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Abstract. We assess and rank 23 gridded snow water equivalent (SWE) products by implementing a novel evaluation strategy 

using a new suite of reference data from two cross-validated sources and a series of product inter-comparisons. The new 

reference data combines in situ measurements from both snow courses and airborne gamma measurements. Compared to 

previous evaluations of gridded products, we have substantially increased the spatial coverage and sample size across North 10 

America, and we are able to evaluate product performance across both mountain and non-mountain regions. The evaluation 

strategy we use ranks overall relative product performance while still accounting for individual differences in ability to 

represent SWE climatology, variability, and trends. Assessing these gridded products fills an important gap in the literature 

since individual gridded products are frequently chosen without prior justification as the basis for evaluating land surface and 

climate model outputs, along with other climate applications. The top performing products across the range of tests performed 15 

are ERA5-Land followed by the Crocus snow model. Our evaluation indicates that accurate representation of hemispheric 

SWE varies tremendously across the range of products. While most products are able to represent SWE reasonably well across 

Northern Hemisphere non-mountainous regions, the ability to accurately represent SWE in mountain regions and to accurately 

represent historical trends are much more variable. Finally, we demonstrate that for the ensemble of products evaluated here, 

attempts to assimilate surface snow observations and/or satellite measurements lead to a deleterious influence on regional snow 20 

mass trends, which is an important consideration for how such gridded products are produced and applied in the future. 

 

1 Introduction 

Historical gridded snow water equivalent (SWE) products are temporally continuous and spatially complete datasets required 

across many disciplines spanning climate, hydrology, and ecology (Clark et al., 2011; Dutra et al., 2011; Jones et al., 2011; 25 

Liston, 1999; Lundquist and Dettinger, 2005; Orsolini et al., 2013; Simpson et al., 2022). Numerous such products exist based 

on a range of techniques: output from coupled reanalysis systems, offline simulations of snow models driven by historical 

meteorological forcing, and satellite-based retrievals, all of which may also assimilate snow observations from surface 

networks or remotely sensed data. These gridded products aim to represent various aspects of historical snow conditions (e.g. 
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areal coverage, surface snow amount, snow temperatures, etc.) and because of this are frequently used to evaluate terrestrial  30 

snow output from land surface and earth system models (for example, Collier et al., 2018). However, the historical gridded 

products themselves require validation with in situ observations.  

 

For surface snow amounts, this validation is challenging for several reasons. In situ point snow depth measurements are the 

most readily available and plentiful reference data available, however some gridded products already assimilate this data in 35 

the course of their production thereby negating its use as independent reference data. Even when not incorporated into the 

production of a gridded product in situ snow depths require assumptions about snow density in order to evaluate SWE and are 

nonideal for evaluating the spatial scale on which gridded products represent snow, which can range from roughly 102-104 

km2. In place of point measurements, the use of snow courses/transects (WMO, 2018) is more appropriate. These provide 

information on both snow density and depth to better constrain SWE, and they also represent the snowpack on a spatial scale 40 

of roughly 0.1-1 km2, which is closer to the resolutions of the gridded products. Mortimer et al. (2020) previously used such 

data to evaluate a range of gridded products, but the analysis excluded complex terrain and had poor coverage across portions 

of North America. Along with snow transects, airborne gamma measurements can also be used to derive SWE estimates that 

are representative on similar spatial scales to those from snow transects (Carroll, 2001). These measurements compare the 

attenuation of gamma radiation due to the presence of snow and compare with measurements conducted under snow-free 45 

conditions while accounting for background soil moisture. Cho et al. (2020) used historical data of this type available over the 

United States to evaluate a small selection of gridded products.  

 

Recently (Mortimer et al., submitted) cross-validated snow transect and airborne gamma SWE measurements over North 

America. They demonstrated broad consistency in the corresponding SWE values from the two types of measurements and 50 

consistency in the relative performance of gridded SWE products as assessed using either source of reference data. These 

results support combining snow course and airborne gamma measurements into a single reference dataset. The result is a new 

suite of reference data with expanded spatial coverage and volume of measurements, thus greatly improving the validation 

domain across North America compared to prior studies.  

 55 

We make extensive use of this new reference dataset, along with additional approaches to dataset inter-comparisons to produce 

what we consider the most robust and comprehensive evaluation of gridded SWE products performed to date. We evaluate 23 

gridded SWE products on their ability to represent aspects of SWE climatology, variability, and trends across three segments 

of the snow season (snow onset, seasonal peak, and snow melt) and across regions spanning the Northern Hemisphere. The 

breadth of evaluation criteria permits us to make recommendations on which gridded datasets are appropriate for a variety of 60 

uses.  
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The sort of evaluation employed here shares philosophical connections to those employed by other projects such as the 

International Land Model Benchmarking (ILAMB) System (Collier et al., 2018) and the Automated Model Benchmarking R 

(AMBER) Package (Seiler, 2020) that aim to evaluate historical estimates of a range of land surface variables. However, 65 

ILAMB and AMBER are concerned with multiple outputs from land surface models that are evaluated using gridded data or 

Fiducial Reference Measurements (which are spatially less representative of land surface model output). Our analysis is a 

detailed evaluation of a single variable (SWE) using both comparisons with in-situ data and gridded product inter-comparisons 

thereby helping to inform the reference products employed in ILAMB and AMBER. By improving the temporal continuity 

and spatial coverage of our analysis, our ultimate goal is to provide a validation framework that would facilitate automated 70 

evaluation of forthcoming gridded SWE datasets.  

 

The remainder of this paper is organized as follows. Section 2 provides the list of gridded SWE products we evaluate, outlines 

our overall evaluation strategy, and describes the specific evaluation metrics and range of reference data used in the evaluation. 

We illustrate product-specific performance over a range of tests in Sect. 3. In Sect. 4 we provide the overall product rankings 75 

along with recommendations for which products may be used in what capacity and where their shortcomings exist (e.g. 

accurately captures spatial distribution of SWE, accurately captures seasonal snow mass trends, etc), along with additional 

discussion points and concluding remarks. 

 

2 Data and Methods 80 

2.1 Evaluated Gridded SWE Products 

We evaluate the suite of 23 gridded SWE products listed in Table 1; the products are organized into families and described in 

more detail below. While some of these products are now deprecated and have been superseded by updated versions, we 

include them in our evaluation as they provide a baseline to indicate the improvement or deterioration of performance with 

subsequent versions. Additionally, by including these older product versions, our evaluation may be useful for interpretation 85 

of previously published analysis that used such datasets. 

 

Table 1 List of all gridded SWE products evaluated. The † symbol denotes products that are deprecated or superseded by 

updated versions. Product availability is specified in the Data availability section. 

