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Abstract. We use snow course and airborne gamma data available over North America to compare the validation of gridded 

snow water equivalent (SWE) products when evaluated with one reference dataset versus the other. We assess product 

performance across both non-mountainous and mountainous regions, determining the sensitivity of relative product rankings 10 

and absolute performance measures. In non-mountainous areas, product performance is insensitive to the choice of SWE 

reference dataset (snow course or airborne gamma): the validation statistics (bias, unbiased root mean squared error, 

correlation) are consistent with one another. In mountainous areas, the choice of reference dataset has little impact on 

relative product ranking but a large impact on assessed error magnitudes (bias and unbiased root mean squared error). 

Further analysis indicates the agreement in non-mountainous regions occurs because the reference SWE estimates 15 

themselves agree up to spatial scales of at least 50 km, comparable to the grid spacing of most available SWE products. In 

mountain areas, there is poor agreement between the reference datasets even at short distances (< 5 km). We determine that 

differences in assessed error magnitudes result primarily from the range of SWE magnitudes sampled by each method, 

although their respective spatiotemporal distribution and elevation differences between the reference measurements and grid 

centroids also play a role. We use this understanding to produce a combined reference SWE dataset for North America, 20 

applicable for future gridded SWE product evaluations and other applications. 

1 Introduction 

Snow water equivalent (SWE) is an essential climate variable critical to determining freshwater availability in montane and 

northern regions (Clark et al., 2001; Barnett et al., 2005). Accurate estimates of SWE are key to the verification of seasonal 

forecasts (Sospedra-Alfonso et al., 2016), skilled streamflow predictions particularly at long lead times (De Roo et al., 2003; 25 

Liu et al., 2012; Wood et al., 2016), and efficient hydropower operations (Turcotte et al., 2007; Magnusson et al., 2020). 

Long-term spatially complete SWE records are necessary for climate assessments (e.g., Mudryk et al., 2022), effective water 

management (Ralph et al., 2014), and flood prediction (Vionnet et al., 2020). 
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Numerous publicly available gridded SWE products exist, generated from a variety of approaches ranging from earth 

observation (EO) (e.g. Luojus et al., 2021), reanalysis products (e.g. Hersbach et al., 2020), snow models of varying 30 

complexity forced by reanalysis data (e.g. Brun et al., 2013), and data assimilation schemes (e.g. Zeng et al., 2018). 

Assessment of the quality of these products faces two challenges. First, there are few independent reference datasets with 

long time series and well-distributed spatial coverage across the range of snow-climate zones. Second, even where and when 

reference data are available, it is challenging to apply in a meaningful way because of the spatial mismatch with the typically 

coarse resolution of the gridded SWE products.  35 

Point-based SWE measurements from snow pillows (Beaumont, 1965), snow scales (Johnson, 2004; Smith et al., 2017) and 

passive gamma radiation sensors (Kodama et al., 1979; Paquet et al., 2008) provide continuous records of SWE at a specific 

location. However, the considerable spatial variability of SWE means that these point-based measurements are of 

questionable value when applied to larger areas (Meromy et al., 2013), and are thus not suitable for the evaluation of 

relatively coarse-scale gridded data. Snow courses on the other hand, consist of multiple measurements along a transect 40 

several hundreds of meters to kilometres in length that are averaged together to provide a single SWE value (WMO, 2018). 

These measurements better sample the sub-grid scale variability than a single point measurement and so are more effective 

in capturing the larger-scale average. As a result, snow course data can effectively discern subtle differences in performance 

between SWE products (Mortimer et al., 2022). SWE estimates from airborne gamma surveys (which measure the 

attenuation of water mass by naturally emitted gamma radiation) are averaged across 300 m wide footprints and along 15–20 45 

km long flight lines. Like snow courses, they also effectively capture the larger scale average and are appropriate to assess 

the accuracy of gridded SWE products (Cho et al., 2019; 2020). 

Snow course reference measurements are unevenly distributed in space and time (Fig. 1) and, as such, may not sample the 

complete range of naturally occurring SWE values. If a particular dataset is tuned to a specific environment or performs 

better across a certain range in SWE, the differing spatiotemporal distributions and sampled SWE ranges of separate 50 

reference datasets could influence the determination of product performance. For example, some EO-based products have 

reasonable performance up to approximately 150 mm SWE (Pulliainen et al., 2006; Luojus et al., 2021) and so perform well 

against a reference dataset composed primarily of low and moderate SWE values, but will have poorer performance when 

validated using a reference dataset which samples across regions with higher SWE.  
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 55 

Figure 1: Reference data distribution. (a) total number of measurements by day of water year (1 October – 30 September); vertical 

dotted lines delineate Feb–April period. (b) number of snow course (top) and airborne gamma (bottom) measurements during 

February through April 1980–2020. (c) 100 km spatially aggregated reference data separated into mountain (purple) and non-

mountain (green) domains. Grey shading in b and c indicates mountain region. 

Independent assessments of gridded SWE products using either snow courses (e.g. Mortimer et al., 2020; 2022) or airborne 60 

gamma SWE (e.g. Cho et al., 2019; 2020) have been conducted, but a unified assessment of gridded SWE products using 

both reference datasets is lacking. Combining multiple reference datasets can improve the rigour of such assessments but 

interpreting and reconciling product accuracies obtained with multiple reference datasets is hindered by their differing 

sampling methodologies and limited uncertainty characterization, as well as their spatiotemporal distributions. Here, we 

advance the evaluation of coarse resolution SWE products by using both snow courses and airborne gamma SWE estimates 65 

to evaluate gridded SWE products over North America. We investigate the agreement in reference SWE reported by the two 

reference datasets at various spatial and temporal scales and explore how the choice of reference dataset affects the accuracy 

assessment and overall performance ranking of the products. This analysis assesses the feasibility of developing a combined 

(snow course + airborne gamma) continental-scale reference dataset, both for benchmarking the performance of gridded 

SWE products and other hydroclimate applications.  70 
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2 Data 

2.1 Gridded datasets 

Fourteen gridded SWE products were validated in this study (Table 1). Products include those which utilize EO data, 

coupled land-atmosphere reanalysis (with and without separate snow models and/or data assimilation), snow models of 

varying complexity driven by reanalysis data, and data assimilation schemes. Some products (e.g. ERA5, JRA-55, Snow CCI 75 

and U Arizona) assimilate in situ snow depth measurements while others (e.g. ERA5-Land, MERRA2 and GLDASv2.2) do 

not. Products are described in the references listed in Table 1 except for ERA5-Snow which is an offline run of ERA5 

without the assimilation of the IMS snow extent product to remove a temporal discontinuity associated with the introduction 

of the assimilation of IMS data in 2004 (Mortimer et al., 2020; Ochi et al., 2023). All products cover the northern 

hemisphere except the U. Arizona dataset, which is limited to the Coterminous US (CONUS). The current product suite 80 

includes datasets which were part a previous evaluation reported in Mortimer et al. (2020), extended now with updated 

product versions and entirely new products.  
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Table 1: Overview of the evaluated gridded SWE products. 

Product Abbr. Period Grid Method Snow Assim. Reference 

JAXA AMSR2 JX 
2014 –
2018 

12.5 
km 

Standalone passive microwave None 
Kelly et al. (2009) 

Snow CCI CDR 
v1 

C1 
1980 –
2018 

0.25° 
Passive microwave + snow depth 

assimilation 
In situ snow 

depth 
Luojus et al. (2021) 

 Snow CCI CDR v2 C2 
1980 –
2020 

0.1° 
Same as C1 except grid spacing 

and variable snow density 
In situ snow 

depth 

Brown-ERA5 BE 
1981 –
2018 

0.25° 
Temperature-index snow model 

+ ERA5 forcing 
None 

Brown et al. (2003) 
Elias-Chereque et al. 

