
Review 1
This is a review for the manuscript “Exploring the Potential of History Matching for Land Surface
Model Calibration” submitted to Geoscientific Model Development by Raoult et al. In the work
included in the manuscript, the authors examine the benefits of using History Matching (HM) for
Land Surface Model (LSM) calibration with the ORCHIDEE LSM model by conducting a twin
experiment reflecting a site often used for ORCHIDEE calibration. In addition they compare the HM
results with how VarDA calibration performance.

From the HM implementation/experiment part, I thought the manuscript was well done and
successful. It is a basic what is being done here, but the paper is open about that and establishes
itself more as a foundation work that will be expanded upon in the future. There are some parts
where some clarification is needed, but overall I was quite satisfied with the work done and how it is
presented here.

We would like to thank the reviewer for taking the time to read through and comment on this
manuscript, comments that will strengthen the paper and help clarify key points of the paper.

Which, however, brings us to VarDA comparison as I did not really comprehend the purpose of it. As
the manuscript even itself admits in the discussion section, how those two calibration methods
function are so fundamentally different that the results really can’t be compared effectively. VarDA is
ultimately an optimization method, especially when applied in the manner here, and even the
uncertainty approximation used in the work is kind of a fix as the approach itself does not actually
produce uncertainties. That has been one of the great challenges in using 4D-Var in forecast service
and has produced several different workarounds.

So to use VarDA, which essentially was 4D-var here, to estimate parameter values and then
compare those with a method that only estimates uncertainties was odd, to be honest.

The history matching vs variational data assimilation comparison was motivated by the fact that
VarDA, formulated in this precise manner, is a common method used in land parameter data
assimilation, especially when dealing with the carbon cycle; e.g., BETHY (Rayner et al., 2005,
Scholze et al., 2007, Knorr et al., 2010, Kaminski et al., 2013), JSBACH (Schürmann et al., 2016;
Castro-Morales et al., 2019), JULES (Raoult et al. 2016, Pinnington et al., 2020), ORCHIDEE
(Santaren et al. 2007, Verbeek et al., 2011; Kuppel et al., 2012, 2014; etc). We have added more of
these examples to the text. Part of the reason is linked to the history of land surface models when
their role was primarily acting as a lower boundary to atmospheric models. VarDA has been
extensively used with atmospheric models. When calibrating land parameters linked to the carbon
cycle, one of the data sources is atmospheric CO2 mole concentration data. To calibrate against this
data, we need atmospheric inversion models creating a link with the atmospheric modelling
community. As such, early frameworks for carbon land surface model parameter estimation used
VarDA at its core (Rayner et al., 2005, Scholze et al., 2007, 2016, and 2019, Kaminski et al., 2012
and 2013; Peylin et al., 2016; Bacour et al., 2023).
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Given this rich culture of data assimilation in land surface models, and in particular in ORCHIDEE
(see https://orchidas.lsce.ipsl.fr/publications.php for the over 30 studies using this approach), we felt
it was therefore necessary to highlight the advantages of using another method, i.e., history
matching, compared with what has historically been used. This was also partially motivated as a
follow-up of Bastrikov et al. (2018) where BFGS and GA were compared, and therefore, this adds a
new method to the repertoire.

Although HM and VarDA differ fundamentally in their approach, they still have a similar objective of
finding acceptable parameters. VarDA searches for THE optimal parameter set while HM searches
and eliminates all non-suitable parameter sets with the goal of finding possibly a small and reduced
parameter space. In practice, HM has often been used historically to calibrate models. Furthermore,
we see in this paper that performing VarDA from multiple different priors helps to get an ensemble
comparable to one extracted from the NROY. Therefore, by comparing them in this manner, we can
illustrate the advantages of using HM and show how HM could complement the methods currently
used to optimise these models.

Furthermore, the more commonly used MCMC methods actually produce uncertainty estimates that
would be a more apt comparison for the HM results. While the discussion does touch on why MCMC
wasn’t used here, it should have been done more explicitly earlier and even then it remains
questionable. In truth, it almost felt like the author was worried that the paper itself would have been
too short or limited without the comparison, but it doesn’t really add that much.

MCMC methods are very powerful, providing a full exploration of parameter space and have the
potential of providing very detailed information about the posterior distributions from which it
samples. However, these methods are extremely costly, sometimes needing the model to be
evaluated upwards of 104–107 times. Furthermore, the Markovian nature of MCMC techniques,
which requires the computation to be performed sequentially, means this process cannot be
parallelised. As such, MCMC methods have only been applied to computationally inexpensive LSMs
or to calibrate isolated processes - ORCHIDEE, unfortunately is an LSM of high-complexity and
therefore MCMC is too costly. Only recently, with the help of emulators, has MCMC been used to
calibrate LSMs of high complexity (e.g., Fer et al., 2018).

