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Moving beyond post-hoc XAI: Lessons learned from dynamical climate modeling 1 

 2 

 3 

Abstract. AI models are criticized as being black boxes, potentially subjecting climate science to greater uncertainty. 4 

Explainable artificial intelligence (XAI) has been proposed to probe AI models and increase trust. In this Perspective, 5 

we suggest that, in addition to using XAI methods, AI researchers in climate science can learn from past successes in 6 

the development of physics-based dynamical climate models. Dynamical models are complex but have gained trust 7 

because their successes and failures can be attributed to specific components or sub-models, such as when model bias 8 

is explained by pointing to a particular parameterization. We propose three types of understanding as a basis to 9 

evaluate trust in dynamical and AI models alike: (1) instrumental understanding, which is obtained when a model has 10 

passed a functional test; (2) statistical understanding, which is obtained when researchers can make sense of the 11 

modelling results using statistical techniques to identify input-output relationships; and (3) Component-level 12 

understanding, which refers to modelers’ ability to point to specific model components or parts in the model 13 

architecture as the culprit for erratic model behaviors or as the crucial reason why the model functions well. We 14 

demonstrate how component-level understanding has been sought and achieved via climate model intercomparison 15 

projects over the past several decades. Such component-level of understanding routinely leads to model improvements 16 

and may also serve as a template for thinking about AI-driven climate science. Currently, XAI methods can help 17 

explain the behaviors of AI models by focusing on the mapping between input and output, thereby increasing the 18 

statistical understanding of AI models. Yet, to further increase our understanding of AI models, we will have to build 19 

AI models that have interpretable components amenable to component-level understanding. We give recent examples 20 

from the AI climate science literature to highlight some recent, albeit limited, successes in achieving component-level 21 

understanding and thereby explaining model behaviour. The merit of such interpretable AI models is that they serve 22 

as a stronger basis for trust in climate modeling and, by extension, downstream uses of climate model data.  23 

 24 

 25 

1. Introduction 26 

Machine learning (ML) is becoming increasingly utilized in climate science for tasks ranging 27 

from climate model emulation (Beucler et al. 2019), to downscaling (McGinnis et al. 2021), 28 

forecasting (Ham, Kim, and Luo 2019) and analyzing complex and large datasets more generally 29 

(for an overview of ML in climate science, see Reichstein et al. 2019; Molina et al. 2023; de 30 

Burgh-Day and Leeuwenburg 2023). Compared with physics-based methods, ML, once trained, 31 

has a key advantage: computational efficiency. Along with the advantages of ML come 32 
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challenges such as assessing ML trustworthiness. For example, scientists often do not understand 33 

why a neural net (NN) gives the output that it does because the NN is a “black box.”1  34 

To build trust in ML, the field of explainable artificial intelligence (XAI) has become 35 

increasingly prominent in climate science (Bommer et al. 2023). Sometimes referred to as 36 

“opening the black box,” XAI methods consist of additional models or algorithms intended to 37 

shed light on why the ML model gives the output that it does. For example, (Labe and Barnes 38 

2021) use an XAI method, layer-wise relevance propagation, and find that their NN heavily 39 

relies on datapoints from the North Atlantic, Southern Ocean, and Southeast Asia to make its 40 

predictions.  41 

While XAI methods can produce useful information about ML model behaviors, these methods 42 

also face problems and have been subjected to critique. As Barnes et al. (2022) note, XAI 43 

methods “do not explain the actual decision-making process of the network” (p. 1). Additionally, 44 

different XAI methods applied to the same ML model prediction have been shown to exhibit 45 

discordance, i.e., yielding different and even incompatible “explanations” for the same ML 46 

model (Mamalakis et al. 2022). Discordance in XAI is not unique to climate science. Krishna et 47 

al. (2022) find that 84% of their interviewees (ML practitioners across fields who use XAI 48 

methods) report experiencing discordance in their day-to-day workflow and when it comes to 49 

resolving discordance, 86% of their online user study responses indicate that ML practitioners 50 

either employed arbitrary heuristics (e.g., choosing a favorite method or result) or just simply did 51 

not know what to do.  52 

As Molina et al. (2023) note, “identifying potential failure modes of XAI, and uncertainty 53 

quantification pertaining to different types of XAI methods, are both crucial to establish 54 

confidence levels in XAI output and determine whether ML predictions are ‘right for the right 55 

reasons’” (p. 8). Rudin (2019)argues that, instead of attempting to use XAI to explain ML 56 

models post hoc, scientists ought to build interpretable models informed by domain expertise 57 

from the outset. Speaking about explainability in particular, Rudin writes, “many of the [XAI] 58 

methods that claim to produce explanations instead compute useful summary statistics of 59 

predictions made by the original model. Rather than producing explanations that are faithful to 60 

the original model, they show trends in how predictions are related to the features” of the model 61 

input (2019, p. 208).  62 

Regardless, XAI methods will likely continue to be widely applied due to ease of use and as 63 

benchmark metrics for XAI methods are proposed and implemented (Hedström et al. 2023; 64 

Bommer et al. 2023). In some cases, XAI methods are applied with great success, e.g., 65 

