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Abstract.

With the growing complexity of land surface models used to represent the terrestrial part of wider Earth system models,

the need for sophisticated and robust parameter optimisation techniques is paramount. Quantifying parameter uncertainty is

essential for both model development and more accurate projections. In this study, we assess the power of history matching by

comparing results to variational data assimilation, commonly used in land surface models for parameter estimation. Although5

both approaches have different setups and goals, we can extract posterior parameter distributions from both methods and test the

model-data fit of ensembles sampled from these distributions. Using a twin experiment, we test whether we can recover known

parameter values. Through variational data assimilation, we closely match the observations. However, the known parameter

values are not always contained in the posterior parameter distribution, highlighting the equifinality of the parameter space.

In contrast, while more conservative, history matching still gives a reasonably good fit and provides more information about10

the model structure by allowing for non-Gaussian parameter distributions. Furthermore, the true parameters are contained in

the posterior distributions. We then consider history matching’s ability to ingest different metrics targeting different physical

parts of the model, helping to reduce parameter space further and improve model-data fit. We find the best results when history

matching is used with multiple metrics; not only is the model-data fit improved, but we also gain a deeper understanding of the

model and how the different parameters constrain different parts of the seasonal cycle. We conclude by discussing the potential15

of history matching in future studies.

1 Introduction

Land surface models (LSMs) are essential for studying land-atmosphere interactions and quantifying their impact on the global

climate. They help us comprehend and represent the mass and energy fluxes exchanged in the soil-vegetation-atmosphere
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continuum, as well as the lateral transfers. However, in part due their increasing complexity (Fisher and Koven, 2020), these20

models are subject to large uncertainties, in terms of missing processes and poorly constrained parameters. Reducing this

uncertainty is crucial to generate reliable and credible model projections, especially since creating robust predictions of the

terrestrial biosphere is becoming a critical scientific and policy priority, e.g. in the context of plans for land-based climate

mitigation such as re-greening (Roe et al., 2021).

To address this parametric uncertainty, it is customary to calibrate (or "tune") the model. This means finding model parame-25

ters that provide a good description of the system’s behaviour, often taken to be the model’s ability to reproduce observations.

In LSMs, this is commonly achieved through data assimilation (DA), which uses a Bayesian framework to account for prior

parameter knowledge and to obtain posterior values and uncertainties. DA can be used to improve the initial state of the model

and/or the internal model parameters (Rayner et al., 2019). In numerical weather forecasting, DA is predominately used to

update the state of the model, due to the chaotic nature of the weather system. These models are primarily used to provide near-30

real-time forecasts, and errors in the initial state can dominate the error in short-term future projections. In contrast, in climate

studies, we rely less on initial state optimisation and more on parameter calibration, especially for the carbon cycle, where a lot

of processes are based on empirical equations, since we tend to be more interested in long-term trends. In addition, LSMs use

a small number of parameters to represent a large diversity of ecophysiological properties. As such, the calibration or tuning of

this parameter has become central to climate modelling. For a long time, it was done by hand, often linked to the subjectivity35

of the modeller (Hourdin et al., 2017). The emergence of DA techniques for calibrating parameters has made it possible to

focus on more objective criteria and account for uncertainties. When dealing with LSM of high complexity, we often rely on

a 4-dimensional variational DA (4D-Var, simply referred to here as VarDA) framework, in which all observations within the

assimilation time-window are used to create a cost function which is then minimised (Rayner et al., 2005; Scholze et al., 2007;

Kuppel et al., 2012; Kaminski et al., 2013; Raoult et al., 2016; Peylin et al., 2016; Castro-Morales et al., 2019; Pinnington et al.,40

2020). Over the last 15 years, VarDA has been successfully used in land surface modelling to optimise uncertain parameters

(MacBean et al., 2022). The focus of these optimisations has often been to better estimate carbon stocks and fluxes (Kuppel

et al., 2012; Kaminski et al., 2013; Raoult et al., 2016) by targeting vegetation and carbon cycle related parameters, although

more some recent studies have also focus on improving LSM soil moisture predictions (Scholze et al., 2016; Pinnington et al.,

2018; Raoult et al., 2021). However, most of these examples use a limited number of in situ data to calibrate a handful of45

parameters. As LSMs become more complex, so must the experiments used to calibrate them. This also means that traditional

Bayesian calibration techniques, such as Markov Chain Monte Carlo, are too costly to use. Increased process representation

and the tighter coupling between the different terrestrial cycles (e.g., water, carbon and energy) mean that more parameters

need to be considered. As a result, LSMs are also becoming more costly to run. Furthermore, although satellite retrievals now

provide us with data in previously hard to monitor areas, these data at high temporal and spatial resolutions need to be carefully50

ingested and contribute to more costly optimisations.

Emulators, i.e., simplified or surrogate models that are used to approximate complex model behaviour, can provide a solution

to some of these computational challenges. They are constructed by interpolating between the points where the model has been

run. Indeed, emulator-based LSM parameterisation has been gaining traction in recent years (Fer et al., 2018; Dagon et al.,
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2020). Emulators can be used to emulate LSM outputs (e.g., Kennedy et al., 2008; Petropoulos et al., 2014; Huang et al., 2016;55

Lu and Ricciuto, 2019; Baker et al., 2022). However, this can be challenging given the large, nonlinear multivariate output

space. Fortunately, for calibration, we do not need to emulate the full output space, but rather the property we seek to improve

- for example, the likelihood (Fer et al., 2018).

The rise of emulators in the field of LSM calibration has also led to the preliminary testing of the so-called history matching

(HM) method to tune LSM parameters (Baker et al., 2022; McNeall et al., 2023). This is a different approach which asks60

not what is the best set to use but, rather, what parameters can we rule out: what regions of parameter space lead to model

outputs being "too far" from observations? To do this, HM uses an implausibility function, based on metrics chosen to assess

the performance of the model, to rule-out unlikely parameters. HM commonly uses an iterative approach known as iterative

refocusing to reduce parameter space, leaving the least unlikely parameter values - the not-ruled out yet (NROY) space. This

is a more conservative approach to calibration, primarily used for uncertainty quantification, helping to identify structural65

deficiencies of the model (Williamson et al., 2015; Volodina and Challenor, 2021). Although this technique can work without

emulators (i.e., if the model is extremely fast, Gladstone et al. (2012)), the high cost of running LSMs means that emulators

will likely be required.

HM has successfully been used in a number of fields, making it an established statistical method with a diverse literature.

Initially, it was introduced as a method for discovering parameter configurations for computationally intensive oil well models70

(Craig et al., 1997). It has since been used in various domains of science and engineering, such as galaxy formation (Bower

et al., 2010; Vernon et al., 2014), disease modelling (Andrianakis et al., 2015), systems biology models (Vernon et al., 2022),

and traffic (Boukouvalas et al., 2014). In climate sciences, HM was also used to calibrate climate models of different com-

plexities (Edwards et al., 2011; Williamson et al., 2013, 2015; Hourdin et al., 2023), ocean models (Williamson et al., 2017;

Lguensat et al., 2023), atmospheric models (Couvreux et al., 2021; Hourdin et al., 2021; Villefranque et al., 2021) and ice sheet75

models (McNeall et al., 2013).

