## Supplementary information

Section 6.3 'Biomarkers'

## Tab. S1 Compilation of biomarker proxies indicative of oxygen-limited conditions.

| proxy (compound<br>or compound ratio)                         | source organism(s)                       | metabolism                                        | environmental<br>implication                     | reference                                                |  |  |  |
|---------------------------------------------------------------|------------------------------------------|---------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|--|--|--|
| nitrogen cycling                                              |                                          |                                                   |                                                  |                                                          |  |  |  |
| bacteriohopanetetrol-<br>x (BHT-x)                            | 'Ca. Scalindua<br>profunda'              | anammox hypoxia/anoxia,<br>O <sub>2</sub> <20µmol |                                                  | Schwartz-<br>Narbonne et al.,<br>2020                    |  |  |  |
| $\begin{array}{c} BHT-x/[BHT+BHT-\\ x]) \geq 0.2 \end{array}$ | 'Ca. Scalindua<br>profunda' / bacteria   | lindua anammox O <sub>2</sub> <50 μmol            |                                                  | van Kemenade et<br>al. (2022)                            |  |  |  |
| 3-Me-<br>bacteriohopanehexol                                  | Ca. Methylomirabilis<br>oxyfera          | n-damo anoxia                                     |                                                  | Kool et al., 2014                                        |  |  |  |
| 3Me-<br>bacteriohopanepentol                                  | Ca. Methylomirabilis<br>oxyfera          | n-damo                                            | anoxia                                           | Kool et al., 2014                                        |  |  |  |
| 22,29,30-<br>trisnorhopan-21-ol                               | Ca. Methylomirabilis<br>oxyfera          | n-damo                                            | anoxia                                           | Smit et al., 2019                                        |  |  |  |
| 3Me-22,29,30-<br>trisnorhopan-21-ol                           | Ca. Methylomirabilis<br>oxyfera          | n-damo                                            | anoxia                                           | Smit et al., 2019                                        |  |  |  |
| 3Me-22,29,30-<br>trisnorhopan-21-one                          | Ca. Methylomirabilis<br>oxyfera          | n-damo                                            | anoxia                                           | Smit et al., 2019                                        |  |  |  |
| sulfur cycling                                                |                                          |                                                   |                                                  |                                                          |  |  |  |
| isorenieratene                                                | green sulfur bacteria<br>(Chlorobiaceae) | sulfide oxidation                                 | photic zone<br>euxinia                           | Summons and<br>Powell (1987),<br>French et al.<br>(2015) |  |  |  |
| isorenieratane                                                | green sulfur bacteria<br>(Chlorobiaceae) | sulfide oxidation                                 | photic zone<br>euxinia                           | Summons and<br>Powell (1987),<br>French et al.<br>(2015) |  |  |  |
| 2,3,6-trimethyl aryl isoprenoids                              |                                          |                                                   | photic zone<br>euxinia                           | Schwark and<br>Frimmel (2004)                            |  |  |  |
| chlorobactene                                                 | green sulfur bacteria<br>(Chlorobiaceae) | sulfide oxidation                                 | photic zone<br>euxinia Schaeffer et al<br>(1997) |                                                          |  |  |  |
| chlorobactane                                                 | green sulfur bacteria<br>(Chlorobiaceae) | sulfide oxidation                                 | photic zone Schaeffer et a<br>euxinia (1997)     |                                                          |  |  |  |