Product Name Abbr. Period Method to Estimate SWE Surface Information 

  B-TIM-ERA5 BE5 1981–2020 SM-un / ERA5 met. None 

  B-TIM-JRA55 BJR 1981–2020 SM-un / JRA55 met. None 

  B-TIM-MERRA2 BM2 1981–2020 SM-un / MERRA2 met. None 
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†B-TIM-ERAint BEI 1980–2019 SM-un / ERA-Interim met. None 

  Crocus-ERA5 CE5 1950–2023 SM-un / ERA5 met. None 

†Crocus v8 C8 1979–2018 SM-un / ERA-Interim met. None 

†Crocus v7 C7 1980–2017 SM-un / ERA-Interim met. None 

  ERA5 E5 1979–2023 SM-c / ERA5 met. SD + IMS 

  ERA5-Snow E5S 1980–2020 SM-un / ERA5 met. SD  

  ERA5-Land E5L 1981–2023 SM-un / ERA5 met. none 

†ERA-Interim-Land EIL 1981–2010 SM-un / ERA-interim met. none 

  GLDAS v2.2 CLSM GL22 2003–2020 SM-un / Princeton met. GRACE 

  GLDAS v2.1 Noah GL21 2000–2023 SM-un / Princeton met. gauge precipitation 

  GLDAS v2.0 CLSM GLc 1979–2014 SM-un / Princeton met. none (open loop) 

  GLDAS v2.0 Noah GLn 1979–2014 SM-un / Princeton met. none (open loop) 

  JRA-55 JR 1958–2020 SM-c / JRA55 SD + PMW for extent 

  MERRA2 M2 1980–2023 SM-c / MERRA2 none 

†MERRA M 1980-2015 SM-c / MERRA none 

  JAXA-AMSR2 JX 2014 –2020 Standalone PMW none 

  SnowCCI v2 CC2 1979–2020 PMW + SD assimilation SD + density information 

†SnowCCI v1 CC1 1979–2018 PMW + SD assimilation SD 

  GlobSnow v3 GS3 1979–2018 PMW + SD assimilation SD 

†GlobSnow v2 GS2 1979–2017 PMW + SD assimilation SD 

Notes: PMW refers to SWE estimated from satellite-observations of passive microwave brightness temperatures. 90 

IMS refers to data from the 1km resolution snow cover product (U.S. National Ice Center, 2008).  

SD refers to point snow depth information assimilated (data may vary by product but available sources are similar overall). 

SM-c refers to coupled snow models driven by meteorological forcing as specified. 

SM-un refers to uncoupled (offline) snow models driven by meteorological forcing as specified. 

 95 

The Brown Temperature Index Model (B-TIM) family of products all consist of a simple temperature index snow scheme 

(Brown et al., 2003; Elias Chereque et al., submitted) driven by historical estimates of temperature, precipitation, and snowfall. 

At present, four versions of this product exist, each driven by output from a different reanalysis. The strength of these products 

is that they are simple to produce, require a minimal selection of driving variables, and contain no land surface assimilation so 

that differences among the product versions reflect differences among the driving data. This will be a key factor that we exploit 100 

in order to analyze differences in the magnitude and seasonality of regional snow mass trends among all products (Sect. 4). 
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The Crocus family of products are all derived from a complex snow scheme embedded in the ISBA land model (Brun et al., 

2013). The most recent version is driven by ERA5 analysis fields (temperature, precipitation, humidity, winds, etc). Two 

previous versions driven by fields from the now-discontinued ERA-Interim analysis are also evaluated. These two versions 105 

have similar anomalies but differences in their parametrizations yield moderate differences in their climatologies, which affects 

their relative performance. 

 

The ERA5 family of products are based on the current ECMWF reanalysis (Hersbach et al., 2020; de Rosnay et al., 2022). 

ERA5 denotes the standard coupled reanalysis SWE output. It uses the ERA5 land surface model (HTESSEL) forced by the 110 

ERA5 meteorological analysis fields with assimilation of in situ snow depth data as available over the entire output period and 

snow cover extent data from the Interactive Multisensor Snow and Ice Mapping System (IMS) at 1km resolution (U.S. National 

Ice Center, 2008) from mid-2004 onwards . The assimilation of IMS data is known to produce a discontinuity in the 

climatological SWE field (Mortimer et al., 2020). To try and correct for this, ECMWF produced a second set of SWE output 

(denoted ERA5-Snow) using the same land surface model and forcing as the standard ERA5 product but without assimilation 115 

of IMS snow cover extent data (assimilation of snow depth data only). ERA5-Land denotes the standard uncoupled 

configuration of the ERA5 analysis (Muñoz-Sabater et al., 2021) which does not assimilate any snow-related surface data. 

ERA-Interim-Land is the uncoupled configuration of the previous generation of the ECMWF reanalysis (Balsamo et al., 2015) 

and is included as a baseline product. 

 120 

The GLDAS products are uncoupled configurations of the NASA Global Land Data Assimilation System Version 2. Both 

GLDAS-2.0 versions (Beaudoing and Rodell, 2018, 2019) are forced by the Princeton meteorological forcing input data but 

use two different land surface models, Catchment and Noah 3.6. The GLDAS v2.1 product (Beaudoing and Rodell, 2020b) 

alters the precipitation input to the Noah land surface model by incorporating information from gauge precipitation data. The 

GLDAS-2.2 product (Beaudoing and Rodell, 2020a) uses the CLSM land surface model and includes data assimilation of 125 

GRACE data.  

 

The JRA-55 (JMA, 2013), MERRA2 (GMAO, 2015), and MERRA (GMAO, 2008) SWE products are standard coupled output 

from each reanalysis center.  

 130 

We also assess five gridded products that incorporate information from passive-microwave brightness temperatures in order 

to fully or partially constrain surface SWE. The JAXA-AMSR2 product is a standalone passive microwave product that 

estimates SWE using a retrieval algorithm based only on time varying microwave brightness temperatures and other time-

invariant ancillary data (Kelly et al., 2019). The remaining four Earth Observation (EO) products (GlobSnow v2 and v3 and 

SnowCCI v1 and v2) are related with a shared development history stemming from the original GlobSnow algorithm (Takala 135 

et al., 2011) and their SWE output has strong similarities to one another (hereafter we refer to them collectively as GS/CCI 
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products). All GS/CCI products use a weighted combination of passive-microwave brightness temperatures and in situ snow 

depth measurements to constrain SWE (Luojus et al., 2021); differences among them are detailed in (Mortimer et al., 2022). 

 

2.2 Overall evaluation strategy 140 

We evaluate the 23 gridded SWE products (Table 1) on their ability to represent aspects of SWE climatology, variability, and 

trends across fourteen combinations of regions, and seasons as summarized in Table 2. The choices of regions and seasons 

that we test are controlled in part by the reference data, as we detail in subsection 2.3. While ideally we would use a single 

reference data set applied in the same manner for all tests, the characteristics of our primary reference data (referred to in Table 

2 as “combined snow course and gamma SWE”) limit the sort of evaluations for which it is most appropriate. Therefore, in 145 

order to facilitate comparison of product performance among all tests, we implement a relative point system as our overall 

evaluation strategy. For each combination of region and season listed in Table 2, the products that perform best on a given test 

are rewarded and the ones that perform the worst are penalized. Results from this reward/penalty system are tallied over all 

fourteen evaluations allowing us to provide total relative rankings (Sect. 4) that indicate a product’s overall performance 

compared the entire suite of products. 150 

  

 

Table 2 Summary of evaluations performed by region, evaluation method and reference data used.  