(submitted) 
Brown-JRA55 BJ 

1981 –
2018 

1.25° 
Temperature-index snow model 

+ JRA55 forcing 
None 

Brown-
MERRA2 

BM 
1981 –
2018 

0.5° x 
0.625° 

Temperature-index snow model 
+ MERRA2 forcing 

None 

Crocus-ERA5 Cr5 
1980 –
2021 

0.25° 
Crocus snow model + ERA5 

forcing 
None 

bertrand.decharme@meteo.fr 

ERA5-Land EL 
1980 –
2018 

0.1° 
Reanalysis (HTESSEL LSM) None 

Muñoz-Sabater et al. (2021) 

ERA5 E5 
1980 –
2018 

0.25° 
Reanalysis (HTESSEL LSM) In situ snow 

depth + IMS 
Hersbach et al. (2020) 

ERA5-Snow ES 
1980 –
2018 

0.25° 
Reanalysis (HTESSEL LSM) In situ snow 

depth 
patricia.rosnay@ecmwf.int 

GLDASv2.2 G2 
2003 –
2018 

0.25° 
Reanalysis (Catchment LSM) None 

Rodell et al. (2004) 

  JRA-55 JR 
1980 –
2018 

55 km 
Reanalysis (Simple Biosphere 

LSM) 
In situ snow 

depth + PMW 
Kobayashi et al. (2015) 

  MERRA2 M2 
1980 –
2018 

0.5° x 
0.625° 

Reanalysis (Catchment LSM) None 
Gelaro et al. (2017) 

U. Arizona  UA 
1981 –
2017 

4 km 
Data assimilation: surface snow 

observations + PRISM 
temperature and precipitation 

In situ snow 
depth and SWE Zeng et al. (2018) 
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2.2 Reference datasets 

2.2.1 Snow course SWE 85 

Snow courses, also known as snow transects, consist of manual gravimetric snow measurements made at multiple locations 

along a predefined transect averaged together to obtain a single SWE value on a given date (WMO, 2018). In Canada, 

measurements are typically conducted once or twice per month during the snow season, although some sites are only 

sampled near the timing of peak SWE, and measurements are very sparse across the Arctic (Vionnet et al., 2021). In the 

United States, measurements start in late December in high elevation areas of the west and throughout Alaska and after 1 90 

January in the northeast. Measurement uncertainty for various snow samplers ranges from ~3% to 13% (Table 2 in Dixon 

and Boon, 2012 and references therein; López-Moreno, 2020). The snow course measurements used in this study (Table 2, 

Fig. 1) are independent of the data assimilated into any of the gridded SWE products with the exception of SnowCCI v2, 

which used an older Canadian dataset (Brown et al., 2019) for a dynamic density correction. 

Table 2: Reference data used in this study. 95 

 Coverage Data provider Reference and data access 

S
no

w
 c

ou
rs

e 

Canada 
CanSWE v3 - Environment 
and Climate Change Canada 
and partners 

Vionnet et al. (2021) 
https://zenodo.org/record/5217044#.YdYEsllybb0    

Western US and 
Alaska 

U. S. Department of 
Agriculture Natural 
Resources Conservation 
Service (NRCS) 

https://www.nrcs.usda.gov/wps/portal/wcc/ 
home/snowClimateMonitoring/snowpack/ 

Northeast US 

Northeast Regional Climate 
Centre  
 
New Hampshire Department 
of Environmental Services – 
Dams 
 
Maine Geological Survey 

https://www.nrcc.cornell.edu/ 
 
 
https://www.des.nh.gov/ 
 
 
https://mgs-maine.opendata.arcgis.com/datasets/maine-
snow-survey-data/explore  

G
am

m
a US & 

transboundary 
Canadian 
watersheds 

NOAA National Operational 
Hydrologic Remote Sensing 
Center (NOHRSC) 

https://www.nohrsc.noaa.gov/snowsurvey/  

 

2.2.2 Airborne gamma SWE 

The attenuation of gamma radiation by the water mass of the snowpack (liquid or solid phase) can be related to SWE 

provided the background soil moisture is properly accounted for (Carroll, 2001). The US National Oceanographic and 

Atmospheric Administration’s (NOAA) National Operational Hydrologic Remote Sensing Center (NOHRSC) snow survey 100 
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program (https://www.nohrsc.noaa.gov/snowsurvey/) has been using airborne gamma measurements to estimate SWE 

operationally since 1979 (Carroll, 2001). Flights are conducted to measure gamma radiation when the ground is snow-free 

(background attenuation by soil moisture only) and again when the ground is snow-covered (attenuation by soil moisture and 

the snowpack). The operational equations used to relate gamma radiation to SWE are described in Carroll (2001). The 

detection limit for this method is ~1000 mm SWE.  105 

The NOHRSC snow survey network (Table 2, Fig. 1) consists of approximately 2,400 flight lines in 25 US states and seven 

Canadian provinces (Carroll, 2001). SWE is reported as an aerial average for each flight line, which is typically 15–20 km 

long across a 300 m wide footprint. Flights are conducted near the peak of the snow accumulation season and during melt 

when SWE information is critically needed for water supply outlook and flood forecasting, typically February through April 

depending on the location. Spatial coverage of this dataset has varied over the years especially over the western US, and 110 

flights over Alaska only began in 2003. Accuracy of these data, determined from comparisons with coincident ground-based 

snow observations during specific field campaigns, is 4–10% in prairie environments across a SWE range of 20–150 mm 

(Carroll and Schaake, 1983) and 23 mm in densely forested terrain across a SWE range of 20-480 mm (Carroll and Vose, 

1984). 

3 Methods 115 

3.1 Evaluation of gridded datasets 

The analysis period for each product is listed in Table 1 and generally covers 1980–2020. Our analysis was restricted to 

February through April, when the ratio of snow courses to gamma SWE is most consistent (Fig 1a). Validation statistics 

(bias, unbiased root mean squared error - uRMSE, and correlation) were computed for North America, except U. Arizona 

(CONUS-only). Our uRMSE estimate is defined as the square root of the mean square error minus the squared bias. 120 

Statistics are computed for all non-zero SWE ≤ 1000 mm (both reference and product SWE must be ≤ 1000 mm for 

inclusion) as well as for a subset of cases when the reference SWE is ≤ 200 mm (see Sect. 4.4). The upper (1000 mm) 

threshold is consistent with the maximum detection limit of the airborne gamma SWE method. 

Reference SWE was matched up in space and time with gridded SWE at the native product resolution. To reduce errors from 

mismatched water and ice masks, only sites with coincident product estimates from two thirds of the products evaluated 125 

were retained. For gamma SWE, we used the midpoint of each flight line for geolocation, which differs slightly from Cho et 

al. (2019; 2020) and Tuttle et al. (2018) who weighted the average of the gamma SWE footprint (using a fixed diameter of 

330 meters assigned to each flight line) contained within each product grid cell. We found that both methods produced 

similar results, so we used the flight line midpoint for simplicity. 

To reduce oversampling in areas with spatially dense networks, the reference data shown in Fig. 1b were resampled to a 100 130 

km spacing (Fig 1c). Snow course and gamma SWE were considered separately, and mountain measurements were separated 

from non-mountain. To avoid oversampling specific grid cells, we first aggregated reference sites within the same product 
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grid cell (at the native resolution of the product grid) before aggregating to the 100 km spacing. Sensitivity analysis of 

various spatial aggregation distances between 50 and 200 km showed little impact of aggregation distance. We selected 100 

km as a compromise between sample size and spatial distribution.  135 

Due to the well documented challenges in estimating and validating mountain SWE at coarse resolutions, (Wrzesien et al., 

2019) we also computed metrics separately for mountain and non-mountain reference data. Mountain sites are defined as 

those intersecting the Global Mountain Biodiversity Assessment (GMBA) Mountain Inventory v2 (Snethlage et al., 2022; 

https://www.earthenv.org/mountains) with a 25 km buffer or with a 2° slope mask derived from the GETASSE30 DEM. The 

25 km buffer was added to the GMBA mountain mask to avoid contamination of product grid cells with fractional mountain 140 

terrain. SnowCCI products were excluded from our analysis of mountain regions because SWE is not provided across a 

complex terrain mask applied to those datasets.  

3.2 Diagnosing the impact of reference data characteristics 

We evaluated how differences in measurement method (snow course versus gamma), the spatiotemporal distribution of the 

reference data, SWE magnitude of the reference datasets, and gridded product versus reference data elevation biases impact 145 

both absolute and relative product accuracies. For each of these covariates, a difference of means test (two-sided independent 

student t-test) was applied to determine whether the mean product metrics calculated using snow courses are different from 

those obtained with airborne gamma, using a significance level of 95%. Consistency in product rankings was assessed with 

the Spearman rank correlation coefficient. 

3.2.1 Reference data measurement method 150 

To investigate how the reference measurement approach impacts the reference SWE value we quantified the agreement 

between snow courses and gamma data at various spatial (5 km, 10 km, 25 km, and 50 km) separations and temporal (0, ± 3, 

± 7 and ± 10 day) lags, separately for mountain and non-mountain regions. This analysis was conducted on the unaggregated 

reference data (Fig 1b). The spatial separation of measurements in the two datasets was taken as the linear distance between 

the snow course location and the gamma flight line midpoint. Using the measurement accuracies described in Sect. 2, we 155 

assigned a 10% uncertainty to both reference datasets. Addition in quadrature of these independent uncertainties yields a 

combined baseline uncertainty of ~14% for the airborne gamma – snow course comparison. This value is likely an 

underestimate and does not consider issues of spatial representativeness and spatial scale which cannot be quantified with the 

available data used in this study, nor does it consider operator error in the case of snow courses (López-Moreno et al., 2020). 

