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Abstract. AI models are criticized as being black boxes, potentially subjecting climate science to greater uncertainty. 5 
Explainable artificial intelligence (XAI) has been proposed to probe AI models and increase trust. In this Review and 6 
Perspective paper, we suggest that, in addition to using XAI methods, AI researchers in climate science can learn from 7 
past successes in the development of physics-based dynamical climate models. Dynamical models are complex but 8 
have gained trust because their successes and failures can sometimes be attributed to specific components or sub-9 
models, such as when model bias is explained by pointing to a particular parameterization. We propose three types of 10 
understanding as a basis to evaluate trust in dynamical and AI models alike: (1) instrumental understanding, which is 11 
obtained when a model has passed a functional test; (2) statistical understanding, obtained when researchers can make 12 
sense of the modelling results using statistical techniques to identify input-output relationships; and (3) Component-13 
level understanding, which refers to modelers’ ability to point to specific model components or parts in the model 14 
architecture as the culprit for erratic model behaviors or as the crucial reason why the model functions well. We 15 
demonstrate how component-level understanding has been sought and achieved via climate model intercomparison 16 
projects over the past several decades. Such component-level understanding routinely leads to model improvements 17 
and may also serve as a template for thinking about AI-driven climate science. Currently, XAI methods can help 18 
explain the behaviors of AI models by focusing on the mapping between input and output, thereby increasing the 19 
statistical understanding of AI models. Yet, to further increase our understanding of AI models, we will have to build 20 
AI models that have interpretable components amenable to component-level understanding. We give recent examples 21 
from the AI climate science literature to highlight some recent, albeit limited, successes in achieving component-level 22 
understanding and thereby explaining model behavior. The merit of such interpretable AI models is that they serve as 23 
a stronger basis for trust in climate modeling and, by extension, downstream uses of climate model data.  24 

 25 

 26 

1. Introduction 27 

Machine learning (ML) is becoming increasingly utilized in climate science for tasks ranging 28 
from climate model emulation (Beucler et al. 2019), to downscaling (McGinnis et al. 2021), 29 
forecasting (Ham, Kim, and Luo 2019), and analyzing complex and large datasets more 30 
generally (for an overview of ML in climate science, see Reichstein et al. 2019; Molina et al. 31 
2023; de Burgh-Day and Leeuwenburg 2023). Compared with physics-based methods, ML, once 32 
trained, has a key advantage: orders of magnitude reduced computational expense. Along with 33 
the advantages of ML come challenges such as assessing ML trustworthiness. For example, 34 
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scientists often do not understand why a neural net (NN) gives the output that it does because the 35 
NN is a “black box.”1  36 

To build trust in ML, the field of explainable artificial intelligence (XAI) has become 37 
increasingly prominent in climate science (Bommer et al. 2023). Sometimes referred to as 38 
“opening the black box,” XAI methods consist of additional models or algorithms intended to 39 
shed light on why the ML model gives the output that it does. For example, Labe and Barnes 40 
(2021) use an XAI method, layer-wise relevance propagation, and find that their NN heavily 41 
relies on datapoints from the North Atlantic, Southern Ocean, and Southeast Asia to make its 42 
predictions.  43 

While XAI methods can produce useful information about ML model behaviors, these methods 44 
also face problems and have been subjected to critique. As Barnes et al. (2022) note, XAI 45 
methods “do not explain the actual decision-making process of the network” (p. 1). Additionally, 46 
different XAI methods applied to the same ML model prediction have been shown to exhibit 47 
discordance, i.e., yielding different and even incompatible “explanations” for the same ML 48 
model (Mamalakis et al. 2022). Discordance in XAI is not unique to climate science. Krishna et 49 
al. (2022) find that 84% of their interviewees (ML practitioners across fields who use XAI 50 
methods) report experiencing discordance in their day-to-day workflow and when it comes to 51 
resolving discordance, 86% of their online user study responses indicate that ML practitioners 52 
either employed arbitrary heuristics (e.g., choosing a favorite method or result) or simply did not 53 
know what to do.  54 

As Molina et al. (2023) note, “identifying potential failure modes of XAI, and uncertainty 55 
quantification pertaining to different types of XAI methods, are both crucial to establish 56 
confidence levels in XAI output and determine whether ML predictions are ‘right for the right 57 
reasons’” (p. 8). Rudin (2019) argues that, instead of attempting to use XAI to explain ML 58 
models post hoc, scientists ought to build interpretable models informed by domain expertise 59 
from the outset. Speaking about explainability in particular, Rudin writes, “many of the [XAI] 60 
methods that claim to produce explanations instead compute useful summary statistics of 61 
predictions made by the original model. Rather than producing explanations that are faithful to 62 
the original model, they show trends in how predictions are related to the features” of the model 63 
input (2019, p. 208).  64 