 

Evaluation Type Season Tested Regions Tested Method Reference Data 

SWE climatology near seasonal peak 

(March) 

NHnon Skill Score Bias-corrected GlobSnow v3 

NAm  Combined Snow Course + 

Gamma SWE (calculated mean) 

SWE variability 

 

near seasonal peak 

(Feb-Mar) 

EAnon Skill Score Combined Snow Course + 

Gamma SWE NAnon  

NAm  

SWE variability  

 

SWE onset season 

(Sep-Jan as available) 

EAnon Skill Score Combined Snow Course + 

Gamma SWE NAnon  

NAm  

SWE variability  

 

SWE melt season 

(Apr-Jun as available) 

EAnon Skill Score Combined Snow Course + 

Gamma SWE NAnon  

NAm  

full season (Sep-Jun) NH midlatitudes Intercomparison 
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Snow Mass Trends  

 

NH arctic  Snow mass trend evaluation 

ensemble NHm  

Regional abbreviations: Northern Hemisphere nonmountainous (NHnon), Northern Hemisphere mountainous (NHm), Eurasia 155 

nonmountainous (EAnon) North America nonmountainous (NAnon), and North America mountainous (NAm). 

 

 

For as many tests as possible the particular reward/penalty applied to the products is determined using a 2-component skill 

score (the skill score itself is described in subsection 2.4). For each product its similarity to the specified reference data is 160 

measured in terms of this skill score, and the distribution of scores among all products on the given test is used to determine 

the rewards and penalties. Any products performing above the 90th percentile are awarded +1 point; any performing below the 

50th percentile are penalized -1 point.  

 

For the trend evaluations, a modified approach is required due to limited spatial coverage of in situ data with sufficiently long 165 

records. Instead, regional snow mass trends from individual products are compared to the spread among a subset of products 

with consistent trends (termed the “evaluation ensemble” and described in subsection 2.3 along with the other reference data). 

Individual product trends for a region that generally fall within the spread of the evaluation ensemble are awarded +1 point. 

Products with substantial differences from the ensemble (e.g. their trends fall outside the ensemble spread throughout the entire 

season) receive penalties of -1 point for that region. In cases where the differences are judged to be marginal the product is 170 

neither awarded a point nor penalized.  

 

 

2.3 Reference Data 

2.3.1 Combined snow course and airborne gamma SWE datasets 175 

The primary reference data set we use for evaluation combines snow course and airborne gamma attenuation measurements 

as listed in the Data Availability Section. The data are available over the 1979-2020 period with broad spatial coverage over 

both North America and Eurasia (Fig. 1). While only snow course measurements are available over Eurasia, the broad coverage 

across North America results from the complementary availability of the two types of measurements. While the two 

measurement types have been used to independently evaluate gridded products locally, they have not been combined before. 180 

(Mortimer et al., submitted) has conducted a cross validation of the two types of measurements. The authors demonstrated that 

across North American non-mountainous terrain both measurement types yield consistent errors when used to evaluated 

gridded products where overlapping measurements types are available. However, in mountainous terrain the evaluated product 

errors differ according to the reference measurement type, primarily because the snow course measurements sample a larger  
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range of SWE magnitudes and the product errors are larger for larger SWE magnitudes. Despite the differences in error 185 

magnitudes, choice of reference data type was shown to have little impact on relative assessment of product performance (i.e. 

product rankings). It is therefore possible to obtain robust relative performance measures across both mountainous and non-

mountainous terrain of North America. This characteristic of the primary reference data in mountain regions is one of the 

reasons we implement a relative ranking system as part of our overall strategy.   

 190 

 

Figure 1 a) Spatial coverage of combined snow course and gamma SWE (colors show total observations available at 

that location over the 1979-2020 period). b) Seasonal coverage of combined snow course and gamma reference SWE 

measurements. c) March SWE climatology from bias-corrected GlobSnow version 3 (used to assess NH 

nonmountainous SWE climatology).  195 

 

To further account for these differences in assessed errors between mountainous and non-mountainous regions, for the tests of 

SWE variability we segregate the products into three distinct regions of the Northern Hemisphere: nonmountainous Eurasia 

(hereafter EAnon), non-mountainous North America (hereafter NAnon), and mountainous North America (hereafter NAm). 

While the Eurasian region contains substantial mountainous terrain, the majority of reference sites are situated in 200 

nonmountainous locations so the evaluation results will principally reflect those characteristics. Because the temporal coverage 
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of the data peaks during Feb-Mar (Fig. 1b), we pool all data as available during these months into a single season. Pooled data 

available prior to February is considered a distinct ‘onset’ season, while pooled data available from April onwards is considered 

to belong to the ‘melt’ season. For a given season, this selection of pooled data results in a sequence of SWE values that 

combines aspects of spatial variability (the reference data locations are at specific locations across the region), interannual 205 

variability constrained by data availability (some years will be missing at given locations), as well as seasonal SWE evolution 

(when reference data is available at multiple times within the subseason of interest). 

 

Evaluations of mountainous climatological SWE (limited to NA) also use the combined snow course and gamma SWE. For 

this test, data from all years at locations with 3 or more years of data are averaged and skill scores are calculated using the 210 

resulting reference climatological values in the same manner as for the time-varying results (Section 2.4).  

 

2.3.2 Bias-corrected GlobSnow v3 data 

Climatological snow course and gamma SWE values at available nonmountainous locations could be used assess gridded 

products similar to the way mountainous locations are used. However, bias-corrected GlobSnow v3 data (Luojus et al., 2021) 215 

represents a spatially and temporally continuous reference product that can be used to assess the gridded products across the 

entire nonmountainous NH (Fig 1c). This reference product is based on the monthly mean climatology of the GlobSnow v3 

product (Luojus et al. 2021) that has been bias-corrected using a subset of the snow course data discussed in subsect. 2.3.1 

(n.b.: only snow course data was used for the bias-correction; gamma attenuation SWE data was not used). Because the 

hemispheric coverage and sampling frequency of snow course data used to bias-correct the product is optimal during March, 220 

we limit our analysis to that month.   