3.2.2 Spatial distribution of the reference data 160 

To evaluate the impact of differences in spatial coverage beyond the scale of a typical grid cell (Table 1), we generated 

matched reference data subsets composed of snow course sites having at least one gamma site within a specified linear 

distance and vice versa. We tested various distances between 25 km and 500 km, separately for mountain and non-mountain 
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sites (i.e. reference sites where both are classified as either mountain or non-mountain). For each spatial separation distance, 

the matched snow course and gamma reference data were each spatially aggregated to 100 km as described in Sect. 3.1. In 165 

this analysis of spatial distribution, no restriction was placed on temporal separation of the reference data, meaning the 

reference sites can be from any date during the analysis period. In this way, spatial distribution serves as a proxy for similar 

landcover types.  

3.2.3 SWE magnitude 

To evaluate the impact of SWE magnitude on relative and absolute product accuracies, we calculated validation metrics for 170 

sequential 50 mm SWE bins based on the February-April climatological mean of the spatially aggregated reference sites 

(Sect. 3.1, Fig. 1c) having at least five observations during the study period.  

3.2.4 Elevation bias 

In mountain regions, large changes in elevation over short distances are common. At the kilometre scale, SWE generally 

increases with elevation up to a certain point, after which it decreases due to wind redistribution particularly above treeline 175 

(Grünewald et al., 2014; Kirchner et al., 2014). If reference measurements are consistently collected at higher (lower) 

elevations relative to a product grid cell centroid, we might expect them to have more (less) SWE compared to the grid cell 

average. To understand the impact of elevation bias on SWE validation statistics, we compared the elevation of product grid 

centroids with reference data elevations. We used the model surface geopotential height converted to metres or in the case of 

Crocus and U Arizona, the DEM used by the model. For EO products which do not rely on any type of elevation 180 

information, we used the GLOB30 DEM re-gridded to the native product grid. Reference data elevations were screened for 

outliers using the USGS 30-metre NED1 DEM (NED2 60m DEM for Alaska) (Gesch et al., 2018) and sites with metadata 

elevations > |1000| m from the NED1 DEM were removed. Reference sites without accompanying metadata elevations (16 

gamma sites, 33 snow course sites) were assigned the intersecting USGS NED DEM elevation. We computed validation 

statistics for sequential 100 m elevation-bias bins.  185 

4 Results 

4.1 Overall gridded product performance 

The relationship between gridded SWE products and reference data over the full spatial domain (using the aggregated 

reference data as shown in Fig. 1c) is shown in Fig. 2. There are clear differences in performance among the products. U. 

Arizona outperforms all products regardless of the reference dataset, but the dataset domain, and hence the validation 190 

statistics, are limited to CONUS. Considering the entire North American domain, ERA5-Land, ERA5, ERA5-Snow and 

Crocus-ERA5 consistently rank among the top half of the products evaluated, albeit with some differences according to the 

metric and reference dataset. The Brown temperature index model products, despite employing relatively simple 
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formulations for snow processes, also have reasonable performance, although the JRA55 forcing results in poor correlations 

against snow courses (Fig. 2). A strength of the U. Arizona, ERA5-Land and Crocus-ERA5 products is that they show good 195 

performance across the full range of reference SWE values (Fig. 2). While ERA5 and ERA5-Snow have strong correlations 

against both reference datasets, these products suffer from larger biases in high SWE regions because their maximum snow 

depth is fixed at 1.4 m (corresponding to ~500 mm SWE depending on the snow density) to prevent excessive snow 

accumulation at high elevations and latitudes (P. de Rosnay, pers com). The JAXA-AMSRE, JRA-55, MERRA2 and 

GLDASv2.2 products exhibit the weakest performance. SWE estimates from these products have very weak statistical 200 

relationships to observed SWE. This makes them unsuitable to discern the impact of covariates (i.e., sampling methodology, 

spatiotemporal distribution, SWE magnitude, product-reference elevation bias as described in Sect. 3.2.4) on the differing 

product statistics obtained with snow courses and airborne gamma SWE, so they are excluded from this analysis in Sect. 4.2 

through 4.5. The best performing EO-based products (Snow CCI) saturate when reference SWE exceeds ~250 mm (Fig. 2) 

which is an important consideration for the appropriate use of these datasets.  205 
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Figure 2: Product vs reference SWE density scatter for measurements > 0 and ≤ 1000 mm during February – April. See Table 1 

for product names, descriptions, and time periods. Note that Snow CCI excludes areas of complex terrain, U Arizona is limited to 

CONUS, and JAXA-AMSR2 (2014-) and GLDASv2.2 (2003-) are limited temporally. 

The validation statistics shown in Fig. 2 provide benchmark information on the performance of currently available gridded 210 

SWE products over North America, building on an earlier assessment of a previous generation of products (Mortimer et al., 

2020). For all products, the bias magnitude and uRMSE are larger using the snow course reference dataset as compared to 

the airborne gamma reference dataset. This difference is due in large part to the higher proportion of mountain snow course 

sites for which validation statistics are poor (Fig. 3): over 50% of the snow course data are located in mountain areas 

compared to just over 30% of gamma the data. Product performance is considerably worse in mountain compared to non-215 

mountain regions (Fig. 3), but the discrepancy is larger when snow courses are used as the reference data compared to 

gamma SWE. In the following sections, we evaluate how differences in measurement method, spatiotemporal distribution, 

reference SWE magnitude, and gridded product elevation biases impact both absolute and relative product statistics. A 

subset of products with coverage of both mountain and non-mountain areas and a reasonable relationship with reference 

SWE as determined from Fig. 2 – Crocus-ERA5, Brown-ERA5, Brown-MERRA2, Brown-JRA55, ERA5, ERA5-Land, 220 

ERA5-Snow, U. Arizona – are used for this analysis. 

 

 

Figure 3: Boxplot of statistical performance for products listed in Table 1 computed separately for snow courses versus gamma 

SWE, and mountain versus non-mountain (“flat”) regions across the full spatial domain.  225 

4.2 Reference data measurement method 

Comparisons of snow course versus gamma reference SWE at various spatial separation distances (Fig. 4a) and temporal 

lags (Fig. 4b) demonstrate poor agreement in the mountain regions even at short distances and no temporal lag (Fig. 4a, 

bottom row). Depending on spatial separation distance and temporal lag, the mean difference between gamma and snow 

course measurements in mountain regions varies from 35–55% of the mean reference SWE and the correlation of the two 230 

reference measurements drops markedly with increasing distance. The agreement between snow course and gamma 

reference SWE is much stronger in non-mountain regions. When constrained to the same dates, the mean difference between 
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gamma and snow courses is approximately 20% across all spatial distances tested (Fig. 4a top row shows mean bias ~20mm 

and mean reference SWE ~100mm). Relaxing the temporal constraint (Fig. 4b) allows for many more paired measurements 

such that the mean difference in non-mountain regions drops to less than 12% of the mean reference SWE for temporal lags 235 

larger than zero (Fig. 4b, top row) which is within our 14% baseline uncertainty estimate for this comparison (Sect. 3.2.1). In 

addition, for all separation distances and temporal lags, the non-mountain reference SWE values are reasonably correlated 

with one another: generally above 0.7 although their correlation drops slightly at the longest temporal lags. Therefore, we 

conclude that in non-mountain terrain, the reference dataset measurement method does not result in detectable differences in 

the determination of product performance, up to the spatial (50 km) and temporal (10 d) lags evaluated. We note here that 240 

the agreement of the reference datasets in non-mountain regions as evaluated up to 50 km is comparable to the grid spacing 

of the majority of SWE products considered.  However, because the majority (> 90%) of the matched data are located in 

either the forested Northeastern US or the NA L1 Great Plains Ecoregion (https://www.epa.gov/eco-research/ecoregions-

north-america), we are unable to extrapolate this result directly to all North American non-mountainous regions.  

