, S., 924 
Boettcher, M., Brockmann, C. and Defourny, P.: Plant functional type classification for earth 925 
system models: results from the European Space Agency's Land Cover Climate Change 926 
Initiative. Geosci Model Dev, 8, 2315-2328, https://doi.org/10.5194/gmd-8-2315-2015, 927 
2015. 928 

Ren, C., Mo, F., Zhou, Z., Bastida, F., Delgado‐Baquerizo, M., Wang, J., Zhang, X., Luo, Y., 929 
Griffis, T. J. and Han, X.: The global biogeography of soil priming effect intensity. Global 930 
Ecol Biogeogr, 31, 1679-1687, https://doi.org/10.1111/geb.13524, 2022. 931 

https://doi.org/10.5194/bg-12-3993-2015
https://doi.org/10.5194/bg-12-3993-2015
https://doi.org/10.1071/SR14246


 28 

Rossel, R. V., Chen, C., Grundy, M., Searle, R., Clifford, D. and Campbell, P. The Australian 932 
three-dimensional soil grid: Australia’s contribution to the GlobalSoilMap project. Soil Res, 933 
53, 845-864, https://doi.org/10.1071/SR14366, 2015. 934 

Rumpel, C., Amiraslani, F., Koutika, L.-S., Smith, P., Whitehead, D. and Wollenberg, E.: Put 935 
more carbon in soils to meet Paris climate pledges, Nature, 564, 32-34, 936 
https://doi.org/10.1038/d41586-018-07587-4, 2018. 937 

Six, J., Conant, R. T., Paul, E. A. and Paustian, K.: Stabilization mechanisms of soil organic 938 
matter: Implications for C-saturation of soils. Plant Soil, 241, 155-176, 939 
https://doi.org/10.1023/A:1016125726789, 2002. 940 

Smith, P.: Soil carbon sequestration and biochar as negative emission technologies. Glob 941 
Change Biol, 22, 1315-1324, https://doi.org/10.1111/gcb.13178, 2016. 942 

Stockmann, U., Padarian, J., McBratney, A., Minasny, B., de Brogniez, D., Montanarella, L., 943 
Hong, S. Y., Rawlins, B. G. and Field, D. J.: Global soil organic carbon assessment. Glob 944 
Food Sec, 6, 9-16, https://doi.org/10.1016/j.gfs.2015.07.001, 2015. 945 

Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., 946 
Minasny, B., McBratney, A. B., De Courcelles, V. d. R. and Singh, K.: The knowns, known 947 
unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ, 948 
164, 80-99, https://doi.org/10.1016/j.agee.2012.10.001, 2013. 949 

Terrer, C., Phillips, R. P., Hungate, B. A., Rosende, J., Pett-Ridge, J., Craig, M. E., van 950 
Groenigen, K. J., Keenan, T. F., Sulman, B. N., Stocker, B. D., Reich, P. B., Pellegrini, A. F. 951 
A., Pendall, E., Zhang, H., Evans, R. D., Carrillo, Y., Fisher, J. B., Van Sundert, K., Vicca, S. 952 
and Jackson, R. B.: A trade-off between plant and soil carbon storage under elevated CO2. 953 
Nature, 591, 599-603, https://doi.org/10.1038/s41586-021-03306-8, 2021. 954 

Todd-Brown, K., Randerson, J., Hopkins, F., Arora, V., Hajima, T., Jones, C., Shevliakova, E., 955 
Tjiputra, J., Volodin, E. and Wu, T.: Changes in soil organic carbon storage predicted by Earth 956 
system models during the 21st century. Biogeosciences, 11, 2341-2356, 957 
https://doi.org/10.5194/bg-11-2341-2014, 2014. 958 

Todd-Brown, K. E., Randerson, J. T., Post, W. M., Hoffman, F. M., Tarnocai, C., Schuur, E. A. 959 
and Allison, S. D.: Causes of variation in soil carbon simulations from CMIP5 Earth system 960 
models and comparison with observations. Biogeosciences, 10, 1717-1736, 961 
https://doi.org/10.5194/bg-10-1717-2013, 2013. 962 

Viscarra Rossel, R. A., Webster, R., Bui, E. N. and Baldock, J. A.: Baseline map of organic 963 
carbon in Australian soil to support national carbon accounting and monitoring under climate 964 
change. Glob Change Biol, 20, 2953-2970, https://doi.org/10.1111/gcb.12569, 2014. 965 

Viscarra Rossel, R. A., Chen, C., Grundy, M. J., Searle, R., Clifford, D. and Campbell, P. H.: 966 
The Australian three-dimensional soil grid: Australia’s contribution to the GlobalSoilMap 967 
project. Soil Res, 53, 845-864, https://doi.org/10.1071/SR14366, 2015. 968 