Here, we present the application of HM to an LSM, starting with its implementation into the ORCHIDEE Data Assimilation

System (ORCHIDAS; https://orchidas.lsce.ipsl.fr/). Using a twin experiment with known model parameters and model errors,

we explore HM’s ability to recover these parameters and the resulting model fit to the data (here the model run with the true

parameters). There are two parts to this study. In the first part, we compare HM to VarDA by considering the two minimisation80

techniques historically used to calibrate the ORCHIDEE LSM (i.e., a gradient-based and a Monte Carlo approach). We initially

use a root-mean-square difference metric in the HM experiment to mimic the cost function used in VarDA. Given the different

motivations behind VarDA and HM, we are less interested in finding the optimal set of parameters but rather in whether the true

parameters are contained in the posterior distributions obtained and how the spread of the model runs generated from sampling

those distributions fits the data. In the second part of the study, we delve deeper into the HM methodology to demonstrate85

its versatility in considering different target metrics. We test whether we can more closely constrain parameters involved in

different processes by specifically targeting these processes with our metrics. We conclude by discussing our study’s limitations

and exploring future avenues for employing HM in LSM calibration.
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2 Methods and Data

2.1 ORCHIDEE land surface model90

The ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms; originally described in Krinner et al. (2005))

model simulates the carbon, water and energy exchanges between the land surface and the atmosphere. Fast processes such

as photosynthesis, hydrology and energy balance are computed at a half-hour time step, while slow processes such as carbon

allocation and phenology are simulated daily. The model can be run at different resolutions ranging from point scale to global,

offline (i.e., with meteorological forcing data externally applied) or coupled as part of the wider IPSL (Institut Pierre Simon95

Laplace) Earth system model. In this study, we use version 2.2 of the ORCHIDEE model, which is the one used in the Coupled

Model Intercomparison Project Phase 6 (CMIP6; Boucher et al., 2020; Lurton et al., 2020).

2.2 Data Assimilation Framework - the ORCHIDAS system

The ORCHIDAS system is set up to optimise the parameters of the ORCHIDEE model. It has been used in over 15 years of

terrestrial optimisation studies (MacBean et al., 2022), initially with a focus on the carbon cycle and more recently used to100

optimise parts of the other terrestrial cycles such as water (Raoult et al., 2021), methane (Salmon et al., 2022) and nitrogen

(Raoult et al., 2023). See orchidas.py for a full list of published studies.

This flexible framework easily allows ORCHIDEE to be run with many different parameter settings, which historically are

used to minimise a cost function (using a standard Bayesian calibration setup) or test the sensitivity of the model using classic

sensitivity analysis methods (e.g., Morris and Sobol). For this study, a HM methodology adapted from Hightune (the LMDZ105

HM tool developed to improve and calibrate the parameterisations involved in the representation of boundary layer clouds,

Couvreux et al. (2021); Hourdin et al. (2021); Villefranque et al. (2021)) was added to ORCHIDAS, allowing these different

runs to be used to train emulators and used to calculate implausibility.

2.2.1 A Bayesian setup

We use a Bayesian setup to account for model and observation errors. Therefore, we need to establish how we statistically110

model the relationship between the observations and the model variables. Following Kennedy and O’Hagan (2001)’s best input

approach, for an observational constraint z, let

z= y+ e, (1)

where y represents the underlying aspects of the system being observed, and e represents uncorrelated error on these observa-

tions (perhaps comprising instrument error and any error in deriving the data products making up z). Note that this observation115

error, e, is treated as a random quantity with mean 0 and variance σ2
e (i.e., e∼N (0,σ2

e)). We then assume that x∗ is the ‘best

input’ to our model H and with η denoting the model discrepancy, we get:

z= y+ e=H(x∗)+η+ e. (2)
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The model discrepancy, which is assumed to be independent of x∗ and H(x), accounts for the model structural error due to

the inherent inability of the model to reproduce the observations exactly (e.g., due to unresolved physics or missing processes,120

parameterisation schemes, resolution of numerical solvers). This error has mean 0 (unless the user knows the direction in which

the model is biased) and variance σ2
η (i.e., η ∼N (0,σ2

η)).

2.2.2 Variational data assimilation

In variational data assimilation (VarDA), we are looking for p(x|z), i.e., the distribution of parameters given the observations.

Here we treat z, the observations, as a vector to assimilate over the whole time window. This is known as 4DVar (compared125

to 3DVar where the observations are compared to a single model output at a time). Given a known parameter vector called the

background (or prior, xb), the knowledge of parameters is described by the probability density function p(x). Similarly, p(z|x)
is the likelihood of the observations z given the the parameters x. Bayes’ theorem can be used to combine these probabilities

p(x|z)∝ p(z|x)p(x). (3)

Gaussian distributions are commonly used to represent the different terms of the optimisation, so that:130

p(z|x)∝ exp

[
−1

2
(z−H(x))TR−1(z−H(x))

]
; p(x)∝ exp

[
−1

2
(x−xb)

TB−1(x−xb)

]
, (4)

where R and B are the covariance matrices of the observation/model errors (i.e., e+η) and the background errors, respectively.

When combining these analytical expressions, we find that maximising the likelihood of p(x|z) is equivalent to minimising

the cost function:

J(x) =
1

2

[
(H(x)− z)TR−1(H(x)− z)+ (x−xb)

TB−1(x−xb)
]
. (5)135

Note that this is known as finding the maximum a posterior probability estimate in Bayesian statistics. Note that here we use

the term variational to describe the form of the cost function minimised. While the classical approach to minimise this function

relies on gradient-based methods, in the absence of gradient information, other methods have increasingly been used to find the

optimum. This has led perhaps to an abusive use of term “variational”, however, we feel here it helps to group, via a common

cost function, the two minimisation approaches we wish to compare to the history matching approach. Algorithms to minimise140

this cost function broadly fall into two categories: deterministic gradient-based methods and stochastic random search methods.

Here we consider one from each category, both of which are commonly used in land surface model parameter estimation

studies. The first is the quasi-Newton algorithm L-BFGS-B (limited memory Broyden–Fletcher–Goldfarb–Shanno algorithm

with bound constraints; see Byrd et al. (1995)), henceforth referred to as BFGS. To calculate the gradient information needed

for this method, we use finite differences (i.e., the ratio of change in model output against the change in model parameter).145

While the gradient can be more accurately computed with the tangent linear (linear derivative of the forward model) or adjoint

(a computationally efficient way used to calculate the gradient of the cost function), these are extremely hard to compute for

complex models like ORCHIDEE and therefore not available at this time. The second is the genetic algorithm (GA; Goldberg

and Holland (1988); Haupt and Haupt (2004)) based on the laws of natural selection and belongs to the class of evolutionary
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algorithms. It considers the set of parameters as a chromosome, with each parameter as a gene. At each iteration, the algorithm150

generates a population g of chromosomes by recombining and possibly randomly mutating (defined by a mutation rate) the

fittest chromosomes from the previous iterations. Both methods are fully described in Bastrikov et al. (2018).

With the assumed Gaussian prior errors and further assuming linearity of the model in the vicinity of the solution we can

approximate the posterior covariance error matrix Bpost:

Bpost =
[
HTR−1H+B−1

]−1
(6)155

where H is the model sensitivity (Jacobian) at the minimum of the cost function (Eq. 5; see Tarantola (2005)). To estimate the

posterior uncertainty of the parameters, we sample from the multivariate normal distribution N (xopt,Bpost) (Tarantola, 2005,

Chapter 3.3.1). This ensures that the whole Bpost matrix is used, including off-diagonal elements that describe the covariance

between parameters. Since Bpost relies on information about the curvature of parameter space, it lends itself well to gradient-

based approaches (e.g. BFGS). Nevertheless, it can be used to calculate posterior distribution at the end of any optimisation160

algorithm. GAs, although a Monte Carlo technique, lack the basic theorem of the Metropolis algorithm (Tarantola, 2005), which

involves sampling the parameter space according to a prescribed distribution. Instead, genetic algorithms follow unknown

distributions and, therefore, cannot be used directly for the Monte Carlo integration (Sambridge, 1999) needed to calculate the

posterior parameter distribution. While methods do exist to resample parameter space, these are not without limitations and are

out of the scope of this study. Instead, we also calculate Bpost at the end of the GA optimisations, using the same hypothesis as165

for BFGS above.