| okenone                                                                           | purple sulfur bacteria<br>(Chromatiaceae) | sulfide oxidation          | photic zone<br>euxinia                         | Brocks and<br>Schaeffer (2008)                  |  |  |  |
|-----------------------------------------------------------------------------------|-------------------------------------------|----------------------------|------------------------------------------------|-------------------------------------------------|--|--|--|
| okenane                                                                           | purple sulfur bacteria<br>(Chromatiaceae) | sulfide oxidation          | photic zone<br>euxinia                         | Brocks and<br>Schaeffer (2008)                  |  |  |  |
| bacteriochlorophyll-<br>c,d,e                                                     | green sulfur bacteria                     | sulfide oxidation          | photic zone<br>euxinia                         | Grice et al. (1996)                             |  |  |  |
| 3-isobutyl-4-<br>methylmaleimide                                                  | green sulfur bacteria                     | sulfide oxidation          | photic zone<br>euxinia                         | Grice et al. (1996),<br>Naeher et al.<br>(2013) |  |  |  |
| monoalkyl glycerol<br>ethers (MAGEs)                                              | sulfate reducing<br>bacteria              | sulfate reduction          | anoxia                                         | Bradley et al.<br>(2009)                        |  |  |  |
| dialkyl glycerol<br>ethers (DAGEs)                                                | sulfate reducing<br>bacteria              | sulfate reduction          | anoxia                                         | Bradley et al.<br>(2009)                        |  |  |  |
| <sup>13</sup> C-depleted<br>C16:1ω5 cy-<br>C17:0ω5,6<br>C17:1ω6 alkanoic<br>acids | sulfate reducing<br>bacteria              | sulfate reduction          | anoxia                                         | Niemann and<br>Elvert (2008)                    |  |  |  |
| carbon cycling                                                                    |                                           |                            |                                                |                                                 |  |  |  |
| GDGT-<br>0/crenarchaeol >2                                                        | methanogenic<br>Euryarchaeota             | methanogenesis             | anoxia                                         | Blaga et al. (2009)                             |  |  |  |
| coenzyme F430                                                                     | methanogenic<br>Euryarchaeota             | methanogenesis             | anoxia                                         | Kaneko et al.<br>(2021)                         |  |  |  |
| crocetane<br>(tetramethylhexadeca<br>ne)                                          | ANME archaea                              | anaerobic<br>methanotrophy | anoxia                                         | Elvert et al. (1999)                            |  |  |  |
| (unsaturated) PMI<br>(pentamethylicosane)                                         | ANME archaea                              | anaerobic<br>methanotrophy | anoxia                                         | Elvert et al. (1999)                            |  |  |  |
| hydroxyarchaeol                                                                   | ANME archaea                              | anaerobic<br>methanotrophy | anoxia                                         | Hinrichs et al.<br>(2000; 2003)                 |  |  |  |
| aminopentol,<br>methylcarbamate-<br>bacteriohopanepentol                          | Type I<br>methanotrophic<br>bacteria      | aerobic<br>methanotrophy   | methane-rich<br>environment Rush et al. (2016  |                                                 |  |  |  |
| methylene-<br>ubiquinone MQ <sub>8:7</sub>                                        | Type I<br>methanotrophic<br>bacteria      | aerobic<br>methanotrophy   | methane-rich<br>environment                    | Nowicka and Kruk<br>(2010)                      |  |  |  |
| methylcarbamate-<br>bacteriohopanetetrol                                          | Type II<br>methanotrophic<br>bacteria     | aerobic<br>methanotrophy   | methane-rich<br>environment Rush et al. (2016) |                                                 |  |  |  |

| redox products                             |                                     |                 |        |                                                |  |  |  |
|--------------------------------------------|-------------------------------------|-----------------|--------|------------------------------------------------|--|--|--|
| pristane/phytane <1                        | chlorophyll-<br>producing organisms | abiotic         | anoxia | Peters et al. (2005)                           |  |  |  |
| pyropheophytin                             | chlorophyll-<br>producing organisms | abiotic         | anoxia | Szymczak-Żyla et<br>al. (2008)                 |  |  |  |
| steryl chlorin esters                      | chlorophyll-<br>producing organisms | abiotic         | anoxia | Szymczak-Żyla et<br>al. (2008)                 |  |  |  |
| high homohopane<br>index                   | bacteria                            | abiotic         | anoxia | Peters et al. (2005)                           |  |  |  |
| orphan biomarkers (unknown source)         |                                     |                 |        |                                                |  |  |  |
| high lycopane/C <sub>31</sub> n-<br>alkane | unknown                             | methanogenesis? | anoxia | Sinninghe Damsté<br>et al. (2003)              |  |  |  |
| OB-GDGTs                                   | unknown bacteria                    | unknown         | anoxia | Liu et al. (2014),<br>Connock et al.<br>(2022) |  |  |  |

Section 6.8 'Benthic foraminifera carbon isotope offsets'

Data used to put together Figure 6.8.1 can be found below.