 

2.3.3 Evaluation ensemble for snow mass trends 

As previously stated, because the combined reference data has a limited number of locations of sufficient length to estimate 

local trend values, our ability to evaluate gridded product trends with that data is also limited. Instead, we compare the 225 

consistency in seasonal evolution of regional snow mass trends among the gridded products. By examining trends of regional 

snow mass (local SWE amounts summed over a given area) we effectively average out some of the small-scale differences in 

long-term variability and draw out the largest differences among the product trends. We focus on three non-overlapping regions 

previously analyzed in Mudryk et al 2015: mountainous NH terrain, nonmountainous NH terrain south of 60N (“midlatitudes”), 

and nonmountainous NH terrain north of 60N (“Arctic”). We separately consider mountainous terrain because product 230 

performance can frequently be worse in such regions (Mortimer et al., submitted and this study), while the separation of 

northern and southern regions accounts for different expectations in the historical snow response – differences in both the 

strength and seasonality of snow mass trends are expected between more southern and northern locations. Gridded product 
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trends over these three regions are compared to an “evaluation ensemble” constructed from seven of the gridded reanalysis-

type products: ERA5-Land, Crocus-ERA5, BTIM-ERA5, BTIM-JRA55, MERRA, BTIM-ERA-Interim, and Crocus7. While 235 

these seven products represent seven different estimates of historical SWE, they are based on only four different estimates of 

historical meteorological conditions, those from ERA5, ERA-Interim, MERRA, and JRA-55. Our ansatz for constructing this 

ensemble is that while different snow models may alter the background SWE climatology, in the absence land-surface 

assimilation, it is the forcing meteorology, principally the historical temperature and precipitation estimates that control the 

interannual SWE variability and thereby the seasonal evolution of trends (see Fig 12 from Mudryk et al. 2015 for evidence 240 

consistent with this assumption). Therefore, to construct the evaluation ensemble, we average together any products that are 

based on the same historical meteorological conditions. Doing so averages the three products that use ERA5 forcings (ERA5-

Land, Crocus-ERA5, BTIM-ERA5) into a single anomaly field and the two products that use ERA-Interim forcings (BTIM-

ERA-Interim and Crocus7) into a second anomaly field. These two anomaly fields, together with those from BTIM-JRA55 

and MERRA produce four estimates of historical SWE anomalies distinguished by choice of forcing data. We compute 245 

regional snow mass trends for each of these four anomaly fields and use the spread among the four members to determine 

consistency with snow mass trends from other gridded products in Section 3.3. We note that while the seven products chosen 

may initially seem subjective, we are able to retrospectively justify the choices using the comparisons presented in Section 

3.3.   

 250 

2.3.4 Independence of reference data and evaluated gridded products 

While the majority of the gridded products evaluated here are completely independent from all the reference data discussed 

above, we discuss a few exceptions here. First, it is evident the standard GlobSnow v3 product is not independent of the bias-

corrected version used to assess product climatologies across NHnon. Furthermore, given that the four GS/CCI products have 

a shared development history with strong similarities to one another, in the evaluation of NHnon climatological SWE, we do 255 

not rank these four products but only use them to guide interpretation of how well the remaining products perform. We also 

point out that while the GS/CCI products as well as ERA5 and ERA5-Snow assimilate available weather station snow depths 

across both NH continents, these assimilated measurements differ in both measurement frequency (sampled approximately 

daily versus once- or twice-monthly) and representative scale (being point measurements versus transects) from the snow 

course SWE measurements in the combined reference data. Therefore, the aforementioned gridded products are explicitly 260 

independent of the reference data. SnowCCI v2 is an exception to this statement as in addition to in situ snow depth 

measurements, it also incorporates extrapolated snow-course-derived snow density information (Venäläinen et al., 2021) 

within the SWE  retrievals. Thus, it is not completely independent of the combined reference data set. 
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2.4 Skill scores and target diagrams 265 

We use skill target diagrams, adapted from (Jolliff et al., 2009) in order to rank the similarity of the gridded products to the 

reference data using a normalized 2-component distance measure,  

𝑆𝑡𝑜𝑡𝑎𝑙 = √𝑆𝑝𝑎𝑡𝑡𝑒𝑟𝑛
2 + 𝑆𝑏𝑖𝑎𝑠

2 . 

( 1 ) 

The first component, 𝑆𝑝𝑎𝑡𝑡𝑒𝑟𝑛
⬚  measures the product’s ability to match the pattern of the reference data and the second, 𝑆𝑏𝑖𝑎𝑠

⬚  270 

measures its bias relative to the reference data. When added in quadrature, the two components describe the total distance from 

the reference data. Akin to the bullseye of a shooting target, the closer the squared distance of the independent error measures 

are to zero, the lower the total error. 

 

Calculation of these two components requires three independent statistics: the product bias 𝑏  (mean difference from the 275 

reference data), the product correlation with the reference data 𝑅, and the ratio of product standard deviation (sometimes 

referred to as the amplitude) to that of the reference data 𝜎∗ = 𝜎𝑥/ 𝜎𝑟. Note that the latter two statistics are related to one 

another through the normalized unbiased root mean squared error, 𝑢𝑅𝑀𝑆𝐸∗, as  

 

𝑢𝑅𝑀𝑆𝐸∗
2 = 1 +  𝜎∗

2 − 2𝜎∗𝑅. 280 

( 2 ) 

Equation (2) is the standard relationship used to relate 𝜎∗ and 𝑅 on a Taylor diagram (Taylor, 2001) measuring the unbiased 

RMSE in units of the reference data standard deviation. Skill target diagrams provide improved rankings compared to Taylor 

diagrams in two ways. First, they account for product errors in bias which are not represented on a Taylor diagram. Secondly, 

they use a skill score that more appropriately weights the pattern correlation and amplitude compared to uRMSE, which 285 

otherwise preferentially ranks low-amplitude patterns above high-amplitude patterns given comparable correlations.  

 

The first component of Eq. (1) combine the product’s errors in amplitude and correlation as  

𝑆𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = 𝑓 ∙ [1 − 
2(1 + 𝑅)

(𝜎∗ + 1/𝜎∗)2
].  

( 3 ) 290 

The bracketed part of this formula is a standardly employed skill score ranging from 0 to 1 that can be used in place of uRMSE 

to better weight errors in amplitude and correlation (e.g. see Taylor et al. 2001). As in Jolliff et al., values approaching zero 

indicate superior skill (a reversal of the typical convention, used here so that the score measures distance from the origin). The 

scaling factor, 𝑓 = (𝑢𝑅𝑀𝑆𝐸𝑚𝑎𝑥/𝑢𝑅𝑀𝑆𝐸𝑔𝑚𝑎𝑥  ), is the ratio of the maximum uRMSE value among the gridded products on 

the test in question to the maximum uRMSE value among all tests. This factor is applied only to make it easier to compare 295 
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how the gridded product performance varies from one test to one another. The second component of Eq. (1) measures the 

errors in bias as  

 

𝑆𝑏𝑖𝑎𝑠 =  𝑓 ∙
|𝑏|

𝑢𝑅𝑀𝑆𝐸𝑚𝑎𝑥

|𝑆𝑝𝑎𝑡𝑡𝑒𝑟𝑛|
𝑚𝑎𝑥

, 

( 4 ) 300 

  

where 𝑢𝑅𝑀𝑆𝐸𝑚𝑎𝑥  represents the maximum uRMSE among the ensemble of products evaluated (in absolute rather than 

normalized units). Our formulation differs from Jolliff et al. who use 𝑆𝑏𝑖𝑎𝑠 = 𝑏/𝑏𝑚𝑎𝑥  where 𝑏𝑚𝑎𝑥  is the maximum bias in the 

product ensemble. We argue that scaling by 𝑏𝑚𝑎𝑥 , can overweight the contribution of bias to the total skill distance, 𝑆𝑡𝑜𝑡𝑎𝑙 , 

whereas normalizing by a measure of the ensemble uRMSE accounts for the proportion of the total RMSE contributed by the 305 

bias since 𝑏/𝑢𝑅𝑀𝑆𝐸𝑚𝑎𝑥 =  (𝑏/𝑏𝑚𝑎𝑥)(𝑏𝑚𝑎𝑥/𝑢𝑅𝑀𝑆𝐸𝑚𝑎𝑥)  and 𝑅𝑀𝑆𝐸2 =  𝑢𝑅𝑀𝑆𝐸2 + 𝑏2 . If 𝑏𝑚𝑎𝑥  ~ 𝑢𝑅𝑀𝑆𝐸𝑚𝑎𝑥 , then 

𝑆𝑝𝑎𝑡𝑡𝑒𝑟𝑛  and 𝑆𝑏𝑖𝑎𝑠  will contribute equally to 𝑆𝑡𝑜𝑡𝑎𝑙  since there will be an ensemble member for which 𝑆𝑏𝑖𝑎𝑠  ~ 𝑆𝑝𝑎𝑡𝑡𝑒𝑟𝑛 . 