Regardless, XAI methods will likely continue to be widely applied due to ease of use and as 65 
benchmark metrics for XAI methods are proposed and implemented (Hedström et al. 2023; 66 
Bommer et al. 2023). In some cases, XAI methods are applied with great success, e.g., 67 
(Mamalakis et al. 2022) found that the input x gradient method fit their ground truth model with 68 
a high degree of accuracy. However, we believe that more progress can be made in establishing 69 

 
1 Note that computer scientists have proposed various conceptual approaches to articulate “transparency” (e.g., 
Lipton 2016). However, we aim to offer conceptual clarity for ML applications specifically in climate science by 
comparing different types of understanding of ML and dynamical climate models. 
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trust in ML-driven climate science, especially as an increasing number of researchers start 70 
incorporating ML into climate research.  71 

In this Review and Perspective paper, we target readers with expertise in traditional approaches 72 
for climate science (e.g., development, evaluation, and application of traditional Earth System 73 
Models) who are starting to utilize ML in their research and who may see XAI as a tempting way 74 
to gain insight into model behavior and to build confidence. In this perspective, we draw from 75 
some ideas in philosophy of science to recommend that such researchers leverage the expanding 76 
array of freely available ML learning resources to move beyond post hoc XAI methods and aim 77 
for component-level understanding of ML models. By “component” we mean a functional unit of 78 
the model’s architecture, such as a layer or layers in a neural net. By “understanding” we mean 79 
knowledge that could serve as a basis for an explanation about the model. We distinguish 80 
between three levels of understanding: 81 

Instrumental understanding: knowing that the model performed well (or not); e.g., 82 
knowing its error rate on a given test. 83 

Statistical understanding: being able to offer a reason why we should trust a given ML 84 
model by appealing to input-output mappings. These mappings can be retrieved by 85 
statistical techniques.  86 

Component-level understanding: being able to point to specific model components or 87 
parts in the model architecture as the cause of erratic model behaviors or as the crucial 88 
reason why the model functions well.  89 

These levels concern the degree to which complex models are intelligible or graspable to 90 
scientists (De Regt and Dieks 2005; Regt 2017; Knüsel and Baumberger 2020). Therefore, our 91 
proposal has a narrower but deeper focus than recent philosophy of science accounts of 92 
understanding climate phenomena with or by using ML and dynamical climate models (Knüsel 93 
and Baumberger 2020; Jebeile, Lam, and Räz 2021). We are concerned with understanding, 94 
diagnosing, and improving model behavior to inform model development.    95 

Instrumental understanding, while clearly necessary, is fairly straightforward and is a 96 
prerequisite for any explanation of model behavior. It involves knowing the degree to which a 97 
model fits some data (Lloyd 2010; Baumberger et al. 2017). It may also involve knowing 98 
whether the model both fits some data and agrees with simpler models about a prediction of 99 
interest or whether the model has performed well on an out-of-sample test (e.g., Hausfather et al. 100 
2020) or according to other metrics (e.g., Gleckler et al. 2008).  101 

However, in this Review and Perspective paper, we will only focus on the other two types of 102 
understanding. Statistical understanding can be gained via traditional XAI methods but does not 103 
require knowledge of the model’s innerworkings, i.e., its components and/or architecture (see 104 
Sect. 2 below). In contrast, component-level understanding does involve knowledge of the 105 
model’s innerworkings. Therefore, component-level understanding allows scientists to offer 106 
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causal explanations that attribute ML model behaviors to its components. Scientists need to build 107 
and analyze their models in such a way that they can understand how distinct model components 108 
contribute to the model’s overall predictive successes or failures rather than merely probe model 109 
data to yield input-output mappings. The latter is emblematic of traditional XAI methods.  110 

Our recommendation to strive for component-level understanding is inspired by how dynamical 111 
climate models have been built, tested, and improved, such as those in the coupled model 112 
intercomparison projects (CMIP). Therefore, a novel contribution of this paper is in the linking 113 
of existing climate model development practices to practices that could be employed in ML 114 
model development. 115 