(Mamalakis et al. 2022) found that the input x gradient method fit their ground truth model with 66 

 
1 Note that computer scientists have proposed various conceptual approaches to articulate “transparency” (e.g., 

Lipton 2016). However, we aim to offer conceptual clarity for ML applications specifically in climate science by 

comparing different types of understanding in ML and in dynamical climate models. 
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a high degree of accuracy. However, we believe that more progress can be made in establishing 67 

trust in ML-driven climate science.  68 

In this Perspective, we recommend that climate scientists move beyond traditional post hoc XAI 69 

methods and aim for component-level understanding of ML models. By “component” we mean a 70 

functional unit of the model’s architecture, such as a layer or layers in a neural net. By 71 

“understanding” we mean knowledge that could serve as a basis for an explanation about the 72 

model. We distinguish between three levels of understanding: 73 

Instrumental understanding: knowing that the model performed well (or not); e.g., 74 

knowing its error rate on a given test. 75 

Statistical understanding: being able to offer a reason why we should trust a given ML 76 

model by appealing to input-output mappings. These mappings can be retrieved by 77 

statistical techniques.  78 

Component-level understanding: being able to point to specific model components or 79 

parts in the model architecture as the cause of erratic model behaviors or as the crucial 80 

reason why the model functions well.  81 

Instrumental understanding, while clearly necessary, is fairly straightforward and is a 82 

prerequisite for any explanation of model behavior. It involves knowing the degree to which a 83 

model fits some data (Lloyd 2010; Baumberger et al. 2017 ). It may also involve knowing 84 

whether the model both fits some data and agrees with simpler models about a prediction of 85 

interest or whether the model has performed well on an out-of-sample test (e.g., (Hausfather et 86 

al. 2020)or according to other metrics (e.g., Gleckler et al. 2008).  87 

  88 

However, in this perspective, we will only focus on the other two types of understanding. 89 

Statistical understanding can be gained via traditional XAI methods but does not require 90 

knowledge of the model’s innerworkings, i.e., its components and/or architecture (see Sect. 2 91 

below). In contrast, component-level understanding does involve knowledge of the model’s 92 

innerworkings. Therefore, component-level understanding allows scientists to offer causal 93 

explanations that attribute ML model behaviors to its components. Scientists need to build and 94 

analyze their models in such a way that they can understand how distinct model components 95 

contribute to the model’s overall predictive successes or failures rather than merely probe model 96 

data to yield input-output mappings. The latter is emblematic of traditional XAI methods.  97 

Our recommendation to strive for component-level understanding is inspired by how dynamical 98 

climate models have been built, tested, and improved, such as those in the coupled model 99 

intercomparison projects (CMIP). In CMIP, when models agree on a particular result, scientists 100 

sometimes infer that the governing equations and prescribed forcings shared by the models are 101 

responsible for the models’ similar results. As Baumberger et al. (2017) put it, “robustness of 102 

model results (combined with their empirical accuracy) is often seen as making it likely, or at 103 
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least increasing our confidence, that the processes that determine these results are encapsulated 104 

sufficiently well in the models” (p. 11; see also Hegerl et al. 2007; Kravitz et al. 2013; Lloyd 105 

2015; Schmidt and Sherwood 2015; O’Loughlin 2021). Conversely, when climate models exhibit 106 

biases or errors, scientists can often point to specific parameterizations or sub-models as the 107 

likely cause (e.g., Gleckler et al. 1995; Pitari et al. 2014; Gettelman et al. 2019); O’Loughlin 108 

2023), although models can get the right answer for the wrong reasons (e.g., see Knutti 2008).   109 

Fortunately, we see component-level understanding exemplified in ML-driven climate science to 110 

some extent already (Beucler et al. 2019; Kashinath et al. 2021; Bonev et al. 2023, see Sect. 4 111 

below). Indeed, the thinking behind physics-informed machine learning, which incorporates 112 

known physical relations into the models from the outset (Kashinath et al. 2021;Wang et al. 113 

2022; Cuomo et al. 2022), often involves component-level understanding. Thus, our proposal is 114 

an endorsement of these ongoing best practices, a recognition of the relationship between the 115 

evaluation of dynamical models and data-driven models, and a warning about the limits of 116 

statistical understanding.  117 

In addition, there is a concurrent need to establish the trustworthiness of ML models as ML-118 

driven climate science potentially becomes increasingly used to inform decision makers. While 119 

decision makers themselves do not need to understand exactly how a model arrives at the answer 120 

it does, they may desire an explanation of the model’s behavior that comes from a credible 121 

expert. One way to establish credibility is to be able to explain ML model behavior by appealing 122 

to the innerworkings of the model, which requires component-level understanding of the model. 123 

In this way, component-level understanding can serve as a basis for trust in ML-driven climate 124 

science.  125 

The remainder of the paper is structured as follows. In Sect. 2, we give an overview of XAI in 126 

climate science and explain the idea of statistical understanding and how XAI can only give us 127 

statistical understanding. In Sect. 3, we detail the notion of component-level understanding and 128 

demonstrate it using examples from CMIP. In Sect. 4, we show how component-level 129 

understanding is achievable in ML. In Sect. 5, we conclude and make suggestions for ML-driven 130 

climate science.   131 
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 132 

