

1 Geochemical and microbial factors driving crustacean assemblages 2 in adjacent aquifer units within the same aquifer

3
4 Tiziana Di Lorenzo^{1,2,3,4*}, Stefano Amalfitano^{5,2}, Diana Maria Paola Galassi⁶, Marco Melita^{5,2,7},
5 Annamaria Zoppini⁵, Daniele Parrone⁵, Stefano Ghergo⁵, David Rossi⁵, Agostina Tabilio Di Camillo^{6,1},
6 Elisabetta Preziosi⁵

7 ¹National Research Council - Research Institute on Terrestrial Ecosystems (CNR-IRET), Via Madonna del Piano 10, 50019
8 Sesto Fiorentino, Florence, Italy

9 ²NBFC, National Biodiversity Future Center, Palermo 90133, Italy

10 ³“Emil Racovita” Institute of Speleology, Cluj-Napoca 400535, Romania

11 ⁴Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability Institute, and
12 Departamento de Biología Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016, Lisbon,
13 Portugal

14 ⁵National Research Council - Water Research Institute (CNR-IRSA), Strada Provinciale 35d, 00010 Montelibretti, Rome
15 00010, Italy

16 ⁶Department of Life, Health, and Environmental Sciences, University of L’Aquila, L’Aquila 67100, Italy

17 ⁷PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Rome, Italy

18 *Correspondence to:* Tiziana Di Lorenzo (tiziana.dilorenzo@cnr.it)

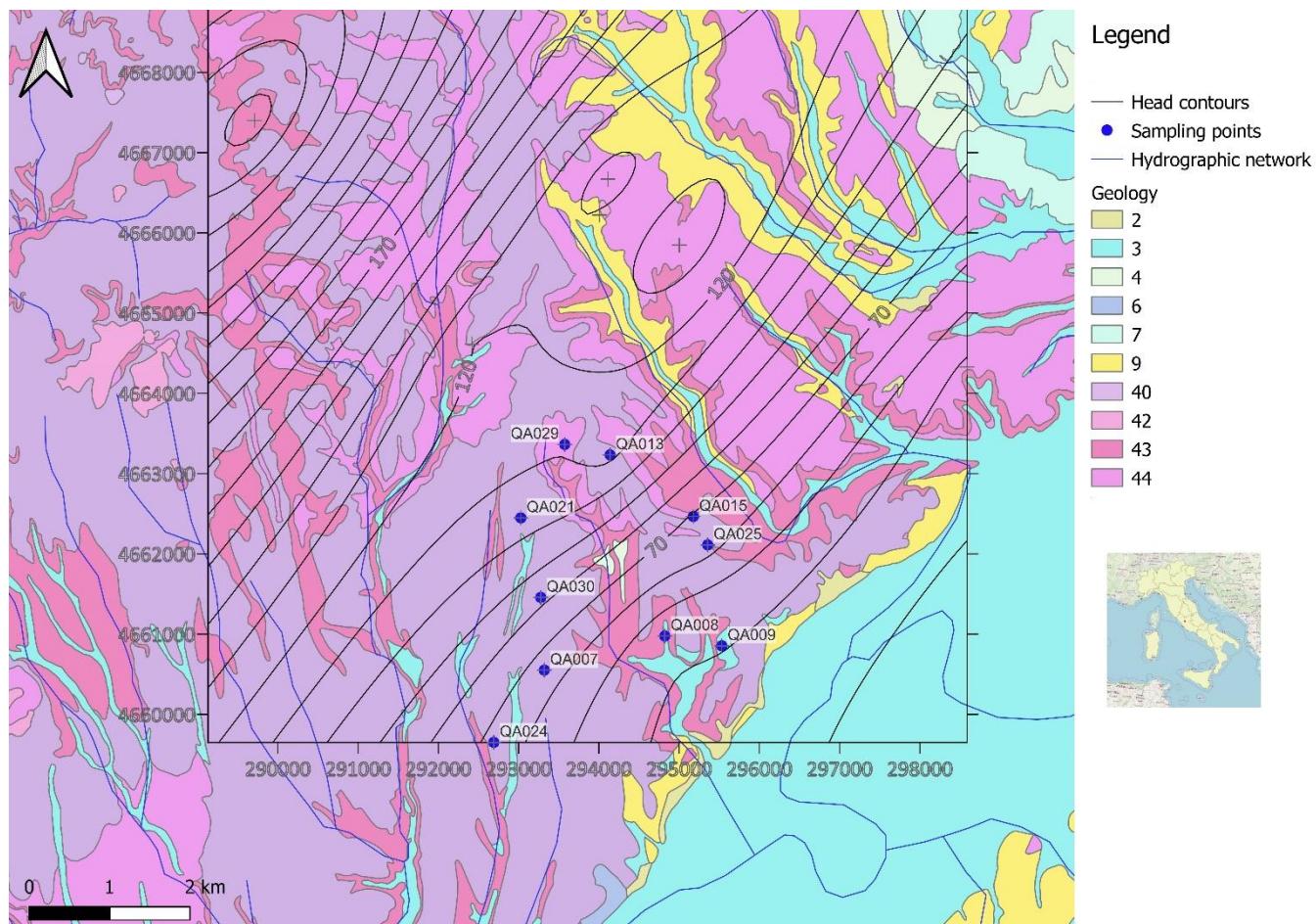
19 **Abstract.** Aquifers harbor unique and highly adapted species, contributing to critical ecological processes and services.
20 Understanding the key factors driving invertebrate assemblages in aquifers is a challenging task that, traditionally, has
21 primarily been achieved in karst. This study aimed to uncover the factors influencing the composition and functionality of
22 groundwater crustaceans (dimensional range: 0.036 to 1 mm) in a volcanic aquifer of central Italy. The aquifer consisted of
23 three adjacent aquifer units (AUs) showing different geochemistry (i.e., sulfate-depleted, K-rich and earth-alkaline). We
24 adopted a multidisciplinary approach, integrating hydrogeology, geology, microbiology, and ecology to determine whether
25 the environmental differences that we highlighted in the three AUs were reflected in the biological assemblages. We
26 unveiled significant differences in both the taxonomic and functional composition of groundwater crustaceans across the
27 three AUs and these patterns remained consistent throughout the survey period. Notably, the sulfate-depleted AU lacked
28 groundwater-obligate species, burrowers, stenothermal and moderately stenothermal species. The K-rich and earth-alkaline
29 AUs had different species, which, however, exhibited similar functions related to locomotion, diet, and feeding habits.
30 Stenothermal and moderately stenothermal crustacean species were only found in the K-rich AU, which lacked epigean
31 species. Our findings suggest that major ions (SO₄²⁻, Ca²⁺, NO₃⁻, and K⁺SO₄, Ca, NO₃, and K), trace elements (B, Al, V, Se,
32 and Ba), microbial factors and carbohydrate catabolic profiles might be the main descriptors of groundwater-obligate species
33 abundances in the volcanic aquifer. Our findings revealed a correlation between the abundances of groundwater-obligate
34 crustaceans and LNA cells, suggesting a potential selective feeding behaviorbehaviour of groundwater invertebrate species
35 on the aquatic microbial community. Our research emphasizes the need to consider diverse hydrogeological contexts within

36 individual aquifers. Potential avenues for future research should further consider food web dynamics in groundwater
37 communities and their impact on carbon and nutrient cycling.

38

39 **1 Introduction**

40


41 The Earth's largest unfrozen reserve of freshwater is found within aquifers, geological formations responsible for storing and
42 transmitting groundwater (Ferguson et al., 2021). They ~~harbor~~harbour highly specialized microbial and metazoan species
43 adapted to life in permanent darkness and low energy conditions (Malard et al., 2023a). Groundwater microbes and
44 metazoans play crucial roles in providing ecosystem services such as carbon recycling, pathogen removal, pollutant
45 bioremediation, sediment mixing, and burrowing (Fillinger et al., 2023; Mermilliod-Blondin et al., 2023). The variation in the
46 taxonomic and functional composition of the invertebrate assemblages of a given aquifer results from a complex interplay of
47 abiotic (e.g., hydrochemistry, porosity, flow velocity) and biotic factors (e.g., species competition, cross-kingdom
48 interactions), acting on both evolutionary and ecological scales (Zagmajster et al., 2023). However, disentangling the
49 combined effects of these taxonomic and functional drivers remains a difficult task (Malard et al., 2023b).

50 Aquifers can be subdivided into specific adjacent sections, known as aquifer units (AUs), based on geological and
51 hydrological criteria. The species' ability to spread across different AUs depends on extrinsic factors (e.g., the degree of
52 connectivity among AUs) and intrinsic characteristics of the species, which are mainly defined by the suitability of their
53 functional traits (e.g., body size, shape, locomotion, and feeding habits) and the ability to adjust or adapt these traits in
54 response to the new habitat template (Fišer et al., 2023). If a species lacks trait plasticity, it is likely to struggle to establish
55 itself in a new environment. This phenomenon is known as habitat (or environmental) filtering (Cornwell, Schwilk, and
56 Ackerly, 2006; Kraft et al., 2015). Groundwater crustaceans, which are the dominant metazoans in global groundwater
57 ecosystems (Stoch and Galassi, 2010), are known to undergo environmental filtering due to abiotic factors such as pore size,
58 flow rate, connectivity to the surface, and hydrochemistry (Trontelj, Blejec, and Fišer, 2012). Environmental filtering is
59 known to hinder the distribution of groundwater crustaceans in adjacent AUs. The organisms tend to accumulate at the
60 boundaries of the AUs and appear unable to disperse across them (Iannella et al., 2020; Vaccarelli et al., 2023). The role of
61 trophic filters, which relate to the availability and type of food resources and encompass both environmental filtering and
62 competition, has been less investigated. Groundwater crustacean species in a given aquifer compete for both space and food
63 resources (Bregović et al., 2019). Recent criticisms have pointed out challenges in accurately distinguishing between
64 environmental filtering and competitive interactions, as both can produce similar patterns in species distribution (Cadotte and
65 Tucker, 2017). Traditionally, research on the effect of environmental filtering on groundwater crustaceans has primarily
66 focused on karst aquifers (Maurice et al., 2016; Culver et al., 2021). However, there is a growing recognition of the
67 importance of non-karst aquifers, such as the volcanic ones (Wurzbacher et al., 2020). This has resulted in an intensified
68 effort to gain a better understanding of groundwater ecosystems across a wide range of hydrogeological contexts (Hahn and
69 Fuchs, 2009).

70 In this study, we aimed to unravel the factors shaping groundwater crustacean assemblages within a water table aquifer
71 where groundwater circulates in volcanic and sedimentary formations. Preliminary analyses carried out two years prior to
72 this study indicated the occurrence of adjacent, chemically different, AUs within the same aquifer (Ademollo et al., 2012).
73 We adopted a multidisciplinary approach - combining hydrogeology, geology, microbiology, and ecology - to determine
74 whether the environmental differences that we highlighted in the three AUs were also reflected on the biological
75 assemblages. More specifically, our goal was to pinpoint the primary factors that influence the taxonomic and functional
76 composition of crustacean assemblages across the three AUs, including: i) one hydrogeological factor (water table depth,
77 used as proxy of the isolation of the AUs from the surface (Aquilina et al., 2023); ii) physical-chemical factors encompassing
78 temperature, pH, dissolved oxygen, as well as major ions and trace elements; iii) microbial factors, such as microbial cell
79 abundance and metabolic profiles. This study ventures into relatively uncharted territory of volcanic aquifers and addresses
80 critical gaps in our understanding of the main factors shaping the groundwater invertebrate assemblages.

81 **2 Materials and Methods**82 **2.1 Hydrogeological aquifer settings and sampling survey**

83 We conducted our study on the eastern flank of the Sabatini Mounts aquifer, near the valley of River Tiber, covering an area
84 of 30 km² in the northeastern province of Rome (Italy). We focused on the Sabatini Volcanic complex, in particular on its
85 eastern border, where the volcanic products overlap on the sedimentary layers of Pleistocene. The sampling site is in a rural
86 area across the Fosso Fontanalarga, a minor right-hand tributary of the River Tiber, with small-medium villages, sparse
87 houses, agricultural fields and a few industrial activities, including a quarry for the exploitation of lapideous volcanic
88 products (namely the “Via Tiberina Yellow Tuff” formation; Lombardi and Meucci, 2006). Pleistocene K-alkaline volcanic
89 products of the Roman co-magmatic province (Sottili et al., 2010), mainly pyroclastic such as ignimbrites and tuffs, overlap
90 in angular unconformity Pliocene and Pleistocene sedimentary deposits of marine and continental origin (Fig. 1).