In this work, we use a diagonal R matrix, and therefore we can think of the matrix R as a vector of errors σ. This means

that when performing a multi data-stream optimisation (i.e. when considering more than one variable), we can decompose the

first term of Bpost in the following manner

HTR−1H=

D∑
i=0

HTσ−1
i H (7)170

where D is the total number of data streams used in the optimisation and σi is the error associated to each data stream, assumed

to be the same for all observations in that data stream. Using this decomposition, we can create some proxy posterior covariance

matrices associated with each flux:

B′
posti = [HTσ−1

i H+B−1]−1, (8)

to get an insight into the different constraints each separate set of observations has on the posterior parameters.175

2.2.3 History matching

In Bayesian history matching (HM), we use observed data to rule out any parameter settings that are “implausible”, usually

done with the help of an emulator. It commonly uses the notion of iterative refocusing, where model simulations at each

iteration (referred to as a wave) are chosen to improve the emulator and the calibration. Instead of using a unique cost function,
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an implausibility is computed independently for different metrics to rule out parameters too far from the target:180

I(x) = |z−E[H(x)]|√
Var[z−E[H(x)]]

(9)

=
|z−E[H(x)]|√

Var[H(x)] +Var[e] +Var[η]
, (10)

where E is the expectation and Var is the variance. Large values of I(xi) for a given xi implies that, relative to our uncertainty

specification, it is implausible that H(xi) is consistent with the observations and therefore xi can be ruled out. Note that to

calculate the implausibility, we only require the observation error variance, the model discrepancy variance, and the variance185

and expectation of H(x), which can be defined using an emulator. Unlike in VarDA, there is no background term, meaning we

do not need to calculate a B matrix similar to the one found in Eq. 5.

By choosing a threshold a, we can formally define the not ruled-out yet (NROY) space as:

XNROY = {x ∈ X : Im(x)≤ a,∀m}. (11)

where Xm is the implausibility for a given metric m. Here, we set a= 3 following the 3σ rule (Pukelsheim, 1994). This190

states that for any unimodal continuous probability distribution, at least 95% of the probability mass is within three standard

deviations of the mean.

To increase computational efficiency, it is very common to use emulators in HM. Here, we use Gaussian Process (GP) emu-

lators - a well-known statistical model that has the advantage of interpolating observed model runs and provides a probabilistic

prediction (and hence variance) for the model at unseen x, which is required for the implausibility computation (Couvreux195

et al., 2021). The emulator gives the following probability distribution for H:

H(x)|β,σ2,δ ∼ GP
(
m(x;β),k(·, ·,σ2,δ)

)
(12)

where m(x;β) is a prior mean function with parameters β and k is a specified kernel (i.e., a covariance function). Within the

kernel, the variance is controlled by σ2, and each element of δ controls the correlation attributed to each input. These emulators

are trained on the true model runs. For more specifics about how the emulators are built, see Williamson et al. (2013).200

Figure 1 illustrates how HM is used in the ORCHIDAS system. We first define our p-dimensional parameter space X . From

this space, parameter sets are randomly drawn, at which the model is run. It is common to run the model approximately 10

times the number of parameters (Loeppky et al., 2009). The outputs from each run are then mapped onto scalar values with a

metric (e.g., root-mean-square deviation, RMSD). Emulators are constructed for each metric and these are used to sample from

XNROY. This allows us to have a lot more points than model runs in the ruling-out step. The implausibility (Eq. 10) is used205

to rule out points, refining the XNROY. More waves can then be conducted using this new space until we are satisfied with the

remaining space. If the XNROY is empty after a wave, it means that we cannot match the observations given the current error

tolerances. If the XNROY no longer reduces between successive waves, then it might signify that the emulator variance is too

high relative to the spread of the ensemble. As such, training the emulator with more runs may be necessary. It may also mean

that the system has converged and all remaining points are within the tolerance set. As a result, we may be able to reduce the210
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all emulators (inc. from 
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Figure 1. A flowchart showing the HM process in ORCHIDAS.

cutoff (a). Although in this study we only focus on the same metrics throughout each HM experiment, there is the potential to

change them as the waves progress.

2.3 Experimental set up

2.3.1 Twin experiment

We perform a twin experiment to compare the different approaches in a controlled manner. This means we generate a set of215

pseudo-observations using a ‘true’ set of parameters; here, we use the default ORCHIDEE values. Gaussian white noise, with a

standard deviation set to 0.1 times the time series’ mean, was added to each timestep to represent the model/observation error.

We use this error to set up the experiments: e+η (with η = 0) for HM and the diagonal element for the R in VarDA. We

further use a diagonal B in our VarDA experiments, where prior uncertainty is set to 100% of the parameter range of variation

(compared to 40% of the range used in Kuppel et al. (2012)) to allow for maximal space exploration.220

We focus our study on a temperate broadleaf deciduous forest site from the eddy-covariance Fluxnet database (Pastorello

et al., 2020), FR-Fon (Fontainebleau-Barbeau; Delpierre et al. (2016)). This site is often used in our calibrations. Here, we

focus on the first year of the time series (year 2005) for calibration (to save on computational cost) and the rest of the time

series (years 2006-2009) for evaluation. Since we are running a twin experiment and, therefore, the observations are artificially

generated, we only use the Fluxnet meteorological data to drive our model. As in previous work (e.g., Kuppel et al., 2012;225

Bastrikov et al., 2018), we focus on the model’s ability to simulate net ecosystem exchange (NEE) and latent heat (LE) fluxes.

NEE represents the difference between carbon dioxide uptake by plants through photosynthesis and carbon release through
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respiration, with the growing season typically characterised by negative NEE indicating net carbon absorption. LE represents

the exchange of energy between the Earth’s surface and the atmosphere through the phase changes of water, with higher values

during periods of increased evaporation and transpiration, often associated with warmer seasons. The parameters for this study230

were chosen with these fluxes in mind, using our past expertise, a preliminarily Morris (Morris, 1991) sensitivity analysis, and

the desire to work with a small set of parameters (see Supplementary Material for more on the preliminary sensitivity tests).

These parameters are listed in Table 1.

Table 1. ORCHIDEE parameters used in this study. True value refers to the default value of each parameter in ORCHIDEE. These values

were used to generate the observations used in the twin experiment. Range refers to the range of variation allowed for each parameter.

Description True value Range

VCmax Maximum carboxylation rate (µmolm−1s−1) 50 [30, 80]

SLA Specific leaf area (m2) 0.026 [0.013, 0.05]

Lagecrit Critical leaf age for starting leaf senescence (days) 180 [90, 240]

Evapres Factor controlling bare soil resistance to evapotranspiration (-) 1 [0, 1.3]

Rootprof Root profile parameter of an exponential function that describes the decrease of root

density as a function of depth (m)

0.8 [0.2, 3.0]

Q10 Parameter determining the temperature dependency of the heterotrophic respiration (-) 0.69 [0, 1.1]

2.3.2 Performed experiments

To minimise the cost function (Eq. 5) in the VarDA experiments, we consider both BFGS (local gradient descent) and GA235

(global random search) optimisation techniques. For BFGS, the algorithm is run for 25 iterations, which was found sufficient

for the optimisation to converge. For GA, a population of 24 and a mutation rate of 0.2 were used along with 25 iterations. These

values are based on previous optimisations performed using Fluxnet data to optimise simulated NEE/LE in the ORCHIDEE

model (Bastrikov et al., 2018) and were also found to be sufficient for convergence.

We perform two sets of experiments per minimisation algorithm. The first set of experiments uses Bpost to assess posterior240

distributions after a single optimisation. To calculate the posterior uncertainties, we sample 10,000 points from N (xopt,Bpost)

using the random.multivariate_normal function from the NumPy python package (Papoulis, 1991; Duda et al., 2001).