|               |                 | Latitud | Longitu | Water  | GLODAP      | WOA18 BWO | WOCE BWO |         |      |         |
|---------------|-----------------|---------|---------|--------|-------------|-----------|----------|---------|------|---------|
| Ocean         | Core name       | e       | de      | depth  | BWO umol/kg | umol/kg   | umol/kg  | Avg BWO | ±    | Comment |
| Atlantic      | JC89-11         | 37.86   | 9.34    | 628    | 190.002     | 182.003   | 197.225  | 189.7   | 7.6  |         |
| Atlantic      | JC89-10         | 37.84   | 9.51    | 1127   | 188.48      | 178.561   | 188.95   | 185.3   | 5.9  |         |
| Atlantic      | JC89-13         | 37.94   | 9.59    | 1448   | 208.256     | 176.743   |          | 192.5   | 15.8 |         |
| Atlantic      | JC89-09         | 37.83   | 9.82    | 2323   | 233.956     | 184.159   |          | 209.1   | 24.9 |         |
| Atlantic      | JC89-08         | 37.78   | 10.05   | 2619   | 229.978     | 186.119   |          | 208.0   | 21.9 |         |
| Atlantic      | JC89-06         | 37.56   | 10.14   | 2645   | 229.552     | 186.446   |          | 208.0   | 21.6 |         |
| Atlantic      | JC89-13         | 37.94   | 9.59    | 1448   | 208.256     | 176.743   |          | 192.5   | 15.8 |         |
| Atlantic      | JC89-09         | 37.83   | 9.82    | 2323   | 233.956     | 184.159   |          | 209.1   | 24.9 |         |
| Atlantic      | JC89-08         | 37.78   | 10.05   | 2619   | 229.978     | 186.119   |          | 208.0   | 21.9 |         |
| Atlantic      | JC89-06         | 37.56   | 10.14   | 2645   | 229.552     | 186.446   |          | 208.0   | 21.6 |         |
| Pacific       | ODP 846         | -3.09   | -90.82  | 3295   | 142.073     | 137.298   | 139.928  | 139.8   | 2.4  |         |
| Pacific       | ODP 1240        | 0.02    | -86.46  | 2921   | 131.934     | 128.152   | 125.078  | 128.4   | 3.4  |         |
| Pacific       | TR163-23        | 0.41    | -92.16  | 2730   | 120.847     | 124.408   | 118.232  | 121.2   | 3.1  |         |
| Pacific       | TR163-25        | -1.65   | -88.45  | 2650   | 122.026     | 124.634   | 118.643  | 121.8   | 3.0  |         |
| Pacific       | ODP 1242        | 7.86    | -83.61  | 1363.7 | 127.684     | 86.6735   | 91.3205  | 101.9   | 22.5 |         |
| Atlantic      | RAPID 11 7B/RAF | 62.30   | -17.50  | 2126   | 286.577     | 300.161   |          | 293.4   | 6.8  |         |
| Atlantic      | GeoB3706        | -22.70  | 12.60   | 1313   | 189.867     | 173.426   | 181.189  | 181.5   | 8.2  |         |
| Atlantic      | GeoB3708        | -21.10  | 11.80   | 1283   | 187.783     | 170.818   | 179.975  | 179.5   | 8.5  |         |
| Atlantic      | GeoB3725        | -23.30  | 12.40   | 1980   | 229.613     | 210.188   | 221.574  | 220.5   | 9.8  |         |
| Indian        | GeoB3004        | -14.60  | 52.90   | 1803   | 148.112     | 146.06    | 148.11   | 147.4   | 1.2  |         |
| Indian        | TN041-8PG/8JPC  | 17.80   | 57.50   | 761    | 8.4437      | 12.638    | 7.18298  | 9.4     | 2.9  |         |
| Atlantic      | GeoB3606-1      | -25.47  | 13.08   | 1785   | 216.136     | 201.987   | 211.187  | 209.8   | 7.2  |         |
| Atlantic      | KNR197-3-24MC   | 7.59    | -53.92  | 383    | 113.169     | 114.124   | 117.243  | 114.8   | 2.1  |         |
| Atlantic      | KNR197-3-2MC    | 7.66    | -53.82  | 556    | 114.721     | 114.741   | 118.175  | 115.9   | 2.0  |         |
| Atlantic      | KNR197-3-26MC   | 7.72    | -53.78  | 704    | 125.258     | 123.31    | 127.781  | 125.4   | 2.2  |         |
| Atlantic      | KNR197-3-28MC   | 7.84    | -53.67  | 962    | 148.777     | 146.589   | 149.333  | 148.2   | 1.5  |         |
| Atlantic      | KNR197-3-17MC   | 7.44    | -52.76  | 1029   | 152.662     | 155.437   | 152.411  | 153.5   | 1.7  |         |
| Atlantic      | KNR197-3-10MC   | 7.94    | -53.58  | 1107   | 171.421     | 166.881   | 171.917  | 170.1   | 2.8  |         |
| Atlantic      | KNR197-3-33MC   | 8.25    | -53.24  | 1275   | 198.167     | 193.116   | 196.64   | 196.0   | 2.6  |         |
| Atlantic      | KNR197-3-41MC   | 8.38    | -53.05  | 2052   | 253.88      | 248.203   | 254.556  | 252.2   | 3.5  |         |
| Atlantic      | KNR197-3-37MC   | 8.43    | -52.79  | 2440   | 254.986     | 250.463   | 256.365  | 253.9   | 3.1  |         |
| Atlantic      | KNR197-3-35MC   | 8.47    | -52.79  | 3328   | 257.601     | 253.102   | 258.674  | 256.5   | 3.0  |         |
| North Pacific | ODP1014         | 32.83   | -119.98 | 1165   | 31.8758     | 32.0458   | 31.4944  | 31.8    | 0.3  |         |
| North Pacific | ODP1019         | 41.68   | -124.93 | 980    | 13.1707     | 17.7959   | 12.7325  | 14.6    | 2.8  |         |