 245 
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Figure 4: Snow course versus gamma measurements. (a) measurements on the same date within 5, 10, 25 and 50 km for SWE > 0 

and ≤ 1000 mm. (b) measurements within 25 km on the same date and within 3, 7 and 10 days.    
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4.2 Reference data spatial distribution 

Having directly compared the two sources of reference SWE above, in the following sections we provide comparisons of 250 

product performance metrics calculated using one reference dataset or the other and demonstrate under what conditions and 

to what extent they agree. This analysis remains restricted to the Crocus-ERA5, Brown-ERA5, Brown-MERRA2, Brown-

JRA55, ERA5, ERA5-Land, ERA5-Snow and U. Arizona products. First, we reassess differences for this product suite over 

the full spatial and temporal domain, separately for mountain and non-mountain areas. Over the full domain, there is 

reasonable agreement in relative product rankings of all three metrics in both mountain and non-mountain regions (expressed 255 

by Spearman correlation coefficients, Fig. 5). However, there is poor agreement on the absolute bias and uRMSE 

magnitudes, especially in mountain regions: the grey circles do not lie on the 1:1 line and the mean difference in product bias 

and uRMSE computed with either reference dataset is larger than the uncertainty envelope attributed to measurement error 

(Fig. S1, orange dots). Further, the mean product statistics calculated with either reference dataset are distinct from each 

other (p < 0.05) except for the bias in non-mountain regions and the correlation in mountain regions (Fig. S1, blue dots). 260 

 

Figure 5: Product performance metrics computed with gamma SWE vs snow courses for the full spatial domain (solid grey circles) 

and for reference data spatial subsets (c) defined by the linear distance between the gamma and snow course sites for (a) mountain 

and (b) non-mountain regions. For example, 200 km refers to metrics calculated using only the subset of gamma (snow course) 

reference data having a snow course (gamma) site within 200 km. Each dot represents one of the products Brown-ERA5, Brown-265 

JRA55, Brown-MERRA2, ERA5, ERA5Snow, ERA5-Land, Crocus-ERA5, and U. Arizona. Spearman correlation coefficients, 

which assess agreement in product rankings calculated with snow courses versus gamma SWE, are summarized by the range 

across the spatial lags tested and for the full domain (parentheses). 
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The statistical differences in metrics assessed from the snow course versus gamma reference datasets as described above 270 

may stem from differences in where each reference dataset has coverage (Fig. 1). Gamma SWE is limited to the US and 

southern Canada, and so misses the high SWE areas of the boreal forest (e.g., northern Quebec, Canada) sampled by snow 

courses. Roughly one third of the gamma data are in the NA L1 Great Plains Ecoregion which has limited (< 2.4%) snow 

course data for the paired analysis as described in Sect. 4.2. Conversely, 12% of the snow course data are in arctic regions 

(NA L1 Ecoregions – Arctic Cordillera, Taiga, Tundra, Hudson Plain) compared to just 3% of the gamma data. Unless all 275 

products perform equally well across all landcover types (which is very unlikely), these spatial differences are likely to result 

in differing product accuracies calculated for snow courses versus airborne gamma. To examine how sensitive the assessed 

product performance is to differences in spatial coverage of the reference data, performance metrics using only reference 

sites within 25 km to 500 km (Sect. 3.2.2) of each other are also shown in Fig. 5 (for display purposes, only 50 km, 200 km 

and 500 km are shown).  280 

Spatially restricting the reference data had a minor impact on the agreement in product ranking (Spearman correlation 

coefficients, Fig. 5). In mountain regions, spatially restricting the analysis domain resulted in minimal change in product 

metrics (Fig. 5a), and thus no improvement in the discrepancy in product metrics according to choice of reference dataset 

(Fig. S1). Spatially restricting the reference data did, however, alter the uRMSE in non-mountain regions (Fig. 5b). At 

smaller spatial scales (< 300 km) the discrepancy in product uRMSE decreases and the values calculated with either snow 285 

courses or airborne gamma reference data become statistically indistinguishable from one another (Fig. S1).  

The fact that the two reference datasets still yield different performance metrics in mountain regions despite the spatial 

restrictions applied above suggests that (i) our spatial domains are not sufficiently restrictive or that we need to also consider 

the temporal domain or that (ii) additional factors such as SWE magnitude or elevation bias have a greater impact on 

reference dataset performance agreement than does spatial distribution. To test the impact of temporal distribution on 290 

absolute and relative product statistics we further restricted the reference dataset to only include nearby (within 200 km) 

measurements collected within ten days of each other (Fig. 6). The temporal distance was informed by our direct comparison 

of reference SWE (Sect. 4.2, Fig. 4) which showed little impact on agreement up to ten days. For the spatial distance we 

considered sample size and the distance at which non-mountain statistics converged. Specifically, in non-mountain areas 

there was no difference in mean product uRMSE computed with either reference dataset when constrained to sites within 295 

250 km of each other, and there is lower agreement in non-mountain product ranking (bias and correlation) at spatial 

separation distances > ~150–200 km (Fig. S2). This spatial subset comprises most of the mountain observations (> 95% of 

gamma data, ~75% of snow course data) but only around half (~60% of gamma data, ~50% of snow course data) of the non-

mountain data.  
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 300 

Figure 6: Absolute value of difference in product metric computed with snow courses vs gamma SWE sites within 200 km of each 

other for a subset of reference measurements collected within seven days of each other versus those collected at any time during 

Feb.–April 1980–2020. Each dot represents one of the products: Brown-ERA5, Brown-JRA55, Brown-MERRA2, ERA5, 

ERA5Snow, ERA5-Land, Crocus-ERA5, and U. Arizona, in mountain (purple) and non-mountain (green) terrain. p-values from 

two-sided independent student t-test (Sect. 3.2) comparing difference in mean product statistic computed with snow course and 305 

with airborne gamma. When p < 0.05 the ensemble mean metrics computed using each choice of reference data are statistically 

distinguishable at 95% confidence. Lower right map shows reference data locations of the spatially and temporally constrained 

subset (not separated by reference data type for display purposes).  

 

Temporally restricting nearby reference measurements reduced the mean difference in mountain [product] bias and uRMSE 310 

computed with the two reference datasets by over 25% (the hollow purple circles in Fig. 6 move closer to the 1:1 line 

compared to the solid purple dots), but these metrics remain statistically larger and distinct (p < 0.002) when computed 

against snow courses rather than airborne gamma. These differences are expected given the discrepancy in observed 

reference values at the measurement scale (Fig. 4). In non-mountain regions, agreement of the spatially restricted dataset was 

already strong, and the temporal restriction did not result in any further improvement (Fig. 6). In the next sections we use 315 

this coincident reference data subset (200 km and ± 10 d) to explore the impact of SWE magnitude and elevation bias on 

absolute and relative product accuracies. This spatial and temporal subset comprises less than 20% of the original dataset so 

reference to the full domain is made where appropriate. 
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4.3 SWE magnitude 320 

The relationship between product and reference SWE deteriorates for most products at higher SWE magnitudes (Fig. 2). In 

some cases, there is a clear contribution to this deterioration by thresholds which are applied to avoid excessive snow 

accumulation (i.e. ERA5 and ERA5-Snow, Sect. 4.1) or, in the case of EO approaches, as the physical retrieval basis is no 

longer applicable (Chang et al., 1982, 1987; Luojus et al., 2021). In mountain areas, despite having similar elevation 

distributions, snow courses sample a much larger range of SWE than does airborne gamma, whether evaluating the complete 325 

spatial and temporal domain or the coincident subset (Fig. 7). In non-mountain areas, mean SWE observed by snow courses 

and gamma is comparable over the coincident reference subset but is slightly higher for snow courses over the full domain 

due to high SWE sites in the northern boreal forest which are not sampled by airborne gamma.  
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Figure 7: Reference SWE (top two rows) and elevation (bottom row) distribution for spatially and temporally restricted subset 330 

(top row) and the full domain (bottom rows) for mountain (left) and non-mountain (right). The spatial and temporal subset (top 

row) is the same reference data used to calculate the product statistics shown in Fig. 6 (hollow dots).  
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Figure 8: Mountain product performance for sequential 50 mm SWE bins over the spatially and temporally restricted domain. 

Bottom row shows the difference between snow course and gamma derived metrics for each product and bin. Product metrics 335 

shown are limited to 200 mm and 500 mm and below for gamma and snow course, respectively, due to limited number of data 

pairs above these thresholds. 

Bias and uRMSE increase with reference SWE magnitude for both mountain (Fig. 8) and non-mountain regions (not shown) 

whether computed using the full reference domain (Fig. S3) or the restricted one. The spread in product uRMSE and bias 

values also increases with SWE magnitude; however, because airborne gamma observations are limited to moderate SWE 340 

values it fails to capture much of these inter-product differences. Correlations calculated using snow courses or gamma 

reference SWE are fairly stable between 50 and 150 mm; those calculated using snow courses drop sharply above the 150 

mm bin except for U. Arizona, consistent with Fig. 2 which shows good agreement between reference and U Arizona SWE 

across the full SWE range. 