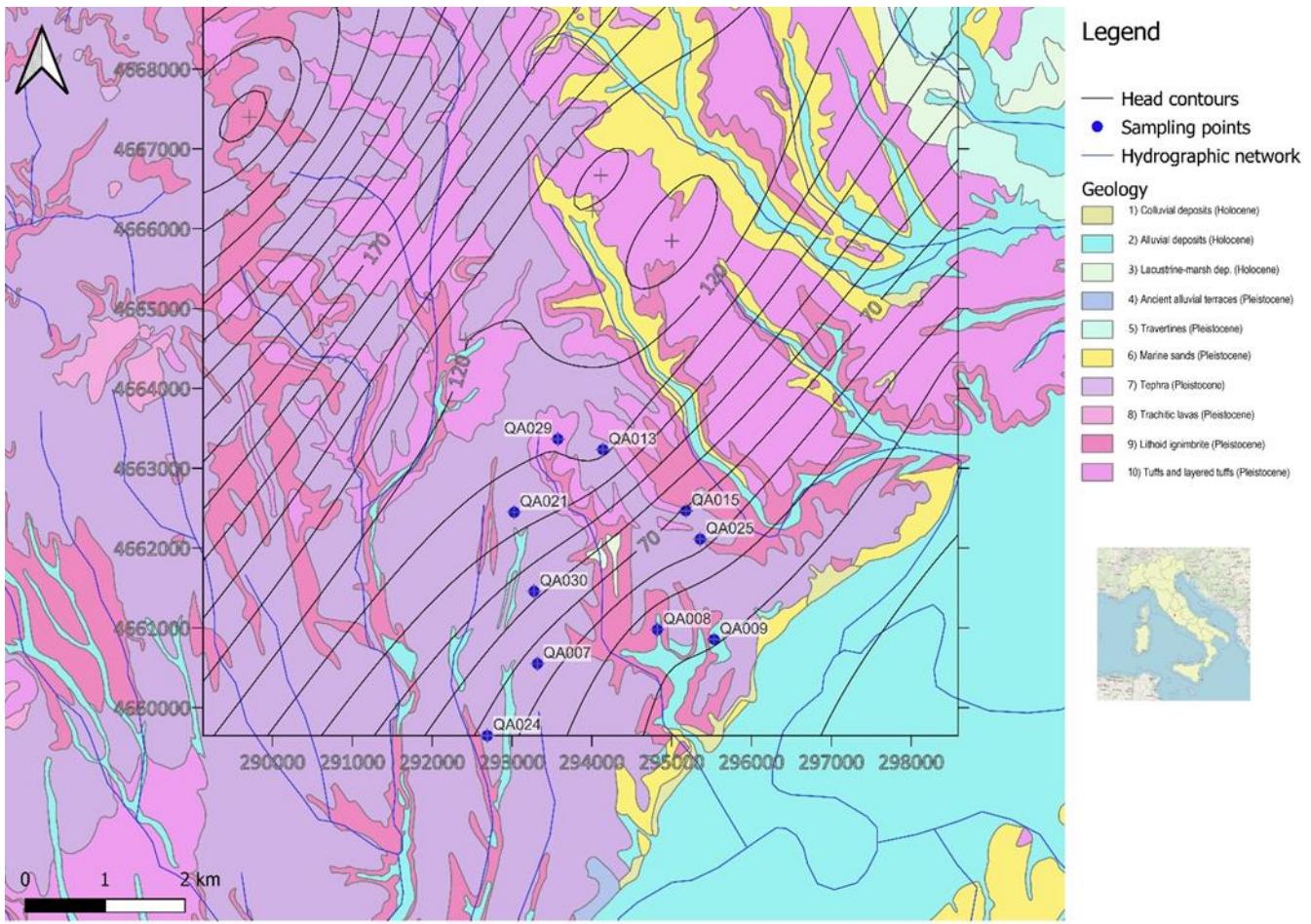


Figure 1. Geological map of the study area and sampling point locations. Head contours referring to 2014 survey are plotted (heads in m a.s.l.). Geology: 21) Colluvial deposits (Holocene); 32) Alluvial deposits (Holocene); 43) Lacustrine-marsh deposits (Holocene); 44) Ancient alluvial terraces deposits (Pleistocene); 75) Travertines (Pleistocene); 96) Marine sands (Pleistocene); 407) Tephra (Pleistocene); 428) Trachitic lavas (Pleistocene); 439) Lithoid ignimbrite “Via Tiberina Yellow Tuff” (Pleistocene); 4410) Tufts and layered tufts (Pleistocene).

Holocene alluvial deposits can be found in the valley talweds. The water table aquifer is hosted in the volcanites, with groundwater circulating mostly in the porous and fractured lithoid levels of the ignimbrites and lavas, and in the marine and continental sands and gravels below. Low permeability levels of the Pliocene marine clays and silts form the bottom of the aquifer and isolate it from the deep geothermal reservoir hosted in the thick sequence of the Meso-Cenozoic fractured limestones below (Parrone et al., 2020). The Pleistocene pyroclastic products, herein referred to as volcanites, typically exhibit a medium permeability. Since the volcanic formations outcrop more extensively (Fig. 1), aquifer recharge occurs mainly from these rocks than from the underlying sedimentary layers. Groundwater, mainly exploited for irrigation and to

108 supply households not connected to the public drinking water supply system, flows at depth from north-west to south-east
109 direction through both volcanic and sedimentary layers, the latter being more important towards the edge of the volcanic
110 system (Preziosi et al., 2013; Parrone et al., 2019).

111 **2.2 Field and laboratory geochemical analysis**

112 Preliminary data, collected in March 2012 (Ademollo et al., 2012), indicated the occurrence of three adjacent AUs with
113 distinct hydrogeochemical features, characterized by sulfate-depleted, earth-alkaline, and K-rich waters, respectively. In this
114 study, we conducted two sampling campaigns: the first was carried out between November and December 2014, and the
115 second took place from October to December 2015. During these campaigns, we collected 20 groundwater samples from a
116 total of 10 wells (Fig. 1; Table A1). The distribution of the wells was as follows: i) wells QA7, QA21, QA24, and QA30,
117 situated on the western side of the aquifer, were associated with the AU characterized by sulfate-depleted groundwaters; ii)
118 wells QA8, QA9, and QA29, situated along the valley of Fosso Fontanalarga, were within the AU with earth-alkaline
119 groundwaters; iii) wells QA13, QA15, and QA25, located on the eastern side, belonged to the AU characterized by K-rich
120 groundwaters. For each well, we recorded essential field data, including GPS coordinates, elevation and depth of the well,
121 depth to water table, oxidation-reduction potential (ORP), temperature, pH, dissolved oxygen, and electrical conductivity
122 using multiparametric portable probes (Aquaread AP 2000). To ensure accurate measurements, we purged the wells until the
123 physical-chemical parameters stabilized before sampling. Water samples for chemical analyses were filtered on-site with
124 0.45- μ m membrane filters and stored in HNO₃ 1% treated polyethylene bottles. For major cations and trace metal
125 determination, samples were stabilized by adding HNO₃ at pH 2. Alkalinity was determined in the laboratory by HCl
126 titration on 50 mL of sample within 24 h from sampling. Anions were determined by ion chromatography (IC, Dionex DX-
127 120), major cations by ICP-OES (Perkin Elmer P400) and trace elements by inductively coupled plasma mass spectrometry
128 (ICP-MS, Agilent technologies 7500c). Samples for dissolved organic carbon (DOC) were filtered at 0.7 μ m with pretreated
129 fiber glass filters and DOC levels were determined through a Shimadzu TOC-5000 analyzer. Further analytical details are
130 reported elsewhere (Preziosi et al., 2014; Parrone et al., 2022).

131
132 **2.3 Microbial and crustacean community analyses**

133 Samples for the microbial and crustacean community analyses were collected from all wells after purging. Aliquots (2 mL)
134 were fixed with formaldehyde (2% final concentration), stored at 4°C, and analysed within one week from sampling by the
135 Flow Cytometer A50-micro (Apogee Flow System, Hertfordshire, England), equipped with a solid-state laser set at 20 mV
136 and tuned to an excitation wavelength of 488 nm. Total cell counts (TCC) were quantified using side scatter and green
137 fluorescence measurements. The intensity of green fluorescence emitted by SYBR-positive cells facilitated the distinction of
138 cell groups based on their nucleic acid content, namely cells with Low and High Nucleic Acid content (LNA and HNA cells)
139 (Amalfitano et al., 2018).

140 Additional aliquots (15 ml) were collected, stored in sterile Falcon tubes and promptly incubated within a 6-hour timeframe
141 to evaluate the functional diversity and metabolic preferences of the bacterial communities by measuring their degradative
142 activity toward a set of organic carbon sources using Biolog™ EcoPlates assay (Biolog, Inc., Hayward, California, USA).
143 The assay consists of a 96-well microplate that contains 31 common carbon sources categorized into five compound groups
144 (i.e., carbohydrates, polymers, carboxylic acids, aminoacids, and amines), plus a control well, in triplicate. The provided
145 substrates are labeled with the respiration-sensitive tetrazolium dye, which is reduced to formazan when microbial
146 degradation occurs. This is a colorimetric reaction with the typical purple color development, which optical density (OD) is
147 detected at the wavelength 590 nm by a multi-plate reader (Perkin Elmer VICTOR™ X3). OD values were measured
148 immediately after sample inoculation (T0) and after 24 hours (T24) of incubation in dark conditions at 20°C. Microbial
149 metabolic fingerprinting was expressed as the percentage value of each single class of compounds compared to the total OD,
150 calculated as a fraction of the total absorbance of a single sample in the plate (Melita et al. 2019; Preziosi et al., 2019). The
151 absorbance is proportionally related to the substrate degradation.

152 The sampling methodology for groundwater crustaceans was based on the manual published within the European project
153 PASCALIS, which is considered the gold standard for groundwater biomonitoring in Europe (Malard et al., 2002).
154 Specifically, we pumped 1000 liters of groundwater from each well using the submersible pumps already installed and
155 filtered the extracted volume through a 63 µm sieve. Given the small size of most groundwater crustaceans (< 1 mm in
156 length; Malard et al., 2023a), the potential concern of the animals being minced by the pump was minimized. The 1000 liters
157 were taken during purging the well. The method is designed to capture organisms present in the well and its immediate
158 surroundings, thereby providing a representative sample of the groundwater fauna. All boreholes were fully screened at their
159 bottom, and the diameter of the sand filter holes was appropriate for the size of the collected animals (< 1 mm). The
160 collected samples were preserved in a 70% ethanol solution and transported to the laboratory for further analysis. In the
161 laboratory, we sorted the samples using a stereomicroscope at 16× magnification, identifying the taxa down to the lowest
162 possible level of morphological taxonomic units, following established taxonomic references (e.g., Dussart and Defaye,
163 2006). Each specimen was categorized as either groundwater-obligate species (which complete the whole life cycle in
164 groundwater) and epigean species (which occasionally occur in groundwater but lack adaptations for a permanent dwelling).
165 Subsequently, we evaluated four functional traits (locomotion, diet, feeding habits and thermal tolerance) each defined by
166 two or more categories. The trait locomotion was defined by three categories: burrowers (organisms that dig and create
167 burrows in sediments), interstitial (organisms that live in the spaces between sediment particles) and swimmers (organisms
168 that are adapted to swimming in the water column). The trait diet was described by two categories: fine sediments +
169 microorganisms (organisms that feed ingesting fine sediment particles and the attached microorganisms) and living
170 microphytes (organisms that feed on living algae). The trait feeding habits was described by three categories: deposit-feeders
171 (organisms that consume organic matter settled on the substrate), collectors (organisms that gather particles from the water
172 column) and grazers (organisms that feed on biofilms or algae growing on surfaces). Finally, the trait thermal tolerance was
173 described by three categories: eurythermal (organisms that can tolerate a wide range of temperatures), moderately

174 stenothermal (organisms that tolerate a moderate range of temperatures) and stenothermal (organisms that tolerate a narrow
175 range of temperatures). Each trait was assigned based on existing literature. We attributed each species to only one category
176 per trait, except for the amphipod *Niphargus* sp., which showed a range of feeding habits and thermal tolerance (Fišer,
177 2019). Since we did not identify the amphipod specimens down to the species level, we preferred to share their percentages
178 equally per each trait category to reflect this trait variability. To obtain the trait profile of each sample, we calculated the
179 percentage of each trait category based on its abundance within the sample (Di Lorenzo et al., 2021). This means that for
180 each trait (locomotion, feeding habits, and thermal tolerance), we determined the proportion of individuals in each category
181 relative to the total number of individuals in the sample.

182

183 **2.4 Statistical analyses**

184 To confirm the occurrence of the three AUs, as assumed from our preliminary investigation in 2012, we performed
185 permutational analyses of variances (PERMANOVA; Anderson, 2008) based on physical-chemical factors measured *in situ*
186 (water table depth, temperature, pH, dissolved oxygen and electrical conductivity), major ions and elements in trace,
187 respectively. We conducted two-way PERMANOVAs, incorporating a factor "aquifer unit" with three levels (sulfate-
188 depleted, earth-alkaline and K-rich) and another factor "year" with two levels (2014, 2015), using resemblance matrices
189 based on Euclidean distances calculated from normalized data. To ensure the robustness of our analysis, we examined
190 potential multicollinearity among the variables using Draftsman's plots prior to PERMANOVAs. Variables exhibiting high
191 collinearity ($|r| \geq 0.95$ in correlation) were considered to convey essentially identical information and were consequently
192 removed to prevent redundancy in the analysis, in line with recommendations in Anderson et al. (2008). The variables
193 retained for the analyses served as proxies for those that were eliminated (Anderson et al., 2008). We excluded oxygen
194 saturation from the analyses due to $> 99\%$ linear correlation with dissolved oxygen. In line with best practices, we applied
195 permutation of residuals under a reduced model and employed Type III sum of squares with 999 permutations. This
196 approach offers high statistical power and more accurate type I error control for multi-factorial, unbalanced designs
197 (Anderson et al., 2008). When appropriate, we conducted permutational post-hoc t-tests.

198 We evaluated the adequacy of the biological sampling effort in the whole volcanic aquifer by examining the accumulation of
199 the total number of different observed species (Sobs) as samples were progressively added (Magurran, 2021). To assess the
200 potential increase in species richness (S) with repeated sampling, we applied five non-parametric (Chao1, Chao2,
201 Jackknife1, Jackknife2, and Bootstrap) and one parametric (Michaelis-Menten) estimators (Magurran, 2021). We computed
202 the estimators at each stage as new samples were added, resulting in the generation of six curves illustrating the progression
203 of the S with increasing sample size. We conducted the analyses through 999 randomizations without replacement
204 (Magurran and McGill, 2011). We repeated the analyses for each AUs, separately.

205 To investigate potential differences in the taxonomic and functional composition of the crustacean assemblage and microbial
206 community among the three AUs, we applied the PERMANOVA design previously outlined for the environmental variables.

207 We log(x+1)-transformed the crustacean abundances and microbial cell counts before generating Bray-Curtis resemblance
208 matrices, while the percentage data pertaining to metazoan functional traits and HNA and LNA cells remained
209 untransformed (Anderson, 2008). We added a dummy variable equal to 1 to all data to allow the analysis of values equal to
210 zero (Clarke and Gorley, 2005). We chose not to analyze the abundances of each crustacean species due to the diminished
211 interpretive accuracy when the abundances of individual taxa constituted less than 4% of the total abundances (Clarke and
212 Gorley, 2005). In our study, only four species met or exceeded this specified threshold (Sect. 3.2). While PERMANOVA
213 inherently does not necessitate explicit assumptions regarding the distributions of the original variables, we opted to conduct
214 a Levene's test using the PERMDISP routine prior to all analyses. We focused on PERMANOVA outcomes that were not
215 influenced by bias due to variance heterogeneity (Anderson, 2008). To provide a comprehensive overview of the significant
216 outcomes derived from the PERMANOVAs, we utilized boxplot when considered insightful for visualization.