In the second set of experiments, we perform many optimisations (200), starting from random priors, and use the posterior

parameter values to elicit the posterior parameter uncertainty. Given the probabilistic results obtained, we refer to these exper-

iments as "stochastic". In a standard optimisation, we would use the default model parameter values as prior, since they are245

our best guess. However, as we are performing a twin experiment where the default parameter values are the true solution, we

must start from a different part of the parameter space. To do this, we generate several random parameter sets. For the Bpost

experiments, where we consider only one optimisation, we chose the randomly generated parameter set that starts closest to the

true values to be the most realistic. Although not shown, we repeated the analysis using a different prior, which gave similar

results. For the stochastic experiments, we start from 200 different uniformly and randomly generated priors.250
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For HM, we do not need to worry about prior parameter values, only the parameter ranges. For each wave, the model is run

60 (i.e., 10 times the number of parameters) times. Initially, we consider the RMSD between the model and true model run

as the target metric, since this closely relates to the cost function used in VarDA (Eq. 5). In the second part of the study, we

vary the metrics to fully explore the power of HM. Indeed, using RMSD is often discouraged since it is usually associated to

a small signal-to-noise ratio. Furthermore, the implausibility (Eq. 10) is already similar to root-mean-square error (Couvreux255

et al., 2021). In this section, we consider additional metrics to highlight the power of HM. To select informative metrics, it can

be helpful to identify specific features we want to constrain. For example, for both the NEE and LE fluxes, we are looking at

a seasonal cycle. As such, we expect NEE to have a global sink (i.e., maximum carbon uptake) and LE to have a global peak

(i.e., maximum evapotranspiration) in summer. As well as constraining the magnitude of these turning points, we might also

want to consider constraining when they occur or the rate of change leading to and from them (i.e. the gradient of slopes).260

Evapres and Rootprof parameters impact the slopes of the LE seasonal curve in spring and autumn, respectively, so focussing on

these gradients may help better inform on these parameters. Similarly, Lagecrit impacts senescence, so the slope in Autumn is of

particular interest. We also know that in winter, there will be little to no photosynthesis (since we are considering a deciduous

site). Similarly, we expect low rates of terrestrial ecosystem respiration during these months and, therefore, can constrain NEE

in winter. This is similar to constraining the initial carbon pools in the model. In this work, we consider four of these metrics: i)265

Min/Max of the seasonal cycle (sink for NEE, peak for LE), ii) the slope during spring (taken as the difference between April

and February monthly means) and iii) the slope during the senescence period (taken as the difference between September and

August monthly means), and iv) initial carbon stocks (NEE only). We perform five experiments, four using different metrics

(listed in Table 2) and the fifth combining all the metrics. We perform ten waves in each case and keep a constant cutoff of 3.

At each step, we check the emulator quality (see Sect. B). We also retain the true model runs that are below the cutoff to train270

the next emulators.

Table 2. Target and variance used for each metric tested in the HM experiments. Min/Max taken as the minimum/maximum of the smoothed

annual cycle (12-period rolling mean with a window size of five). Spring slope is taken as the difference between April and February monthly

means, Autumn slope is taken to be the difference between September and August monthly means, and the initial C stocks are taken as the

starting value of the time series.

Metric NEE (gCm−1d−1) LE (Wm−2)

RMSD 0 ± 0.04 0 ± 12.5

Min/Max -4.81 ± 0.004 101.96 ± 0.696

Spring slope -5.46 ± 0.003 59.53 ± 0.72

Autumn slope 2.16 ± 0.004 -29.87 ± 0.85

Initial C stocks 1.558 ± 0.0002 N/A
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3 Results

3.1 Comparing variational data assimilation and history matching

3.1.1 Model-data fit

The first step in any calibration experiment is commonly to check the posterior model-data fit. Instead of considering the275

fit given by a single parameter set for each experiment, we consider the ensemble of posterior parameters taken from each

experiment (Fig. 2). For the VarDA results, we consider model runs generated from each optimal parameter set found in the

stochastic experiments (i.e., 200 optimisations) since these results give a larger posterior spread than the Bpost experiments

(not shown). For HM, we consider the experiment using the RMSD as the target metric since this most closely relates to the

cost function used in VarDA. For consistency, we consider 200 parameter sets sampled from the XNROY found at the end of the280

experiment (i.e., after ten waves) and use these to run the model to create the posterior ensembles.

Figure 2. Time series of NEE (top) and LE (bottom) for FR-Fon year 2005. For the VarDA experiments (minimisation methods GA and

gradient-descent BFGS), the spread represents the results taken from the stochastic experiments (i.e., from 200 optimisations). For the HM

experiment, 200 parameter sets were sampled from the X NROY and used to run the model. The prior ensemble, i.e., before any calibration, is

shown in grey and the posterior ensemble is shown in dark colours. The lighter coloured spread shows the mean and standard derivation of

the posterior ensemble. The bar plots on the right-hand side show the range of the mean of each ensemble time series. Note the difference in

scales.

The model-data fit in all experiments is much improved compared to the prior ensemble - with the GA experiment closely

matching the observations, BFGS performing second best, and HM retaining the most spread. Overall, we are able to capture

the seasonality and general magnitude of the observed fluxes. Typically, the only parts of the observations that are not contained
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Figure 3. Boxplots showing the distribution characteristics of the RMSD of each of the 200 runs for the calibration year (2005, filled

boxplots) and the evaluation years (2006-2009, outlined boxplots). The box represents the interquartile range, containing the central 50% of

the data. The horizontal line inside the box marks the median. Whiskers extend to the minimum and maximum values within 1.5 times the

interquartile range. Full time series corresponding to these plots can be found in Fig. C1.

in the posterior spread are the LE winter values, which are also outside of the prior ensemble spread. This suggests that these285

values are not reproducible by the model and represent the structural error (i.e., the noise we added to the true model realisation

used to generate these pseudo-observations). We also note that the GA experiment gives an ensemble spread smaller than the

spread of the noise on the observations, suggesting that these parameter sets may have overfitted the data.

Although the general shape of the seasonal pattern is reasonably well matched, we can see there are parts of the time series

we are less able to constrain, especially with the HM experiment. The slope in spring, for example (also noticeable for BFGS),290

and the behaviour in summer. This highlights the issue of relying on a single metric in the optimisation process to capture

the full behaviour of a time series, particularly the RMSD. The RMSD is prone to correct large errors and therefore may be

strongly driven by outliers. As such, it works well at correcting the errors in amplitude but less well at fitting other temporal

features.

Figure 2 shows the fit to the calibration year - i.e., the one used to tune the model. We also tested the ensembles over several295

more years (2006-2009) to further evaluate the results. This evaluation step is important to check that we do not over-tune

to the specificities of a given year but find parameter sets that work against data not used in the calibration. We see that the

ensemble spread is reduced for all methods and years (Fig. 3). This is most significant for the NEE, which started off with

larger errors relative to the magnitude of the time series than LE. We see the largest reductions in the RMSD for the BFGS

and GA minimisations in the calibration year, where the median of each boxplot reduces by over 80%. When applied over the300

evaluation period, the reduction in RMSD is not as severe - especially when considering LE. For NEE, the resulting RMSD

for the HM experiment is more consistent between the calibration and evaluation periods, suggesting the more conservative
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approach has stopped us from overfitting to the calibration year. This consistency is less apparent for LE, but we do still see

more overlap between the RMSD for the calibration and evaluation period for HM than the two minimisation methods.