Thresholding the coincident subset to the SWE domain consistently sampled by both reference datasets (200 mm and below 345 

as constrained by the gamma dataset) reduced the discrepancy in product metrics (bias and uRMSE) computed with snow 

courses and airborne gamma in mountain regions by over two thirds (Fig. 9a). The systematic negative product bias against 

snow courses observed over the full analysed mountain SWE range is removed when the high SWE sites responsible for 

much of this underestimation are excluded. Of course, restricting analysis in mountain regions to SWE < 200 mm is 

unsatisfying since this represents very shallow mountain snow conditions. The uRMSE is reduced for both reference datasets 350 

but the magnitude of improvement is considerably larger for the snow course dataset improving the inter-reference-dataset 
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agreement (Fig. 9a, hollow purple p = 0.04). Restricting the reference dataset to sites with climatological SWE ≤ 200 mm 

had negligible impact on non-mountain product metrics (and so not shown on Fig. 9a) because the non-mountain reference 

SWE distributions are similar and mostly below this threshold (Fig. 7).  

 355 

Figure 9: Sensitivity of product metrics computed with gamma SWE versus snow courses to (a) SWE magnitude and (b) elevation 

bias for the spatially and temporally restricted domain. (a) Mountain (purple) and flat (green) metrics for SWE ≤ 1000 mm (solid 

circles) and SWE ≤ 200 mm (hollow circles). (b) Mountain product metrics for reference-product pairs with elevation biases <|200| 

m (red circles) and no elevation bias restriction (purple) for the full (solid) and restricted ≤ 200 mm (hollow) SWE domain. Each 

dot represents one of the products Brown-ERA5, Brown-JRA55, Brown-MERRA2, ERA5, ERA5Snow, ERA5-Land, Crocus-360 

ERA5, and U. Arizona. Squares represent the mean of the products. T-test p-values as in Fig. 6. Non-mountain SWE ≤ 1000 mm 

overlap almost exactly with SWE ≤ 200 mm and are not shown. Purple dots in (a) and (b) are the same. 

4.4 Elevation bias 

A consistent high-level message is that products perform considerably worse in mountains compared to non-mountain areas. 

Thresholding the analysis to moderate levels of SWE (≤ 200 mm) decreases the discrepancy in product statistics calculated 365 

with one reference dataset versus the other, but uRMSE and correlation are still worse in mountain compared to non-

mountain regions (Fig. 9a). As outlined in Sect. 3.2.4, in mountain and complex terrain, the relationship between SWE and 

elevation can result in large SWE gradients over short distances (i.e. less than a single product grid cell). In these regions, 

systematic differences in elevation between reference measurements and the centroid of a product grid could, therefore, 

produce validation errors that are a result of our approach rather than the products themselves. 370 
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To investigate the impact of elevation biases, we computed product metrics for sequential 100 m elevation difference bins 

(determined by the reference measurement location versus the centroid of a product grid) (Sect. 3.2.4). This analysis is 

restricted to mountain regions because elevation mismatches are smaller in non-mountain regions (< 10% of reference-

product data pairs have elevation biases > |200| m). The mean metrics for Brown-ERA5, Brown-MERRA2, Brown-JRA55, 

ERA5, ERA5Snow, ERA5-Land, Crocus-ERA5 and U. Arizona are shown in Fig. 10. Product SWE bias increases linearly 375 

with elevation difference and the minimum uRMSE occurs at or near zero elevation difference; correlations tend to be 

highest when elevation biases are smallest. The impact of elevation biases on product performance is reduced, but not 

eliminated, when SWE is restricted to 200 mm and below (Fig. 10, hollow circles). This is especially for snow courses and 

indicates that sites with large elevation biases also have moderate to high SWE. Surprisingly, we did not find a systematic 

relationship between elevation bias and product grid spacing (e.g. larger and/or greater frequency of elevation bias for more 380 

coarsely gridded products). 

Restricting the analyzed data pairs to those with elevation biases < |200| m (Fig. 9b, red) improves the mean bias and 

uRMSE across both the full and restricted SWE. However, the improvement is small compared to that achieved by SWE 

thresholding (Fig. 9a). The discrepancy in product metrics (bias and uRMSE) improves when the full SWE range (Fig. 9b, 

solid circles) is restricted to data pairs with small elevation biases. When considering an already restricted set of pairs for 385 

which SWE ≤ 200 mm (Fig. 9b, hollow circles) there is limited to no additional improvement in the agreement in product 

metrics by further restricting the allowed elevation bias.   

 

https://doi.org/10.5194/egusphere-2023-3013
Preprint. Discussion started: 10 January 2024
c© Author(s) 2024. CC BY 4.0 License.



22 
 

Figure 10: Mean mountain bias, uRMSE and correlation and total number of reference–product data pairs for sequential 100 m 

elevation bias bins (reference minus product elevation) for the products Brown-ERA5, Brown-JRA55, Brown-MERRA2, ERA5, 390 

ERA5Snow, ERA5-Land, Crocus-ERA5, and U. Arizona. Metrics are computed for the spatially and temporally restricted 

reference dataset (Sect. 4.3) over the full (≤ 100 mm) and restricted (≤ 200 mm) SWE ranges. X-axis labels indicate centre of 100 m 

elevation bin. Only bins with >1.5% of total data pairs are shown.  

5 Discussion 

There are limited types of reference datasets available to evaluate gridded SWE products, with snow courses and airborne 395 

gamma data providing the most appropriate options. Our analysis shows that the choice of reference dataset has little impact 

on the general assessment of relative product performance (Fig. 2), but has a large impact on the magnitude of the statistics 

calculated in mountain areas.   

5.1 Non-mountain regions 

There is no measurable difference in SWE measured by gamma or snow courses in non-mountain terrain up to the scale of 400 

most gridded products evaluated (Fig. 4). This result suggests that the reference data are sampling the true SWE field at 

spatial and temporal scales less than its intrinsic variability and hence the reference data SWE estimates are representative at 

scales appropriate for gridded SWE evaluation in non-mountain areas. When constrained spatially, which serves as a proxy 

for landcover type, validation statistics from either of the two reference datasets are comparable (Fig. 5). The fact that 

validation statistics from either of the two independent reference datasets are comparable in non-mountain regions when 405 

evaluated over similar environments demonstrates that we can robustly validate gridded SWE estimates in such regions. 

Together, the strong agreement in reference SWE and consistent accuracies suggests that we can confidently use these two 

reference datasets in concert.  

5.2 Mountain regions 

In mountain areas, challenges remain surrounding the estimation and evaluation of coarse-resolution gridded SWE products. 410 

The U Arizona SWE product demonstrates that strong performance in mountain areas is possible if observations from dense 

national in situ networks (SNOTEL and COOP) are combined with downscaled temperature and precipitation data (PRISM) 

at a fine spatial resolution (Zeng et al., 2018). Aside from this product, a consistent high-level message from our analysis is 

that products perform considerably worse in mountain compared to non-mountain areas. This is a well documented issue 

(Fang et al., 2022 and references therein; Kim et al., 2021; Liu et al., 2022; Snauffer et al., 2016; Terzago et al., 2017; 415 

Wrzesien et al., 2019). However, our analysis also shows that the choice of reference data may also contribute to poorer 

product performances, as demonstrated by the large discrepancy in product metrics computed with the two reference datasets 

in coincident mountain areas (Fig. 6).  
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In mountain areas, SWE magnitude has the largest impact on product accuracies and their agreement according to the choice 

of reference dataset (Fig. 9a). Elevation bias and the spatiotemporal distribution of the reference datasets have comparable 420 

impacts, both of which are smaller than that of SWE magnitude. High SWE observations also tend to have large elevation 

biases, so the order in which the elevation bias and SWE thresholds are applied influences their relative impact.  

The systematically higher SWE measured by snow courses in mountain areas (compared to airborne gamma) (Fig. 7), even 

over short distances (5km) (Fig. 4b), translates in measurable differences in product bias and uRMSE (Fig. 3, Fig. 5a). It is 

only possible to obtain reasonable reference-dataset agreement in product these metrics by restricting the analysis to sites 425 

with climatological mean SWE of 200 mm and below (Fig. 9a). Such a restriction is unrealistic as it omits a majority of the 

SWE range observed by snow courses, at which differences in product performance are greatest. Airborne gamma is known 

to underestimate SWE in areas with high snowpack spatial variability (Cork and Loijens, 1980; Cho et al., 2019; Carroll and 

Carroll, 1989), commonly caused by drifting snow or complex terrain.  Considering the full spatiotemporal domain, despite 

having similar elevation distributions to snow courses, airborne gamma SWE estimates have a maximum of ~350 mm (Fig. 430 

7), which best represents shallow mountain snow conditions which is an important consideration for the appropriate use of 

airborne gamma SWE estimates in these regions.  