217 Finally, to assess the main hydrogeological, physical-chemical and microbial factors that influenced the composition and
218 functionality of crustacean assemblages across the three AUs, we employed distance-based linear models (DisTLM) based
219 on the Bray-Curtis resemblance matrix (Legendre and Anderson, 1999). We conducted both conditional and marginal tests.
220 Conditional tests involved fitting one factor after another. We applied the BEST procedure (Legendre and Anderson, 1999)
221 to construct models utilizing the best factor combination. We assessed the AICc value (Akaike's Information Criterion
222 corrected for small sample sizes; Hurvich and Tsai, 1993) for all possible combinations of predictor variables, with the
223 smallest AICc value indicating the most suitable model. Additionally, we used R^2 to evaluate the proportion of explained
224 variation in the multivariate models. The significance of the marginal tests was determined by computing the p-values
225 through permutations rather than traditional tables (Legendre and Anderson, 1999). For each test, we employed 999
226 permutations to obtain p-values testing the null hypothesis of no relationship, either for individual variables in isolation or in
227 a conditional context (Legendre and Anderson, 1999). Factors that individually (marginal models) or together with others
228 (conditional models) explained $> 65\%$ of the variance in the taxonomic and functional structure of the crustacean assemblage
229 were considered robust, following the criteria established by Korbel and Hose (2011, 2017a) and Di Lorenzo et al. (2020).
230 We applied this cut-off criterion to prevent unreliable and exaggerated claims about scientific phenomena (Kimmel et al.,
231 2023). We performed distance-based redundancy analyses (dbRDA; Legendre and Anderson, 1999) to visualize the
232 ordination of the fitted values from the most robust models.

233 Significance levels (α) were set at 0.05 for all permutational tests since they provide an exact test of each individual null
234 hypothesis of interest (Anderson et al., 2008). All analyses were performed using E-PRIMER version 6 and
235 PERMANOVA+ software (Anderson et al., 2008). Boxplots were generated using the libraries ggplot2 and gridExtra and the
236 R software (R Development Core Team, 2021).

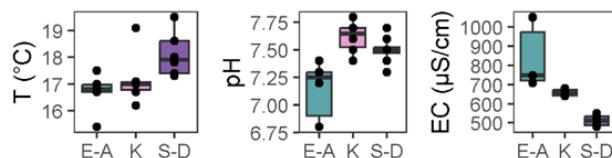
237 **3 Results**

238 **3.1 Environmental factors and microbial community patterns**

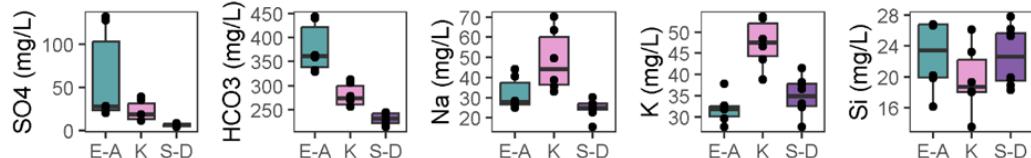
239 The analyses revealed no significant differences in the water table depth among the three AUs or between the two years
 240 (Table A2a and S1). However, PERMANOVA uncovered differences in temperature, pH, and electrical conductivity (Table
 241 A2a and S1). In detail, the sulfate-depleted AU exhibited a mean temperature exceeding that of the other two AUs by about
 242 1 °C (Table 1). The earth-alkaline AU showed the lowest pH and the highest electrical conductivity values (Table 1; Fig. 2).
 243 However, no discernible distinctions were observed between the two years (Table S1).

244 Ammonium and phosphate exhibited concentrations below the instrumental detection limit of 0.05 mg/L in all samples and
 245 AUs and were, therefore, not included in the statistical analyses. The three AUs exhibited significant differences in the major
 246 chemical components, with variations attributed to SO_4^{2-} , HCO_3^- , Na^+ , K^+SO_4 , HCO_3^- , Na^+ , K , and Si (Table A2b and S1;
 247 Fig. 2). In detail: the earth-alkaline AU displayed the highest HCO_3^- , HCO_3 and Si concentrations; the K-rich AU showed the
 248 highest mean concentration of Na^\pm and K^\pm ; the sulfate-depleted AU displayed the lowest mean values of SO_4^{2-} , SO_4 and
 249 HCO_3^- , HCO_3 (Tables 1 and S1; Fig. 2). Significant distinctions between the two years were only observed for Si and DOC,
 250 both of which were higher in 2014 compared to 2015 (Tables A2b and S1). Significant differences among the three AUs
 251 were also noted for trace elements, namely in the concentrations of Li, B, Rb, and U (Tables A2c and S1). The K-rich AU
 252 showed the highest concentrations of Li, B, and Rb, while the sulfate-depleted AU showed the lowest concentrations of U
 253 (Table 1 and Fig. 2). No significant differences emerged between the two years for trace elements.

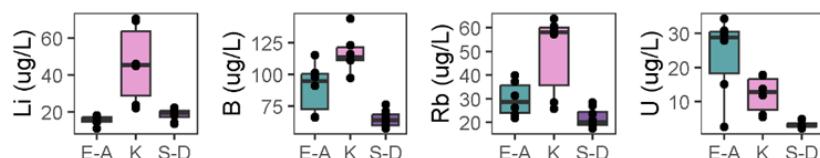
254
 255
 256
 257
 258
 259

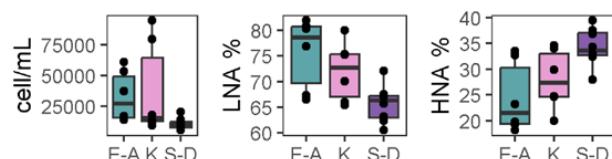

260 **Table 1: Physical-chemical and microbial characteristics of the groundwater samples in the three aquifer units of the Sabatini
 261 Mounts volcanic aquifer. Water table depth, field parameters, major components, trace elements and microbial community
 262 properties are reported as mean values. Superscript letters (a, b, c) indicate significant differences among AUs (permutational
 263 post-hoc t-tests; $p < 0.05$). * indicates statistical differences between 2014 and 2015.**

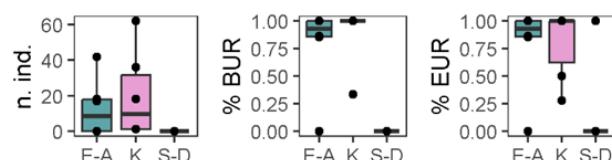
	Sulfate-depleted	Earth-alkaline	K-rich
Water table depth (m)	80.01	64.26	81.82
Field parameters			
EC ($\mu\text{S}/\text{cm}$)	512.0 ^b	885.5 ^a	657.5 ^c
DO (mg/L)	7.3	5.9	7.1
ORP (mV)	183.7	156.6	211.2
pH	7.5 ^b	7.1 ^a	7.6 ^b
T (°C)	18.1 ^b	16.8 ^a	17.2 ^{a,b}
Major components			
Ca^{2+} , Mg^{2+} (mg/L)	41.3	84.3	31.1
Mg^{2+} , Mg (mg/L)	8.2	12.3	10.5
Na^+ , Na (mg/L)	24.6 ^a	31.9 ^{a,b}	48.4 ^b
K^+ , K (mg/L)	34.9 ^a	31.9 ^a	47.4 ^b
Si (mg/L)	22.7 ^a	22.8 ^{a,b}	19.7 ^b
HCO_3^- , HCO_3 (mg/L)	231.0 ^b	377.5 ^a	279.9 ^c
Cl^- , Cl (mg/L)	28.1	29.3	33.3
SO_4^{2-} , SO_4 (mg/L)	6.2 ^b	59.5 ^a	22.4 ^a


264	<u>NO₃-NO₂</u> (mg/L)	10.2	25.8	17.2
265	DOC (mg/L)	0.8	0.8	0.8
Trace elements				
266	Al (µg/L)	10.6	11.1	14.35
267	As (µg/L)	20.6	22.6	26.7
268	B (µg/L)	64.9 ^b	89.5 ^a	117.0 ^c
269	Ba (µg/L)	72.3	81.5	54.9
270	Cr (µg/L)	1.3	1.0	1.1
271	Cu (µg/L)	0.3	0.7	0.5
272	Fe (µg/L)	23.4	22.5	17.7
273	Li (µg/L)	18.6 ^b	15.5 ^b	46.1 ^a
274	Mn (µg/L)	0.9	1.9	0.6
275	Ni (µg/L)	0.3	0.7	0.5
276	Rb (µg/L)	21.7 ^b	29.9 ^a	49.1 ^c
277	Se (µg/L)	0.3	0.8	0.2
278	Sr (µg/L)	529.4	813.3	520.7
279	U (µg/L)	3.1 ^b	23.4 ^a	12.0 ^a
280	V (µg/L)	30.9	28.4	27.1
281	Zn (µg/L)	37.3	10.8	14.6
Microbial community				
282	TCC (10 ⁴ cells/mL)	1.0 ^b	3.1 ^a	3.7 ^a
283	LNA cells (% of TCC)	65.7 ^b	75.6 ^a	72.0 ^a
284	HNA cells (% of TCC)	34.3 ^b	24.4 ^a	27.9 ^a
285	HNA/LNA	0.5 ^b	0.3 ^a	0.4 ^a
286	Carbohydrates	21.6	38.9	15.5
287	Polymers*	46.0	13.2	30.7
288	Carboxilic acids*	24.1	23.6	43.2
289	Aminoacids*	5.7	19.2	8.6
290	Amines	2.7	5.2	1.8

291 Total counts of microbial cells ranged from 0.5 to 9.5 x 10⁴ cells/mL, with the lowest abundances occurring in the sulfate-
 292 depleted AU (Table A2d and Fig. 2). A similar pattern was observed for the percentages of HNA and LNA cells, with the
 293 lowest percentages of LNA cells found in the sulfate-depleted AU, which was correspondingly richer in HNA cells
 294 compared to the K-rich and earth-alkaline AUs (Tables 1 and A2d; Fig. 2). The microbial pattern was consistent over the two
 295 years (Table S1).


Field data


Major

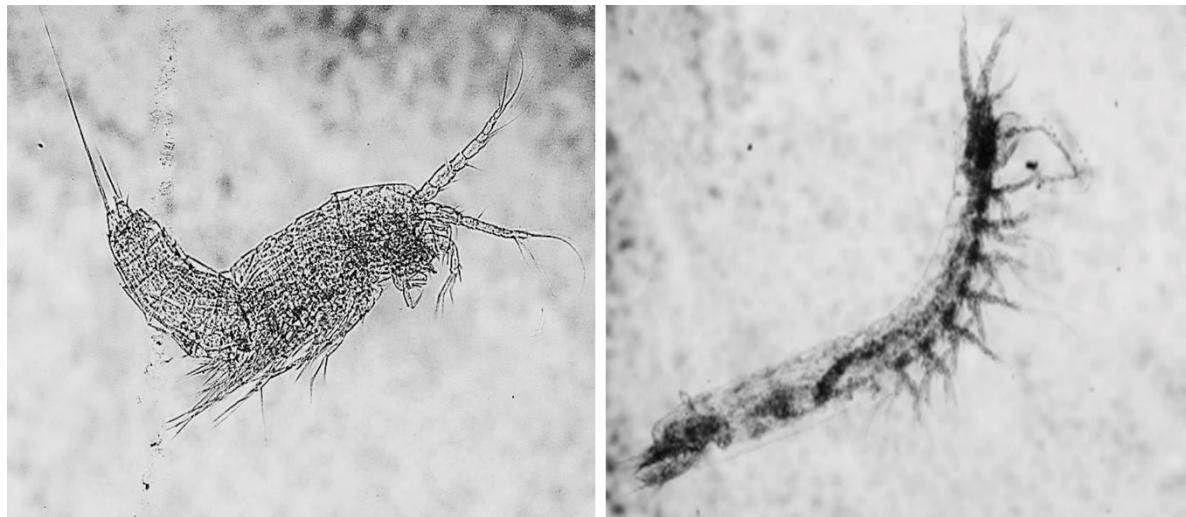

Trace

Microbial

Crustacean

297

298


299 **Figure 2: Boxplots showing significant differences ($p < 0.05$, permutational t-test) in environmental and biological parameters**
300 **among the three aquifer units (earth-alkaline in green; K-rich in pink, and sulfate-depleted in purple) of the Sabatini Mounts**
301 **aquifer: Boxplot are arranged into five rows: field parameters, major chemicals, trace elements, microbes, and crustaceans. Each**
302 **boxplot includes median lines, 25th-75th percentile boundaries, whiskers for 10th-90th percentiles, and black dots indicating**
303 **outliers. BUR: burrowers; EUR: eurythermal.**

304 We obtained significant PERMANOVA outcomes for microbial catabolic profiles related to carbohydrates, polymers and
305 aminoacids degradation among the three AUs, while no differences across the AUs were detected for carboxylic acids and
306 amines utilization. However, the results for polymers and aminoacids were affected by variance heterogeneity (Table S1).
307 Additionally, the catabolic profiles based on carbohydrates showed inconsistencies over the two years of
308 investigation. Overall, the catabolic profile of the microbial assembly of the three AUs seemed to be mainly based on

309 carbohydrates, polymers and carboxylic acids, with variation over time, while the profiles based on amines and aminoacids
310 were much less represented (Table 1).

311 **3.2 Crustacean assemblages**

312 Out of the 20 biological samples analyzed, 8 (40%) did not contain any invertebrate specimens (Table A2e). We identified
313 210 crustacean specimens (< 1 mm in average length), belonging to 9 species (Table A2e). Seven of these taxa were
314 groundwater-obligate dwellers (94% of the total abundances; Table A2e) showing typical morphological adaptations to dark
315 environments (Fig. 3).

316
317
318 **Figure 3: Groundwater-obligate crustacean species.** The figure showcases two groundwater-obligate crustacean species found
319 within the Mounts Sabatini aquifer: the harpacticoid *Parapseudoleptomesochra italica* (0.73 mm in length, on the left) and the
320 syncarid *Meridiobathynella* sp. (0.8 mm in length, on the right). The specimens exhibit the typical morphological traits of
321 groundwater fauna: blindness, depigmentation, and hypertrophy of sensory appendages.

322 Approximately 60% of the samples contained a single species only (Tables 1 and A2e). The class Crustacea Copepoda
323 dominated with 7 species, including 5 groundwater-obligate species, 6 species belonging to the order Harpacticoida, and 1
324 species to the order Cyclopoida. At the aquifer level, three non-parametric estimators (out of five) and the non-parametric
325 one indicated that 100% of the expected invertebrate biodiversity was collected during the sampling survey. However, the
326 remaining estimators suggested that we likely missed ~~out~~ a minimum of 9% (Chao2) to a maximum of 21% (Jackknife1) of
327 the expected biodiversity (i.e., from 1 to 3 more species; Fig. S1). Our analyses suggested that this missed biodiversity
328 should be find found mainly in the earth-alkaline and K-rich aquifer units (Fig. S1).