Below follows a morphological description of the benthic for aminifera used to reconstruct bottom water oxygen concentrations through  $\Delta\delta^{13}C$ : The most commonly used foraminifer is *Cibicidoides wuellerstorfi* (Schwager), 1866. Following the description of Loeblich and Tappan (1988) and Holbourn et al. (2013), C. wuellerstorfi has typically a very low trochospiral, compressed and planoconvex test, eight to twelve chambers visible in the final whorl that curve back at the periphery, with an (partially) evolute spiral (umbilical) side and a keeled periphery. About ten elongated and curved chambers in the final whorl are separated by strongly curved sutures that are slightly depressed in the final chambers on the spiral side. The spiral (umbilical) side is coarsely (finely) perforated and the interiomarginal aperture of *C. wuellerstorfi* features a narrow lip. One particular sensu lato morphotype of C. wuellerstorfi has been described previously and is commonly found in southern high-latitude marine environments (Gottschalk et al., 2016; Rae et al., 2011). While it shares many characteristics with *C. wuellerstorfi*, in particular the trochospiral, plano-convex test and perforation features, it has often only seven to nine chambers in the final whorl that are wider and more inflated than in the sensu stricto morphotype of *C. wuellerstorfi*. The test of the sensu lato morphotype shows intercameral sutures that are not as strongly curved towards the periphery as seen in the sensu stricto morphotype and appears duller in reflectance.

When *C. wuellerstorfi* is absent in the sedimentary record, other foraminiferal species thought to approximate an epifaunal habitat like *Cibicides kullenbergi* (Parker), 1953 (synonymously used with *Cibicidoides mundulus* (Brady, Parker, and Jones), 1888) have also been used to reconstruct bottom water oxygen levels using the  $\Delta\delta^{13}$ C proxy [e.g., Gottschalk et al., 2016a, 2020; Bunzel et al., 2017; Lu et al., 2022]. While *C. kullenbergi* specimens are similar to *C. wuellerstorfi* (i.e., showing a trochospiral test, ten to eleven chambers in the final whorl, similar perforation intensities, aperture with a thin lip, and arched sutures on the spiral side), it is biconvex in crosssection. The length to width ratio of chambers in *C. kullenbergi* is much smaller and intercameral sutures are less curved than in *C. wuellerstorfi*. However, intergrades between *C. kullenbergi* sensu stricto and *C. wuellerstorfi* sensu stricto are common, leading not only to specimen with similarity to *C. wuellerstorfi* (*C. kullenbergi* sensu lato) but also to specimen with resemblance to *C. kullenbergi* (C. kullenbergi sensu lato). *C. kullenbergi* sensu lato tends to show a plano-convex test and a more sub-circular test compared to the biconvex, circular *C. kullenbergi* sensu stricto. In addition, the sutures of *C. kullenbergi* sensu lato are more strongly curved towards the periphery than those of *C. kullenbergi* sensu stricto, but not as strong as in *C. kullenbergi* sensu stricto or sensu lato. The chamber length-to-width ratio is also slightly greater in comparison to *C. kullenbergi* sensu stricto or sensu lato.