 133 

2. Post-hoc XAI in climate science and statistical understanding 134 

XAI methods are intended to shed light on the behavior of complex opaque ML models. As 135 

Mamalakis et al. (2022b) put it, XAI “methods aim at a post hoc attribution of the NN prediction 136 

to specific features in the input domain (usually referred to as attribution/relevance heatmaps), 137 

thus identifying relationships between the input and the output that may be interpreted physically 138 

by the scientists" (p. 316). XAI methods are typically applied to ML models which are multi-139 

layer, convolutional, recurrent neural networks, and/or tree ensembles.  140 

The general idea behind XAI methods is to attribute the predictive success of the model’s output 141 

(i.e., the model’s prediction or decision) to subsets of its input in supervised ML. Broadly, there 142 

are two conceptual approaches to achieve this.2 One approach is to figure out how the changes in 143 

input affect the output. For example, Local Interpretable Model-agonistic Explanation (LIME) 144 

first perturbs an input data point to create surrogate data near said data point. Then, after the 145 

 
2 Yuan et al. (2023) break down the various XAI methods into four categories. They divide those related to 

manipulating input-output into perturbation-based methods and surrogate-based methods (e.g., LIME). They divide 

the methods that rely on model parameter values into gradient-based methods (e.g., gradient) and decomposition-

based method (e.g., LRP). 

Figure 1. Scientists can obtain statistical understanding of models by seeking input-output mapping, e.g., via perturbation 
experiments. To acquire component-level understanding, one needs to be able to pinpoint specific components to explain 
models’ erratic behaviors or successes. This has been done in dynamic climate modeling, e.g., by pointing to cloud 
parameterization as a means to improve modeling outcomes. We offer three examples of component-level understanding in 
machine modeling. In panel (a), Beucler et al. (2021) design layers of neurons in their neural network to enforce energy 
conservation and improved model outcome. In panel (b), Kathnash et al. (2023) use spherical Fourier transformation to 
ensure Fourier Neural Operators perform with climate data. In panel (c), Bau et al. (2019) use a method called GAN dissection 
to identify which subsets of neurons control parts of images that correspond to semantics (e.g., trees or doors). 
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trained ML model classifies the surrogate data, LIME fits a linear regression using classified 146 

surrogate data and measures how model output can be attributed to features of the surrogate data 147 

manifold. In this way, LIME attributes the predictive success for the actual data point to a subset 148 

of input features. Note that L stands for “local” because LIME starts with perturbing specific 149 

classificatory instances rather than with global classification.  150 

Another commonly used method is Shapley Additive explanation (SHAP), which is based on 151 

calculating the Shapley values of each input feature. Shapley values are cooperative game 152 

theoretic measures that distribute gains or costs to members of a coalition. Roughly put, Shapley 153 

values are calculated by repeatedly randomly removing a member from the group to form a new 154 

coalition and calculating the consequent gains and then averaging all marginal contributions to 155 

all possible coalitions. In the XAI context, input features will have different Shapley values, 156 

denoting their different contribution to the model’s predictive success. E.g., see (Chakraborty et 157 

al. 2021; Felsche and Ludwig 2021; Cilli et al. 2022; Clare et al. 2022; Grundner et al. 2022; W. 158 

Li et al. 2022; Xue et al. 2022) 159 

Another approach relies on treating a trained black box model as a function to understand how 160 

the input-output mapping relationship is represented by this function. For example, vanilla 161 

gradient (also known as saliency) is an XAI method that relies on calculating the gradient of 162 

probabilities of output being in each possible category with respect to its input and 163 

backpropagates the information to its input. In this way, vanilla gradient quantifies the relative 164 

importance of each element of the input vector with respect to the output, thereby attributing the 165 

predictive success to subsets of input. E.g., see Balmaceda-Huarte et al. 2023; Liu et al. 2023; He 166 

et al. 2024.3 167 

Let’s examine how XAI methods yield statistical understanding in a detailed example. González-168 

Abad et al. (2023) use the saliency method to examine input-output mappings in three different 169 

convolutional neural nets (CNNs) which were trained and used to downscale climate data. They 170 

computed and produced accumulated saliency maps which account for “the overall importance 171 

of the different elements” of the input data for the model’s prediction (p. 8). One of their results 172 

is that, in one of the CNNs, air temperature (at 500hPa, 700 hPa, 850hPa, and 1000 hPA) 173 

accumulates the highest relevance for predicting North American near-surface air temperature, 174 

although different regions are apparently more relevant than others to the models’ predictions 175 

(see their figure 6, p. 12). In other words, it appeared that the CNN had correctly picked up on a 176 

relationship between coarse resolution temperature at certain geopotential heights on the one 177 

hand, and higher resolution near-surface air temperatures on the other hand.  178 

In this way, XAI methods yield information that can be helpful for making a model’s results 179 

intelligible. E.g., it puts a scientist in the position to say, “this model was picking up on aspects 180 