5.2 Towards a combined North American reference SWE dataset 

Across North America, snow course and airborne gamma networks have largely complementary spatial coverage. Creating a 

combined reference dataset using both of these sources contributes to a fuller picture of gridded SWE dataset performance. 435 

Given the strong agreement in reference SWE and their derived product accuracies in non-mountain areas, we are confident 

in pooling all snow course and gamma SWE observations together and computing a single product accuracy from these 

pooled data. As there is limited overlap between the datasets in the non-mountain domain outside of the Northeastern US, 

weighting as a function of footprint size or spatiotemporal sampling density is not necessary.  

In mountain regions, the decision on whether and how to combine the reference data is less straightforward because of the 440 

lack of agreement between snow course measurements and gamma-derived estimates of SWE (e.g. Fig. 4b). Reasonable 

alignment in mountain SWE product metrics from the two reference datasets only occurs when constraints on similar 

locations, dates, and climatological SWE are applied (Fig. 9). The higher spatial and temporal density of the snow course 

dataset (Fig. 1) will bias any combined dataset towards snow courses, and we considered evenly weighting snow courses and 

airborne gamma in mountain regions to address this. However, Fig. 7 suggests the gamma SWE distribution is shifted 445 

toward lower values in mountain areas, so evenly weighting snow courses and gamma SWE would artificially reduce the 

relative peak SWE. Given these constraints we chose not to combine snow course and gamma SWE data in mountain areas. 

Instead, we consider these two reference datasets separately in mountain regions. The new combined reference dataset, 

illustrated in Fig. 11 (described in Sect. 3.1), will contribute to a comprehensive evaluation of Northern Hemisphere gridded 

SWE products in the context of the European Space Agency ‘Satellite Snow Product Intercomparison and Evaluation 450 

Exercise’ (SnowPEx; Mudryk et al., submitted) beyond the statistical validation described in this study. 
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Figure 11: Combined and spatially aggregated (100 km) in situ SWE dataset consisting of snow course and airborne gamma SWE 

measurements over north America for February through April 1980–2020. Grey shading indicates mountain regions. 

6 Conclusions 455 

The choice of reference dataset has little impact on SWE product ranking but a large impact on the magnitude of validation 

statistics in mountain regions (Fig. 3). The strong agreement in non-mountain areas occurs because the reference SWE 

measured by gamma or snow courses agrees up to the scale of most gridded products evaluated (Fig. 4). In mountain regions 

the poor agreement in product statistics results primarily from the larger SWE range sampled by snow courses compared to 

gamma SWE (Fig. 7). Reasonable agreement in mountain product statistics was only achieved by restricting the reference 460 

data to similar dates, locations, climatological SWE, and elevation biases (Fig. 8). This approach is ultimately not 

appropriate, however, as it omits all but shallow-to-moderate mountain snowpacks indicating that targeted approaches are 

required to validate SWE products in mountain regions. Building on insights gained from our analysis of reference SWE 

agreement and of the impact of covariates on product accuracies (SWE magnitude and product-reference elevation offsets 

both impact absolute and relative product performance) we produced a combined spatially aggregated North American 465 

reference SWE dataset (Fig. 11) for non-mountain areas consisting of snow course and airborne gamma measurements. 

Data Availability 

The reference data are available using the links in Table 2 except for those from the Northeast Regional Climate Centre and 

New Hampshire Department of Environment which are available from the authors upon request. The combined reference 

dataset will become available by the time of publication. Gridded SWE product (Table 1) availability as listed below. 470 

 

https://doi.org/10.5194/egusphere-2023-3013
Preprint. Discussion started: 10 January 2024
c© Author(s) 2024. CC BY 4.0 License.



25 
 

 
Product Name Availability/DOI  

B-TIM-ERA5 DOI to be available at time of publication 

B-TIM-JRA55 DOI to be available at time of publication 

B-TIM-MERRA2 DOI to be available at time of publication 

Crocus-ERA5 DOI to be available at time of publication 

ERA5 10.24381/cds.adbb2d47 

ERA5-Snow Available on request from patricia.rosnay@ecmwf.int 

ERA5-Land 10.24381/cds.e2161bac 

GLDAS v2.2 [CLSM] 10.5067/TXBMLX370XX8 

JRA-55 https://jra.kishou.go.jp/ 

MERRA2 10.5067/RKPHT8KC1Y1T 

Snow_CCI v2 10.5285/4647cc9ad3c044439d6c643208d3c494 

Snow_CCI v1 10.5285/fa20aaa2060e40cabf5fedce7a9716d0 

JAXA-AMSR2 Preliminary version provided as part of SnowPEx+.  
Available on request from rejkelly@uwaterloo.ca 

Author Contributions 

CM, EC, LM and CD developed the analysis framework. CM and LM developed the code to calculate statistics and 
performed the analysis. CM prepared the manuscript with contributions from all co-authors. 475 

Competing Interests 

At least one of the (co-)authors is a member of the editorial board of The Cryosphere. 

Acknowledgements 

This work was initiated through the ESA-funded SnowPEx+ project. 

Data availability 480 

Reference data and gridded SWE products are available using the links in Tables 1 and 2 or on request from the authors 

where direct links are not available. The NOAA airborne gamma survey data are available at 

https://www.nohrsc.noaa.gov/snowsurvey/historical.html. 

 

https://doi.org/10.5194/egusphere-2023-3013
Preprint. Discussion started: 10 January 2024
c© Author(s) 2024. CC BY 4.0 License.



26 
 

References 485 

Barnett, T.P., Adam, J.C., and Lettenmaier, D.P.: Potential impacts of a warming climate on water availability in snow-

dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005. 

Beaumont, R.T.: Mt. Hood pressure pillow snow gage, J. Appl. Meteorol., 4, 626–631, https://doi.org/10.1175/1520-

0450(1965)004<0626:MHPPSG>2.0.CO;2 , 1965. 

Brown, R., Brasnett, B., and Robinson, D.: Gridded North American monthly snow depth and snow water equivalent for 490 

GCM evaluation, Atmos. Ocean, 41, 1–14, https://doi.org/10.3137/ao.410101, 2003. 

Brown, R.D., Fang, B., and Mudryk, L.: Update of Canadian historical snow survey data and analysis of snow water 

equivalent trends, 1967–2016, Atmos. Ocean, 57, 149–156, https://doi.org/10.1080/07055900.2019.1598843, 2019. 

Brun, E., Vionnet, V., Boone, A., Decharme, B., Peings, Y., Vallette, R., Karbou, F. and Morin, S.: Simulation of northern 

Eurasian local snow depth, mass, and density using a detailed snowpack model and meteorological reanalyses, J. 495 

Hydrometeorol., 14, 203–219, https://doi.org/10.1175/JHM-D-12-012.1, 2013. 

Carroll, T.R. Airborne Gamma Radiation Snow Survey Program: A user's guide, Version 5.0. National Operational 

Hydrologic Remote Sensing Center (NOHRSC), Chanhassen, 14, 2001. 

Carroll, S.S., and Carroll, T.R. Effect of uneven snow cover on airborne snow water equivalent estimates obtained by 

measuring terrestrial gamma radiation, Water Resour. Res., 25, 1505–1510. 500 

https://doi.org/10.1029/WR025i007p01505, 1989. 

Carroll, T.R., and Schaake, J.C. Jr.: Airborne snow water equivalent and soil moisture measurement using natural terrestrial 

gamma radiation. In Optical Engineering for Cold Environments, 414, 208–214, Arlington, USA: International 

Society for Optics and Photonics. https://doi.org/10.1117/12.935888, 1983. 

Carroll, T.R. and Vose, G.D.: Airborne snow water equivalent measurements over a forested environment using terrestrial 505 

gamma radiation. In Proceedings of the Eastern Snow Conference, 29, 101‐115, 1984. 

Chang, A.T.C., Foster, J.L., Hall, D.K., Rango, A., Hartline, B.K.: Snow water equivalent estimation by microwave 

radiometry, Cold Reg. Sci. Technol., 5, 259–267. https://doi.org/10.1016/0165-232X(82)90019-2, 1982. 