We have added to the introduction (L41):

As a result, LSMs are also becoming more costly to run. This also means that traditional
Bayesian calibration techniques, such as Markov Chain Monte Carlo, are too costly to
use.

Furthermore, currently, most groups working with complex process-based land surface models
(an important community preparing LSM for the next Climate assessment report) are dealing with
the same question as touched on in this paper: using the classical 4Dvar approach or using
emerging methods based on emulators like the HM one proposed here. Thus we believe the
comparison is highly relevant for the global LSM community.

Apologies on the brusqueness of the feedback regarding the comparison, but it is driven by how
much I did appreciate the HM part of the work. If this paper was still in the preparation phase, I
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would strongly argue removing the comparison, but at this stage that is too drastic an action to take.
And while I continue to have my issues with the VarDA part, I do think the rest of the paper is strong
enough to be considered for publication.

We do agree that with these technical papers, we do have a tendency to make them long and in
future, a more targeted message would be better. Nevertheless, given the current state of land
parameter data assimilation, we do feel that this comparison is beneficial to the community (as does
Reviewer 2).

In the HM literature, allusions to this comparison have been made (Williamson et al., 2015; Hourdin
et al., 2023) but no paper (to our knowledge) presents this kind of experiment. This can partially be
explained by the rather different groups of people working on HM and parameter data assimilation. It
was important for us to make this potential link between the communities, as these techniques are
becoming increasingly multidisciplinary. What's more, MCMC methods are much closer to HM in
their conception, and so these techniques are often merged (e.g. Mohamed et al., 2012; Maschio &
Schoizer, 2014; Han et al., 2024). Both MCMC and VarDA have been compared to other ensemble
methods (e.g., Fairbrain et al., 2013; Bannister, 2016; King et al., 2024). A gap in the literature
comparing HM and VarDA was part of the motivation for this study.

Thus my recommendation is to return for major revision with the focus, in addition to the detailed
comments later on, being on strengthening the reasoning and expectations for the VarDA
comparison both in the introduction and in the methods section.

Below are my line-by-line comments for the manuscript. As a general comment, though, there are
several points where the manuscript refers to something as usually or commonly done which I feel
should almost all be removed. Just state what is done and why instead of using generic referrals
such as that, especially because they are both unnecessary and arguable in some cases.

We again would like to thank the reviewer for their thoroughness in reading the manuscript and for
the line-by-line comment, which we reply to below.

Line-by-line comments:

Line 20: “However, despite their increasing complexity…”

This comment is so nit-picky that I feel compelled to apologize for it in advance, but I might argue
against the word despite here. While it is undeniable that more complexity has been attempts to add
to LSMs, a lot of those processes are intertwined. Hence it would make sense that, at least in the
beginning, one would expect to see those major uncertainties remain as they have more room to
spread so to speak.

Not a critical comment and feel free to ignore, but still something to potentially rephrase here.

Rephrased as:



However, in part due todespite their increasing complexity (Fisher and Koven, 2020), these
models areremain subject to large uncertainties, in terms of missing processes and poorly
constrained parameters.

Line 23: “…terrestrial biosphere is becoming a critical scientific priority…”

I would just expand that it is also a policy priority as the results of these models are used to basis for
future plans as explained in the example following this part.

We thank the reviewer for this suggestion, we have expanded this line to include this.

Line 28: “DA can be used to improve the initial state of the model and/or the internal model
parameters.”

This part, along with the following more detailed examples, are a bit misleading in my opinion as DA
is more commonly used to continuously update the state variables as new observations become
available. While that new estimated state is then used as the basis for the next projection, it also
does contain information from the preceding model states, so calling it the initial state is not
completely accurate.

Although DA is more classically associated with numerical weather prediction and correction of
model trajectories, for LSM, the initial state is a key part of the model trajectory containing
information from the preceding model states found during the spin-up. This definition of DA is very
common in the LSM literature. We have added a citation (Rayner et al., 2019) to support this
definition.