3.1.2 Posterior parameter uncertainty305

Variational data assimilation

In this next section, we take a closer look at the posterior parameter distributions themselves. As described in Sect. 2.2.2,

after minimising the cost function in a VarDA experiment, we usually use information about the curvature of the parameter

space to calculate the posterior covariance error matrix Bpost (Eq. 6). Figure 4a shows results from the single GA and BFGS

optimisation experiments (i.e., the optimisation with the randomly generated prior closest to the true values). For both optimi-310

sations, the reduction in parametric uncertainty is quite severe for all parameters, and for half the parameters, the true value

does not fall in the posterior distribution. The differences observed between the optimisations are mainly because we did not

converge to the same xpost. The two most sensitive parameters (VCmax and Q10) have the lowest posterior uncertainty. While

still tightly constrained, SLA has the largest posterior uncertainty after both optimisations. After BFGS, Evapres and Rootprof

have a larger uncertainty than after the GA optimisation. This suggests that the minimum found from the GA optimisation is315

more constrained than the minimum found from the BFGS optimisation.

Figure 4. Posterior distributions obtained using Bpost (Eq. 6) shown by kernel density estimation plots. Each sub-box is a 2D representation

of parameter space showing the density for each pair of parameters, with darker regions signifying areas with higher data density. The true

parameter values are shown in blue. a) full Bpost for the GA optimisation (bottom triangle) and the BFGS optimisation (top triangle), b) Bpost

decomposition (Eq. 8) for the BFGS optimisation with NEE (bottom triangle) and LE (top triangle).
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In Fig. 4b, we consider the impact each of the two fluxes has on the parameter posterior distributions (following the decom-

position in Eq. 8). Although the decomposition is shown for the BFGS optimisation, the GA optimisation gives similar results.

The results show that the full posterior distribution of the different parameters is the intersection between the posterior distribu-

tion of each flux. This is most clearly illustrated by parameter Q10. This parameter is highly constrained after the optimisation320

for NEE flux. In contrast, this parameter does not impact the modelled LE and, therefore, is not constrained by this flux. As

such, Q10 can take any value for this LE, and so the distribution spans the whole range. Therefore, when accounting for both

fluxes, the posterior distribution for Q10 matches the NEE constraint. We can further interpret the information in Fig. 4b as the

flux sensitivity to each parameter, with constrained parameters being the most sensitive and unconstrained the least sensitive.

From this we see that in addition to Q10, NEE is more sensitive to SLA than LE, and to Lagecrit, although to a lesser extent. LE is325

more sensitive to Evapres. Both fluxes give similar constraints on Rootprof. These results are consistent with our understanding

of the model and the impacts of the different parameters.

Although this decomposition is very informative, it does not explain why the true values do not always fall within the total

posterior distribution. There are several reasons why this might be the case, including the two key assumptions made when

calculating Bpost. First, we assume that we have found the global minimum, and, second, we assume linearity of the model in330

the vicinity of the solution, resulting in a Gaussian posterior distribution. This means the Bpost method is unable to take into

account any non-Gaussian uncertainty.

We can use the stochastic experiments to bypass these assumptions. Unlike the Bpost method, we no longer have a Gaussian

assumption on the posterior uncertainty, allowing us to find non-Gaussian distributions. Furthermore, we have an ensemble of

posterior parameters, so the assumption of being at the global minimum is less important. Figure 5 shows the xpost ensemble335

obtained after 200 optimisations, using both minimisation techniques. We see immediately that allowing for non-Gaussian

posterior distribution reveals more information about the parameters. For example, a clear relationship between VCmax and

SLA is found by both minimisation techniques. There is a trade-off between the two parameters - if the leaf has a small surface

area (SLA), then the leaf’s capacity to capture carbon (through VCmax) is increased. We further obtain a two-peaked posterior

distribution for Rootprof (clearest in the BFGS experiment). This parameter defines the depth above which ∼ 65% of roots are340

stored. The double peak suggests that either most of the roots is stored above 1.5m, and the trees will primarily get water from

the subsurface, or the roots grow deeper to access water down the soil column. Both options would result in the trees having

the same water availability. For Evapresp, both minimisation techniques remove the possibility of low values and for Lagecrit,

the posterior distribution is centred on the range. We again see that Q10 is the most constrained parameter relative to the prior

range.345

Unlike the Bpost experiments, here the true values are contained within the posterior distributions (although Lagecrit is found

at the very edge of the distribution, more apparent in the 1D distribution shown in Fig. C2). The distribution of solutions is

similar for BFGS and GA. Nevertheless, the GA distributions are slightly tighter and more dense. This is because GA is a

global search algorithm and, therefore, less likely to get stuck in local minima. The fact that we still get a large variation in

solutions, while still obtaining a similar fit to the model in Fig. 2, further highlights our problem of equifinality.350
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Figure 5. Posterior distributions obtained from the stochastic experiment shown by kernel density estimation plots. Each sub-box is a 2D

representation of parameter space showing the distribution of the 200 different xpost found with GA (bottom) and BFGS (top), with darker

regions signifying areas with higher data density. The true values are shown in blue.

History matching

To directly compare HM to the VarDA approach, in Fig. 6, we use the RMSD between the observations and the model output

for both NEE and LE as metrics. Already in the first wave, the XNROY reduces by over 80% (Table B1). This is further reduced

to less than 10% remaining of the original parameter space by the end of the tenth wave. Furthermore, the true parameter355

values exist in XNROY. We can also see some of the same patterns we were starting to observe in Figs 4 and 5. Most notable

are the relationship between VCmax and SLA and the strong constraint on Q10, where values below 0.45 of this parameter are

ruled out. Similarly, values of Lagecrit below 124 are ruled out. In contrast, Evapres and Rootprof are not constrained at all by this

experiment; there is not enough information to rule out any values. These two parameters impact LE, specifically its slope in

spring and autumn.360
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Figure 6. NROY density plots (upper triangle) and minimum implausibility plots (lower triangle) from the HM experiment using NEE and

LE RMSD as metrics after ten waves. NROY densities (or optical depth) represent the fraction of points with implausibility smaller than

the cutoff a (here a value of 3) using the colour bar on the right, with grey regions indicating completely ruled-out areas. This fraction is

obtained by fixing the two parameters given on the main diagonal at values of the x-axis and y-axis of the plotted location and searching the

other dimensions of the parameter space. Minimum implausibilities represent the smallest implausibilities found when all the parameters are

varied except those used as x- and y-axes. These plots are oriented the same way as those on the upper triangle to ease visual comparison.

True parameter values are shown in black: square on the NROY density plots and circle on the minimum implausibility plots.

3.1.3 Computational cost

The computational cost of calibration algorithms is primarily determined by the number of parameters and the time it takes

to perform a single model run. In this study, we test the different methods over a single pixel for a single year, which only

takes seconds to run, meaning the ensembles needed for each algorithm were not too costly to generate. However, in practice, a

single model run can be costly - especially when running the model over a large area or coupled with an atmospheric transport365

model. Table 3 shows the number of simulations needed for each algorithm. Note that the extra computation time needed to

construct the emulators and use these to sample from NROY space is marginal in comparison.

These values represent ball-park figures - a maximum iteration of 25 was used for consistency but the system often converged

sooner (e.g., approximately ten iterations for each BFGS run). Similarly, we used ten waves for HM, but after the 5th wave,

the improvements were marginal (Table B1). Overall, a single BFGS optimisation (i.e., gradient descent) remains the fastest370
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Table 3. Number of model runs needed in each algorithm for p parameters. Note that the BFGS and GA algorithms were run 200 times for

the stochastic experiments.

Formula Terms In this study Total number of runs

BFGS (single run) niter ∗ (p+1) niter = number of iterations niter = 25, p= 6 175

GA (single run) niter ∗ g niter = number of iterations, g = population size niter = 25, g = 24 600

Bpost p+1 p= 6 7

HM nwave ∗ (10 ∗ p) nwave = number of waves niter = 10, p= 6 600

method. However, it is also the one that is most likely to get stuck in local minima. HM is comparable to a single GA run

in terms of the number of simulations needed. However, we have seen that a single GA run is not enough in this example to

quantify the posterior parameter space fully. Instead, multiple GA optimisations are preferable (here we used 200), which is

extremely costly.