However, if 𝑏𝑚𝑎𝑥  ≪  𝑢𝑅𝑀𝑆𝐸𝑚𝑎𝑥 , the total skill distance should be determined principally by 𝑆𝑝𝑎𝑡𝑡𝑒𝑟𝑛, which is the case as 

formulated here, but not as formulated in Jolliff et al.. The same scaling factor, 𝑓, is also applied to 𝑆𝑏𝑖𝑎𝑠 to better compare 

performance among all tests. Because the factor is applied to both skill-score components of all products, it does not influence 310 

the relative rankings on a given test, only the perceived performance on the given test relative to the other tests.  

 

Computing the combined skill distance described above requires three input statistics: bias, correlation, and standard deviation. 

These were calculated for each product as follows. For the tests of SWE variability (all regions/terrain/seasons) and SWE 

climatology (mountainous NA), the combined snow course and gamma reference data is matched up in time and space at the 315 

native resolution of each product separately for mountainous and nonmountainous locations as detailed in (Mortimer et al., 

submitted). In brief, the reference data for a specific terrain type is first averaged at the resolution of each product thereby 

obtaining paired reference-product SWE values, and then the paired values are averaged within a search radius of 100km. The 

first step limits the weight given to specific grid cells having multiple coincident observations on the same date compared to 

those with only one observation. The second step limits sampling differences related to gridded product resolution. For the 320 

climatological test the final sequence of pairs is only for March and varies only by location; for the time-varying tests the 

sequence varies by both date and location according to when and where reference data exists over the 1979-2020 period. For 

the nonmountainous climatology test the reference data itself is gridded, so we obtain paired values by regridding both the 

reference product and test products to a common 0.5°x0.5° regular grid and weight the values by the cosine of latitude. All the 

procedures detailed above result in a sequence of N paired SWE samples (reference data samples denoted 𝑟𝑖, product data 325 

samples denoted 𝑥𝑖) from which we calculate: 
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𝑏 =  
1

𝑁
∑ 𝑥𝑖 − 𝑟𝑖

𝑖
 

( 5 ) 
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𝜎𝑥
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𝑅 =  
∑ (𝑥𝑖 − 𝑥̅)(𝑟𝑖 − 𝑟̅)𝑖

√∑ (𝑥𝑖 − 𝑥̅)2 ∑ (𝑟𝑖 − 𝑟̅)2
𝑖𝑖
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𝑅𝑀𝑆𝐸2 =  
1

𝑁
∑ (𝑥𝑖 − 𝑟𝑖)2

𝑖
. 340 

( 9 ) 

 

3 Results 

3.1 Climatological SWE evaluations 

Before presenting the performance of individual gridded products on the series of tests described in Sect. 2.2, we first illustrate 345 

how the spread in climatological snow mass across both mountainous and nonmountainous regions of the NH varies among 

the products. To do this, we sort the products into four groups. The first group we consider are five previous generation 

reanalysis-derived products (now deprecated): ERA-interim, B-TIM-ERAint, Crocus7, Crocus8, and MERRA (denoted 

“Reanalysis Group 1” in Fig. 2). For comparison in the second group (“Reanalysis Group 2”) we consider gridded SWE 

products based on the current generation of reanalyses: ERA5, ERA5-Snow, ERA5-Land, Crocus-ERA5, MERRA2, B-TIM-350 

ERA5, B-TIM-MERRA2, B-TIM-JRA55. The third group contains the GS/CCI (EO) products and the JAXA EO product 

(shown separately in Fig 2). The four GLDAS products are also plotted individually as they have large biases as illustrated in 

the figure and also as analyzed in the subsequent tests below.  
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Figure 2 illustrates that snow mass across nonmountainous terrain has, on average, increased in the current generation of 355 

reanalysis-based products from the versions analyzed in (Mudryk et al., 2015). The updated products agree better both with 

one another and with nonmountainous snow mass aggregated from the bias-corrected GlobSnow version 3 SWE reference 

data (subsect. 2.3.2). Snow mass estimated from non-bias-corrected GS/CCI products have lower snow mass on average during 

March than the current generation of reanalysis-derived products. Across mountain regions, the spread and mean values have 

increased among the newer reanalysis-type products. These increases are due to deeper SWE conditions in the Crocus-ERA5 360 

and ERA5-Land products specifically, whereas the remaining Group 2 products have a similar range of snow mass estimates 

as the Group 1 products (not shown). JAXA is the only EO product that attempts to estimate SWE in mountain regions, but 

estimates unrealistically low snow mass compared to that that found in any of the reanalysis-type products other than the 

GLDAS products. Figure 2 also illustrates climatological snow mass from the four GLDAS products. GLDAS v2.0 output 

from either land model (Noah or CLSM) has unreasonably low snow mass across both nonmountainous and mountainous 365 

regions. Even if data assimilation is used as for the GLDAS v2.2 output using CLSM, the nonmountainous snow mass remains 

unreasonably low. However GLDAS v2.1 using Noah (Fig 2, dark green cross), which replaces the Princeton precipitation 

forcing used for all other versions with the gauge-based GPCP v1.3 precipitation product, has snow mass that is much more 

consistent with the other products.  

 370 

 

Figure 2 Nonmountainous and mountainous March snow mass for various groupings of products. Heavy black lines 

show mean snow mass within the group, shading shows interquartile range, and vertical lines show entire range of 

snow mass for the group. JAXA and GLDAS products are considered separately as denoted by symbols.  