 
3 Yet another commonly used XAI method, layerwise relevance propagation (LRP), computes how each neuron 

contributes to other neurons’ activations, therefore highlighting the subsets of the input that dominantly contribute to 

the output. E.g., see (Gordon, Barnes, and Hurrell 2021; Toms, Barnes, and Hurrell 2021; Labe and Barnes 2021; 

2022a; 2022b; Rader et al. 2022; Diffenbaugh and Barnes 2023). 
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A, B, and C of the input data. These aspects contributed to prediction X, a prediction that seems 181 

plausible.” This exemplifies what we call “statistical understanding”, i.e., being able to offer a 182 

reason why we should trust a given ML model by appealing to statistical mappings between 183 

input and output. Statistical techniques are often used to obtain these mappings by relating 184 

variations in input to variations in output. Post hoc XAI methods can typically yield this type of 185 

understanding. Note that this is not the same as explaining the innerworkings of the model itself, 186 

or what we call “component-level understanding,” because the explanation does not attribute the 187 

model behaviors to ML model components, but rather is focused on input-output mapping.  188 

While XAI methods can give statistical understanding of model behaviors, this type of 189 

understanding has limitations. The general limitation is a familiar one, i.e., that “while XAI can 190 

reveal correlations between input features and outputs, the statistics adage states: ‘correlation 191 

does not imply causation’” (Molina et al. 2023, p. 8)4. Even if genuine causal relationships 192 

between input and output can be established, we still do not know how the ML model produces a 193 

certain set of output. To answer this question, ideally, we would like to know the causal role 194 

played by (at least) some of the components making up the model. We would like to know about 195 

at least some processes, mechanisms, constraints, or structural dependencies inside of the model, 196 

rather than merely probing the ML-model-as-black-box from the outside and post hoc. While 197 

XAI methods can yield information that seems plausible and physically meaningful, this 198 

information may be irrelevant with respect to how the model actually arrived at a given decision 199 

or prediction (Rudin 2019; Baron 2023). This, in turn, can undermine our trust in the model for 200 

future applications. In contrast, with component level understanding, the causal knowledge is 201 

more secure and can also inform future development and improvement of the model in question 202 

and ML models in general.  203 

 204 

3. Understanding and Intelligibility in CMIP  205 

Dynamical models are complex but have gained trust because their successes and failures can 206 

regularly be attributed to specific components or sub-models, such as when model bias is 207 

explained by pointing to a particular parameterization. Indeed, the practice of diagnosing model 208 

errors pre-dates the Atmospheric Model Intercomparison Project (AMIP; Gates 1992). For 209 

example, differences in the representation both of radiative processes and of atmospheric 210 

stratification at the poles were featured in an evaluation of why 1-D models diverged from a 211 

GCM in their estimate of climate sensitivity (see Schneider 1975).  212 

Later, in one of the diagnostic subprojects following AMIP, Gleckler et al. (1995) attributed 213 

incorrect calculations of ocean heat transport to the models’ representations of cloud radiative 214 

effects. They first found that the models’ implied ocean heat transport was partially in the wrong 215 

 
4 To be more precise, we interpret this quote as saying that correlation does not (logically) entail causation. 

Correlation may be a sign that there is a causal relation in play, and correlations between events often lead us to try 

and relate events causally.    
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direction—northward in the Southern Hemisphere. They inferred that cloud radiative effects 216 

were the culprit, explicitly noting that atmospheric GCMs at the time of their writing were 217 

“known to disagree considerably in their simulations of the effects of clouds on the Earth’s 218 

radiation budget (Cess et al. 1989), and hence the effects of simulated cloud-radiation 219 

interactions on the implied meridional energy transports [were] immediately suspect” (Gleckler 220 

et al. 1995, p. 793). They recalculated ocean heat transport using a hybrid of model data and 221 

observational data. When they did this, they fixed the error—ocean heat transport turned 222 

poleward. The observational data used to fix the error were of cloud radiative effects. In other 223 

words, they substituted the output data linked to the problematic cloud parameterizations (a 224 

component of the models) with observational data of cloud radiative effects. This substitution 225 

resulted in a better fit with observations of and physical background knowledge of ocean heat 226 

transport.  227 

One may argue that substituting model components merely exemplifies statistical understanding 228 

because it concerns the input and output data of the models, which, in Glecker et al.’s case, are 229 

cloud-radiation and ocean heat transport. Yet, this would be misguided. Gleckler et al. isolated 230 

the cloud components as the causal culprit behind why the models produced biased ocean heat 231 

transport data. There is also a physically intelligible link between cloud radiative forcing and 232 

ocean surface heat, so the diagnosis made scientific sense. In this way, scientists can diagnose 233 

and fix climate models.  234 

Many more recent cases of error diagnosis also aim to identify problematic parameterizations 235 

(e.g., see (Hall and Qu 2006; O’Brien et al. 2013; Pitari et al. 2014; Bukovsky et al. 2017; 236 