3.2 Implementing process-oriented metrics375

One of the strengths of HM is that we can easily apply different metrics and so in this section, we consider the additional

constraints these metrics bring. In Fig. 7a, we consider how the minimum/maximum of the seasonal cycle can be used to

constrain the parameters. We again highlight the VCmax-SLA relationship. Another relationship found is between VCmax and

Rootprof. Although this metric cannot be used to rule out unlikely values of Rootprof, there is a denser fraction of likely points

falling around 2.3. Note this is not the true value of the parameter but is closer to the value of the second minimum found380

in the stochastic experiments. When considering VCmax, VCmax is constrained to 50 when Rootprof is small. However, when

Rootprof is large, i.e. the roots can access water further down the soil column, VCmax is less constrained. This means that when

there is more water availability, the carbon capture capacity of the plant is less important in determining the peak and sink

of the NEE and LE seasonal cycles, respectively. Although 35% of the parameter space is left, we see clearly that this metric

is insufficient to constrain the other parameters. Indeed, the minimum/maximum is not sensitive to Lagecrit, Evapres and Q10.385

When considering the time series for this experiment, the fit is not too dissimilar from Fig. 2, when using the RMSD as the

metric. However, we see here that winter behaviour is not constrained. This is especially true for the NEE time series, we do

not reduce the spread at the beginning and end of the year.

Figures 7b and c use the slope in spring and autumn, respectively. For the spring slope metric, we again pick out the

relationship between VCmax and SLA. This is even sharper than in the RMSD and minimum/maximum cases. We also notice390

a relationship between Evapres and Q10, with values in the lower-left-hand corner of the space ruled out. Similarly, low values

of Evapres are ruled out using this metric. When considering the time series, we clearly reduce the spread of the ensemble in

spring for the LE. We also reduce for NEE, however, this is less obvious since the prior ensemble spread was already quite

narrow. For the autumn metric, we start to constrain Lagecrit and Rootprof, and SLA to a lesser extent. These are parameters

that we did not constrain using the other metrics tested. Changes to ensemble spread in the time series are similar to when the395

RMSD was used as the metric, although a little more marked during September of the LE time series.
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Figure 7. History matching experiments considering different individual metrics. NROY density plots are shown above (see Fig. 6 for how

to interpret the figure) with the proportion of remaining space after ten waves in the title brackets. The time series plots shown below each

density plot illustrate the ensemble spread generated running the model with 200 parameter sets sampled from each X NROY.

The final metric considered in Fig. 7d considers constraining the initial carbon stocks. We clearly see that this metric is

completely controlled by a single parameter, Q10. This parameter throughout has been the most constrained, and here we see

why. It directly impacts the spread of NEE at the beginning and end of the time series. For the rest of the time series, this

parameter has no impact - the ensemble spread in summer is at its maximum width.400

These examples illustrate clearly how we can use individual metrics to target different parts of the seasonal cycle. The next

step is to combine them in one experiment. In Fig. 8, we combine these five metrics (RMSD, min/max, spring slope, autumn

slope, initial carbon stocks) to have a total of nine constraints (each of the metrics are applied to both NEE and LE, except

for the initial carbon stock metric which is only applied to NEE, see Table 2). Note that these metrics are not weighted (in the

traditional sense) when combined. Instead, the weighting occurs through the individual errors used to set up the experiment.405

Using these multiple metrics, the XNROY is reduced to 0.01% of its original size. We see that all of the parameters are

constrained, with the true points still contained in the NROY space. Indeed, the true values lie in the space where the minimum

implausibility is at most 1.5. We would still recover these points if the cutoff was decreased from its current value of 3. The

relationship between VCmax and SLA is kept, and we can pick out the true value of Q10. By comparing to Fig. 6, we can see
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Figure 8. History matching experiment considering all metrics listed in Table 2. Results from the third wave are shown with NROY density

plot on the left (see Fig. 6 for how to interpret the figure). The time series shown on the right depicts the spread of 200 ensemble runs

generated from points sampled from the X NROY (shown in dark purple) with the mean and standard derivation of this spread shown in light

purple. The boxplots in the right-hand panel show the distribution characteristics of the RMSD of each of the 200 runs for the calibration

year (2005, filled boxplot) and the evaluation years (2006-2009, outlined boxplot).

that combining different metrics has helped reduce the space to a much greater extent by constraining the another parameters410

that were not constrained by solely relying on the RMSD. When considering the time series, we see that the posterior ensemble

of model runs tightly fit the observations - especially at the beginning of the year. The ensemble spread is more reduced than

when we only used the RMSD (Fig. 2), but with the same consistency between the calibration year and the rest of the time

series, especially for NEE.

By using these physical metrics and targeting different parts of the seasonal cycle, we are able to better fit the data and415

gain an understanding about the parameters. We still have some variability in late Autumn, with the model runs tending to

underestimate NEE. Currently, we only target the slope between September and August monthly means to capture the leaf

senescence. If we further included a metric in October or November, we may be able to constrain the time series further.

Ideally, this would be based on some physical process to understand which parameters would be the most impacted. We also

expect targeting the variability in the summer months would help constrain LE during July and August. This would most likely420

target Rootprof and Evapres as variability during these drier months will impact the amount of water in the soil.
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4 Discussion

This study provides a good introduction to how HM can constrain the carbon and water cycles in land surface models. Never-

theless, it is not without limitations. In the first part of the study, we compare it to VarDA often used for parameter estimation in

land surface models (especially when calibrating the ORCHIDEE land surface model), and consider two different minimisation425

algorithms to reduce the cost function. However, properly comparing VarDA and HM is hard since they are both designed with

different goals. This means that discussions around computational cost are nuanced - there are no comparable convergence

criteria. Furthermore, for each algorithm, there is a trade-off in computational time and efficiency. For example, we can use

more model runs to fit emulators in HM or increase the population size in GA.

In this study we use gradient-descent BFGS and random-search GA to find the optimum and then the gradient information at430

the optimum to find the posterior uncertainty (through Bpost, Eq. 6). We do acknowledge that there are other methods we can use

to minimise the cost function - ones where the ensembles can be used to infer the posterior distributions (e.g., Markov-Chain

Monte-Carlo, Geyer (1992)). However, these are extremely costly and therefore outside the scope of this study. Furthermore, we

wanted to use the method currently used in ORCHIDAS and, therefore, where we have the most understanding and experience.

Finally, whilst we do not expect it to have a huge impact on the results, without the adjoint of the ORCHIDEE model, Bpost only435

approximates the curvature of parameter space, and therefore, the posterior parameter distributions found with this matrix are

not accurate. Maintaining the adjoint of a complex model like ORCHIDEE is very costly, given the model’s evolving nature.

Therefore, the fact that HM does not need the adjoint in its calculation of posterior distributions is an advantage.

In the second part of the study, we look at using different metrics for training emulators to use in HM. Although using

different metrics is also possible in VarDA, this is trickier since the choices must be made before a costly calibration, for440

example, which metrics to use and how to weight them. With HM, we can run an ensemble first and test different metrics on

the ensemble. Adding new metrics as the waves progress is also possible instead of restarting the whole optimisation procedure.