Also on the numerical weather comparison after this part, I again felt it was a bit inaccurate. First of
all, in order for the parameter estimation to be even possible, you need known equation to calibrate.
So the fact that the equations were known is not an explanation why the parameter estimation isn’t
the focus. Furthermore, and more importantly, because of the chaotic nature of weather systems,
error related to the current state spreads faster and ends up dominating the future projection error. I
would argue that is a more central reason why state data assimilation is used and why with LSMs it
makes more sense to focus on model parameter uncertainties.

By the way, this part isn’t to be nit-picky like my first comment, but reading through this part I felt it
asserted confusing things such as what kind of an equation exists as one cannot use those methods
if one doesn’t have an equation to begin with. So the issue with LSMs, for example, isn’t that they
rely on empirical equations, but that there are questions how generally applicable a set of
parameters for those empirical equations are and in which situations they should be recalibrated.

The reviewer makes a good point and we have rewritten this section as follows:

In numerical weather forecasting, where the fundamental equations are mostly known (e.g.,
Navier-Stokes), DA is predominately used to correct the initial update the state of the
model, due to the chaotic nature of the weather system. These models are primarily
used to provide near-real-time forecasts, and errors in the initial state can dominate



the error in short-term future projections. In contrast, in climate studies, we rely less on
initial state optimisation and more on parameter calibration, especially for the carbon cycle,
where a lot of processes are based on empirical equations since we tend to be more
interested in long-term trends. In addition, LSMs use a small number of parameters to
represent a large diversity of ecophysiological properties. As such, the calibration or
tuning of this parameter has become central to climate modelling. For a long time, it
was done by hand, often linked to the subjectivity of the modeller (Hourdin et al.,
2017). The emergence of DA techniques for calibrating parameters has made it
possible to focus on more objective criteria and account for uncertainties.

Line 32: “Furthermore, we often rely on variational data assimilation methods...”

I strongly disagree with the implication here that variational methods are the common approach in
climate study approaches. They are used, obviously, but MCMC based methods are still much more
used at least based on my experience. Which is actually my biggest source of confusion with this
paper, something I will delve more deeply later, in that for this particular experiment it feels like a
comparison of History Matching to a MCMC approach would have been much more fitting due to the
uncertainty aspect.

Additionally, the description of the variational method is a bit odd as while technically correct, in 3D
variational assimilation the assimilation is done for each observation moment separately. So in those
cases it is not really a time window, at least not in the manner indicated here.

In land surface model parameter data assimilation, variational methods are common, especially
when dealing with the carbon cycle (as shown in response to the first comment). Nevertheless, we
have expanded the statement to be more precise by explicitly stating this is what is done for LSM of
high-complexity:

“Furthermore, when dealing with LSM of high-complexity, we often rely..."

Next, as discussed above, comparisons between History Matching and MCMC are outside the
scope of this paper because a) MCMC is often too costly for complex land surface models and,
therefore, we have been using different approaches for calibration, b) such a comparison would not
have been novel and not of direct use by the global LSM community.

For the final part of this comment, we agree that the current formulation can cause confusion due to
the 3DVar setup. Therefore, we have added the following to ensure the reader knows we are talking
about 4DVar (as also requested in one of the later comments).

Furthermore, we often rely on a 4-dimensional variational DA (simply referred to here as
VarDA) frameworkapproaches, in which all observations within the assimilation time-window
are used to create a cost function which is then minimised.

Line 50: “- for example, the likelihood…”



I was very confused by the claim here. Yes, by its very nature likelihood will generally be univariate
and smooth as it is a continuous variable that has only one maxima/minima. However, it does
nothing to address the equifinality issue that is a fundamental challenge to calibration in general,
emulators included.

Let us say that we have two parameter sets that produce closely the same likelihood, which in itself
would be relatively straight-forward in a complex LSM if we are looking at multiple outputs due to the
cost function determining the likelihood. In that case as we approach these parameter sets, the
likelihood function will continue to be univariate and smooth in a similar fashion even if driven by two
different sets.

This isn’t to argue against using likelihood for the emulator, rather that I don’t understand how it
solves any of the issues raised before it?

This sentence cites the study by Fer et al. (2018) to demonstrate that emulators need not describe
the whole model but simply what we are interested in. To ease confusion, we have removed the end
of the sentence.

Line 116: “2.2.2 Variational data assimilation”

In addition for the VarDA application here seemingly being 4D Var without ever directly identified as
that, there is also no discussion at all in the methodology section about the required adjoint version
of the model. Which in turn is a bit confusing as at least the gradient based algorithm used for the
calibration is based on the assumption that all the information is transferred to the same point of
time in order calculate the gradient.