Gettelman et al. 2019); but see Neelin et al. 2023 for current challenges). In CMIP6 in particular, 237 

there is an increased focus on process-level analysis (Eyring et al. 2019; Maloney et al. 2019). In 238 

process-level analysis, scientists examine bias in the simulation of particular processes which 239 

are, in turn, linked to one or more parameterizations, i.e., components within a whole GCM. 240 

Moreover, CMIP-endorsed model intercomparison projects (MIPs) also center on particular 241 

processes or parameterizations, such as the cloud feedbacks MIP (Webb et al. 2017) and the land 242 

surface, snow and soil moisture MIP (van den Hurk et al. 2016).   243 

 244 

The practice of updating model parameterizations during model development also demonstrates 245 

an interest (and success) in achieving component-level understanding. We provide two examples 246 

here: one associated with the radiative transfer parameterization in the Community Atmosphere 247 

Model and another associated with the physical representation of stratocumulus clouds in 248 

boundary layer parameterizations. With respect to the radiative transfer component 249 

(parameterization), Collins et al. (2002) noted that, at the time their paper was written, studies 250 

had “demonstrated that the longwave cooling rates and thermodynamic state simulated by GCMs 251 

are sensitive to the treatment of water vapor line strengths.” Collins et al. used this knowledge—252 

along with updated information about absorption and emission of thermal radiation by water 253 
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vapor—to update the radiation parameterization in the Community Atmosphere Model.  This 254 

component-level improvement led to substantial improvements in the models’ simulated climate. 255 

 256 

 257 

Regarding stratocumulus cloud parameterization in climate models, targeted developments 258 

following the Third Intergovernmental Panel on Climate Change (IPCC) Assessment Report 259 

reduced uncertainty in estimates of cloud feedbacks to the extent that the 6th IPCC Assessment 260 

Report now states with high confidence that “future changes in clouds will, overall, cause 261 

additional warming” (p. 1022). This systematic change in cloud radiative forcing is demonstrated 262 

in Figure 2. It was not clear in the Third IPCC Assessment Report (TAR) whether cloud 263 

feedbacks were positive or negative, and the TAR noted in particular that the “difficulty in 264 

simulation of observed boundary layer cloud properties is a clear testimony of the still 265 

inadequate representation of boundary-layer processes” ((TAR 2001), p. 273). Around this time, 266 

researchers developed improved boundary layer parameterizations with the goal of improving 267 

the representation of low, boundary layer clouds. For instance, Grenier and Bretherton built on a 268 

standard 1.5-order boundary layer turbulence parameterization in which turbulent mixing is 269 

treated as a diffusive process related to the amount of turbulent kinetic energy (TKE) and in 270 

Figure 2. Changes in the distribution of estimated cloud radiative forcing (CRF) across three generations of IPCC Assessment 
Reports: 3 (TAR, published in 2001), 5 (AR5, 2014), and 6 (AR6, 2021). AR4 is omitted because data necessary to estimate 
CRF are not readily available. Estimates of simulated CRF were acquired by manual digitization of Figure 7.2 of Stocker et al. 
(2011) and by multiplying the equilibrium climate sensitivity and cloud feedback columns from Tables S1 and S2 of Zelinka 
et al. (2020). As the distribution of estimated cloud radiative forcing shifts upwards from TAR to AR5 to AR6, the figure 
shows that in AR5 and AR6, cloud feedbacks are largely positive. Indeed, AR6 states with high confidence that “future 
changes in clouds will, overall, cause additional warming” (Forster et al., 2021, p. 1022), yet it was not clear in TAR whether 
cloud feedbacks were positive. The increasing confidence in positive cloud feedbacks is partially due to improved boundry-
layer parameterization, which demonstrates modelers’ component-level understanding.  
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which TKE is treated as a conservative, prognostic quantity. Their key additions to the 1.5-order 271 

turbulence approach were (1) a more accurate numerical treatment of diffusion in the vicinity of 272 

step-function-like jumps in temperature and humidity (inversions) and (2) contribution of cloud-273 

top radiative cooling to the production of TKE. These two ingredients allow the turbulence 274 

parameterization to emulate the physics that drive stratocumulus clouds. Variations on the 275 

parameterization of (Grenier and Bretherton (2001) and other similarly sophisticated boundary 276 

layer parameterizations have been included in numerous weather and climate models, leading to 277 

improvements in the simulation of stratocumulus clouds specifically and general improvements 278 

in model climatology.   279 

We take the above cases from CMIP to indicate that climate scientists aim for component-level 280 

understanding of their models, which relates to a standard that climate models be at least 281 

somewhat intelligible. Adopting the idea of “intelligibility” from philosopher of science Regt 282 

(2017) we can say that a complex model is intelligible for scientists if they can recognize 283 

qualitatively characteristic consequences of the model without performing exact calculations. 284 

Intelligibility is facilitated by having models made up of components. In dynamical models, 285 

these components represent real-world processes, even in cases of empirically based 286 

parameterizations. More generally, knowing that a model component plays a particular role—287 

either representing the process as designed or a role later discovered during model 288 

development—in a climate simulation is invaluable for reasoning about the behavior, successes, 289 

and biases of the GCM as a whole.  290 

The climate modeling community has long strived for component-level understanding and 291 

intelligibility. This is especially evident in the work on climate model hierarchies, i.e., a group of 292 

models which spans a range of complexity and comprehensiveness Jeevanjee et al. (2017). 293 