In CMIP, when models agree on a particular result, scientists sometimes infer that the governing 116 
equations and prescribed forcings shared by the models are responsible for the models’ similar 117 
results. As Baumberger et al. (2017) put it, “robustness of model results (combined with their 118 
empirical accuracy) is often seen as making it likely, or at least increasing our confidence, that 119 
the processes that determine these results are encapsulated sufficiently well in the models” (p. 120 
11; see also Hegerl et al. 2007; Kravitz et al. 2013; Lloyd 2015; Schmidt and Sherwood 2015; 121 
O’Loughlin 2021). Conversely, when climate models exhibit biases or errors, scientists can often 122 
point to specific parameterizations or sub-models as the likely cause (e.g., Gleckler et al. 1995; 123 
Pitari et al. 2014; Gettelman et al. 2019; Zelinka et al. 2020); O’Loughlin 2023), although 124 
models can get the right answer for the wrong reasons (e.g., see Knutti 2008).   125 

To be clear, there are limits to how much component-level understanding can be achieved in 126 
CMIP. Dynamical climate models exhibit fuzzy (rather than sharp) modularity, meaning that the 127 
behavior of a fully coupled model is “the complex result of the interaction of the modules—not 128 
the interaction of the results of the modules” (Lenhard and Winsberg 2010, p. 256). Climate 129 
scientists are familiar with a related problem: the difficulty in explaining how climate models 130 
generate (or not) emergent phenomena like the Madden Julian Oscillation (Lin et al. 2024). 131 
Despite these difficulties, philosophers and other scholars of climate science have documented 132 
successes in attributing model behavior to individual model components in the climate science 133 
literature (Frigg et al. 2015; Carrier and Lenhard 2019; Touzé-Peiffer et al. 2020; Pincus et 134 
al.2016; Hall and Qu 2006; Hourdin et al. 2013; Notz et al. 2013; Oreopoulos et al. 2012; 135 
Mayernik 2021; Gettelman et al. 2019; O’Loughlin 2023). These successes do not imply 136 
anything like a “full” or “complete” understanding of all model behavior, rather, the component-137 
level understanding of climate model behavior comes in degrees (Jebeile et al. 2021).  138 

Fortunately, we see component-level understanding exemplified in ML-driven climate science to 139 
some extent already (Beucler et al. 2019; Kashinath et al. 2021; Bonev et al. 2023, see Sect. 4 140 
below). Indeed, the thinking behind physics-informed machine learning, which incorporates 141 
known physical relations into the models from the outset (Kashinath et al. 2021;Wang et al. 142 
2022; Cuomo et al. 2022), often involves component-level understanding. Thus, our proposal is 143 
an endorsement of these ongoing best practices, a recognition of the relationship between the 144 
evaluation of dynamical models and data-driven models, and a warning about the limits of 145 
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statistical understanding. In addition, there is a concurrent need to establish the trustworthiness 146 
of ML models as ML-driven climate science potentially becomes increasingly used to inform 147 
decision makers (NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and 148 
Coastal Oceanography (AI2ES)). While decision makers themselves do not need to understand 149 
exactly how a model arrives at the answer it does, they may desire an explanation of the model’s 150 
behavior that comes from a credible expert. One way to establish credibility is to be able to 151 
explain ML model behavior by appealing to the innerworkings of the model, which requires 152 
component-level understanding of the model. In this way, component-level understanding can 153 
serve as a basis for trust in ML-driven climate science.  154 

The remainder of the paper is structured as follows. In Sect. 2, we give an overview of XAI in 155 
climate science and explain the idea of statistical understanding and how XAI can only give us 156 
statistical understanding. In Sect. 3, we detail the notion of component-level understanding and 157 
demonstrate it using examples from CMIP. In Sect. 4, we show how component-level 158 
understanding is achievable in ML. In Sect. 5, we conclude and make suggestions for ML-driven 159 
climate science, including describing some resources that interested readers might utilize to build 160 
the expertise in ML model design necessary to probe, build, and adapt models in a way that is 161 
amenable to component-level understanding.   162 

  163 



7 
 

 164 

 165 

 166 

2. Post-hoc XAI in climate science and statistical understanding 167 

XAI methods are intended to shed light on the behavior of complex opaque ML models. As 168 
Mamalakis et al. (2022b) put it, XAI “methods aim at a post hoc attribution of the NN prediction 169 
to specific features in the input domain (usually referred to as attribution/relevance heatmaps), 170 
thus identifying relationships between the input and the output that may be interpreted physically 171 
by the scientists" (p. 316). XAI methods are typically applied to ML models which are multi-172 
layer, convolutional, recurrent neural networks, and/or tree ensembles.  173 