In this study, we chose a few illustrative metrics based on our understanding of the physical processes driving the model and

the results of the one-at-a-time sensitivity analysis (Fig. A1). Choosing the best, most suitable metrics could be the subject

of a whole separate study. Furthermore, increasing the objectivity of the tuning procedure will allow the climate modelling445

community to more meaningfully share insight and expertise with each other, thereby increasing our understanding of the

integrated climate system. In addition to performance-based metrics (e.g., RMSD, skill scores), physical-based metrics allow

us to target different parts of the model. However, these require an understanding of the different processes involved. While

here we focused specifically on parts of the seasonal cycle, there may be other more complex metrics to consider, for example,

the timing of the leaf-area index reaching a certain threshold. Furthermore, we can use techniques such as principal component450

analysis to help reduce the dimensionality of the problem (Lguensat et al., 2023)

Nevertheless, HM does come with its own challenges. It is, in a way, much more involved and requires a level of understand-

ing to ensure the emulators are properly constructed and applied. There are also a number of subjective choices that can be

made during an HM experiment, such as changing the cutoff (a in Eq. 11) if the emulator is believed to be good enough, which

requires some level of understanding beyond using the method as a black box. When combining a large number of the metrics,455
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it is also possible to expand Eq. 11 to allow for some additional flexibility (Couvreux et al., 2021). For different metrics mi,

XNROY is the intersection of the XNROYmi
associated with each metric:

XNROY =
⋂
i

XNROYmi
=
{
x ∈ X : #{x ∈ X : Imi(x)> a} ≤ τ

}
. (13)

where # denotes the number of metrics that satisfy the condition in the bracket, and τ is the number of metrics for which the

model is allowed to be far away from the target. Throughout, we set τ = 0, meaning that each model run must satisfy all the460

metrics. However, when combining many metrics, this value can be increased to stop us from accidentally ruling out good runs

before the emulators are properly trained. Although not necessary in our test case, this τ can be an important consideration.

The example we test here is simple but illustrative. Nevertheless, we only test one site and as we have seen, this suffers from

a high degree of equifinality. Several studies have shown moving from a single site setup to multisite optimisations (i.e., finding

one common set of parameter for multiple sites) results in more robust optimisation, less likely to get stuck in local minima465

(Kuppel et al., 2012; Raoult et al., 2016; Bastrikov et al., 2018). This is because the multiple constraints from the different sites

smooth out parameter space. Even so, multisite optimisation can suffer from wider parameter uncertainty distributions as there

are dynamics at various sites that are not explicitly included in the models, necessitating a robust preselection of the subset of

sites used in the experiment. To further test the strength of the HM method, a new step will be to move to multisite set up. We

anticipate that one of the strength of HM, its use of emulators, will become more apparent when we move to these more cost470

experiments. Furthermore, emulators will greatly benefit the optimisation of larger regions and more costly processes (e.g.,

spin up). Finally, although the twin experiment is very informative, a next key step will be to use real world data to assess the

full potential of HM.

4.1 Future avenues

HM is a promising approach that may prove invaluable in future land surface model calibration. One of the key challenges in475

land surface model calibration is multi-data stream optimisations. Ideally, we would perform simultaneous calibrations, where

all the information is ingested in one go. However, this is not always practical. There may be some technical constraints, for

example, computational capabilities. We may also want to assimilate a newly acquired data stream without redoing the whole

calibration process. The alternative is to perform calibrations in a stepwise manner by treating the data sequentially. If dealt

with properly, the stepwise approach is mathematically equivalent to the simultaneous one (MacBean et al., 2016; Peylin et al.,480

2016). However, this means propagating the full parameter error covariance matrix between each step, which can be hard to

estimate properly. This is where HM becomes particularly attractive. The NROY space contains all the information about the

parameter errors, so this information is not lost between steps. Furthermore, HM’s iterative nature means we can add different

data when and as they become available. It also lends itself well to a stepwise approach to calibration, allowing us to separately

constrain, for example, the fast and slow processes of the model. Finally, HM’s conservative nature means we are less likely to485

overfit to a particular data stream or indeed the particularities of given experiments, as shown here.

Although HM does not provide an optimal set of parameters at the end, this is not necessarily an issue. As computers become

more powerful, we can run land surface models as ensembles instead of a single realisation of the model, allowing us to obtain
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rigorously the uncertainty of the model prediction. Indeed, as a climate community, we should be moving towards using data-

constrained ensembles instead of a single realisation (Hourdin et al., 2023). HM would allow us to generate such ensembles490

to be used, for example, the Coupled Model Intercomparison Project. Alternatively, we could use HM for pre-calibration

(Edwards et al., 2011), i.e., reducing parameter space before performing data assimilation. The XNROY could further help us

define the off-diagonal elements of the B matrix in Eq. 5. We also note that one wave of history matching is as costly as a

Morris sensitivity analysis commonly used to assess parameter importance (Sect. A) but much more informative.

The true strength of HM is its ability to help with the identify structural errors (Couvreux et al., 2021). Although we can also495

use VarDA to identify structural errors, HM’s more conservative approach to parameter rejection can more easily help identify

when the model is clearly wrong. Furthermore, once an ensemble is generated, applying different metrics to test different

model sensitivities is easy instead of performing a full optimisation, as would be needed in VarDA. It is common to add model

complexity to models to address structural changes without first checking that the errors truly represent structural deficiencies

and are not simply an artefact of poor model tuning (Williamson et al., 2015). Through HM, we can easily test for structural500

errors and see whether it is possible to match observations given the current model structure.

5 Conclusions

Using a twin experiment (i.e., with known posterior parameter values), we first compared the posterior parameter distributions

found after variational data assimilation (VarDA) experiments to those found after a history matching (HM) experiment. We

found that the Gaussian hypothesis used to calculate the posterior uncertainty after the VarDA experiments was too strong.505

The posterior parameter distributions did not reflect the full equifinality of parameter space, nor the non-linear behaviours and

relationships of the different parameters. Furthermore, the true parameter values were not contained in the posterior distribution

for half the parameters. When performing multiple cost function minimisations starting from 200 different random priors, we

achieved a better exploration of parameter space. These experiments were much more computationally costly but started to

reveal relationships between parameters and contained the true parameter values in the posterior distribution. Similarly, while510

not constraining all the parameters, the posterior distributions from the HM experiment also contained the true parameters

and maintained non-linear relationships between parameters. Furthermore, the model ensemble found by sampling the not

ruled-out yet space fitted the observed time series reasonably well.

In the first part, we used the root-mean-squared difference as the target metric for HM to directly compare to the cost function

used in the VarDA experiments. In the second part, we showed HM’s versatility in using different metrics to target different515

parts of the seasonal cycle. This allowed for all the parameters to be better constrained and the posterior model ensemble to

tightly fit the observations. We showed that instead of using a single cost function, multiple process-based metrics improved

the calibration, and enhanced our understanding of the model processes.

Although this paper only considers a simple exploration of the HM methodology, its strong potential for land-surface model

calibration is clear. It will allow us to constrain multiple data streams, better targeting individual processes. Overall reductions520
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in parameter uncertainty will lead to more accurate projections of the land surface, enhancing our understanding of terrestrial

behaviour under climate change allowing us to better plan for the future.

Code and data availability. The source code for the ORCHIDEE version used in this model is freely available online via the following ad-

dress: https://doi.org/10.14768/d64cfc44-08b7-4384-aace-52e273685c09 The ORCHIDAS HM code and data used in this paper are avail-

able on a GitHub repository: https://doi.org/10.5281/zenodo.10592299. The FR-Fon Fluxnet meteorology data can be directly downloaded525

from the FLUXNET2015 database after registration: https://fluxnet.org/data/fluxnet2015-dataset/.

Appendix A: Parameter sensitivities

One of the primary uses of HM is to test the sensitivity of the model outputs to the parameter uncertainty. Nevertheless, we

ran a couple of simple tests in advance to get a sense of the different parameter sensitivities. These more closely resemble the

tests land surface modellers perform when doing simple manual tuning and are not as rigorous as HM. However, they remain530

common - especially since they can be used to pre-select the key parameters for these more robust but costly methods.