329 PERMANOVA analysis indicated significant differences in the composition of crustacean assemblages; however, the
330 outcome was affected by variance heterogeneity. On the other hand, the analyses revealed significant unbiased differences in
331 the abundances of groundwater-obligate species among the three AUs (Table S1), with the sulfate-depleted AU lacking

332 groundwater-obligate species (Tables 2 and S1). Notably, the K-rich AU lacked epigean species. Remarkably, there were no
 333 significant differences observed between the two years (Table S1). Overall, the K-rich and earth-alkaline AUs exhibited
 334 comparable abundances and species richness (Table 2).

336 **Table 2: Taxonomic and functional composition of the crustacean assemblages in the three aquifer units (AUs).** Taxonomic
 337 abundances and traits are reported as n. of individuals per each aquifer unit. Superscript letters (a, b, c) indicate significant
 338 differences among AUs (permutational post-hoc t-tests; $p < 0.05$). + indicates groundwater-obligate species. For *Niphargus* sp.
 339 (Nsp), 0.5 individuals were counted as deposit-feeders and 0.5 as collectors, reflecting its dual functional feeding habit traits, and
 340 0.5 as eurythermal and 0.5 as stenothermal reflecting its dual thermal tolerance traits. S-D: sulfate-depleted; E-A: earth-alkaline.
 341 Acronyms of taxa are reported in brackets. 1: Galassi (2000)⁰⁴; 2: Galassi et al. (1999); 3: Galassi et al. (2009); 4: Galassi and De
 342 Laurentiis (2004); 5: Dussart and Defaye (2002); 6: Hose and Stampp (2019); 7: Schminke (1974); 8: Fišer (2019).

Taxon	S-D	E-A	K-rich	Ref.
⁺ <i>Parapseudoleptomesochra italicica</i> Pesce & Petkovski, 1980 (Pit)	0	43	100	
⁺ <i>Parastenocaris</i> sp. (Psp)	0	2	0	
⁺ <i>Nitocrella psammophila</i> Chappuis, 1954 (Nps)	0	0	5	
⁺ <i>Pseudectinosoma reductum</i> Galassi & De Laurentiis, 1997 (Pre)	0	0	1	
⁺ <i>Acanthocyclops agamus</i> Kiefer, 1938 (Aag)	0	2	12	
⁺ <i>Meridiobathynella</i> sp. (Msp)	0	30	0	
⁺ <i>Niphargus</i> sp. (Nsp)	0	0	1	
<i>Elaphoidella gracilis</i> (Sars, G.O., 1863) (Egr)	0	13	0	
<i>Moraria poppei</i> (Mrázek, 1893) (Mpo)	1	0	0	
Epigean species	1	13	0	
Groundwater-obligate species	0 ^b	77 ^a	119 ^a	
Trait locomotion				
Burrowers [Pit, Nps, Pre, Msp, Nsp, Egr]	0 ^b	86 ^a	107 ^a	1,2,3,5,6,7,8
Interstitials [Psp, Mpo]	1	2	0	1,2,3,5
Swimmers [Aag]	0	2	12	1,2,3,4,5
Trait diet				
Fine sediments + microorganisms [Pit, Psp, Nps, Pre, Aag, Msp, Nsp, Mpo]	1	77	119	1,2,3,4,5,6,7,8
Living microphytes [Egr]	0	13	0	1,2,3,5
Trait feeding habit				
Deposit feeders [Pit, Psp, Nps, Pre, Aag, Msp, Nsp]	1 ^a	77 ^{a,b}	118.57 ^b	1,2,3,4,5,6,7,8
Collectors [Pre, Nsp]	0	0	20.5	1,2,3,5
Grazers [Egr]	0	13	0	1,2,3,5
Thermal tolerance				
Eurythermal [Pit, Nps, Msp, Nsp, Egr, Mpo]	1 ^a	86 ^{a,b}	105.5 ^b	1,2,3,5,6,7,8
Moderately stenothermal [Aag]	0	2	12	1,2,3,4,5
Stenothermal [Psp, Pre, Nsp]	0	2	21.5	1,2,3,5

344 However, the taxonomic composition in the two AUs was different. In detail, the groundwater-obligate harpacticoid
 345 *Parapseudoleptomesochra italicica* was the most abundant species, accounting for 67% of crustacean biodiversity in the
 346 aquifer (Table A2e). The groundwater-obligate *P. italicica* and *Acanthocyclops agamus* were found in both earth-alkaline and
 347 K-rich AUs (Table 2). *Nitocrella psammophila*, *Pseudectinosoma reductum* and *Niphargus* sp. (groundwater-obligate
 348 species) occurred in the K-rich AU, while *Parastenocaris* sp. and *Meridiobathynella* sp. (groundwater-obligate species) were
 349 collected in the earth-alkaline AU where the epigean *Elaphoidella gracilis* (epigean species) was also present (Table A2e).
 350

351 The epigean species *Moraria poppei* was the only species found in the sulfate-depleted AU, with a single individual
352 collected from well QA21 in 2014 (Table A2e).

353 Most of the species collected in this study were burrowers and eurythermal (Table 2). The locomotion and thermal tolerance
354 traits exhibited variation among the three AUs, primarily driven by the higher percentages of eurythermal species in the
355 earth-alkaline AU compared to the other two AUs (Tables S1 and A2f; Fig. 2). Notably, moderately stenothermal and
356 stenothermal species were collected only from the K-rich AU and never from the other two AUs (Table A2f).
357 PERMANOVA outcomes indicated significant differences in the diet trait among the AUs, although this result was biased by
358 variance heterogeneity (Table S1). The deposit feeding trait was the most prevalent among various feeding habits, with
359 collectors and grazers being less common, but the analyses did not identify any significant differences across the AUs
360 (Tables 2 and S1). The pattern was consistent over time for all functional traits (Tables 2 and S1).

361 **3.3 Linear models**

362 **3.3.1 Hydrogeological factor**

363 The linear models based on the water table depth as descriptor accounted $\leq 25\%$ of the variance of the taxonomic and
364 functional composition of the crustacean assemblages in the aquifer (Table S2).

365
366 **3.3.2 Physical-chemical factors**

367 Concerning field factors, the multivariate linear models accounted $< 65\%$ of the variance of the taxonomic and functional
368 composition of the crustacean assemblages in the aquifer, with electrical conductivity, pH and ORP being the main
369 descriptors. None of the marginal models explained $> 65\%$ of the variance (Table S2).

370 Multivariate models based on major ions explained $< 65\%$ of the variance of the taxonomic composition, locomotion, diet,
371 feeding habits, and thermal tolerance traits (Table S2). However, four major ions (SO_4^{2-} , Ca^{2+} , NO_3^- , and K^+) (SO_4 , Ca ,
372 NO_3 , and K) together accounted for 91% of the variance in groundwater-obligate species (Table S2), with abundances
373 significantly decreasing in samples depleted of SO_4^{2-} (SO_4) (Fig. 4). None of the major chemical elements individually
374 explained more than 65% of the variance (Table S2). Concerning trace elements, multivariate linear models explained $< 65\%$
375 (Table S2) of the variance of the trait locomotion and thermal tolerance. On the contrary, they explained $> 65\%$ of the
376 variance of the taxonomic composition (best model 71%: V, Cr, As, Se, and U), abundances of groundwater-obligate species
377 (best model 89%: B, Al, V, Se, and Ba), trait diet (best model 81%: Li, B, Cr tot, Ni, As, and U) and feeding habits (best
378 model 71%: Li, B, Cr tot, Ni, As, and U), with abundances and trait percentages increasing with increasing concentrations of
379 all trace elements except for Cr tot (Fig. 4). The contribution of individual trace elements to marginal models was always $<$
380 35%, when significant (Table S2).

381
382 **3.3.3 Microbial factors**

383 The conditional and marginal linear models based on microbial factors (TCC, LNA, HNA cells and catabolic pathways)
384 explained < 65% of the taxonomic and functional composition of the crustacean assemblages. However, LNA cells and the
385 carbohydrate pathways together explained 71% of the abundances of groundwater-obligate species (Table S2), with
386 abundances increasing with increasing LNA cells and microbes using carbohydrates as substrates (Fig. 4). The individual
387 contribution of LNA cells to the explained variance was 66%.

388

389

390

391

392

393

394

395

396

397

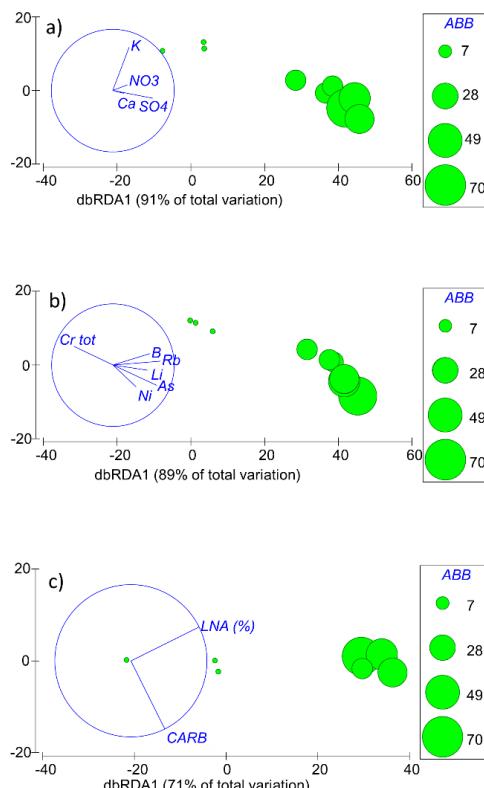
398

399

400

401

402


403

404

405

406

407

405 **Figure 4: dbRDA plots showing the linear relations between the abundances (ABB) of groundwater-obligate species and the**
406 **factors selected by the BEST procedure of the DistLM. a) major ions; (b) trace element and c) microbial factors (LNA%:**
407 **percentages of Low Nucleic Acid cells; CARB: carbohydrate catabolic profile).**

408 4 Discussion

409 Despite recent advancements in the field, numerous knowledge gaps persist in identifying the factors that shape the
410 taxonomic and functional composition of groundwater crustaceans (Mammola et al., 2021). Particularly overlooked and
411 unexplored is the analysis of groundwater assemblages within volcanic aquifers and the role of trophic factors in shaping the
412 distribution of groundwater-obligate fauna through processes of environmental filtering (Saccò et al., 2019). To confront

413 these challenges, our study adopted a comprehensive, multidisciplinary approach that harnessed the collective knowledge
414 spanning hydrogeology, geology, microbiology and ecology.

415 While the water table depth did not vary significantly across the aquifer, our analyses confirmed and supported the
416 occurrence of three adjacent AUs, each characterized by distinct hydrochemical facies and microbial community patterns.
417 The sulfate-depleted AU showed the highest mean temperature, the lowest concentrations of SO_4^{2-} , HCO_3^- and U,
418 the lowest microbial abundances and percentages of LNA cells, and the highest percentages of HNA cells. The earth-alkaline
419 AU showed the lowest pH values and the highest electrical conductivity and HCO_3^- and Si concentrations, while the
420 microbial abundances were comparable to those in the K-rich AU. Finally, the K-rich AU presented the highest
421 concentrations of Na^+ , K^+ , Na , K , Li, B and Rb.

422 We examined the crustacean assemblages of the aquifer, revealing significant variations in both taxonomic and functional
423 composition across the three AUs. In detail, the sulfate-depleted AU lacked groundwater-obligate species, burrowers, and
424 stenothermal or moderately stenothermal species. The K-rich and earth-alkaline AUs, which showed comparable abundances
425 and species richness, were characterized by different species, which, however, showed the same functions concerning
426 locomotion, diet and feeding habit. Notably, stenothermal or moderately stenothermal crustacean species occurred in the K-
427 rich AU only, which was, however, depleted of epigean species. We used a stringent cut-off criterion (Korbel and Hose;
428 2011, 2017a; Di Lorenzo et al., 2020) to identify the potential predictors of these differences and concluded that water table
429 depth was not a driving factor in shaping these assemblages. The taxonomic composition seemed to be mainly driven by
430 trace elements such as V, Cr, As, Se, U. The main descriptors of the abundances of groundwater-obligate species appeared to
431 be the major ions SO_4^{2-} , Ca^{2+} , NO_3^- and K^+ , the trace elements B, Al, V, Se, and Ba, the microbial
432 factors related to LNA cells and carbohydrate catabolic profile. Finally, the trace elements Li, B, Cr tot, Ni, As, and U
433 seemed to be the main drivers of the traits diet and feeding habits. Water chemistry did not appear to exert a detrimental
434 effect on the composition and functionality of crustacean assemblages in the target aquifer, consistent with previous studies
435 (e.g., Di Lorenzo et al., 2020), except for Cr. This result may be attributed to the likelihood that the chemicals recognized as
436 detrimental to groundwater organisms were either not detectable or existed in concentrations that were not harmful in our
437 study. For instance, trace elements, such as Ni, Zn, As, Li, are toxic to groundwater fauna at concentrations $> 150 \mu\text{g/L}$ (Di
438 Lorenzo et al., 2023) which, however, were never measured in the study area. Ammonium (which exhibited concentrations
439 below instrumental detection limit in our study) is lethal to groundwater-obligate species at concentrations $> 12 \text{ mg/L}$, albeit
440 causing cellular and physiological damage at concentrations $\geq 36 \mu\text{g/L}$ (Di Lorenzo et al., 2015). Nitrate causes no harm to
441 groundwater fauna at concentrations $< 100 \text{ mg/L}$ (Di Lorenzo et al., 2023), which are much higher than those observed in
442 our study. Previous research has shown that groundwater species are sensitive to pharmaceutical compounds, pesticides, and
443 BPA (Di Lorenzo et al., 2023). In our preliminary study (Ademollo et al., 2012), chlorinated pesticides were not detected
444 and only traces of PAHs and PCBs were found slightly above the detection limits (0.01 ng/L). High tolerance to SO_4^{2-} (which was positively
445 correlated to groundwater species abundances in this study) is known for many groundwater-obligate
446 species of marine origin, such as *P. italica*, *N. psammophila* and *P. reductum* (Galassi, 2001). For instance, *N. psammophila*