The general idea behind XAI methods is to attribute the predictive success of the model’s output 174 
(i.e., the model’s prediction or decision) to subsets of its input in supervised ML. Broadly, there 175 

Figure 1. Scientists can obtain statistical understanding of models by seeking input-output mapping, e.g., via perturbation 
experiments. To acquire component-level understanding, one needs to be able to pinpoint specific components to explain 
models’ erratic behaviors or successes. This has been done in dynamic climate modeling, e.g., by pointing to cloud 
parameterization as a means to improve modeling outcomes. We offer three examples of component-level understanding in 
machine learning. In panel (a), Beucler et al. (2021) design layers of neurons in their neural network to enforce energy 
conservation and improved model outcome. In panel (b), Bonev et al. (2023) use spherical Fourier transformation to ensure 
Fourier Neural Operators perform with climate data. In panel (c), Bau et al. (2019) use a method called GAN dissection to 
identify which subsets of neurons control parts of images that correspond to semantics (e.g., trees or doors). 
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are two conceptual approaches to achieve this.2 One approach is to figure out how the changes in 176 
input affect the output. For example, Local Interpretable Model-agonistic Explanation (LIME) 177 
first perturbs an input data point to create surrogate data near said data point. Then, after the 178 
trained ML model classifies the surrogate data, LIME fits a linear regression using classified 179 
surrogate data and measures how model output can be attributed to features of the surrogate data 180 
manifold. In this way, LIME attributes the predictive success for the actual data point to a subset 181 
of input features. Note that L stands for “local” because LIME starts with perturbing specific 182 
classificatory instances rather than with global classification.  183 

Another commonly used method is Shapley Additive explanation (SHAP), which is based on 184 
calculating the Shapley values of each input feature. Shapley values are cooperative game 185 
theoretic measures that distribute gains or costs to members of a coalition. Roughly put, Shapley 186 
values are calculated by repeatedly randomly removing a member from the group to form a new 187 
coalition and calculating the consequent gains and then averaging all marginal contributions to 188 
all possible coalitions. In the XAI context, input features will have different Shapley values, 189 
denoting their different contribution to the model’s predictive success. E.g., see (Chakraborty et 190 
al. 2021; Felsche and Ludwig 2021; Cilli et al. 2022; Clare et al. 2022; Grundner et al. 2022; W. 191 
Li et al. 2022; Xue et al. 2022) 192 

Another approach relies on treating a trained black box model as a function to understand how 193 
the input-output mapping relationship is represented by this function. For example, vanilla 194 
gradient (also known as saliency) is an XAI method that relies on calculating the gradient of 195 
probabilities of output being in each possible category with respect to its input and 196 
backpropagates the information to its input. In this way, vanilla gradient quantifies the relative 197 
importance of each element of the input vector with respect to the output, thereby attributing the 198 
predictive success to subsets of input. E.g., see Balmaceda-Huarte et al. 2023; Liu et al. 2023; He 199 
et al. 2024.3 200 

Let’s examine how XAI methods yield statistical understanding in a detailed example. González-201 
Abad et al. (2023) use the saliency method to examine input-output mappings in three different 202 
convolutional neural nets (CNNs) which were trained and used to downscale climate data. They 203 
computed and produced accumulated saliency maps which account for “the overall importance 204 
of the different elements” of the input data for the model’s prediction (p. 8). One of their results 205 
is that, in one of the CNNs, air temperature (at 500hPa, 700 hPa, 850hPa, and 1000 hPA) 206 
accumulates the highest relevance for predicting North American near-surface air temperature, 207 

 
2 Yuan et al. (2023) break down the various XAI methods into four categories. They divide those related to 
manipulating input-output into perturbation-based methods and surrogate-based methods (e.g., LIME). They divide 
the methods that rely on model parameter values into gradient-based methods (e.g., gradient) and decomposition-
based method (e.g., layerwise relevance propagation ). 
3 Yet another commonly used XAI method, layerwise relevance propagation, computes how each neuron contributes 
to other neurons’ activations, thereby highlighting the subsets of the input that dominantly contribute to the output. 
E.g., see (Gordon, Barnes, and Hurrell 2021; Toms, Barnes, and Hurrell 2021; Labe and Barnes 2021; 2022a; 2022b; 
Rader et al. 2022; Diffenbaugh and Barnes 2023). 
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although different regions are apparently more relevant than others to the models’ predictions 208 
(see their figure 6, p. 12). In other words, it appeared that the CNN had correctly picked up on a 209 
relationship between coarse resolution temperature at certain geopotential heights on the one 210 
hand, and higher resolution near-surface air temperatures on the other hand.  211 