Now I do realize there have been ways to sidestep this in previous publications discussing why the
adjoint was not used and even here it is mentioned briefly in the discussion. However, even if
choosing such approaches, the methods section should be transparent about that as well as about
the reasoning behind the choice. This is especially important here because the previous works that
have avoided the adjoint have worked with the simpler system than what is done here. Which
naturally raises the question that if some of the challenges the VarDA is having are at least partially
due to skipping that part of the process as the required assumptions no longer hold as strongly.

We apologise for being more transparent in this section. Deriving the tangent linear or adjoint of
complex models like ORCHIDEE is a huge challenge, given the over-evolving nature of these
models. A tangent linear does exist for outdated version of ORCHIDEE, and so instead we rely on
finite-differences. There is an ongoing effort at LSCE to derive the tangent linear for any version of
ORCHIDEE, but this has been a huge undertaking and we do not currently have tangent linear for
the current version of ORCHIDEE.

The reviewer is correct that what we do is a form of 4D-Var. As such, referring to the technique as
4D-Var has added to L32:



Furthermore, we often rely on a 4-dimensional variational DA (simply referred to here as
VarDA) frameworkapproaches, in which all observations within the assimilation time-window
are used to create a cost function which is then minimised.

And to L116:

Here we treat z, the observations, as a vector to assimilate over the whole time
window. This is known as 4DVar (compared to 3DVar where the observations are
compared to a single model output at a time).

Furthermore, we have added the following text to L128:

Note that here we use the term variational to describe the form of the cost function
minimised. While the classical approach to minimise this function relies on
gradient-based methods, in the absence of gradient information, other methods have
increasingly been used to find the optimum. This has led perhaps to an abusive use of
term “variational”, however, we feel here it helps to group the two minimisation
approaches we wish to compare to the history matching approach.

L132:

.. referred to as BFGS. To calculate the gradient information needed for this method, we
use finite differences (i.e., the ratio of change in model output against the change in
model parameter). While the gradient can be more accurately computed with the
tangent linear (linear derivative of the forward model) or adjoint (a computationally
efficient way used to calculate the gradient of the cost function), these are extremely
hard to compute for complex models like ORCHIDEE and therefore not available at
this time.

Line 174: “The value of a is often…”

This part was a bit confusing to me as is a set as three here or not? If it is, just state so instead of
writing how it is generally done.

Changed to state a is set as 3 in this work.

Line 201: “…standard deviation set to 0.1 times the time series’ mean.”

Why the time series mean? Especially if you are looking at seasonal variables where the
assumption would be that the uncertainty is at least partially relative to the measured valued?

In the set-up we use, the error standard deviation is treated as a constant over the whole year (now
clarified in the text in accordance with Reviewer 2). As such, using the mean seemed a sensible
choice to help generate the Gaussian noise.



Line 203: “…where prior uncertainty is set to 100 % of the parameter range of variation in order to
allow for maximal space exploration.”

I don’t quite understand this as the prior uncertainty is still a normal distribution, correct? So if in this
case it is set to 100 %, that would imply the variation in the matrix, which in turn would only cover
approximately two thirds of the parameter range with the rest of the uncertainty being beyond that?
Reading through the sentence multiple times I think I get what it is stating, in that you are exploring
the whole range of allowed parameters, but that is how calibration should work anyway based on
prior knowledge, shouldn’t it?

Furthermore, if I am understanding this correct, you are essentially setting the prior uncertainty so
high that the prior state doesn’t really affect the calibration? Which again raises the question why
even do this experiment with VarDA as you are here handicapping against its strengths?

The reviewer is correct - the prior uncertainty is still a normal distribution. Nevertheless, the
background term still impacts the calibration - this high range of variations means its weight is
weakened (compared to past studies) with this formulation but not ignored. This comment was more
with regards to past experiments where a fraction of the range is used (e.g., 40% in Kuppel et al.,
2012). We have added this to the text:

where prior uncertainty is set to 100 % of the parameter range of variation (compared to
40% of the range used in Kuppel et al., 2012) in order to allow for maximal space
exploration.

By having this increased range, we do put less weight on the background making the stochastics
experiments more comparable (i.e., the experiments starting at 200 different locations). Finally, even
though the prior uncertainty is a normal distribution, allowing for 100% the prior range does let us
test values right near the edges (in the tail of the normal distributions) making the GA and BFGS
experiment more comparable with the History Matching experiment where again the full parameter
space is considered.