The first is a simple, one-factor-at-a-time parameter perturbation experiment (Fig. A1). Although this does not account for

interactions between parameters, it can help understand some of the direct impacts of the different parameters. This cost of the

method is determined by the number of ensembles used for each parameter, here 50. The second is a Morris sensitivity analysis

(Morris, 1991; Campolongo et al., 2007)(Fig. A2), which is effective with relatively few model runs compared to other more535

sophisticated methods (e.g., Sobol’, Sobol (2001)). Indeed, a standard Morris experiment equates to the computational cost

of doing one HM wave (i.e., 10 times the number of parameters forward runs of the model). Using an ensemble of parameter

values, the Morris method determines incremental ratios, known as ‘elementary effects’. These effects are determined by se-

quentially modifying individual parameters across multiple trajectories within the parameter space. The mean (µ) and standard

deviation (σ) of the differences in model outputs for all the trajectories are calculated. This global method determines which540

parameters have a negligible impact on the model and which have linear and non-linear effects. The results of this method are

qualitative and serve to rank the parameters by their significance. To evaluate the results, we consider the normalised means,

obtained by dividing each value by the µ of the most sensitive parameter. As such, the values fall within the range of 0 and 1,

with 1 indicating the most sensitive parameters and 0 indicating parameters with no sensitivity.

Both methods clearly show that NEE and LE are highly sensitive to VCmax and SLA. In Fig. A1, we see that these parameters545

directly impact the amplitude of the seasonal cycle. NEE is most sensitive to Q10 (the parameter determining the temperature

dependence of heterotrophic respiration), which we see impacts the respiration (TER) component of this flux. This parameter

has no impact on LE. After VCmax and SLA, LE is most sensitive to Evapres, which controls bare soil resistance to evapotran-

spiration. This parameter impacts the slope in spring - controlling how much water is in the soil before the leaves start to grow

at this deciduous site. Both fluxes are sensitive to Lagecrit in autumn, this parameter impacts the age of leaves and therefore550
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senescence. Finally, while still showing some sensitivity, the fluxes are least sensitive to Rootprof. This parameter controls root

depth and seems to have the most impact in summer when the months will be warmer.

While the one-factor-at-a-time experiment seems more informative here, we must remember that it does not account for the

interactions between the parameters. This can be dangerous because it is possible that changing different combinations of the

parameters may impact the processes differently. This will be crucial in more complex cases. While the Morris experiment555

does account for interactions, it is not possible to disassociate from non-linear effects. Furthermore, although Morris is less

costly, little information beyond simple rankings can be gleaned.

Appendix B: Emulator quality

We ran leave-one-out cross-validations to validate the emulators at each wave of the HM procedure. Each point from the design

set was retained for validation and the emulator refitted. We then test if that point lies within the 95% confidence interval of560

the refitted emulator - if 95% ratio of the left-out points should lie inside the confidence intervals, then the emulator is deemed

good. While it is an ideal case, we consider in this work that the emulator is good if the ratio is at least over 90%.

To illustrate this, Fig. B1 shows the diagnostic plots for the first and last wave of the HM RMSD experiment, and Table

B1 shows the leave-one-out diagnostics at each wave. The emulator represents the model well for both the NEE and LE cases

with small error bars and predictions close to true values. We obtain larger error bars for NEE compared to LE (especially in565

later waves) due to the more sophisticated behaviour of the model for the NEE case. In Table B1, we see that both the average

error and variance decrease with successive waves, showing our emulators are becoming more accurate, and in each case, the

accuracy is above the 90% mark. Overall, we are satisfied with the quality of our emulators. Although not shown, emulators

from the other HM experiments give similar results.
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Figure A1. Prelimarily experiment demonstrating the individual sensitivity of each parameter. For each row, 50 ensembles of a given param-

eter are shown for NEE and LE, as well as NEE’s components - gross primary production (GPP) and terrestrial ecosystem respiration (TER).

Runs are coloured by the parameter values used: low values in blue, passing through yellow and high values in red.
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Figure A2. Heatmap showing the relative sensitivity of each parameter for NEE (top row) and LE (bottom row ). Morris scores are normalised

by the highest ranking parameter in each case. Dark squares represent the most sensitive parameters for each output, and light squares

represent parameters with little to no sensitivity.

Table B1. Information about emulators and the leave-one-out diagnostics at each successive wave. The error column shows the mean emulator

error and s.d. column shows the mean emulator std-deviation for each prediction.

Fraction of space NEE LE

Wave remaining Accuracy (%) Error S.d. Accuracy (%) Error S.d.

1 0.1428 92.1 0.103 0.11 92.2 1.07 1.08

2 0.1172 92.9 0.067 0.065 92.9 0.496 0.444

3 0.1092 94.2 0.057 0.059 94.2 0.303 0.282

4 0.1092 92.7 0.056 0.054 94.7 0.282 0.275

5 0.0948 93.6 0.037 0.035 94.6 0.186 0.175

6 0.0932 94.2 0.028 0.028 94.9 0.169 0.154

7 0.0864 94.9 0.025 0.025 95.2 0.147 0.138

8 0.086 94.5 0.025 0.024 95.6 0.111 0.107

9 0.086 94.1 0.022 0.023 95.2 0.109 0.103

10 0.0845 93.5 0.021 0.021 94.8 0.084 0.084

Appendix C: Additional figures570

Here, we present a few additional figures to help further visualise the results. Figure C1 shows the time series for the additional

evaluation years (2006-2009).

Figure C2 compares the 1-dimensional posterior distributions found by the VarDA stochastic experiments and HM experi-

ments. Remember that this is a 1D representation of multidimensional space and so does not illustrate the relationships between

parameters.575
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Figure B1. Leave-One-Out diagnostics plots against each of the parameters for NEE (top row) and LE (bottom row) for the first and last

wave of the history matching RMSD experiment. Black points and error bars (±2 s.d. prediction intervals) are computed from E[H(x)]

and Var[H(x)]. The true (left out) values are plotted in purple/red if they lie within/outside two standard deviation prediction intervals. The

horizontal dashed lines show the observations plus the observed error (0±2
√

Var(e)). Note the difference in scale between the plots in Wave

1 and Wave 10.
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Figure C1. Full time series of NEE (top) and LE (bottom) for FR-Fon years 2006-2009. For the data assimilation experiments (GA and

BFGS), the spread represents the results taken from the stochastic experiments (i.e., from 200 optimisations). For the HM, 200 parameter

sets were sampled from the X NROY and used to run the model. The prior ensemble, i.e., before any calibration, is shown in grey and the

posterior ensemble is shown in dark colours. Boxplots on the right show the distribution characteristics of the RMSD between each of the

200 runs and the observations. The RMSD for the calibration year (2005) is shown by filled boxplots, and the evaluation years (2006-2009)

are shown by outlined boxplots. The box represents the interquartile range, containing the central 50% of the data. The horizontal line inside

the box marks the median. Whiskers extend to the minimum and maximum values within 1.5 times the interquartile range.

Author contributions. NR and PP conceived on the study. SB performed the DA experiments. NR performed the HM experiments. NR and

SB helped integrate the HM methodology in the ORCHIDAS system maintained by VB. FH and JS provided expertise in assessing the HM

results and the emulator performance. CO provided supervision and DA expertise. All authors contributed to the writing and editing of the

manuscript.

28



Figure C2. 1-dimensional representation of posterior parameter distributions. For the data assimilation experiments (GA and BFGS), the

values represent the results from the stochastic experiments (i.e., from 200 optimisations). For the history matching experiments (HM; RMSD

for when only the RMSD metric is used, ALL for when all the metrics are applied), 200 parameter sets were sampled from the X NROY. The

true values are shown in blue.
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