 375 
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In Fig. 3 we examine the relative ability of products to capture the correct spatial distribution of climatological SWE across 

both nonmountainous and mountainous terrain. Products are evaluated using skill target diagrams (after Jolliff et al., 2009; see 

Section 2 for details) with Taylor diagrams also shown for reference. Figure 3 illustrates that when assessed using a Taylor 

diagram roughly half the products have minimal spread in their skill at reproducing the correct spatial distribution of 

climatological SWE in nonmountainous regions and perform nearly as well as the GS/CCI products (red squares), which are 380 

shown on the plot but are not ranked due to their similarity to the bias corrected GlobSnow version 3 reference data (see 

subsect. 2.3.4). More discernment among the products is apparent on the target diagram, which illustrates that ERA-Interim-

Land, JAXA, JRA55 and three of the four GLDAS products are in the lower half of the product distribution and that among 

the remaining products there is a range of positive and negative biases. Note that using the total skill distance (target diagram) 

yields different rankings from using uRMSE errors (Taylor diagram). This difference is especially important in mountainous 385 

regions where the products’ ability to capture the variance in the climatological SWE distribution varies dramatically. As 

highlighted in Sect. 2.4, the fact that essentially all products underestimate the spatial variability in climatological SWE 

compared to the reference data affects the uRMSE-based rankings. In particular, despite having both modestly improved 

correlation and substantially improved spatial variability compared to the reference data, both Crocus-ERA5 and ERA5-Land 

have higher uRMSE values in mountainous regions than several of the other products (Fig 3, upper right where they are ranked 390 

3rd and 7th respectively). When ranked by their total skill distances instead (Fig 3, lower right) these are the two best 

performing products in mountain regions performing above the 90th percentile among the range of products. We also note that 

mean bias forms a larger fraction of the total mean error in mountainous regions compared to nonmountainous regions (they 

contribute roughly equally in mountain regions whereas in nonmountain regions bias is typically less than half the value of 

URMSE). For these reasons we use only the skill target diagrams in the subsequent analysis and the combined skill score to 395 

rank the products. 
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Figure 3 Taylor plots (top) illustrate performance ranked by uRMSE (distance from reference data measured in units 

of the standard deviation and shown by the concentric grey circles) in nonmountainous (left) and mountainous (right) 400 

regions. Target plots (bottom) illustrate performance ranked by total skill distance (skill scores of zero represent no 

difference from the reference data in terms of pattern statistics or mean bias). Grey curves indicate the 90 th and 50th 

percentiles. Red squares denote the performance of the GS/CCI products which are considered “close” to the reference 

data in nonmountainous regions. Colors reflect the groupings from Fig. 1. 

 405 

3.2 Time-varying SWE evaluations 

The next series of tests evaluates the gridded products on their ability to capture time-varying SWE during three portions of 

the seasonal cycle. We initially examine performance near the seasonal peak (Feb-Mar). Before presenting the overall skill 

rankings for this evaluation we first examine separate rankings of uRMSE, correlation, and bias to provide a sense of how they 

relate to one another. Figure 4 illustrates performance across nonmountainous terrain in North America compared to 410 

nonmountainous terrain in Eurasia. In general, products have poorer performance over North America than over Eurasia. This 

may occur since the range of reference SWE sampled is higher in North America and this is a strong control on product bias 

and RMSE (see Mortimer et al., submitted). Product performance evaluated by either uRMSE or correlation are similar to one 
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another: product rankings 1–6, 7–14, 15–20, and 21–23, respectively, all contain the same subsets of products when evaluated 

using uRMSE as with correlation. In contrast, bias is a poor discriminant of product performance in nonmountainous terrain. 415 

Products may have low bias but high uRMSE and low correlation due to poor representation of SWE anomalies (JAXA, 

JRA55). 

 

Figure 4 Product-wise performance for peak SWE in North America versus Eurasia evaluated over nonmountainous 

regions. Products are ranked based on their North American and Eurasian statistics added in quadrature. Grey curves 420 

denote the 90th and 50th percentiles of the product distributions; these two percentiles are listed among the ranked 

products where they occur. 

 

For this reason, in Fig. 5 we employ the same target plots as presented for climatological snow mass and which account for 

combined errors of bias, uRMSE, and correlation. Consistent with Fig. 4 and Fig S1, the latter of which shows results for 425 

uRMSE, bias, and correlation metrics over mountainous terrain, the combined skill distance in Fig. 5 illustrates that product 

performance is generally best over nonmountainous Eurasia, worse over North American nonmountainous terrain, and worse 

again over North American mountainous terrain. Across Eurasia no product substantially outperforms another (none are above 

the 90th percentile), although most of the worst performing products also fall below the 50 th percentile across all three 

combinations of continent and terrain (JAXA, JRA55, and two of the four GLDAS product versions). ERA5-Land and Crocus-430 

ERA5 display the greatest skill in North American mountainous terrain and have good to excellent performance in 

nonmountainous regions of Eurasian and North America as well. While the BTIM suite of products are typically top performers 

in nonmountainous North America, they perform more modestly across North American mountainous regions. The GS/CCI 

products have good performance across Eurasia, but their performance is poorer across North America. As seen for 

climatological SWE (Fig 3), in mountainous terrain product bias is more strongly associated with overall performance than in 435 

in nonmountainous terrain (see also Fig. S1).  
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Figure 5 Target plots based on statistics for peak SWE from temporally and spatially varying data for available 440 

continents and regions. Products with positive biases have a ‘+’ symbol appended to their label and negative biases are 

unmarked. Products are ranked based on total skill distance (skill scores of zero represent no difference from the 

reference data in terms of pattern statistics or mean bias). Grey curves denote the 90 th and 50th percentiles of the 

product distributions; these two percentiles are listed among the ranked products where they occur.  

 445 

In Fig. 6, we examine if the product-wise performance analyzed in Figs. 4 and 5 near seasonal peak SWE (Feb-Mar) remains 

consistent during the onset and melt seasons. Figure 6 illustrates that the product accuracy tends to worsen as the snow season 

progresses: on average both the bias and pattern skill decrease corresponding to increasing uRMSE, decreasing correlation, 

and increasing magnitude of bias. However, the products that have better performance when evaluated near seasonal peak 

SWE (when the most reference data is available thereby yielding more accurate statistics) tend to have better performance 450 

during the onset and melt seasons. In particular, the pattern skill component assessed during peak season is also a reasonable 

indicator of performance during both onset and melt. In contrast the evolution of seasonal bias can change substantially among 

the products in especially in nonmountainous regions.  
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 455 

Figure 6 Seasonal evolution of skill components by continent and region. Products ranked by Feb-Mar performance 

(grey; x-axis labels) with corresponding performance shown during onset (blue, Sep-Jan as available) and melt (red, 

Apr-Jun as available) seasons. Numbers displayed in corners show percentage of onset and melt performance explained 

by corresponding performance during Feb-Mar. 

 460 

3.3 Trend Evaluations 

Finally, we evaluate differences in product trends using the quantitative intercomparison approach described in Section 2.2. 

All results are summarized in Figure 7. The first four rows are separated according to the forcing meteorology used to create 

the reanalysis-type products; the EO-products are shown in the last row.  