Line 206: “Here, we focus on the first year…”

You are using data from only one year to calibrate parameters affecting seasonally changing
parameter values? Why not use multiple years? Especially since you are running a twin experiment
which involves creating a synthetic time series anyway?

It is true that we could have focused on more than one year in the calibration, but we felt that one
year was sufficient to explore the different methods and was easier to illustrate in the figures.
Furthermore, increasing the number of years would have increased the computational cost of the
study, which would have rendered the “stochastic” experiments (i.e., when we perform 200
optimisations for each minimisation algorithm) very heavy. We have added the following to the text:

Here, we focus on the first year of the time series (year 2005) for calibration (to save on
computational cost) and the rest of the time series (years 2006-2009) for evaluation.



Line 241: “3. Results”

I will write a generic comment on this section instead of raising the issue line by line. One can have
a “Results and discussions” section or one can have them separately. Here, though, despite there
being those individual sections, there are multiple points in the results were amidst presenting the
experiment, there are lines which theorize on the meaning of the results. Essentially text that
belongs to discussion where it could be contextualized together instead of the scattered approach
here.

Thus my suggestion is to going through this whole section and consider moving the lines about the
implications of the results to the discussion section. Not only will it make the results section easier to
read, it will also allow a more concrete analysis of what can deducted from the experiments.

Although we do see the merit in having a clearer separation between the Results and the
Discussion, as RC2 comments, this is a matter of style. We believe that discussing the key
interpretation with the results and then having a broader discussion of the pro and cons of the
methods in the “Discussion” section works well for this type of comparison study.

Line 322: “This is further reduced to less…”

This is a bit unclear as the sentence before states that the cutoff value was reduced by over 80 %
during the first pass with the following part being about how it went to less than 10 % after ten
iterations. So is the 10 % referenced here from the cutoff value? Also wouldn’t this imply that the
benefit of the further iterations was not that great as the first attempt already reduced uncertainty to
near the final result?

I realize later on it is stated that after the 5th wave the improvements were marginal, but it is not
obvious to me what is used as the standard for that here?

There may be some confusion here between the cutoff, a number we control but never actually
change in this work, which is how we decide parameters are too far from our target, and the Xnroy,
which is the not-ruled-out-yet space, which we are trying to reduce with the different experiments.
We never change in the cutoff in this work since a value of 3 can be justified through the 3sigma rule
(L174), and reducing its value needs more justification. In these two sentences, we discuss how the
Xnroy has been successfully reduced, first by 80% and then by over 90%. We have added the
following to hopefully alleviate some of the confusion:

This is further reduced to less than 10% of the original parameter space remaining by the
end of the tenth wave.

It is true that in this example, most of the Xnroy reduction occurs in the first wave. However, this is
not guaranteed to be the case in other examples.

Line 340: “3.2 Implementing process-oriented metrics”



I feel there is a lot of text about implementation and reasoning here that belongs in the methods
section.

We have moved the text from this section to the methods.

Now in methods:

Indeed, using RMSD is often discouraged since it is usually associated to a small
signal-to-noise ratio. Furthermore, the implausibility (Eq.~\ref{eq:imp}) is already similar to
root-mean-square error \citep{couvreux2021process}.To select informative metrics, it can be
helpful to identify specific features we want to constrain. For example, for both the NEE and
LE fluxes, we are looking at a seasonal cycle. As such, we expect NEE to have a global sink
(i.e., maximum carbon uptake) and LE to have a global peak (i.e., maximum
evapotranspiration) in summer. As well as constraining the magnitude of these turning
points, we might also want to consider constraining when they occur or the rate of change
leading to and from them (i.e. the gradient of slopes). Evap\textsubscript{res} and
Root\textsubscript{prof} parameters impact the slopes of the LE seasonal curve in spring and
autumn, respectively, so focussing on these gradients may help better inform on these
parameters. Similarly, L\textsubscript{agecrit} impacts senescence, so the slope in Autumn is
of particular interest. We also know that in winter, there will be little to no photosynthesis
(since we are considering a deciduous site). Similarly, we expect low rates of terrestrial
ecosystem respiration during these months and, therefore, can constrain NEE in winter. This
is similar to constraining the initial carbon pools in the model. In this work, we consider four
of these metrics: i) Min/Max of the seasonal cycle (sink for NEE, peak for LE), ii) the slope
during spring (taken as the difference between April and February monthly means) and iii)
the slope during the senescence period (taken as the difference between September and
August monthly means), and iv) initial carbon stocks (NEE only).