In this way, XAI methods yield information that can be helpful for making a model’s results 212 
intelligible. E.g., it puts a scientist in the position to say, “this model was picking up on aspects 213 
A, B, and C of the input data. These aspects contributed to prediction X, a prediction that seems 214 
plausible.” This exemplifies what we call “statistical understanding”, i.e., being able to offer a 215 
reason why we should trust a given ML model by appealing to statistical mappings between 216 
input and output. Statistical techniques are often used to obtain these mappings by relating 217 
variations in input to variations in output. Post hoc XAI methods can typically yield this type of 218 
understanding. Note that this is not the same as explaining the innerworkings of the model itself, 219 
or what we call “component-level understanding,” because the explanation does not attribute the 220 
model behaviors to ML model components, but rather is focused on input-output mapping.  221 

While XAI methods can give statistical understanding of model behaviors, this type of 222 
understanding has limitations. The general limitation is a familiar one, i.e., that “while XAI can 223 
reveal correlations between input features and outputs, the statistics adage states: ‘correlation 224 
does not imply causation’” (Molina et al. 2023, p. 8)4. Even if genuine causal relationships 225 
between input and output can be established, we still do not know how the ML model produces a 226 
certain output. To answer this question, ideally, we would like to know the causal role played by 227 
(at least) some of the components making up the model. We would like to know about at least 228 
some processes, mechanisms, constraints, or structural dependencies inside of the model, rather 229 
than merely probing the ML-model-as-black-box post hoc, from the outside. While XAI methods 230 
can yield information that seems plausible and physically meaningful, this information may be 231 
irrelevant with respect to how the model actually arrived at a given decision or prediction (Rudin 232 
2019; Baron 2023). This, in turn, can undermine our trust in the model for future applications. In 233 
contrast, with component level understanding, the causal knowledge is more secure and can also 234 
inform future development and improvement of the model in question and ML models in 235 
general.  236 

3. Understanding and Intelligibility in CMIP  237 

Dynamical models are complex but have gained trust because their successes and failures can 238 
sometimes be attributed to specific components or sub-models, such as when model bias is 239 
explained by pointing to a particular parameterization. Indeed, the practice of diagnosing model 240 
errors pre-dates the Atmospheric Model Intercomparison Project (AMIP; Gates 1992). For 241 
example, differences in the representation both of radiative processes and of atmospheric 242 

 
4 To be more precise, we interpret this quote as saying that correlation does not (logically) entail causation. 
Correlation may be a sign that there is a causal relation in play, and correlations between events often lead us to try 
and relate events causally.    



10 
 

stratification at the poles were featured in an evaluation of why 1-D models diverged from a 243 
GCM in their estimate of climate sensitivity (see Schneider 1975).  244 

Later, in one of the diagnostic subprojects following AMIP, Gleckler et al. (1995) attributed 245 
incorrect calculations of ocean heat transport to the models’ representations of cloud radiative 246 
effects. They first found that the models’ implied ocean heat transport was partially in the wrong 247 
direction—northward in the Southern Hemisphere. They inferred that cloud radiative effects 248 
were the culprit, explicitly noting that atmospheric GCMs at the time of their writing were 249 
“known to disagree considerably in their simulations of the effects of clouds on the Earth’s 250 
radiation budget (Cess et al. 1989), and hence the effects of simulated cloud-radiation 251 
interactions on the implied meridional energy transports [were] immediately suspect” (Gleckler 252 
et al. 1995, p. 793). They recalculated ocean heat transport using a hybrid of model data and 253 
observational data. When they did this, they fixed the error—ocean heat transport turned 254 
poleward. The observational data used to fix the error were of cloud radiative effects. In other 255 
words, they substituted the output data linked to the problematic cloud parameterizations (a 256 
component of the models) with observational data of cloud radiative effects. This substitution 257 
resulted in a better fit with observations of and physical background knowledge of ocean heat 258 
transport.  259 
 260 
One may argue that substituting model components merely exemplifies statistical understanding 261 
because it concerns the input and output data of the models, which, in Glecker et al.’s case, are 262 
cloud-radiation and ocean heat transport. Yet, this would be misguided. Gleckler et al. isolated 263 
the cloud components as the causal culprit behind why the models produced biased ocean heat 264 
transport data. There is also a physically intelligible link between cloud radiative forcing and 265 
ocean surface heat, so the diagnosis made scientific sense. In this way, scientists can diagnose 266 
and fix climate models.  267 
 268 
Many more recent cases of error diagnosis also aim to identify problematic parameterizations 269 
(e.g., see (Hall and Qu 2006; O’Brien et al. 2013; Pitari et al. 2014; Bukovsky et al. 2017; 270 
Gettelman et al. 2019; but see Neelin et al. 2023 for current challenges). In CMIP6 in particular, 271 
there is an increased focus on process-level analysis (Eyring et al. 2019; Maloney et al. 2019). In 272 
process-level analysis, scientists examine bias in the simulation of particular processes which 273 
are, in turn, linked to one or more parameterizations, i.e., components within a whole GCM.5 274 
Moreover, CMIP-endorsed model intercomparison projects (MIPs) also center on particular 275 
processes or parameterizations, such as the cloud feedbacks MIP (Webb et al. 2017) and the land 276 
surface, snow and soil moisture MIP (van den Hurk et al. 2016).6   277 