Chang, A.T.C., Foster, J.L., Hall, D.K.: Nimubs-7 SMMR derived global snow cover parameters, Ann. Glaciol., 9, 39–44. 

https://doi.org/10.3189/S0260305500200736, 1987. 510 

Cho, E., Jacobs, J.M., and Vuyovich, C.: The value of long-term (40 years) airborne gamma radiation SWE record for 

evaluating three observation-based gridded SWE datasets by seasonal snow and land cover classifications, Water 

Resour. Res., 56, e2019WR025813, https://doi.org/10.1029/2019WR025813, 2019.  

Cho, E., Jacobs, J.M., Schroeder, R., Tuttle, S. E. and Olheiser, C.: Improvement of operational airborne gamma radiation 

using SMAP soil moisture, Remote Sens. Environ., 240, 111668, https://doi.org/10.1016/j.rse.2020.111668, 2020.  515 

https://doi.org/10.5194/egusphere-2023-3013
Preprint. Discussion started: 10 January 2024
c© Author(s) 2024. CC BY 4.0 License.



27 
 

Clark, M.P., Hendrix, J., Slater, A.G., Kavetski, D., Anderson, B., Cullen, N.J., Kerr, T., Hreinsson, E.O., and Woods, R.A.: 

Representing spatial variability of snow water equivalent in hydrologic and land-surface models: a review, Water 

Resour. Res., 47, W07539, https://doi.org/10.1029/2011WR010745, 2011. 

Cork, H.F. and Loijens, H.S.: The effect of snow drifting on gamma snow survey results, J. Hydrol., 48, 41–51, 

https://doi.org/10.1016/0022‐1694(80)90064‐5, 1980.   520 

De Roo, A.P., Gouweleeuw, B., Thielen, J., Bartholmes, J., Bongioannini-Cerlini, P., Todini, E., Bates, P.D., Horritt, M., 

Hunter, N., Beven, K.: Development of a European flood forecasting system, Intl. J. River Basin Management, 1, 

49–59, https://doi.org/10.1080/15715124.2003.9635192, 2003. 

Dixon D. and Boon, S.: Comparison of the SnowHydro snow sampler with existing snow tube designs, Hydrol. Process., 26, 

2555–2562, https://doi.org/10.1002/hyp.9317, 2012.  525 

Ecoregions of North America, NA_Eco_Level1, U.S. Environmental Protection Agency, U.S. EPA Office of Research & 

Development (ORD) - National Health and Environmental Effects Research Laboratory (NHEERL), Corvallis, OR, 

2010, U.S. EPA Office of Research & Development (ORD) - National Health and Environmental Effects Research 

Laboratory (NHEERL), https://www.epa.gov/eco-research/ecoregions-north-america, 2010. 

Elias-Chereque, A., Kushner, P.J., Mudryk, L., Derksen, C., and Mortimer C.: A simple snow temperature index model 530 

reveals discrepancies between reanalysis snow water equivalent products, submitted 

Fang, Y., Liu, Y. and Margulis, S.A.: A western United States snow reanalysis dataset over the Landsat era from water years 

1985 to 2021, 9, 677, Sci. Data, https://doi.org/10.1038/s41597-022-01768-7, 2022. 

Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., Molod, A., Takacs, L., Randles, C.A., Darmenov, A., Bosilovich, M.G., 

Reichle, R. and Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., 535 

Gu, W., Kim, G., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., 

Rienecker, M., Schubert, S., Sienkiewicz, M., and Zhao, B.: The modern-era retrospective analysis for research and 

applications, version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. 

Gesch, D.B., Evans, G.A., and Oimoen, M.J.: The National Elevation Dataset, in Maune, D., and Nayegandhi, A., eds., 

Digital elevation model technologies and applications—the DEM users manual, 3rd ed.: Bethesda, Maryland, 540 

American Society for Photogrammetry and Remote Sensing, 2018. 

Grünewald, T., Bühler, Y., and Lehning, M.: Elevation dependency of mountain snow depth, The Cryosphere, 8, 2381–2394, 

https://doi.org/10.5194/tc-8-2381-2014, 2014.   

Hersbach, H., Bell, W., Berrisford, P., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., 

Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De 545 

Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., 

Haimberger, L., Healy, S.,  Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P. Lupu, C., 

Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, 

Q. J. Roy Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. 

https://doi.org/10.5194/egusphere-2023-3013
Preprint. Discussion started: 10 January 2024
c© Author(s) 2024. CC BY 4.0 License.



28 
 

Johnson, J.B.: A theory of pressure sensor performance in snow, Hydrol. Process., 18, 53–64, 550 

https://doi.org/10.1002/hyp.1310, 2004. 

Kelly, R.E.J.: The AMSR-E Snow Depth Algorithm: Description and Initial Results, Journal of The Remote Sensing Society 

of Japan, 29, 307–317, https://doi.org/10.11440/rssj.29.307, 2009. 

Kim, R.S., Kumar, S., Vuyovich, C., Houser, P., Lundquist, J., Mudryk, L., Durand, M., Barros, A., Kim, E. J., Forman, B. 

A., Gutmann, E. D., Wrzesien, M. L., Garnaud, C., Sandells, M., Marshall, H.P., Cristea, N., Pflug, J.M., Johnston, 555 

J., Cao, Y., Mocko, D., and Wang, S.: Snow Ensemble Uncertainty Project (SEUP): quantification of snow water 

equivalent uncertainty across North America via ensemble land surface modeling, The Cryosphere, 15, 771-791, 

https://doi.org/10.5194/tc-15-771-2021, 2021. 

Kirchner, P.B., Bales, R.C., Molotch, N. P., Flanagan, J., and Guo, Q.: LiDAR measurement of seasonal snow accumulation 

along elevation gradient in the southern Sierra Nevada, California, Hydrol. Earth Syst. Sc., 18, 4261–4275, 560 

https://doi.org/10.5194/hess-18-4261-2014, 2014. 

Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., 

Miyaoka, K., and Takahashi, K.: The JRA-55 reanalysis: General specifications and basic characteristics, J. Meteor. 

Soc. Japan Ser. II, 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015. 

Kodama, M., Nakai, K., Kawasaki, S., and Wada, M.: An application of cosmic-ray neutron measurements to the 565 

determination of the snow-water equivalent, J. Hydrol., 41, 85–92, https://doi.org/10.1016/0022-1694(79)90107-0, 

1979. 

Liu, Y., Weerts, A., Clark, M., Hendricks Franssen, H.J., Kumar, S., Moradkhani, H., and Van Velzen, N.: Advancing data 

assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities, Hydrol. 

Earth Syst. Sc., 16, 3863–388, https://doi.org/10.5194/hess-16-3863-2012, 2012. 570 

Liu, Y., Fang, Y., Li, D., and Margulis, S.A.: How well do global snow products characterize snow water storage in High 

Mountain Asia?, Geophys. Res. Lett., 49, e2022GL100082, https://doi.org/10.1029/2022GL100082, 2022. 

López Moreno, J.I., Leppänen, L., Luks, B., Holko, L., Picard, G., Sanmiguel Vallelado, A., Alonso González, E., Finger, 

D.C., Arslan, A.N., Gillemot, K., Sensoy, A., Sorman, A., ErtaÅ, M.C., Fassnacht, S.R., Fierz, C., and Marty, C.: 

Intercomparison of measurements of bulk snow density and water equivalent of snow cover with snow core 575 

samplers: Instrumental bias and variability induced by observers, Hydrol. Process., 34, 3120–3133, 

https://doi.org/10.1002/hyp.13785, 2020. 

Luojus, K., Pulliainen, J., Takala, M., Lemmetyinen, J., Mortimer, C., Derksen, C., Mudryk, L., Moisander, M., Venäläinen, 

P., Hiltunen, M., Ikonen, J., Smolander, T., Cohen, J., Salminen, M., Veijola, K., and Norberg, J.: GlobSnow v3.0 

Northern Hemisphere snow water equivalent dataset, Sci. Data, 8, 163, https://doi.org/10.1038/s41597-021-00939-580 

2, 2021. 

Magnusson, J., Nævdal, G., Matt, F., Burkhart, J.F., and Winstral, A.: Improving hydropower inflow forecasts by 

assimilating snow data, Hydrol. Res., 51, 226–237, https://doi.org/10.2166/nh.2020.025 , 2020. 

https://doi.org/10.5194/egusphere-2023-3013
Preprint. Discussion started: 10 January 2024
c© Author(s) 2024. CC BY 4.0 License.



29 
 

Meromy, L., Molotch, N.P., Link, T. E., Fassnacht, S.R., and Rice, R.: Subgrid variability of snow water equivalent at 

operational snow stations in the western USA, Hydrol. Process., 27, 2383–2400, https://doi.org/10.1002/hyp.9355, 585 

2013. 