Viscarra Rossel, R. A., Lee, J., Behrens, T., Luo, Z., Baldock, J. and Richards, A.: Continental-969 
scale soil carbon composition and vulnerability modulated by regional environmental 970 
controls. Nat Geosci, 12, 547-552, https://doi.org/10.1038/s41561-019-0373-z, 2019. 971 

https://doi.org/10.1038/s41586-021-03306-8


 29 

Viscarra Rossel, R. A., Webster, R., Zhang M., Shen, Z., Dixon, K., Wang, Y. P., Walden, L.: 972 
How much organic carbon could the soil store? The carbon sequestration potential of 973 
Australian soil. Glob Change Biol, 30, e17053, https://doi.org/10.1111/gcb.17053, 2023. 974 

Wadoux, A. M. J., Román Dobarco, M., Malone, B., Minasny, B., McBratney, A. B. and Searle, 975 
R.: Baseline high-resolution maps of organic carbon content in Australian soils. Sci Data, 10, 976 
181, https://doi.org/10.1038/s41597-023-02056-8, 2023. 977 

Walden, L., Serrano, O., Zhang, M., Shen, Z., Sippo, J. Z., Bennett, L. T., Maher, D. T., 978 
Lovelock, C. E., Macreadie, P. I. and Gorham, C.: Multi-scale mapping of Australia’s 979 
terrestrial and blue carbon stocks and their continental and bioregional drivers. Commun 980 
Earth Environ, 4, 189, https://doi.org/10.1038/s43247-023-00838-x, 2023. 981 

Wang, B., Waters, C., Orgill, S., Gray, J., Cowie, A., Clark, A. and Li Liu, D.: High resolution 982 
mapping of soil organic carbon stocks using remote sensing variables in the semi-arid 983 
rangelands of eastern Australia. Sci Total Environ, 630, 367-378, 984 
https://doi.org/10.1016/j.scitotenv.2018.02.204, 2018a. 985 

Wang, B., Gray, J. M., Waters, C. M., Anwar, M. R., Orgill, S. E., Cowie, A. L., Feng, P. and Li 986 
Liu, D.: Modelling and mapping soil organic carbon stocks under future climate change in 987 
south-eastern Australia. Geoderma, 405, 115442, 988 
https://doi.org/10.1016/j.geoderma.2021.115442, 2022. 989 

Wang, B., Waters, C., Orgill, S., Cowie, A., Clark, A., Li Liu, D., Simpson, M., McGowen, I. 990 
and Sides, T.: Estimating soil organic carbon stocks using different modelling techniques in 991 
the semi-arid rangelands of eastern Australia. Ecol Indic, 88, 425-438, 992 
https://doi.org/10.1016/j.ecolind.2018.01.049, 2018b. 993 

Wang, Y. P., Zhang, H., Ciais, P., Goll, D., Huang, Y., Wood, J. D., Ollinger, S. V., Tang, X. and 994 
Prescher, A. K.: Microbial activity and root carbon inputs are more important than soil carbon 995 
diffusion in simulating soil carbon profiles. J Geophys Res Biogeosci, 126, e2020JG006205, 996 
https://doi.org/10.1029/2020JG006205, 2021. 997 

Wieder, W., Grandy, A., Kallenbach, C., Taylor, P. and Bonan, G.: Representing life in the Earth 998 
system with soil microbial functional traits in the MIMICS model. Geosci Model Dev, 8, 999 
1789-1808, https://doi.org/10.5194/gmd-8-1789-2015, 2015. 1000 

Wiesmeier, M., Barthold, F., Spörlein, P., Geuß, U., Hangen, E., Reischl, A., Schilling, B., 1001 
Angst, G., von Lützow, M. and Kögel-Knabner, I.: Estimation of total organic carbon storage 1002 
and its driving factors in soils of Bavaria (southeast Germany). Geoderma Regional, 1, 67-1003 
78, https://doi.org/10.1016/j.geodrs.2014.09.001, 2014. 1004 

Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van 1005 
Wesemael, B., Rabot, E., Ließ, M. and Garcia-Franco, N.: Soil organic carbon storage as a 1006 
key function of soils-A review of drivers and indicators at various scales. Geoderma, 333, 1007 
149-162, https://doi.org/10.1016/j.geoderma.2018.07.026, 2019. 1008 

Wynn, J. G., Bird, M. I., Vellen, L., Grand‐Clement, E., Carter, J. and Berry, S. L.: Continental‐1009 
scale measurement of the soil organic carbon pool with climatic, edaphic, and biotic controls. 1010 
Global Biogeochem Cycles, 20, https://doi.org/10.1029/2005GB002576, 2006. 1011 

Zhang, H., Goll, D. S., Wang, Y. P., Ciais, P., Wieder, W. R., Abramoff, R., Huang, Y., Guenet, 1012 
B., Prescher, A. K. and Viscarra Rossel, R. A.: Microbial dynamics and soil physicochemical 1013 

https://doi.org/10.1038/s41597-023-02056-8
https://doi.org/10.1016/j.ecolind.2018.01.049
https://doi.org/10.1029/2020JG006205
https://doi.org/10.1016/j.geodrs.2014.09.001
https://doi.org/10.1016/j.geoderma.2018.07.026


 30 

properties explain large‐scale variations in soil organic carbon. Glob Change Biol, 26, 2668-1014 
2685, https://doi.org/10.1111/gcb.14994, 2020. 1015 

 1016 

https://doi.org/10.1111/gcb.14994