 465 

The first row demonstrates one of our key results, that assimilation of surface snow or satellite information can often have a 

deleterious effect on product trends. It illustrates the different seasonal evolution of snow mass trends from JRA55 and BTIM-

JRA55. The two products use the same forcing meteorology but differ in their snow schemes and whether or not they assimilate 

in situ snow depth measurements and passive microwave-derived information on snow presence: BTIM-JRA55 does not but 

JRA55 does (Kobayashi et al., 2015). We argue it is unlikely that the differences in trend magnitudes and timing shown are 470 

due to differences in the snow scheme employed, nor can they be due to differences in meteorological forcing. This suggests 
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that fluctuations in availability of in situ snow depth measurements and/or regional and seasonal variability in the ability to 

detect snow presence using passive microwave information could be causing the anomalous trends, particularly in mountain 

and midlatitude regions. JRA55 trends in Arctic regions still have anomalous signals in their seasonal evolution, however we 

assess the agreement in that region as marginal (resulting in a score of 0 instead of -1). 475 

 

Next we demonstrate the same existence of spurious trends in products related to ERA5 that assimilate surface information 

(second row of Fig 7.). We first note an absence of spurious trend signals in the ERA5-Land, Crocus-ERA5, and BTIM-ERA5 

products, which do not assimilate land surface information and whose average is one of the components in the evaluation 

ensemble. By contrast, the standard ERA5 SWE output is known to contain an abrupt drop in climatological SWE coincident 480 

with its assimilation of IMS data from 2004 onwards (Mortimer et al., 2020; Ochi et al., 2023). This discontinuity results in  

trend variability that is seasonally coherent with the other products but at a much more negative background trend magnitude 

across all three regions. ERA5-Snow is an “offline” product which was forced by ERA5 analysis fields in an uncoupled 

configuration. It was produced to allow for assimilation of weather station snow depth information but to avoid the abrupt 

incorporation of IMS information from 2004 onwards. While ERA5-Snow trends have better agreement with the evaluation 485 

ensemble than ERA5, they are still more strongly negative over Arctic regions. We assess this level of disagreement as 

marginal, in comparison to that shown by ERA5 trends in all three regions. 

 

The third row of Fig. 7 compares snow mass trends from the original MERRA reanalysis output with those from the updated 

MERRA2 product and the BTIM snow scheme forced by MERRA2 temperature and snowfall. None of the products assimilate 490 

surface snow or satellite information so the differences illustrated result from other factors. BTIM-MERRA2 and MERRA2 

trends have similar timing and magnitudes, but across midlatitude and mountainous regions their magnitude is much weaker 

than those from the evaluation ensemble. The fact that BTIM-MERRA2, which is driven by the same temperature and 

precipitation forcing as MERRA2, has similar snow mass trends to those from the MERRA2 reanalysis output suggests that 

the temperature or precipitation forcing or both are inconsistent with the meteorological forcing used by the other products in 495 

the evaluation ensemble across mountainous and mid-latitude regions (but consistent over the Arctic). 
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Figure 7  Evaluation of snow mass trends grouped by region/terrain (columns) and the meteorological forcing data 

used to create them (rows) with the EO products in the bottom row. Grey shading shows the spread across the 500 

evaluation ensemble (see section 2.3.3). For each row, trends are calculated over the period denoted on the left, chosen 

based on the period that the plotted products are available; therefore the grey shading denoting the evaluation ensemble 

spread differs somewhat among the rows. Numbers denote trend scores for each region (columns 2-4) and cumulative 

totals for the NH (column 1) based on arguments presented in the text. 
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 505 

The fourth row of Fig. 7 compares trends from two separate forcing groups, the two GLDAS 2.0 products, and the three ERA-

Interim-forced products, ERA-Interim-Land, Crocus7, and BTIM-ERA-Interim. The ERA-Interim products are consistent over 

midlatitude regions but ERA-Interim-Land has inconsistencies over Arctic and mountainous regions where its trends are 

weaker than those of the evaluation ensemble. The two GLDAS products are marginally consistent with the evaluation 

ensemble over mountain regions but have overly weak trends in mid-latitude and Arctic regions.  510 

 

Finally the bottom row of Fig. 7 compares the evaluation ensemble with trends from the four GS/CCI products (the JAXA 

product does not have enough years available to calculate trends). Overall the GS/CCI products are consistent with the 

evaluation ensemble across the Arctic but inconsistent over mid-latitude regions. Because the GS/CCI products do not provide 

SWE estimates in mountainous regions, we use mean anomalies from the evaluation ensemble in those regions to determine 515 

total NH trends, which allows us to observe how differences in the midlatitudes and Arctic regions combine hemispherically. 

The weak Arctic trends apparent in the GS/CCI products during May and June are likely related to reduced availability of 

weather station snow depths during this time of the year (assimilated as part of the satellite product retrieval algorithms) 

combined with reduced satellite algorithm performance once the snowpack begins to melt (Mortimer et al., 2022). A similar 

weakening of trends is also apparent over midlatitude regions from March onwards. The three earlier GS/CCI product versions 520 

also show stronger midlatitude trends than the evaluation ensemble during snow onset (most prominent in November and 

December). This difference has been reduced in the most recent SnowCCIv2 product. In Fig. S3, we connect this difference 

across the midlatitude region to temporal discontinuities in the early and late parts of the record that have been improved but 

not eliminated in the most recent product. We also note that additional improvements to the snow masking (Zschenderlein et 

al., 2023) feeding into successor versions of SnowCCI (e.g. the forthcoming version 3 SWE product) further improve the 525 

agreement with the evaluation ensemble not only across midlatitudes but also over Arctic regions during snow onset 

(November to January; K. Luojus, private comm.)  

4 Overall Performance and Discussion 

Figure 8 shows the complete list of hemispheric products organized by overall performance. The overall product rank is 

determined by a product’s cumulative score on all tests divided by the number of tests on which it was evaluated. This allows 530 

the assessment to be agnostic about products whose performance in a particular test was unable to be evaluated. For example, 

JAXA, GLDAS v2.1, and GLDAS v2.2 did not have enough available years of data to calculate trends while the GS/CCI 

products are not available across mountainous regions and so are untested there). For comparison, we also provide a second 

set of rankings that only reflects the tests that use skill scores (and thereby excludes the trend intercomparison assessment). 

The products with the best and worst performance are ranked similarly in these two sets of rankings, however the positions of 535 

products with average performance (ranks 4-16) is influenced by the trend intercomparison. While we believe the trend 
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intercomparison provides additional information by which these products can be compared, we leave it to readers to determine 

for themselves how they wish to consider this additional information. 

 

 540 

Figure 8 Ranked overall performance based on all tests (x-axis) broken down by category: climatology (dark), 

variability (medium) and trends (light). The first ranked list is based on all test categories; the second ranked list 

excludes the trend evaluation. 