Mortimer, C., Mudryk, L., Derksen, C., Luojus, K., Brown, R., Kelly, R., and Tedesco, M.: Evaluation of long-term 

Northern Hemisphere snow water equivalent products, The Cryosphere, 14, 1579–1594, https://doi.org/10.5194/tc-

14-1579-2020, 2020. 

Mortimer, C., Mudryk, L., Derksen, C., Brady, M., Luojus, K., Venäläinen, P., Moisander, M., Lemmetyinen, J., Takala, M., 590 

Tanis, C., and Pulliainen, J.: Benchmarking algorithm changes to the Snow CCI+ snow water equivalent product, 

Remote Sens. Environ., 274, 112988, https://doi.org/10.1016/j.rse.2022.112988 , 2022. 

Mudryk, L., A. Elias Chereque, C. Derksen, K. Luojus, and B. Decharme: Terrestrial Snow Cover. Arctic Report Card 2022, 

M. L. Druckenmiller, R. L. Thoman, and T. A. Moon, Eds., https://doi.org/10.25923/yxs5-6c72, 2022. 

Mudryk, L., Mortimer, C., Derksen, C., Elias-Chereque, A., and Kushner, P.: Recommended use for SWE analyses based on 595 

outcomes of the SnowPEx+ intercomparison project. submitted.  

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., 

Harrigan, S., Hersbach, H., Martens, B., Miralles, D.G., Piles, M., Rodríguez-Fernández, N.J., Zsoter, E., 

Buontempo, C., and Thépaut, J.-N.: ERA5-Land: A state-of-the-art global reanalysis dataset for land applications, 

Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021. 600 

Ochi, K., de Rosnay, P. and Fairbin, D.: Impact of assimilating ESA CCI Snow Cover on ECMWF Land Reanalysis, 10th 

EARSeL workshop on Land Ice and Snow, Bern, Switzerland, 6 – 8 February 2023, 

http://www.earsel.org/SIG/Snow-Ice/files/ws2023/Poster/1_A_Ochi_POSTER.pdf 

Paquet, E., Laval, M., Basalaev, L.M., Belov, A., Eroshenko, E., Kartyshov, V., Struminsky, A., and Yanke, V.: An 

Application of Cosmic-Ray Neutron Measurements to the Determination of the Snow Water Equivalent, in: 605 

Proceedings of the 30th International Cosmic Ray Conference, Merida, Mexico, 3–11 July 2008, 

https://indico.nucleares.unam.mx/event/4/session/39/contribution/1000/material/paper/0.pdf  

Pulliainen, J.: Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne 

microwave radiometer data and ground-based observations, Remote Sens. Environ., 101, 257–269, 

https://doi.org/10.1016/j.rse.2006.01.002, 2006. 610 

Ralph, F.M., Dettinger, M., White, A., Reynolds, D., Cayan, D., Schneider, T., Cifelli, R., Redmond, K., Anderson, M., 

Gherke, F., Jones J., Mahoney, K., Johnson, L., Gutman, S., Chandrasekar, V., Lundquist, J., Molotch, N., Brekke, 

L., Pulwarty, R., Horel, J., Schick, L., Edman, A., Mote, P., Abatzoglou, J., Pierce, R., and Wick, G.: A vision for 

future observations for western US extreme precipitation and flooding, Journal of Contemporary Water Research & 

Education, 153, 16–32, https://doi.org/10.1111/j.1936-704X.2014.03176.x, 2014. 615 

https://doi.org/10.5194/egusphere-2023-3013
Preprint. Discussion started: 10 January 2024
c© Author(s) 2024. CC BY 4.0 License.



30 
 

Rodell, M., Houser, P.R., Jambor, U.E.A., Gottschalck, J., Mitchell, K., Meng, C.J., Arsenault, K., Cosgrove, B., 

Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., and Toll, D.: The global land data 

assimilation system, B. Am. Meteorol. Soc., 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381 , 2004. 

Smith, C.D., Kontu, A., Laffin, R., and Pomeroy, J.W.: An assessment of two automated snow water equivalent instruments 

during the WMO Solid Precipitation Intercomparison Experiment, The Cryosphere, 11, 101–116, 620 

https://doi.org/10.5194/tc-11-101-2017, 2017. 

Snauffer, A.M., Hsieh, W.W., and Cannon, A.J.: Comparison of gridded snow water equivalent products with in situ 

measurements in British Columbia, Canada, J. Hydrol., 541, 714-729, 

https://doi.org/10.1016/j.jhydrol.2016.07.027, 2016. 

Snethlage, M.A., Geschke, J., Spehn, E.M., Ranipeta, A., Yoccoz, N. G., Körner, Ch., Jetz, W., Fischer, M., and Urbach, D.: 625 

A hierarchical inventory of the world’s mountains for global comparative mountain science, Sci. Data, 9, 149, 

https://doi.org/10.1038/s41597-022-01256-y, 2022. 

Snethlage, M.A., Geschke, J., Spehn, E.M., Ranipeta, A., Yoccoz, N. G., Körner, Ch., Jetz, W., Fischer, M., and Urbach, D.: 

GMBA Mountain Inventory v2, GMBA-EarthEnv., https://doi.org/10.48601/earthenv-t9k2-1407, 2022, accessed 

June 2023. 630 

Sospedra-Alfonso, R., Mudryk, L., Merryfield, W., and Derksen, C.: Representation of snow in the Canadian seasonal to 

interannual prediction system. Part I: Initialization, J. Hydrometeorol., 17, 1467–1488, 

https://doi.org/10.1175/JHM-D-14-0223.1, 2016. 

Terzago, S., von Hardenberg, J. Palazzi, E. and Provenzale, A.: Snow water equivalent in the Alps as seen by gridded data 

sets, CMIP5 and CORDEX climate models, The Cryosphere, 11, 1625-1645, https://doi.org/10.5194/tc-11-1625-635 

2017, 2017. 

Turcotte, R., Fortin, L.G., Fortin, V., Fortin, J.P., and Villeneuve, J.P.: Operational analysis of the spatial distribution and the 

temporal evolution of the snowpack water equivalent in southern Québec, Canada, Nord. Hydrol., 38, 211–234, 

https://doi.org/10.2166/nh.2007.009 , 2007. 

Tuttle, S.E., Jacobs, J.M., Vuyovich, C.M., Olheiser, C., and Cho, E.: Intercomparison of snow water equivalent 640 

observations in the Northern Great Plains, Hydrol. Process., 32, 817–829, https://doi.org/10.1002/hyp.11459, 2018.  

Vionnet, V., Fortin, V., Gaborit, E., Roy, G., Abrahamowicz, M., Gasset, N., and Pomeroy, J.P.: Assessing the factors 

governing the ability to predict late-spring flooding in cold-climate mountain basins, Hydrol. Earth Syst. Sc., 24, 

2141–2165, https://doi.org/10.5194/hess-24-2141-2020, 2020.   

Vionnet, V., Mortimer, C., Brady, M., Arnal, L., and Brown, R.: Canadian historical Snow Water Equivalent dataset 645 

(CanSWE, 1928–2020), Earth Syst. Sci. Data, 13, 4603–4619  https://doi.org/10.5194/essd-13-4603-2021, 2021. 

WMO (Ed.): Guide to instruments and methods of observation: Volume II - Measurement of Cryospheric Variables, 2018th 

ed., World Meteorological Organization, Geneva, WMO-No. 8, 52 pp., 2018. 

https://doi.org/10.5194/egusphere-2023-3013
Preprint. Discussion started: 10 January 2024
c© Author(s) 2024. CC BY 4.0 License.



31 
 

Wood, A.W., T. Hopson, A. Newman, L. Brekke, J. Arnold, and Clark, M.: Quantifying Streamflow Forecast Skill Elasticity 

to Initial Condition and Climate Prediction Skill, J. Hydrometeorol., 17, 651–668, https://doi.org/10.1175/JHM-D-650 

14-0213.1, 2016. 

Wrzesien, M.L., Pavelsky, T.M., Durand, M.T., Dozier, J., and Lundquist, J.D.: Characterizing biases in mountain snow 

accumulation from global data sets, Water Resour. Res., 55, 9873–9891, https://doi.org/10.1029/2019WR025350, 

2019. 

Zeng, X., P. Broxton, and Dawson, N.: Snowpack Change From 1982 to 2016 Over Conterminous United States, Geophys. 655 

Res. Lett., 45, 12940–12947, https://doi.org/10.1029/2018GL079621, 2018.  

https://doi.org/10.5194/egusphere-2023-3013
Preprint. Discussion started: 10 January 2024
c© Author(s) 2024. CC BY 4.0 License.