Figure 2. Overview of *Globobulimina* and *Cibicidoides/Cibicides* species that form the backbone of the  $\Delta\delta^{13}$ C proxy. a, b) Lateral view of *Globobulimina auriculata* (a: ODP1014D 1H 4W, 97-99 cm; b: ODP1014D 1H 5W, 66-68 cm; scale = 1000 µm), c) lateral view of *Globobulimina affinis* (morphotype 1; ODP1014D 1H 5W, 7-9 cm; scale = 1000 µm), d) lateral view of *G. affinis* (morphotype 2; ODP1014D 1H 5W, 7-9 cm; scale = 1000 µm), d) lateral view of *G. affinis* (morphotype 2; ODP1014D 1H 5W, 7-9 cm; scale = 1000 µm), e, f) lateral view of *Globobulimina pacifica* (ODP1014D 1H 4W, 129-131 cm; scale = 1000 µm), g, h) lateral view of *Globobulimina turgida* (GeoB15022-2, 1-2 cm; scale = 350 µm), i, j, k) spiral, lateral and umbilical view

of *Cibicidoides wuellerstorfi* sensu stricto (TNO57-6GC 44-46 cm; scale =  $100 \ \mu$ m), and l, m, n) spiral, lateral and umbilical view of *Cibicides kullenbergi* sensu stricto (MD97-2100, 20-21 cm; scale =  $100 \ \mu$ m).

Section 8 'Data management and transparency'

Table S1. Examples of file structure and data organization; PANGAEA and other repositories provide extensive details about which meta data is required with core submission:

| File type                   | Necessary information that need to content and examples                                                                                                                              | name of the file                                         |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Sample location             | Site name, ocean basin or sea, site name,<br>latitude and longitude, water depth DOI<br>code of the original publication                                                             | sitename_metadata.csv<br>(e.g. GeoB15007-1_metadata.csv) |
| Sample details              | Site name, depth information (details of<br>conversions to MBSF or MCD in the case<br>of ODP cores, unique sample number from<br>core repository.                                    | sitename_depth.csv                                       |
| Age model                   | Site name (use the original name used in<br>the expedition) (e.g. GeoB15007-1; 1014)<br>Sample depth (m), dating technique (AMS<br>dates, d18O stratigraphy, 210-Pb, other),<br>age. | sitename_ageraw.csv                                      |
| Foraminifera<br>Assemblages | Site name, sample label, sample depth (m),<br>sample size, splits and fraction, staining if<br>applicable, foraminifera taxa, counts,<br>example images<br>DOI: publications         | site_forams_assemblages.csv                              |

Examples of working groups that are curating specific proxy data bases and links to websites.

FORCIS (Foraminifera response to Climatic Stress, currently active) are evaluating the biodiversity changes of calcifying zooplankton in response to multiple stressors (<u>https://forcis.cerege.fr/</u>). NICOPP (Global ocean sediment nitrogen isotope data base, inactive) was a joint group between PAGES and IMAGES studying nitrogen isotope dynamics from sedimentary records in the Quaternary and modern times (<u>http://pastglobalchanges.org/science/wg/former/nicopp/</u>). MOSAIC (Modern Ocean Sediment Archive and Inventory of Carbon, active) goal is to synthesize local, regional and global-scale of the content, source and fate of organic materials accumulating in contemporary marine sediments (<u>http://mosaic.ethz.ch/</u>). Finally, GLODAP (The Global Ocean Data Analysis Project) is an example of where physical and chemical hydrological data of water samples are stored (https://glodap.info/).