447 has been collected from the chemoautotrophic groundwater of the Frasassi cave system (Italy) where sulfate concentrations
448 reach up to 199 mg/L (Galassi et al., 2017). *Parapseudoleptomesochra italica* has been recorded from the Movile Cave
449 (Romania) where groundwater has high sulfate concentration and, similarly, *P. reductum*, has been discovered in the in
450 sulfidic groundwaters of Melissotrypa Cave (Greece) (Brad et al., 2021). While prior studies have reported synergistic toxic
451 effects of pollutant mixtures on groundwater species (Di Marzio et al., 2018), our research seems to find no significant
452 differences in chemical parameters among the various AUs that could account for varying toxicity levels. For instance, in the
453 sulfate-depleted AU, which lacked groundwater-obligate species, most of the tested chemical elements exhibited lower
454 concentrations compared to the earth-alkaline or K-rich AUs. Studies on the ecotoxicology of groundwater organisms have
455 been limited by the life history traits of groundwater fauna that make them often unsuitable for laboratory experiments (Di
456 Lorenzo et al., 2019). Our study offered preliminary insights into the potential sensitivity of groundwater crustaceans to
457 chemicals that have hitherto remained untested in prior research, including elements like uranium and boron. The negative
458 correlation between the abundances of groundwater-obligate species and Cr is, in our view, not directly related to the toxicity
459 of this element. Total chromium is present in the aquifer at concentrations ranging from 0.4 to 1.8 µg/L, which are
460 considered harmless based on available literature data (Di Lorenzo et al., 2023). This might be a statistical artifact since
461 lower abundances of groundwater-obligate species are found in the sulfate-depleted AU, where the average Cr concentration
462 is slightly higher than in the other AUs. Therefore, we observe this negative correlation in Figure 4. However, we suggest
463 that the absence of groundwater-obligate species in this AU is related to microbial factors, as we will explain later.
464 While the sulfate-depleted AU lacks groundwater-obligate species, the earth-alkaline and K-rich AUs differ in terms of
465 species composition. This outcome seems to suggest that, although the AUs are hydrogeologically connected, the
466 groundwater species collected in this study seemed not to migrate across the aquifer units. This finding aligns with literature.
467 Iannella et al. (2020) observed that European groundwater-obligate harpacticoid species (which represent 67% of the species
468 in our study) were unable to disperse across boundaries between two adjacent AUs. Accordingly, Vaccarelli et al. (2023)
469 observed that the dispersal of groundwater-obligate copepod species in the Eastern Lessinian Massif (Italy) is constrained by
470 non-fractured igneous rocks, as it appears to be in our study. Only two groundwater-obligate species, *P. italica* and *A. agamus*,
471 were found in both the K-rich and earth-alkaline AUs. The remaining species collected in this study were unique to
472 one AU only, such as the groundwater-obligate *P. reductum* (a Tertiary relict of ancient marine origin; Galassi et al., 1999),
473 which was collected from the K-rich AU, along with *N. psammophila*. The genus *Nitocrella*, which has direct marine origin,
474 serves as an indicator of ancient evolutionary events (Galassi et al., 2009). Notably, the K-rich AU showed the highest
475 concentrations of Li, B, and Rb, which are characteristic elements of the deep geothermal facies and possibly of fossil
476 marine waters of Neogene age (Duchi et al., 2003). The presence of stenothermal and moderately stenothermal species in
477 this AU, and only in this one, suggests that the habitat of this K-rich aquifer unit may be conservative and, therefore, suitable
478 for preserving ancient evolutionary lineages with no close relatives in surface environments, such as *P. reductum*.
479 Two out of the six indicators revealed that a small percentage of taxonomic diversity (ranging from 1 to a maximum of 3
480 species) was not captured in this study. This finding is commonly encountered because groundwater sampling is essentially a

481 blind process (Mammola et al., 2021). Wells serve as windows through which we gain insight into the subterranean
482 biodiversity in the portions of the aquifer surrounding them, but groundwater habitats extend more extensively (Ficetola et
483 al., 2019). However, we speculate that the absence of groundwater-obligate species in the sulfate-depleted AU might be
484 partly due to the low percentages of LNA cells found in this AU, rather than, or in addition to, incomplete sampling. The
485 LNA and HNA cell counts exhibited variations among the three AUs. Specifically, the sulfate-depleted AU displayed the
486 lowest LNA cell percentages. As detected by flow cytometry, LNA and HNA cell groups are considered constitutive traits of
487 aquatic microbial communities, typically comprising cells of varying sizes, genome content, and phylogenetic affiliations
488 (Gasol et al., 1999; Proctor et al., 2018). Notably, HNA cells were recognized as an active fraction of the bacterioplankton
489 community, and their abundance was reported to positively correlate with heterotrophic production rates in freshwaters of
490 different origin (Rubbens et al., 2019). In contrast, LNA cells were traditionally thought to represent a more dormant or
491 quiescent portion of the aquatic microbial community (Lebaron et al., 2002). They were reported as small-sized
492 microorganisms with slower metabolic activity and a wide range of survival strategies suitable for thriving in adverse
493 conditions, including oligotrophy (Hu et al., 2022). In previous groundwater studies, the percentage of LNA cells and the use
494 of carbohydrates were linked at either low or high nutrient levels~~LNA cells contribution and carbohydrate utilization were~~
495 ~~associated under pristine and unbalanced nutrient conditions~~ (Melita et al. 2019). This is explained by the role played by
496 carbohydrates as important energy-rich carbon source and storage molecules for the aquatic bacterial metabolism (Arnosti et
497 al., 2014). These observations seem to suggest that groundwater quality can directly affect the functional properties of the
498 aquatic microbial communities with implications on the pattern of the energy fluxes among organic matter, microbes and the
499 organisms located in the upper levels of the food web. In this study, the high linear correlation ($r = 0.80$) between
500 groundwater crustacean abundance and LNA cells (supported by an explained variance $R^2 > 65\%$) seem to suggest that
501 groundwater crustaceans might derive significant benefits from the presence of LNA cells. Considering the high abundances
502 of deposit-feeders and crustaceans feeding on sediments and microorganisms in the earth-alkaline and K-rich AUs,
503 compared to the sulfate-depleted AU, we venture to speculate that they may selectively feed on LNA cells. If confirmed by
504 further studies, our findings would suggest that the feeding behavior of groundwater crustaceans might play a role in
505 structuring the groundwater microbial community and biomass, with potential consequences on subterranean carbon
506 turnover and nutrient cycling.

507 Total cell counts also varied across the AUs with the sulfate-depleted AU showing the lowest values. However, we observed
508 only a moderate linear correlation ($r = 0.5$, $R^2 = 25\%$; Table S2) between TCC and groundwater crustacean abundance,
509 indicating that TCC explains a limited portion of the variation in crustacean abundance. However, we did not observe a
510 strong linear correlation ($r = 0.5$, $R^2 = 25\%$; Table S2) between TCC and groundwater crustacean abundance. This result
511 might seem counterintuitive since most of the collected species are known to feed on fine sediments and microorganisms.
512 Nevertheless, there should be a logical explanation for this outcome. The planktonic microbial community represents a
513 fraction of total aquifer microorganisms that is found in the interstitial water volume by detaching from sediments
514 (Flemming and Wuertz, 2019). Since the crustacean species examined in this study are not filtrators, it is probable that they

515 consume a portion of microbial planktonic cells smaller than the portion of the sediment-attached ones. This feeding habit
516 could be the underlying cause of the weak correlation observed in this study. This observation raises the possibility that a
517 more robust correlation between diet and feeding habits and LNA cells might have emerged had we included sediment-
518 attached cells in our analysis.

519 On this matter, we did not observe a significant correlation between DOC and groundwater crustacean assemblages. This
520 suggests that DOC is likely not directly utilized by the species collected in this study but needs to be processed by bacteria
521 before becoming accessible to metazoans (Foulquier et al., 2009; Griebler and Lueders, 2009; Segawa et al., 2015).
522 Furthermore, DOC concentrations did not significantly differ across the three AUs, being always <1 mg/L, in line with the
523 values normally observed in groundwater systems (Foulquier et al., 2010). DOC entering subterranean environments from
524 the surface primarily comprises stable and recalcitrant components that resist bacterial degradation, leaving only a small
525 fraction available for microbial communities (Shen et al., 2015). Our analyses indicated that the sulfate-depleted AU had the
526 highest proportions of microbes metabolizing polymers, which are more complex and resistant to degradation than simple
527 carbohydrates or carboxylic acids (Oest et al., 2018; Melita et al., 2019). Additionally, we observed variations in the
528 proportions of microbes utilizing different substrates from year to year, likely influenced by surface-produced organic matter
529 types (Saccò et al., 2019; Melita et al., 2023). Our findings prompt a discussion about the minimum quantity of energy
530 resources needed to sustain a resident groundwater-dependent crustacean assemblage. To provide a rough estimate,
531 considering that a prokaryotic cell contains approximately 25 fg of carbon (Griebler et al., 2002), the sulfate-depleted AU in
532 our study had an average microbial biomass of 2.65-4 mg C/L. Since no groundwater-dwelling species were collected in this
533 aquifer unit during our survey, further studies are necessary to assess if this biomass level could be a limiting factor for
534 groundwater-dependent crustacean assemblages. Finally, we acknowledge two potential limitations of our study: the
535 incomplete sampling of crustacean biodiversity and the timing of the sampling survey. Since we missed a small percentage
536 of the expected biodiversity, our findings should be considered preliminary. Complete biodiversity sampling in groundwater
537 is challenging due to the many impediments associated with both the essentially blind nature of groundwater sampling
538 (Mammola et al., 2021). Furthermore, while eDNA and metagenomics approaches currently face challenges in certain
539 contexts, particularly with markers such as 18S (Korbel et al., 2017b), classic DNA barcoding using COI markers has been
540 shown to be an effective tool for delineating cryptic groundwater species (Altermatt et al., 2023), and the current inefficiency
541 of genetic markers able to unveil cryptic groundwater species (Korbel et al., 2017b). In addition, while seasonality in
542 groundwater recharge may influence geochemical processes (Jasechko et al., 2014), previous studies have shown that
543 seasonality has relatively little impact on the distribution of biota in groundwater ecosystems. For instance, Korbel et al.
544 (2015) demonstrated that habitat structure, water quality, and site attributes are the key environmental variables influencing
545 groundwater metazoan distribution, with only minimal variance explained by seasonality. Extending the survey timing,
546 sampling effort and implementing the use of classic DNA barcoding and eDNA approaches eDNA in future studies would be
547 helpful in confirming our results and addressing these potential limitations.

548 **5 Conclusions**

549 Our multidisciplinary study delved into the taxonomic and functional composition of groundwater crustaceans and attempted
550 to unravel the intricate dynamics of the crustacean communities in three aquifer units within the same aquifer. We assessed
551 significant variations in crustacean distribution and functional traits across the aquifer units, with the sulfate-depleted
552 groundwater body aquifer unit standing out as a seemingly inhospitable environment for groundwater-obligate species. Our
553 findings pointed to the crucial role of microbial communities in driving the composition of groundwater-obligate crustacean
554 assemblages. Additionally, the study stimulates a discussion on the sensitivity of groundwater-obligate species to aquifer
555 settings. Our research underscores the importance of singling out diverse hydrogeological contexts within individual
556 aquifers. Potential avenues for future research encompass metagenomic studies on specific microbial taxa that are at the base
557 of groundwater food webs, while stable isotope analyses would help elucidate the dietary preferences and food web
558 dynamics of groundwater-obligate crustaceans and their impact on nutrient cycling.

559

560 **Data availability**

561 The raw data have been reported in Appendix A.

562 **Supplement**

563 The supplement containing Figure S1, Tables S1 and S2 related to this article is available online at:

564 **Author contribution**

565 TDL, SA, EP: Conceptualization; TDL, SA, MM, AZ, DP, SG, DR, ATDC, EP: Methodology; MM, AZ, DP, SG, DR,
566 DMPG: Data curation; TDL, SA, EP, DMPG: Writing- Original draft preparation. SA, EP, DMPG: Validation; TDL, SA,
567 EP, DMPG, ATDC: Writing- Reviewing and Editing.

568

569 **Competing interests**

570 The authors declare that they have no conflict of interest.

571

572 **Acknowledgements**

573 We thank Barbara Fiasca (University of L'Aquila) and Marco Cifoni (CNR-IRET) for their assistance in samples' sorting
574 and species identification.

575

576 **Financial support**

577 TDL and DMPG acknowledge Biodiversa+ DarCo, the European Biodiversity Partnership under the 2021-2022
578 BiodivProtect joint call for research proposals, co-funded by the European Commission (GA N°101052342) and with the
579 funding organisations Ministry of Universities and Research (Italy), Agencia Estatal de Investigación – Fundación
580 Biodiversidad (Spain), Fundo Regional para a Ciência e Tecnologia (Portugal), Suomen Akatemia – Ministry of the
581 Environment (Finland), Belgian Science Policy Office (Belgium), Agence Nationale de la Recherche (France), Deutsche
582 Forschungsgemeinschaft e.V. – BMBF-VDI/VDE INNOVATION + TECHNIK GMBH (Germany), Schweizerischer
583 Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Switzerland), Fonds zur Förderung der Wissenschaftlichen
584 Forschung (Austria), Ministry of Education, Science and Sport (Slovenia), and the Executive Agency for Higher Education,
585 Research, Development and Innovation Funding (Romania). TDL and SA also acknowledges support from NBFC to CNR,
586 funded by the Italian Ministry of University and Research, P.N.R.R., Missione 4 Componente 2, “Dalla ricerca all’impresa”,
587 Investimento 1.4, Project CN00000033.

588 **References**

589 [Altermatt, F., Westram, A. M., Pasinelli, G. and Burri, R.: Advances and challenges in using DNA barcoding and](#)
590 [metabarcoding to study biodiversity. Molecular Ecology, 32\(4\), 881–897, doi: 10.1111/mec.16955, 2023.](#)

591 Arnosti, C., Bell, C., Moorhead, D. L., Sinsabaugh, R. L., Steen, A. D., Stromberger, M., Wallenstein, M., and Weintraub,
592 M. N.: Extracellular enzymes in terrestrial, freshwater, and marine environments: perspectives on system variability and
593 common research needs, *Biogeochemistry*, 117, 5–21, doi:10.1007/s10533-013-9906-5, 2014.

594 Ademollo, N., Amalfitano, S., Benedetti, B., Del Bon, A., Falconi, F., Fazi, S., Gallo, S., Ghergo, S., Mastroianni, D.,
595 Patrolecco, L., Petrangeli, A.B., Pettine, M., Preziosi, E., Rossi, D., and Zoppini, A.: Indagini per una caratterizzazione di
596 dettaglio del sito di Quadro Alto - Riano (RM), Rapporto Tecnico Finale Convenzione tra Comune di Riano e IRSA-CNR,
597 [ID: 213341], <https://intranet.cnr.it/servizi/people/prodotto/scheda/i/213341>, Accessed on November 28, 2023, 2012.

598 Amalfitano, S., Fazi, S., Ejarque, E., Freixa, A., Romaní, A. M., and Butturini, A.: Deconvolution model to resolve
599 cytometric microbial community patterns in flowing waters, *Cytometry A*, 93, 194–200, doi:10.1002/cyto.a.23304, 2018.