Writing nearly two decades ago, Issac Held (2005) identified model hierarchies as necessary if 294 

we wish to understand both the climate system and complex climate models: 295 

we need a model hierarchy on which to base our understanding, describing how the dynamics 296 

change as key sources of complexity are added or subtracted... (p. 1609) 297 

…the construction of such hierarchies must, I believe, be a central goal of climate theory in 298 

the twenty-first century. There are no alternatives if we want to understand the climate 299 

system and our comprehensive climate models. Our understanding will be embedded within 300 

these hierarchies. (p. 1610)  301 

 302 

Along similar lines, and before the advent of CMIP, Stephen Schneider (1979) wrote that  303 

…the field of climate modeling needs to “fill in the blanks” at each level in the hierarchy of 304 

climate models. For only when the effect of adding one change at a time in models of 305 

different complexity can be studied, will we have any real hope of understanding cause and 306 

effect in the climatic system. (p. 748) 307 
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 308 

These appeals to climate model hierarchies highlight how component-level understanding is a 309 

longstanding goal in climate modeling. This is not to say that component-level understanding 310 

automatically translates to understanding all model behaviors. Emergent properties such as 311 

equilibrium climate sensitivity may elude explanation--even when components such as cloud 312 

parameterization are appealed to as causally relevant for higher ECS values (e.g., Zelinka et al. 313 

2020), it must be granted that these cloud parameterizations interact with other components and 314 

pieces of the overall GCM. So there may be a more complete explanation detailing how, as a 315 

whole, the GCM simulates a higher ECS. Therefore, we do not regard our three proposed types 316 

of understanding as exhaustive—perhaps a component-interaction or structural type of 317 

understanding ought to be theorized and strived for as well.   318 

However, the examples from earlier in this section show how the goal of component-level 319 

understanding is regularly achieved, overall model complexity notwithstanding. Having achieved 320 

such understanding, scientists can be more confident that their models have indeed captured 321 

some truths about the target systems, and they are thereby justified to increase their confidence in 322 

these complex models. In the climate modeling literature, component-level understanding 323 

routinely leads to model improvements.  324 

We end this section with a brief discussion distinguishing between component-level and 325 

statistical understanding.   326 

In general, statistical understanding can help us answer questions such as “do the input-output 327 

relations of the model make sense and, if so, in what way do they make sense?” This is great for 328 

finding out whether the model’s behavior is consistent with expectations across a variety of 329 

cases. However, this is distinct from learning why the model behaves the way it does. To answer 330 

this distinct question, we need to know how the model is working, which, in turn, involves 331 

knowing something about the pieces making up the model. Hence, component-level 332 

understanding is called for. This is exactly the type of understanding that we see aimed for, and 333 

often grasped, in CMIP experiments.  334 

Component-level understanding often involves a different kind of knowledge related to model 335 

architecture and beyond input-output relationships. On the one hand it can demonstrate that you 336 

know what role the component is playing in the model—this shows some knowledge of model-337 

building. It may also be helpful for answering a wider range of what-if-things-had-been-different 338 

questions. Finally, and potentially the clearest benefit of component-level understanding, is that 339 

it can tell one what needs to be fixed in cases of error. This should produce additional trust in the 340 

modeling enterprise more generally.5  341 

 
5 This is not to say that component-level understanding is necessarily superior to statistical understanding. E.g., 

knowing about a robustly detected statistical relationship could be more valuable than knowing how a single model 

component functions, especially since many important model behaviors arise from interactions between multiple 

model components.  
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4. Lessons learned: examples of component level understanding in ML 342 

Component-level understanding is not the privilege solely of dynamic climate modeling. ML 343 

models can be built with intelligible components as well, although their components look very 344 

different from those in dynamic models. In this section, we offer three examples in which ML 345 

researchers are able to acquire component-level understanding of model behaviors by 346 

intentionally designing or discovering model components that are interpretable and intelligible.  347 

4.1 Attributing model success with physics-informed machine learning 348 

Our first example involves physics-informed machine learning, i.e., machine learning 349 

incorporated with domain knowledge and physical principles (Kashinath et al. 2019). Model 350 

success can be attributed to a specific component in a neural net, if it is known that said 351 

component in the neural net is performing a physically relevant role for a given modeling task.  352 

Beucler et al. (2019; 2021) augment a neural net’s architecture via layers which enforce 353 

conservation laws that are important for emulating convection (see Figure 1, panel a). These laws 354 

include enthalpy conservation, column-integrated water conservation, and both long- and short-355 

wave radiation conservation. The conservation laws are enforced “to machine precision” 356 

(Beucler et al. 2021). Following Beucler et al. (2019) and because this neural net has a physics-357 

informed architecture, we will use the acronym NNA. NNA is trained on aqua-planet simulation 358 

data from the Super-Parameterized Community Atmosphere Model 3.0. NNA’s results are 359 

compared with those of two other neural nets: one unconstrained by physics (NNU) and another 360 