 

The top performing SWE products are ERA5-Land followed by two versions of the Crocus model (versions using forcing data 545 

from both the previous ECMWF ERA-Interim reanalysis and the updated ERA5 reanalysis). These products benefit from a 

comparatively high horizontal resolution in the case of ERA-Land (10km) or by a high vertical resolution in the case of the 

Crocus snow model (up to 50 layers of snow can be modelled allowing for complex stratigraphy). This may be a reason for 

their strong performance especially in the highly variable SWE of the North American mountain regions. These products also 

benefit from the absence of surface snow assimilation which negatively impacts snow mass trends of other products. 550 

 

The B-TIM suite of products, which are based on a simple temperature index scheme, generally have good performance in 

nonmountainous regions, where they are consistently in the top half of the rankings, indicating that these simple products have 

value across non-mountain areas (Figs. 3 and 5). Furthermore, the trend intercomparison (Fig. 7) suggests that they are also a 

valuable tool for detecting anomalous SWE trends in other products, at least on a regionally aggregated basis. 555 
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All four GLDAS products perform very poorly when evaluated hemispherically (Fig. 5) due in part to large biases (Figs. 2 and 

4). However, GLDAS v2.1, which uses different precipitation forcing than the other three versions, performs better when 

evaluated regionally over the continental United States (Fig. S2), especially in mountainous terrain. Thus, while it is tempting 

to extrapolate regional performance, this product provides a good counter-example where doing is particularly detrimental.  560 

 

The GS/CCI products have better performance over Eurasia than North America (Fig. 5). This is a well-documented result 

(Luojus et al., 2021; Mortimer et al., 2020, 2022). Part of the explanation may be that the nonmountain reference SWE has 

higher median values over North America (approx. 15mm higher) which could alter performance of the GS/CCI products since 

their algorithms’ SWE retrievals tend to saturate above 150mm. However, previous analysis that restricted the reference data 565 

to under ~150 to 200 mm (Luojus et al., 2021; Mortimer et al., 2020, 2022) still reported comparatively larger errors in North 

America. The retrieval performance in these products is also known to decrease with distance from the nearest assimilated 

snow depth measurement (Luojus et al., 2021, Figure 8). Hence it is also possible that compared to North America, Eurasia 

may have more commonality in how the locations and overall coverage of the reference data aligns with weather station snow 

depth measurements assimilated by the products (see for example, Figure 2 in Mortimer et al., 2022). The latter is essential 570 

information for the GS/CCI algorithms to perform accurately. If locations of reference data across North American tend to be 

further from locations with assimilated data compared to Eurasia, this would also lower product performance. Because of these 

considerations we suggest the evaluated accuracy of GS/CCI products over North America is more reflective of their true 

performance. 

 575 

Finally, the trend analysis indicates that for the ensemble of products evaluated here, all attempts to assimilate snow 

information from surface and/or satellite measurements lead to a deleterious influence on snow mass trends (e.g. ERA5 and 

JRA-55). The influence of the assimilation techniques employed on snow mass trends is not minor or localized but leaves clear 

signals even in the trends of regionally or hemispherically aggregated snow mass. While assimilation of surface information 

may improve instantaneous, local measures of the overall performance of a reanalysis system, it reinforces that reanalysis 580 

centers should provide multiple product streams: not only those that provide the best instantaneous estimates as needed for 

prediction applications but also temporally consistent historical estimates, which are needed for climate applications. In some 

ways, the series of GLDAS products provides a good model for this sort of treatment, with an open loop suite of output without 

assimilation and another assimilated product. Unfortunately, at present the forcing data used for the multiple GLDAS product 

streams differ and there is insufficient overlap of the analysis periods to permit attribution of differences in trends between the 585 

products to the presence or absence of data assimilation. 

 

Finally we point out that the relative rankings shown in Fig. 8 are meant to function as a guideline only. We stand by our 

results to the degree that the coverage of reference data permits such generalizations. But, for localized regions the product 

performance may differ from the rankings in Figure 8. GLDAS v2.1 provides a specific example where its performance over 590 
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the continental US does not reflect its much poorer performance outside that region. Likewise, our results do not account for 

any idiosyncrasies in product performance in regions not covered by our reference data. The absence of reference data from 

mountainous regions of Europe and western Asia is one such gap. And so while our assessment of North American mountain 

regions likely captures some aspects of product performance over mountainous terrain in general, we will not have captured 

any deficiencies that are particular to those unevaluated regions.  We also acknowledge that for some tests, the dividing line 595 

between the top and bottom 50th percentile of performance fell among closely grouped products instead of at a well-separated 

gap. However, the number and breadth of tests presented should help ensure that our conclusions of which products are superior 

performers are robust. 

Conclusions 

An expanded reference dataset (Fig. 1), consisting of snow course and airborne gamma measurements (Mortimer et al., 600 

submitted), combined with a novel evaluation strategy allowed for a comprehensive assessment of 23 gridded SWE products. 

The general strategy we present is easily modified to include additional products or to limit the evaluation to specific regions 

of interest provided reference data is available. We adapted skill target diagrams (Jolliff et al., 2009) to rank products according 

to their ability to represent SWE climatology (Fig. 3), variability (Fig. 5), and trends (Fig. 7). Most products evaluated can 

reasonably represent the climatology and variability of nonmountainous SWE but have substantially lower skill in mountain 605 

regions (Figs. 3 and 5). The relatively poorer performance in mountain regions is consistent with previous studies (Fang et al., 

2022; Kim et al., 2021; Liu et al., 2022; Snauffer et al., 2016; Terzago et al., 2017; Wrzesien et al., 2019) and points to a need 

for targeted mountain SWE products. For the ensemble of products evaluated, the assimilation of snow surface and/or satellite 

measurements has a deleterious influence on regional snow mass trends (Fig. 7). This result illustrates that products that 

accurately represent SWE climatology and variability may not be appropriate for trend analysis and vice versa, and reinforces 610 

that user needs and objectives must guide product selection. 

Data Availability 

Combined reference data available is available at https://doi.org/10.5281/zenodo.10287092. The bias-corrected GlobSnow 

version 3 product is available from https://www.globsnow.info/swe/archive_v3.0/. Gridded SWE products from Table 1 are 

available as specified below. 615 

 

Product Name Availability/DOI  

B-TIM-ERA5 10.5683/SP3/HHIRBU   

B-TIM-JRA55 10.5683/SP3/X5QJ3P 

B-TIM-MERRA2 10.5683/SP3/C5I5HN 

B-TIM-ERAint From authors on request 
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Crocus-ERA5 10.5281/zenodo.10943718 

Crocus v8 10.5281/zenodo.10911538 

Crocus v7 From authors on request 

ERA5 10.24381/cds.adbb2d47 

ERA5-Snow Available on request from patricia.rosnay@ecmwf.int  

ERA5-Land 10.24381/cds.e2161bac 

ERA-Interim-Land Deprecated. Author archival copy. 

GLDAS v2.2 CLSM 10.5067/TXBMLX370XX8 

GLDAS v2.1 Noah 10.5067/E7TYRXPJKWOQ 

GLDAS v2.0 CLSM 10.5067/LYHA9088MFWQ 

GLDAS v2.0 Noah 10.5067/342OHQM9AK6Q 

JRA-55 https://jra.kishou.go.jp/ 

MERRA2 10.5067/RKPHT8KC1Y1T 

MERRA 10.5067/YL8Z7MICQZF9 

SnowCCI v2 10.5285/4647cc9ad3c044439d6c643208d3c494 

SnowCCI v1 10.5285/fa20aaa2060e40cabf5fedce7a9716d0 

GlobSnow v3 10.1594/PANGAEA.911944 

GlobSnow v2.1 https://www.globsnow.info/swe/ 

JAXA-AMSR2 Preliminary version provided as part of SnowPEx+. 

Available on request from rejkelly@uwaterloo.ca 
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