600 Anderson, M. J., Gorley, R. N., and Clarke, K. R. (Eds.): *PERMANOVA+for PRIMER: Guide to Software and Statistical*
601 *Methods, PRIMER-E*: Plymouth, UK, pp. 214, 2008.

602 Aquilina, L., Stumpf, C., Tonina, D., and Buffington, J. M.: Hydrodynamics and geomorphology of groundwater
603 environments, in: *Groundwater Ecology and Evolution* (Second Edition), edited by: Malard, F., Griebler, C., and Rétaux, S.,
604 Academic Press, San Diego, pp. 3–37, doi:10.1016/B978-0-12-819119-4.00014-7, 2023.

605 Brad, T., Iepure, S., and Sarbu, S. M.: The Chemoautotrophically Based Mobile Cave Groundwater Ecosystem, a Hotspot of
606 Subterranean Biodiversity, *Diversity* (Basel), 13(3), 128, doi:10.3390/d13030128, 2021.

607 Bregović, P., Fišer, C., and Zagmajster, M.: Contribution of rare and common species to subterranean species richness
608 patterns, *Ecol. Evol.*, 9, 11606–11618, doi:10.1002/ece3.5604, 2019.

609 Cadotte M.W., Tucker C.M.: Should Environmental Filtering be Abandoned?, *Trends Ecol. Evol.*, 32(6),429–437, doi:
610 10.1016/j.tree.2017.03.004, 2017.

611 Clarke, K. R. and Gorley, R. N.: PRIMER: Getting started with v6, PRIMER-E Ltd: Plymouth, UK 931, 932, 2005.

612 Cornwell, W. K., Schwilk, D. W., and Ackerly, D. D.: A trait-based test for habitat filtering: convex hull volume, *Ecology*,
613 87, 1465–1471, doi:10.1890/0012-9658(2006)87[1465:ATTFH]2.0.CO;2, 2006.

614 Culver, D. C. and Pipan, T. (Eds.): The biology of caves and other subterranean habitats, online edn., Oxford Academic,
615 Oxford, ISBN 9780191860485, 2019.

616 Culver, D.C., Deharveng, L., Pipan, T., Bedos, A.: An Overview of Subterranean Biodiversity Hotspots, *Diversity* (Basel),
617 13(10), 487, doi:10.3390/d13100487, 2021.

618 Di Lorenzo, T., Cifoni, M., Lombardo, P., Fiasca, B., and Galassi, D. M. P.: Ammonium threshold values for groundwater
619 quality in the EU may not protect groundwater fauna: evidence from an alluvial aquifer in Italy, *Hydrobiologia*, 743, 139–
620 150, doi:10.1007/s10750-014-2018-y, 2015.

621 Di Lorenzo, T., Di Marzio, W. D., Fiasca, B., Galassi, D. M. P., Korbel, K., Iepure, S., Pereira, J. L., Reboleira, A. S. P. S.,
622 Schmidt, S. I., and Hose, G. C.: Recommendations for ecotoxicity testing with stygobiotic species in the framework of
623 groundwater environmental risk assessment, *Sci. Total Environ.*, 681, 292–304, doi:10.1016/j.scitotenv.2019.05.030, 2019.

624 Di Lorenzo, T., Fiasca, B., Tabilio Di Camillo, A., Murolo, A., Di Cicco, M., and Galassi, D. M. P.: The weighted
625 Groundwater Health Index (wGHI) by Korbel and Hose (2017) in European groundwater bodies in nitrate vulnerable zones,
626 *Ecol. Indic.*, 116, 106525, doi:10.1016/j.ecolind.2020.106525, 2020.

627 Di Lorenzo, T., Fiasca, B., Di Cicco, M., Cifoni, M., and Galassi, D. M. P.: Taxonomic and functional trait variation along a
628 gradient of ammonium contamination in the hyporheic zone of a Mediterranean stream, *Ecol. Indic.*, 132, 108268,
629 doi:10.1016/j.ecolind.2021.108268, 2021.

630 Di Lorenzo, T., Avramov, M., Galassi, D. M. P., Iepure, S., Mammola, S., Reboleira, A. S. P. S., and Hervant, F.:
631 Physiological tolerance and ecotoxicological constraints of groundwater fauna, in: *Groundwater Ecology and Evolution*
632 (Second Edition), edited by: Malard, F., Griebler, C., and Rétaux, S., Academic Press, San Diego, pp. 457–479,
633 doi:10.1016/B978-0-12-819119-4.15004-8, 2023.

634 Di Marzio, W. D., Cifoni, M., Sáenz, M. E., Galassi, D. M. P., and Di Lorenzo, T.: The ecotoxicity of binary mixtures of
635 Imazamox and ionized ammonia on freshwater copepods: Implications for environmental risk assessment in groundwater
636 bodies, *Ecotoxicol. Environ. Saf.*, 149, 72–79, doi:10.1016/j.ecoenv.2017.11.031, 2018.

637 Duchi, V., Matassoni, L., Tassi, F., and Nisi, B.: Studio geochimico dei fluidi (acque e gas) circolanti nella regione vulcanica
638 dei M.ti Vulsini (Italia Centrale), *Ital. J. Geosci.*, 122, 47–61, 2003.

639 Dussart, B. and Defaye, D. (EDS.): World directory of Crustacea Copepoda of inland waters, Backhuys, 2002.

640 Ferguson, G., McIntosh, J. C., Warr, O., Sherwood Lollar, B., Ballantine, C. J., Famiglietti, J. S., Kim, J. -H., Michalski, J.
641 R., Mustard, J. F., Tarnas, J., and McDonnell, J. J.: Crustal Groundwater Volumes Greater Than Previously Thought,
642 *Geophys. Res. Lett.*, 48, e2021GL093549, doi:10.1029/2021GL093549, 2021.

643 Ficetola, G. F., Canedoli, C., and Stoch, F.: The Racovitzan impediment and the hidden biodiversity of unexplored
644 environments, *Conserv. Biol.*, 33, 214–216, doi:10.1111/cobi.13179, 2019.

645 Fillinger, L., Griebler, C., Hellal, J., Joulian, C., and Weaver, L.: Microbial diversity and processes in groundwater, in:
646 *Groundwater Ecology and Evolution* (Second Edition), edited by: Malard, F., Griebler, C., and Rétaux, S., Academic Press,
647 San Diego, pp. 211–240, doi:10.1016/B978-0-12-819119-4.00009-3, 2023.

648 Fišer, C., Brancelj, A., Yoshizawa, M., Mammola, S., and Fišer, Ž.: Dissolving morphological and behavioral traits of
649 groundwater animals into a functional phenotype, in: *Groundwater Ecology and Evolution* (Second Edition), edited by:
650 Fišer, C.: *Niphargus*—A model system for evolution and ecology. In *Encyclopedia of caves* (pp. 746-755). Academic Press,
651 2019.

652 Flemming, H. -C. and Wuertz, S.: Bacteria and archaea on Earth and their abundance in biofilms, *Nat. Rev. Microbiol.*, 17,
653 247–260, doi:10.1038/s41579-019-0158-9, 2019.

654 Foulquier, A., Simon, L., Gilbert, F., Fourel, F., Malard, F., and Mermilliod-Blondin, F.: Relative influences of DOC flux and
655 subterranean fauna on microbial abundance and activity in aquifer sediments: new insights from ^{13}C -tracer experiments,
656 *Freshw. Biol.*, 55, 1560–1576, doi:10.1111/j.1365-2427.2010.02385.x, 2010.

657 Galassi, D..M..P.: Groundwater copepods: diversity patterns over ecological and evolutionary scales, *Hydrobiologia*, 453,
658 227-253, doi:10.1023/A:1013100924948, 2001.

659 Galassi, D..M..P., De Laurentiis, P., and Dole-Olivier, M.: Phylogeny and biogeography of the genus *Pseudectinosoma*, and
660 description of *P. janineae* sp. n. (Crustacea, Copepoda, Ectinosomatidae), *Zool. Scr.*, 28, 289–303, doi:10.1046/j.1463-
661 6409.1999.00018.x, 1999.

662 Galassi, D. M. P., De Laurentiis, P.: Little-known cyclopoids from groundwater in Italy: re-validation of *Acanthocyclops*
663 *agamus* and redescription of *Speocyclops italicus* (Crustacea, Copepoda, Cyclopoida). *Vie et Milieu/Life & Environment*,
664 203-222, 2004

665 Galassi, D. M. P., Fiasca, B., Di Lorenzo, T., Montanari, A., Porfirio, S., and Fattorini, S.: Groundwater biodiversity in a
666 chemoautotrophic cave ecosystem: how geochemistry regulates microcrustacean community structure, *Aquat. Ecol.*, 51, 75–
667 90, doi:10.1007/s10452-016-9599-7, 2017.

668 Galassi, D. M. P., Huys, R., and Reid, J. W.: Diversity, ecology and evolution of groundwater copepods, *Freshw. Biol.*, 54,
669 691–708, doi:10.1111/j.1365-2427.2009.02185.x, 2009.

670 Gasol, J. M., Zweifel, U. L., Peters, F., Fuhrman, J. A., and Hagström, Å: Significance of Size and Nucleic Acid Content
671 Heterogeneity as Measured by Flow Cytometry in Natural Planktonic Bacteria, *Appl. Environ. Microbiol.*, 65, 4475–4483,
672 doi:10.1128/AEM.65.10.4475-4483.1999, 1999.

673 Griebler, C. and Lueders, T.: Microbial biodiversity in groundwater ecosystems, *Freshw. Biol.*, 54, 649–677,
674 doi:10.1111/j.1365-2427.2008.02013.x, 2009.

675 Griebler, C., Mindl, B., Slezak, D., and Geiger-Kaiser, M.: Distribution patterns of attached and suspended bacteria in
676 pristine and contaminated shallow aquifers studied with an in situ sediment exposure microcosm, *Aquat. Microb. Ecol.*, 28,
677 117–129, doi:10.3354/ame028117, 2002.

678 Hahn, H. J. and Fuchs, A.: Distribution patterns of groundwater communities across aquifer types in south-western
679 Germany, *Freshw. Biol.*, 54, 848–860, doi:10.1111/j.1365-2427.2008.02132.x, 2009.

680 Hose, G.C., Stumpf, C.: Architects of the underworld: bioturbation by groundwater invertebrates influences aquifer
681 hydraulic properties. *Aquat. Sci.*, 81, 20, doi: 10.1007/s00027-018-0613-0, 2019.

682 Hu, W., Zhang, H., Lin, X., Liu, R., Bartlam, M., Wang, Y.: Characteristics, Biodiversity, and Cultivation Strategy of Low
683 Nucleic Acid Content Bacteria, *Front. Microbiol.*, 13, 900669, doi:10.3389/fmicb.2022.900669, 2022.

684 Hurvich, C. M. and Tsai, C.: A corrected Akaike information criterion for vector autoregressive model selection, *J. Time
685 Ser. Anal.*, 14, 271–279, doi:10.1111/j.1467-9892.1993.tb00144.x, 1993.

686 Iannella, M., Fiasca, B., Di Lorenzo, T., Biondi, M., Di Cicco, M., and Galassi, D. M. P.: Spatial distribution of stygobitic
687 crustacean harpacticoids at the boundaries of groundwater habitat types in Europe, *Sci. Rep.*, 10, 19043,
688 doi:10.1038/s41598-020-76018-0, 2020.

689 Jasechko, S., Birks, S. J., Gleeson, T., Wada, Y., Fawcett, P. J., Sharp, Z. D., McDonnell, J. J., Welker, J. M.: The
690 pronounced seasonality of global groundwater recharge. *Water Resour. Res.* 50, 8845e8867, doi:10.1002/2014wr015809,
691 2014.

692 Kimmel, K., Avolio, M. L., and Ferraro, P. J.: Empirical evidence of widespread exaggeration bias and selective reporting in
693 ecology, *Nat. Ecol. Evol.*, 7, 1525–1536, doi:10.1038/s41559-023-02144-3, 2023.

694 Korbel, K. L. and Hose, G. C.: A tiered framework for assessing groundwater ecosystem health, *Hydrobiologia*, 661, 329–
695 349, doi:10.1007/s10750-010-0541-z, 2011.

696 Korbel, K. L., Hose, G. C.: Habitat, water quality, seasonality, or site? Identifying environmental correlates of the
697 distribution of groundwater biota. *Freshw. Sci.*, 34(1), 329–343, <https://doi.org/10.1086/680038>, 2015.

698 Korbel, K. L., and Hose, G. C.: The weighted groundwater health index: Improving the monitoring and management of
699 groundwater resources, *Ecol. Indic.*, 75, 164–181, doi:10.1016/j.ecolind.2016.11.039, 2017a.

700 Korbel, K. L., Chariton, A., Stephenson, S., Greenfield, P., Hose, G. C.: Wells provide a distorted view of life in the aquifer:
701 implications for sampling, monitoring and assessment of groundwater ecosystems, *Sci. Rep.*, 7, 40702,
702 <https://doi.org/10.1038/srep40702>, 2017b.

703 Kraft, N. J. B., Adler, P. B., Godoy, O., James, E. C., Fuller, S., and Levine, J. M.: Community assembly, coexistence and
704 the environmental filtering metaphor, *Funct. Ecol.*, 29, 592–599, doi:10.1111/1365-2435.12345, 2015.

705 Lebaron, P., Servais, P., Baudoux, A.-C., Bourrain, M., Courties, C., and Parthuisot, N.: Variations of bacterial-specific
706 activity with cell size and nucleic acid content assessed by flow cytometry, *Aquat. Microb. Ecol.*, 28, 131–140,
707 doi:10.3354/ame028131, 2002.

708 Legendre, P. and Anderson, M. J.: Distance-based redundancy analysis: testing multispecies responses in multifactorial
709 ecological experiments, *Ecol. Monogr.*, 69, 512-512, doi:10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2, 1999.

710 Lombardi, G. and Meucci, C.: Il Tufo Giallo della Via Tiberina (Roma) utilizzato nei monumenti romani, *Rend Lincei*, 17,
711 263–287, doi:10.1007/BF02904766, 2006.

712 Magurran, A. E. and McGill, B. J. (Eds.): *Biological diversity: Frontiers in measurement and assessment*, Oxford University
713 Press, Oxford New York, USA, pp. 345, ISBN 978-0-19-958067-5, 2011.

714 Magurran, A. E.: Measuring biological diversity, *Curr. Biol.*, 31, R1174–R1177, doi:10.1016/j.cub.2021.07.049, 2021.