“softly” constrained through a penalization term in the loss function (NNL; see Beucler et al. 361 

(2019) for further discussion).  362 

All three NNs are evaluated based on the mean squared errors (MSE) of their predictions and 363 

based on whether their output violates physics conservation laws (P-score). While NNU has the 364 

highest performance in a baseline climate—i.e., a climate well-represented by the training data—365 

NNA and NNL each outperform NNU in a 4k warmer climate (see Beucler et al. 2019, Table 1), 366 

which is impressive since generalizing into warmer climate is particularly challenging for ML 367 

models (Rasp et al. 2018; Li 2023). These results may indicate that NNU performed better in the 368 

baseline climate for the “wrong” reasons. Indeed, NNU had a far lower P-score in both the 369 

baseline and the 4k warmer climate cases.  370 

Beucler et al. (2021) further show that NNA predicts the total thermodynamic tendency in the 371 

enthalpy conservation equation more accurately than the other NNs—“by an amount closely 372 

related to how much each NN violates enthalpy conservation” (p. 5). The particular layer in 373 

NNA responsible for enthalpy conservation is obviously the explanation for this result. This case 374 

therefore exemplifies component-level understanding straightforwardly.  375 

It should be noted that both NNA and NNL perform well in the 4k warmer climate and, more 376 

generally, “[e]nforcing constraints, whether in the architecture or the loss function, can 377 

systematically reduce the error of variables that appear in the constraints” (Beucler et al. 2021, p. 378 
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5). This suggests that, when thinking purely about model performance, physical constraints do 379 

not necessarily need to be implemented in the model’s architecture. However, compared with 380 

NNL, Beucler et al.’s use of NNA facilitates straightforward component-level understanding. 381 

The component-level understanding is straightforward because we know that, by virtue of the 382 

physics knowledge built into the model’s architecture, NNA obeys conservation laws as it is 383 

trained and as it is tested. We can draw an analogy with dynamical climate models. NNL is to 384 

NNA as bias-corrected GCM simulations are to ones which capture relevant physical processes 385 

with high-fidelity to begin with. Knowing that a model produces a physically consistent answer 386 

for physical reasons is a stronger basis for trust than merely knowing that a model produces 387 

physically consistent answers due to post-hoc bias correction.  388 

 389 

4.2 Explaining model error in a case of Fourier Neural Operators 390 

Another example involves a recent development in using machine learning to solve partial 391 

differential equations: the Fourier neural operator (FNO) pioneered by Li et al. (2021). The 392 

innovation of FNO is the application of Fourier transforms to enable CNN-based layers that learn 393 

“solution operators” to PDEs in a scale-invariant way. Building on Li et al. (2021) demonstrated 394 

that training an FNO network on output from a numerical weather prediction (NWP) model 395 

produced a machine learning model that emulates NWP models with high fidelity and efficiency. 396 

A key challenge noted by Pathak et al., however, was a numerical instability that limited 397 

application of the FNO model to forecasts of lengths less than 10 days. 398 

Analysis of the instability ultimately led the group to hypothesize that the instability was due to a 399 

specific component of the FNO model: the Fourier transform itself. The problem they identified 400 

was that the sine/cosine functions employed in Fourier transforms are the eigenfunctions of the 401 

Laplace operator on a doubly-periodic, Euclidean geometry, whereas the desired problem (i.e., 402 

NWP) is intrinsic to an approximately spherical geometry. In essence, the Earth’s poles represent 403 

a singularity that Fourier transforms on a latitude-longitude grid are not well-equipped to handle. 404 

Bonev et al. (2023) adapt the FNO approach to spherical geometry by utilizing spherical 405 

harmonic transforms with the Laplace-operator eigenfunctions for spherical geometries as basis 406 

functions, in lieu of Fourier transforms. These eigenfunctions, the spherical harmonic functions, 407 

smoothly handle the poles as a natural part of their formulation. Bonev et al. (2023) report that 408 

the application of spherical harmonic transforms, rather than Fourier transforms, results in a 409 

model that is numerically stable up to at least O(100) days and possibly longer. 410 

The application of spherical transformations stabilizes the FNO model. Bonev et al. were able to 411 

fix the FNO because they could pinpoint the Fourier transformations, a component of the FNO 412 

model, demonstrating scientists’ component-level understanding.6  413 

 
6 Fourier transformations turn out to be useful in other contexts of ML-driven climate science because scientists can 

use them to understand neural networks behaviors as combinations of filters, e.g., (Subel et al. 2023). 
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4.3 GAN dissect for future applications in ML-driven climate science 414 

The final example comes from generative adversarial networks (GANs) in computer vision. Bau 415 

et al. (2018) identify particular units (i.e., sets of neurons and/or layers) in a neural net as 416 

causally relevant to the generation of particular classes within images such as doors on churches. 417 