Left in Sect. 3.2:

One of the strengths of HM is that we can easily apply different metrics and so in this
section, we consider the additional constraints these metrics bring.

Line 404: “…we compare it to VarDA typically…”

Again just disagreeing with the argument that VarDA is the typical approach used for model
calibration even with LSM.

Hopefully the arguments above will help the reviewer understand our position. Nevertheless, we
have soften the statement as follows:

“we compare it to VarDA typically often used for parameters estimation in land surface
models (especially when calibrating the ORCHIDEE land surface model).”

Line 443: “The example we test here is illustrative, but very simple.”



First, again to be nitpicky, but I think it should be simple, but illustrative.

Changed

Second, and more to the actual commentary, I am not quite certain I understand how this is
illustrative as the manuscript tests the methodology with data from a single site. So there is not that
much yet that can be said about the multisite performance, especially because those have their own
challenges. While it is true that they usually address, at least partially, the equifinality issue, they
also do lead to wider parameter uncertainty distributions as there are dynamics at various sites that
are not explicitly included in the models. Which in turn is a wider question about how would HM
perform in those circumstances that the results here do not give insight into.

Apologies for the confusion. It is true that the way the paragraph is currently written, one infers that
through the simple and illustrative test of the paper, we can gain insights into a multisite experiment.
Instead, we were trying to suggest that a next step would be a multisite experiment, which in itself
has advantages, especially dealing with some of the equifinality issues highlighted in this work. The
reviewer is correct that multisite optimisation also have drawbacks - to address these we usually
careful select sites for these types of optimisation to ensure they have similar behaviours and that
we do not keep any outliers impacting the results. We have rewritten the paragraph as follows to
distintangle the separate ideas:

The example we test here is illustrative but very simple, but illustrative. Nevertheless, we
only test one site and as we have seen, this suffers from a high degree of equifinality.
Several studies have shown moving from a single site setup to multisite optimisations (i.e.,
finding one common set of parameter for multiple sites) results in more robust optimisation,
less likely to get stuck in local minima (Kuppel et al., 2012; Raoult et al., 2016; Bastrikov et
al., 2018). This is because the multiple constraints from the different sites smooth out
parameter space. Even so, multisite optimisation can suffer from wider parameter
uncertainty distributions as there are dynamics at various sites that are not explicitly
included in the models, necessitating a robust preselection of the subset of sites used
in the experiment. To further test the strength of the HM method, a new step will be to
moveIn addition to a multisite setupoptimisations.We anticipate that one of the true
strength of HM, and its use of emulators, will become more apparent when we move to
these more cost experiments. Furthermore, emulators will greatly benefit the
optimisation of optimise larger regions and more costly processes (e.g., spin up). Finally,
although the twin experiment is very informative, athe next key step will be to use real world
data to assess the full potential of HM.

Line 470: “The true strength of HM is its ability to identify structural issues.”

This is a tricky one. I don’t agree with this, however, at the same time I feel this might be more of a
terminological question. For me, structural issues relate more to the actual model equations and
included dynamics, which HM in itself is not any better in isolating than any other calibration method.
Don’t get me wrong, HM is a useful testing tool in such situation, but I would not that more than
anything else as it is still relying on the expertise of the user.



If, though, the structural error here is more in reference in how we set the priors of the parameter
values themselves, then there I would agree that that is something where application of HM
methods have value.

The review makes fair point, and therefore we have chosen the soften the statement as follows:

“The true strength of HM is its ability to ability to help with the identification of structural
issues (Couvreux et al., 2021).”

Just to expand a bit on the motivation behind the statement: if everything is ruled out (as long as the
emulator is accurate), it tells you that your model is not able to match the observations up to current
tolerances to error, and as Var[e] is usually somewhat known, the issue is you didn't properly
account for the discrepancy, i.e. structural error. Therefore, it can tell you something about the
presence of structural issues - although these can be hard to diagnose if RMSD is the metric, and it
does require some expertise to interpret how it is going wrong. When compared to optimisation
(single best x) or probabilistic calibration (distribution over x) - both these approaches are
guaranteed to return a 'best' x or a distribution over x, regardless of whether you've specified your
errors correctly. If you examine these results, you could then determine that actually you're outside
the error tolerances, and need to change them, as with HM. One can argue that you can therefore
get to the same result, just with an extra step, if you decide to do it. It basically boils down to a
philosophical difference - clearly saying all model runs are outside tolerance, vs post-hoc deciding
that your 'best' or your distribution is not good enough.
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