715 Malard, F., Dole-Olivier, M.-J., Mathieu, J., Stoch, F.: Sampling Manual for the Assessment of Regional Groundwater
716 Biodiversity.
https://www.researchgate.net/publication/267567541_Sampling_Manual_for_the_Assessment_of_Regional_Groundwater_Biodiversity, Accessed on November 28, 2023, 2002.

719 Malard, F., Griebler, C., and Retaux, S. (Eds.): *Groundwater Ecology and Evolution*, Academic Press, San Diego, pp. 610,
720 ISBN 9780128191194, 2023a.

721 Malard, F., Machado, E. G., Casane, D., Cooper, S., Fišer, C., and Eme, D.: Dispersal and geographic range size in
722 groundwater, in: *Groundwater Ecology and Evolution* (Second Edition), edited by: Malard, F., Griebler, C., and Rétaux, S.,
723 Academic Press, San Diego, pp. 185–207, doi:10.1016/B978-0-12-819119-4.15003-6, 2023b.

724 Mammola, S., Lunghi, E., Bilandžija, H., Cardoso, P., Grimm, V., Schmidt, S. I., Hesselberg, T., and Martínez, A.:
725 Collecting eco-evolutionary data in the dark: Impediments to subterranean research and how to overcome them, *Ecol. Evol.*,
726 11, 5911–5926, doi:10.1002/ece3.7556, 2021.

727 Maurice, L., Robertson, A. R., White, D., Knight, L., Johns, T., Edwards, F., Arietti, M., Sorensen, J. P. R., Weitowitz, D.,
728 Marchant, B. P., Bloomfield, J. P.: The invertebrate ecology of the Chalk aquifer in England (UK). *Hydrogeol. J.*, 24, 459–
729 474, doi:10.1007/s10040-015-1334-2, 2016.

730 Melita, M., Amalfitano, S., Preziosi, E., Ghergo, S., Frollini, E., Parrone, D., and Zoppini, A.: Physiological Profiling and
731 Functional Diversity of Groundwater Microbial Communities in a Municipal Solid Waste Landfill Area, *Water (Basel)*, 11,
732 2624, doi:10.3390/w11122624, 2019.

733 Melita, M., Amalfitano, S., Preziosi, E., Ghergo, S., Frollini, E., Parrone, D., and Zoppini, A.: Redox conditions and a
734 moderate anthropogenic impairment of groundwater quality reflected on the microbial functional traits in a volcanic aquifer,
735 *Aquat. Sci.*, 85, 3, doi:10.1007/s00027-022-00899-8, 2023.

736 Mermilliod-Blondin, F., Hose, G. C., Simon, K. S., Korbel, K., Avramov, M., and Vorste, R. V.: Role of invertebrates in
737 groundwater ecosystem processes and services, in: *Groundwater Ecology and Evolution* (Second Edition), edited by:
738 Oest, A., Alsaffar, A., Fenner, M., Azzopardi, D., and Tiquia-Arashiro, S. M.: Patterns of Change in Metabolic Capabilities
739 of Sediment Microbial Communities in River and Lake Ecosystems, *Int. J. Microbiol.*, 2018, 1–15,
740 doi:10.1155/2018/6234931, 2018.

741 Parrone, D., Ghergo, S., and Preziosi, E.: A multi-method approach for the assessment of natural background levels in
742 groundwater, *Sci. Total Environ.*, 659, 884–894, doi:10.1016/j.scitotenv.2018.12.350, 2019.

743 Parrone, D., Ghergo, S., Frollini, E., Rossi, D., and Preziosi, E.: Arsenic-fluoride co-contamination in groundwater:
744 Background and anomalies in a volcanic-sedimentary aquifer in central Italy, *J. Geochem. Explor.*, 217, 106590,
745 doi:10.1016/j.gexplo.2020.106590, 2020.

746 Parrone, D., Ghergo, S., Preziosi, E., and Casentini, B.: Water-Rock Interaction Processes: A Local Scale Study on Arsenic
747 Sources and Release Mechanisms from a Volcanic Rock Matrix, *Toxics*, 10, 288, doi:10.3390/toxics10060288, 2022.

748 Preziosi, E., Petrangeli, A. B., and Giuliano, G.: Tailoring groundwater quality monitoring to vulnerability: a GIS procedure
749 for network design, *Environ. Monit. Assess.*, 185, 3759–3781, doi:10.1007/s10661-012-2826-3, 2013.

750 Preziosi, E., Parrone, D., Del Bon, A., and Ghergo, S.: Natural background level assessment in groundwaters: probability
751 plot versus pre-selection method, *J. Geochem. Explor.*, 143, 43–53, doi:10.1016/j.gexplo.2014.03.015, 2014.

752 Preziosi, E., Frollini, E., Zoppini, A., Ghergo, S., Melita, M., Parrone, D., Rossi, D., and Amalfitano, S.: Disentangling
753 natural and anthropogenic impacts on groundwater by hydrogeochemical, isotopic and microbiological data: Hints from a
754 municipal solid waste landfill, *Waste. Manage.*, 84, 245–255, doi:10.1016/j.wasman.2018.12.005, 2019.

755 Proctor, C. R., Besmer, M. D., Langenegger, T., Beck, K., Walser, J. -C., Ackermann, M., Bürgmann, H., and Hammes, F.:
756 Phylogenetic clustering of small low nucleic acid-content bacteria across diverse freshwater ecosystems, *ISME J.*, 12, 1344–
757 1359, doi:10.1038/s41396-018-0070-8, 2018.

758 R Development Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical
759 Computing: Vienna, Austria, <http://www.R-project.org/>, 2008.

760 Rubbens, P., Schmidt, M. L., Props, R., Biddanda, B. A., Boon, N., Waegeman, W., and Denef, V. J.: Randomized Lasso
761 Links Microbial Taxa with Aquatic Functional Groups Inferred from Flow Cytometry, *MSystems*, 4, 10-1128,
762 doi:10.1128/mSystems.00093-19, 2019.

763 Saccò, M., Blyth, A. J., Humphreys, W. F., Kuhl, A., Mazumder, D., Smith, C., and Grice, K.: Elucidating stygofaunal
764 trophic web interactions via isotopic ecology, *PLoS One*, 14, e0223982, doi:10.1371/journal.pone.0223982, 2019.

765 Schminke, H. K.: Adaptations of Bathynellacea (Crustacea, Syncarida) to life in the interstitial system of freshwater aquifers.
766 *Int. Rev. ges. Hydrobiol. Hydrogr.*, 59(4), 617–625, 1974.

767 Segawa, T., Sugiyama, A., Kinoshita, T., Sohrin, R., Nakano, T., Nagaosa, K., Greenidge, D., and Kato, K.: Microbes in
768 Groundwater of a Volcanic Mountain, Mt. Fuji; 16S rDNA Phylogenetic Analysis as a Possible Indicator for the Transport
769 Routes of Groundwater, *Geomicrobiol. J.*, 32, 677–688, doi:10.1080/01490451.2014.991811, 2015.

770 Shen, Y., Chapelle, F. H., Strom, E. W., and Benner, R.: Origins and bioavailability of dissolved organic matter in
771 groundwater, *Biogeochemistry*, 122, 61–78, doi:10.1007/s10533-014-0029-4, 2015.

772 Sottili, G., Palladino, D. M., Marra, F., Jicha, B., Karner, D. B., and Renne, P.: Geochronology of the most recent activity in
773 the Sabatini Volcanic District, Roman Province, central Italy, *J. Volcanol. Geotherm. Res.*, 196, 20–30,
774 doi:10.1016/j.jvolgeores.2010.

775 Stoch, F. and Galassi, D. M. P.: Stygobiotic crustacean species richness: a question of numbers, a matter of scale, in: Fifty
776 Years after the “Homage to Santa Rosalia”: Old and New Paradigms on Biodiversity in Aquatic Ecosystems, Development
777 in Hydrobiology, edited by: Naselli-Flores, L. and Rossetti, G., Springer Dordrecht, Netherlands, 217–234, doi:10.1007/978-
778 90-481-9908-2_16, 2010.

779 Trontelj, P., Blejec, A., and Fišer, C.: Ecomorphological convergence of cave communities, *Evolution (N Y)*, 66, 3852–
780 3865, doi:10.1111/j.1558-5646.2012.01734.x, 2012.

781 Vaccarelli, I., Cerasoli, F., Mammola, S., Fiasca, B., Di Cicco, M., Di Lorenzo, T., Stoch, F., and Galassi, D. M. P.:
782 Environmental factors shaping copepod distributions in cave waters of the Lessinian unsaturated karst (NE-Italy), *Front.
783 Ecol. Evol.*, 11, doi:10.3389/fevo.2023.1143874, 2023.

784 Wurzbacher, C., Kreiling, A. -K., Svantesson, S., Van den Wyngaert, S., Larsson, E., Heeger, F., Nilsson, H. R., and
785 Pálsson, S.: Fungal communities in groundwater springs along the volcanic zone of Iceland, *Inland Waters*, 10, 418–427,
786 doi:10.1080/20442041.2019.1689065, 2020.

787 Zagmajster, M., Ferreira, R. L., Humphreys, W. F., Niemiller, M. L., and Malard, F.: Patterns and determinants of richness
788 and composition of the groundwater fauna, in: *Groundwater Ecology and Evolution (Second Edition)*, edited by: Malard, F.,
789 Griebler, C., and Rétaux, S., Academic Press, San Diego, pp. 141–164, doi:10.1016/B978-0-12-819119-4.00006-8, 2023.

790

791

792 **Appendix A**793 **Table A1. Characteristics of the sampling sites within the three aquifer units (AUs).**

	ID	Lat	Long	Elevation (m a.s.l.)	Depth (m)	Use	AU
795	QA07	42.06812	12.50096	132	110	Domestic	sulfate-depleted
796	QA08	42.07234	12.51895	68	50	Domestic	earth-alkaline
797	QA09	42.07142	12.52757	49	29	Irrigation	earth-alkaline
798	QA13	42.09246	12.50991	187	115	Domestic	K-rich
799	QA15	42.08583	12.27110	146	115	Domestic	K-rich
800	QA21	42.08511	12.49676	176	105	Domestic	sulfate-depleted
	QA24	42.05984	12.49368	107	80	Domestic	sulfate-depleted
	QA25	42.08269	12.52501	126	120	Domestic	K-rich
	QA29	42.09349	12.50305	145	64	Domestic	earth-alkaline
	QA30	42.07626	12.50011	153	95	Domestic	sulfate-depleted

801

802 **Table A2. Physical-chemical, microbial, and crustacean data (taxonomic and functional) of the groundwater samples**
803 **in the three aquifer units (AUs) of Sabatini Mounts aquifer.**

804

805 **a) Field data (WT: water table depth in m a.s.l.; ORP: oxidation-reduction potential in mV; T: temperature in °C;**
806 **DO: dissolved oxygen in mg/L; EC: electrical conductivity in µS/cm).**

	ID	YEAR	AU	WT	ORP	T	pH	DO	DO%	EC
808	QA07	2014	S-D	65.0	211	18.0	7.6	7.1	75	490
809	QA08	2014	E-A	41.3	206	16.9	6.8	3.8	39	1048
810	QA09	2014	E-A	40.6	105	16.7	7.2	6.6	69	749
811	QA13	2014	K	112.5	194	16.2	7.5	8.5	88	675
812	QA15	2014	K	68.8	208	17.0	7.7	7.5	79	641
813	QA21	2014	S-D	104.1	137	18.6	7.7	5.0	54	479
814	QA24	2014	S-D	67.4	248	17.3	7.5	7.0	73	545
815	QA25	2014	K	64.4	244	17.1	7.8	5.0	52	640
816	QA29	2014	E-A	110.8	201	15.4	7.3	8.0	82	707
817	QA30	2014	S-D	82.2	221	17.4	7.5	8.1	85	525
818	QA07	2015	S-D	66.5	170	18.6	7.4	11.3	121	497
819	QA08	2015	E-A	41.2	229	17.5	6.8	3.9	41	1052
	QA09	2015	E-A	40.3	58	17.0	7.4	6.9	72	746
	QA13	2015	K	112.9	161	16.7	7.6	8.4	88	679
	QA15	2015	K	68.6	260	17.0	7.4	6.9	73	645
	QA21	2015	S-D	104.8	130	19.5	7.5	3.2	35	479
	QA24	2015	S-D	67.7	170	17.4	7.3	8.1	85	551
	QA25	2015	K	63.8	200	19.1	7.7	6.5	71	665
	QA29	2015	E-A	111.3	141	16.7	7.3	6.1	64	711
	QA30	2015	S-D	82.9	180	17.8	7.5	8.5	91	530

820

821

822

823

824

825

b) Major components (in mg).

ID	YEAR	AU	F	Cl- Cl^-	NO_3^- - NO_3^-	SO_4^{2-} - SO_4^{2-}	HCO_3^-	HCO_3^-	Na^+ - Na^+	Mg^{2+} - Mg^{2+}	K^+ - K^+	Ca^{2+}	Ca^{2+}	Si	DOC
QA07	2014	S-D	1.6	20.9	7.1	4.8	237.9	30.1	8.1	41.5	39.4	25.3	1.5		
QA08	2014	E-A	1.1	41.6	12.7	131.5	440.4	44.1	19.1	37.8	132.0	26.8	1.3		
QA09	2014	E-A	1.0	17.6	44.6	28.3	358.7	25.1	5.2	29.6	32.7	26.7	0.8		
QA13	2014	K	1.3	36.9	16.9	11.7	312.3	38.8	13.5	53.6	52.5	26.1	1.1		
QA15	2014	K	2.1	31.0	17.5	18.6	269.6	49.5	10.7	53.3	39.5	23.2	0.8		
QA21	2014	S-D	1.6	22.7	7.3	7.8	214.7	24.5	6.7	36.6	43.3	25.5	1.2		
QA24	2014	S-D	0.9	32.9	20.5	7.6	241.6	27.2	10.4	32.3	51.4	27.8	0.8		
QA25	2014	K	3.2	34.6	18.0	35.3	256.2	70.1	8.6	43.6	31.4	18.1	0.7		
QA29	2014	E-A	0.6	29.6	25.1	21.9	331.8	28.3	11.9	31.8	81.7	26.8	0.9		
QA30	2014	S-D	1.4	36.5	7.1	4.8	225.7	27.2	9.8	37.7	43.3	26.2	0.7		
QA07	2015	S-D	1.6	20.4	7.0	4.6	244.0	15.6	7.1	38.2	33.7	18.9	0.5		
QA08	2015	E-A	1.1	40.1	13.6	127.7	442.9	40.6	17.1	32.7	113.0	19.8	0.8		
QA09	2015	E-A	1.0	17.0	33.3	27.2	363.6	27.2	10.2	31.9	77.8	16.1	0.9		
QA13	2015	K	1.1	35.1	16.6	11.4	306.2	35.5	12.3	46.7	46.1	19.3	0.6		
QA15	2015	K	2.1	30.7	16.7	18.5	278.2	32.9	10.1	48.4	36.1	18.0	0.8		
QA21	2015	S-D	1.7	22.6	6.9	8.3	223.3	22.7	5.9	32.6	38.5	19.7	0.7		
QA24	2015	S-D	0.9	29.4	18.2	7.2	242.8	24.7	8.9	27.7	43.5	19.9	0.7		
QA25	2015	K	3.1	31.6	17.3	39.0	257.4	63.5	7.6	38.8	28.5	13.5	0.8		
QA29	2015	E-A	0.6	29.5	25.8	20.4	328.2	26.5	10.4	27.7	68.8	20.2	0.5		
QA30	2015	S-D	1.4	39.5	7.9	4.7	218.4	24.9	8.7	33.2	37.5	18.3	0.5		

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

c) Trace elements (in μg).