They demonstrate that these units are actually causally relevant by showing what happens when 418 

said units are ablated (essentially setting them to 0).  419 

The example demonstrates component-level understanding because the units in question are 420 

manipulated. Components within the architecture of the model are turned on and off and the 421 

resultant effects are observed.7 This puts us in a position to say, for example, “these neurons are 422 

responsible for generating images of trees, and we know this because turning more of these 423 

neurons on yields an image with more trees (or bigger trees) and vice versa. Moreover, the other 424 

aspects of the image are unchanged no matter what we do to these neurons.” Bau et al. (2018) 425 

also show that visual artefacts are causally linked to particular units and can be removed using 426 

this causal knowledge.  427 

This case is analogous to the study from Gleckler et al. (1995) as described in Sect. 3 above. 428 

Recall that the cloud radiative effects from the GCMs were "turned off” (substituted out and 429 

replaced with observational data) and the calculations of ocean heat transport improved. 430 

Scientists can make sense of model error because they know that a certainty deficiency in GCMs, 431 

at the time, involved components of the GCMs responsible for representing clouds. In the same 432 

way, Bau et al. (2018) are able to intervene on generations of images by linking units in their 433 

model to particular types of image classes and examining what happens to the overall image 434 

when these units are manipulated.  435 

While GAN dissect isn’t currently used in climate science research, it could be used in potential 436 

future applications such as in atmospheric river detection Mahesh et al. (2023). In any case, this 437 

example demonstrates yet again how component-level understanding is achievable with ML.  438 

 439 

5. Discussion/Recommendations for practice 440 

We have argued that component-level understanding ought to be strived for in ML-driven 441 

climate science. The value of component-level understanding is especially evident in the FNO 442 

problem described previously (Sect. 4.2 above). Instrumental understanding allowed the group to 443 

identify a performance issue (numerical ‘issues’ in the polar regions) that led to numerical 444 

instability. While the group did not employ any XAI—statistical understanding—approaches, it 445 

is clear that they would have been of limited value in identifying the underlying cause of the 446 

numerical instability, since XAI methods only probe input-output mappings. Ultimately the 447 

problem was identified and later solved by applying component-level understanding of the FNO 448 

 
7 As a reminder to the reader, by “component” we mean a functional unit of the model’s architecture, which includes 

the “units” described by (Bau et al. 2018). 
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network: knowledge that a component of the network implicitly (and incorrectly) assumed a 449 

Euclidean geometry for a problem on a spherical domain. 450 

However, a potential objection is that component-level understanding is unnecessary because 451 

XAI methods can simply be evaluated against benchmark metrics. For example, Bommer et al. 452 

(2023) propose five metrics to assess XAI methods, focusing especially on the methods’ output 453 

data (referred to as “explanations”). These include: 454 

Robustness of the explanation given small perturbations to input 455 

Faithfulness, by comparing the predictions of perturbed input and those of unperturbed input 456 

to determine if a feature deemed important by the XAI method does in fact change the 457 

network prediction 458 

 459 

Randomization, which measures how the explanation changes by perturbing the network 460 

weights, similar to the robustness metric, the thinking is that “the explanation of an input x 461 

should change if the model changes or if a different class is explained” (Bommer et al. 462 

(2023), p.8) 463 

 464 

Localization, which measures agreement between the explanation and a user-defined region 465 

of interest  466 

Complexity, a measure of how concise the highlighted features in an explanation are, and 467 

assumes that “that an explanation should consist of a few strong features” to aid 468 

interpretability (Bommer et al. 2023, p. 10).  469 

Insofar as the metrics are deemed desirable, we agree that such an approach could help establish 470 

trust in XAI. However, we view such benchmarks as complementary to, rather than a substitute 471 

for, component-level understanding. This is because benchmarks yield a sort of second-order 472 

statistical understanding. That is, such metrics are largely focused on aspects of input and output 473 

data produced by a given XAI method. They are, in a sense, an XXAI method, an input-output 474 

mapping to help make sense of another input-output mapping. 475 

Therefore, our recommendation is that ML-driven climate science strive for component-level 476 

understanding. This will aid in evaluating the credibility of model results, in diagnosing model 477 

error, and in model development. The clearest path to component-level understanding in ML-478 

driven climate science would likely involve climate scientists helping build the ML models that 479 

are used for their research and implementing physics-based and other background knowledge to 480 

whatever extent feasible (Kashinath et al. 2021; Cuomo et al. 2022). Clear standards could also 481 

be developed for documenting ML architecture, training procedures, and past analyses, including 482 

error diagnoses (O’Loughlin 2023). Perhaps a model intercomparison project could be developed 483 

to systematically evaluate ML behavior across diverse groups of researchers. Lastly, with 484 
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component-level understanding as a goal to strive for, scientists can better develop hybrid 485 

models where both ML and dynamic modeling components are employed.   486 

Back in 2005, Held wrote that climate modeling “must proceed more systematically toward the 487 

creation of a hierarchy of lasting value, providing a solid framework within which our 488 

understanding of the climate system, and that of future generations, is embedded” (p. 1614). We 489 

think there is a parallel need in ML-driven climate science, i.e., to develop systematic standards 490 

for the use and evaluation of ML models that aid in our understanding of the climate system. 491 

Striving for component-level understanding of ML models is one way to help achieve this.  492 
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