ID	YEAR	AU	Li	B	Al	V	Cr	Mn	Fe	Ni	Cu	Zn	As	Se	Rb	Sr	Ba	Pb	U
QA07	2014	S-D	20.1	76.1	11	40.2	1.8	2.7	34.8	0.4	0.5	17.8	20.1	0.52	28	560	74.1	0.1	2.9
QA08	2014	E-A	18.1	101	7.8	35.1	0.7	0.5	21.1	1.9	1.5	14.1	29.6	1.5	40	1396	104	0.2	30.7
QA09	2014	E-A	11.1	65.8	3.2	38.6	1.1	0.4	9.2	0.3	0.2	8.4	32.6	0.2	31	127	9.4	0.2	2.5
QA13	2014	K	23.6	111	13	38.1	1.1	0.9	23.2	0.5	0.8	24.7	13.2	0.2	29	849	102	0.2	6.1
QA15	2014	K	45.9	116	14	23.1	1.4	0.3	15.1	0.3	0.6	21.8	26.7	0.4	61	416	25.4	0.2	13.6
QA21	2014	S-D	22.3	65.4	2.9	29.5	1.3	0.9	21.2	0.9	0.4	13.1	31.7	0.4	19	489	68.5	0.2	4.8
QA24	2014	S-D	14.1	67.5	3.4	31.1	1.2	0.3	8.9	0.3	0.4	84.2	13.3	0.5	24	599	88	0.2	3.2

QA25	2014	K	70.5	144	12	24.5	0.6	1.4	26.4	59.4	0.7	22.4	43.1	0.2	64	331	35.7	0.3	17.8
QA29	2014	E-A	16.2	115	11	25.5	1.5	0.2	10.8	2.1	0.6	28.1	13.3	0.6	26	831	79.1	0.2	34.3
QA30	2014	S-D	19.7	71	5.1	30.1	1.2	0.2	11.5	0.9	0.3	32.2	20.3	0.2	19	593	72.1	0.2	2.5
QA07	2015	S-D	19.1	62.5	9.9	35.5	1.3	1.8	18.8	0.1	0.2	5.5	17.5	0.1	27	493	62.8	0.1	2.7
QA08	2015	E-A	17.7	91	9.7	31.3	0.6	0.4	15.2	0.2	1.3	2.2	31.9	1.5	37	1233	90.9	0.1	29.6
QA09	2015	E-A	14.5	66.2	4.1	18.3	0.6	9.6	110	0.1	0.2	3.6	15.7	0.7	22	578	129	0.1	15.1
QA13	2015	K	22.1	97	31	34.4	1.5	0.6	24.6	0.1	0.3	7.4	13.1	0.1	26	767	96	0.2	5.5
QA15	2015	K	44.9	111	9.6	22.1	1.1	0.2	11.2	0.1	0.6	6.4	27.9	0.3	57	401	25.1	0.1	11.8
QA21	2015	S-D	22.1	60.3	31	26.6	1.6	0.7	14.8	0.1	0.3	3.3	32.9	0.2	18	454	65.7	0.2	4.7
QA24	2015	S-D	13.6	57.3	16	27.8	1.1	0.5	61	0.1	0.3	104	12.1	0.1	21	527	82.5	0.6	2.8
QA25	2015	K	69.4	123	7.1	20.6	0.4	0.1	5.9	0.1	0.2	5.3	36.2	0.1	59	360	45.5	0.1	17.6
QA29	2015	E-A	15.5	98	31	22	1.8	0.3	11.2	0.1	0.4	8.9	12.3	0.1	23	717	76.5	0.2	27.9
QA30	2015	S-D	18.2	58.8	5.9	27.1	0.9	0.1	8.5	0.1	0.1	38.4	16.8	0.1	17	520	64.7	0.1	2.1

842

843

844

845

846

847 **d) Microbial community characteristics. Total cell count (TCC in cell/mL), Low Nucleic Acidic and High Nucleic
848 Acids cells are expressed as percentages of total absorbance (CARB: carbohydrates, POL: polymers; CARB_A:
849 carboxylic acids, AM: amino acids, AMIN: amines).**

850

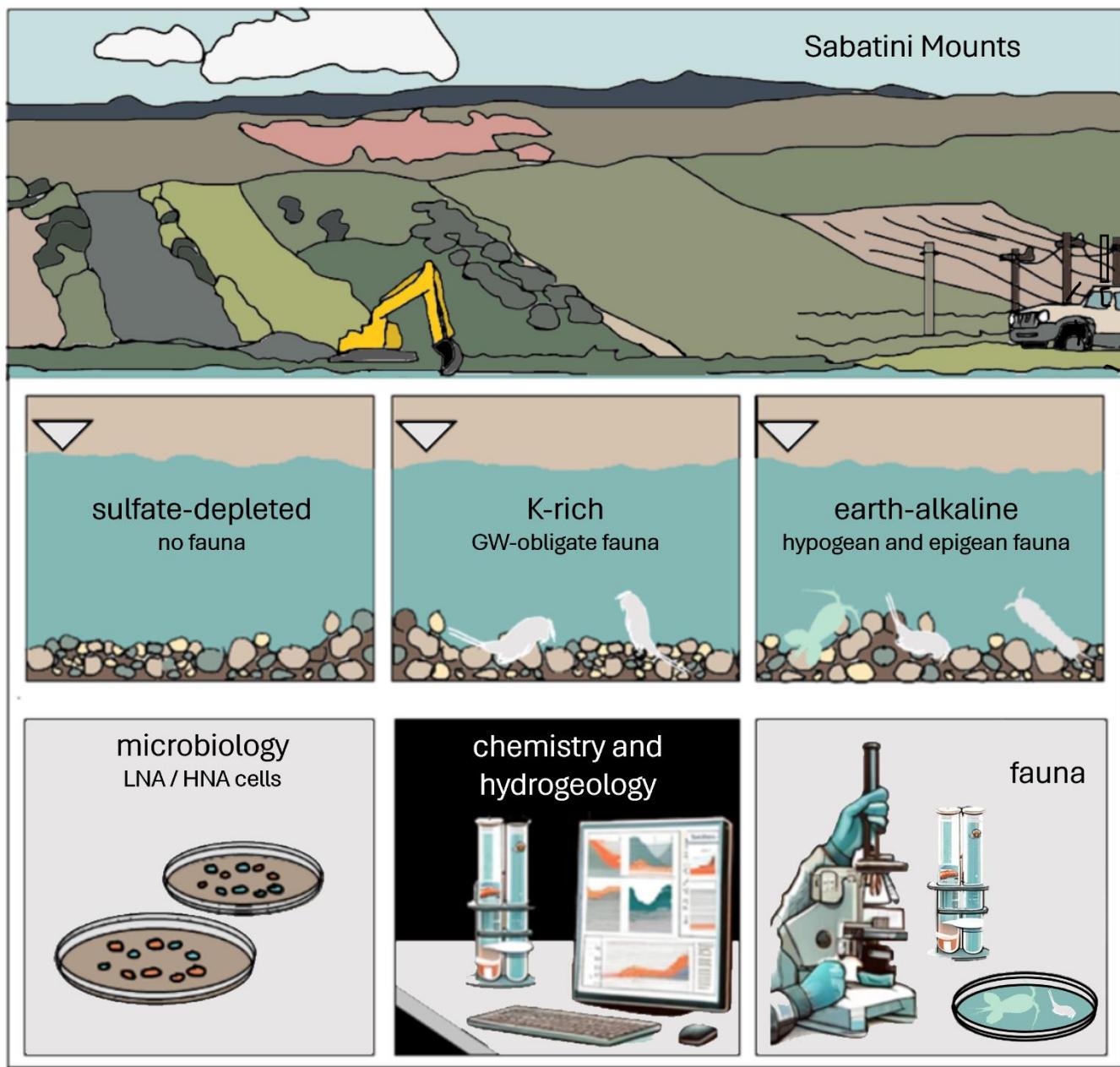
ID	YEAR	AU	TCC	LNA	HNA	HNA/LNA	CARB	POL	CARB A	AM	AMIN
QA07	2014	S-D	9896	66	34	0.5	40	25	20	11	4
QA08	2014	E-A	13950	80	20	0.2	31	14	27	23	6
QA09	2014	E-A	53423	81	19	0.2	37	7	26	25	6
QA13	2014	K	17705	65	35	0.5	21	41	20	18	0
QA15	2014	K	9315	70	30	0.4	31	27	28	14	0
QA21	2014	S-D	9283	68	32	0.5	40	25	20	11	4
QA24	2014	S-D	5409	63	37	0.6	40	25	20	11	4
QA25	2014	K	94954	80	20	0.2	31	27	28	14	0
QA29	2014	E-A	15265	67	33	0.5	46	13	25	17	0
QA30	2014	S-D	6291	61	39	0.7	52	18	19	12	0
QA07	2015	S-D	20307	67	33	0.5	0	95	0	0	5
QA08	2015	E-A	17182	82	18	0.2	36	13	25	18	8
QA09	2015	E-A	37164	77	23	0.3	40	11	23	22	4
QA13	2015	K	13148	66	34	0.5	10	25	55	6	3
QA15	2015	K	12447	75	25	0.3	0	34	58	0	8
QA21	2015	S-D	13822	72	28	0.4	0	69	29	0	2
QA24	2015	S-D	11843	62	38	0.6	0	51	47	0	2
QA25	2015	K	79904	75	25	0.3	0	30	70	0	0
QA29	2015	E-A	61110	67	33	0.5	44	22	16	10	8
QA30	2015	S-D	8175	67	33	0.5	0	60	40	0	0

864

865 **e) Taxonomic composition. Pit: *Parapseudoleptomesochra italica*; Psp: *Parastenocaris* sp. Nps: *Nitocrella
866 psammophila*; Pre: *Pseudectinosoma reductum*; Egr: *Elaphoidella gracilis*; Aag: *Acanthocyclops agamus*; Mpo:
867 *Moraria poppei*; Msp: *Meridiobathynella* sp.; Nsp: *Niphargus* sp.; SB: cumulative abundances of groundwater-
868 obligate crustacean species. In each sample (ID), abundances are reported as number of individuals per 1000 L of
869 groundwater.**

870

ID	YEAR	AU	Pit	Psp	Nps	Pre	Egr	Aag	Mpo	Msp	Nsp	SB
QA07	2014	S-D	0	0	0	0	0	0	0	0	0	0
QA08	2014	E-A	12	2	0	0	0	0	0	3	0	17
QA09	2014	E-A	18	0	0	0	0	0	0	0	0	18
QA13	2014	K	1	0	0	0	0	0	0	0	0	1
QA15	2014	K	0	0	0	0	0	0	0	0	1	1
QA21	2014	S-D	0	0	0	0	0	1	0	0	0	0
QA24	2014	S-D	0	0	0	0	0	0	0	0	0	0
QA25	2014	K	62	0	0	0	0	0	0	0	0	62
QA29	2014	E-A	0	0	0	0	9	0	0	0	0	0
QA30	2014	S-D	0	0	0	0	0	0	0	0	0	0
QA07	2015	S-D	0	0	0	0	0	0	0	0	0	0
QA08	2015	E-A	13	0	0	0	0	2	0	27	0	42
QA09	2015	E-A	0	0	0	0	0	0	0	0	0	0
QA13	2015	K	1	0	0	0	0	0	0	0	0	1
QA15	2015	K	0	0	5	1	0	12	0	0	0	18
QA21	2015	S-D	0	0	0	0	0	0	0	0	0	0
QA24	2015	S-D	0	0	0	0	0	0	0	0	0	0
QA25	2015	K	36	0	0	0	0	0	0	0	0	36
QA29	2015	E-A	0	0	0	0	4	0	0	0	0	0
QA30	2015	S-D	0	0	0	0	0	0	0	0	0	0


f) Functional composition (in percentage): BUR: burrowers, INT: interstitial; SWI: swimmers; FS-M: fine sediments + microorganisms; LM: living microphytes; D-F: deposit-feeders; COL: collectors; GRA: grazers; EUR: eurythermal; MST: moderately stenothermal; STE: stenothermal.

874

ID	YEAR	GWB	LOCOMOTION			DIET		FEEDING HABITS			THERMAL TOLERANCE		
			BUR	INT	SWI	FS-M	LM	D-F	COL	GRA	EUR	MST	STE
QA07	2014	S-D	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
QA08	2014	E-A	0.9	0.1	0.0	1.0	0.0	1.0	0.0	0.0	0.9	0.0	0.1
QA09	2014	E-A	1.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0
QA13	2014	K	1.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0
QA15	2014	K	1.0	0.0	0.0	1.0	0.0	0.5	0.5	0.0	0.5	0.0	0.5
QA21	2014	S-D	0.0	1.0	0.0	1.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0
QA24	2014	S-D	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
QA25	2014	K	1.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0
QA29	2014	E-A	1.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	1.0	0.0	0.0
QA30	2014	S-D	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
QA07	2015	S-D	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
QA08	2015	E-A	0.9	0.0	0.1	1.0	0.0	1.0	0.0	0.0	0.9	0.1	0.0
QA09	2015	E-A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
QA13	2015	K	1.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0
QA15	2015	K	0.3	0.0	0.7	1.0	0.0	0.9	0.1	0.0	0.3	0.6	0.1
QA21	2015	S-D	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
QA24	2015	S-D	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
QA25	2015	K	1.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0
QA29	2015	E-A	1.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	1.0	0.0	0.0
QA30	2015	S-D	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

875

876