 
5 Note that while processes and model components are linked, neither is reducible to the other. E.g., a coupler is a 
component in a GCM but it is not a real-world climate process; conversely, there is no cloud feedback 
parameterization but cloud feedbacks are a real-world climate process.  
6 These examples are in stark contrast to the pessimism about understanding climate models that some philosophers 
of science have emphasized (Lenhard and Winsberg 2010) and others have rebutted (Frigg, Thompson, and Werndl 
2015; Carrier and Lenhard 2019; Touzé-Peiffer, Barberousse, and Treut 2020; O’Loughlin 2023; Easterbrook 2023). 
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 278 
The practice of updating model parameterizations during model development also demonstrates 279 
an interest (and success) in achieving component-level understanding. We provide two examples 280 
here: one associated with the radiative transfer parameterization in the Community Atmosphere 281 
Model and another associated with the physical representation of stratocumulus clouds in 282 
boundary layer parameterizations. With respect to the radiative transfer component 283 
(parameterization), Collins et al. (2002) noted that, at the time their paper was written, studies 284 
had “demonstrated that the longwave cooling rates and thermodynamic state simulated by GCMs 285 
are sensitive to the treatment of water vapor line strengths.” Collins et al. used this knowledge—286 
along with updated information about absorption and emission of thermal radiation by water 287 
vapor—to update the radiation parameterization in the Community Atmosphere Model.  This 288 
component-level improvement led to substantial improvements in the models’ simulated climate. 289 

 290 

 291 

Regarding stratocumulus cloud parameterization in climate models, targeted developments 292 
following the Third Intergovernmental Panel on Climate Change (IPCC) Assessment Report 293 
reduced uncertainty in estimates of cloud feedbacks to the extent that the 6th IPCC Assessment 294 

Figure 2. Changes in the distribution of estimated cloud radiative forcing (CRF) across three generations of IPCC Assessment 
Reports: 3 (TAR, published in 2001), 5 (AR5, 2014), and 6 (AR6, 2021). AR4 is omitted because data necessary to estimate 
CRF are not readily available. Estimates of simulated CRF were acquired by manual digitization of Figure 7.2 of Stocker et al. 
(2011) and by multiplying the equilibrium climate sensitivity and cloud feedback columns from Tables S1 and S2 of Zelinka 
et al. (2020). As the distribution of estimated cloud radiative forcing shifts upwards from TAR to AR5 to AR6, the figure 
shows that in AR5 and AR6, cloud feedbacks are largely positive. Indeed, AR6 states with high confidence that “future 
changes in clouds will, overall, cause additional warming” (Forster et al., 2021, p. 1022), yet it was not clear in TAR whether 
cloud feedbacks were positive. The increasing confidence in positive cloud feedbacks is partially due to improved boundry-
layer parameterization, which demonstrates modelers’ component-level understanding.  
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Report now states with high confidence that “future changes in clouds will, overall, cause 295 
additional warming” (p. 1022). This systematic change in cloud radiative forcing is demonstrated 296 
in Figure 2. It was not clear in the Third IPCC Assessment Report (TAR) whether cloud 297 
feedbacks were positive or negative, and the TAR noted in particular that the “difficulty in 298 
simulation of observed boundary layer cloud properties is a clear testimony of the still 299 
inadequate representation of boundary-layer processes” (TAR 2001), p. 273). Around this time, 300 
researchers developed improved boundary layer parameterizations with the goal of improving 301 
the representation of low, boundary layer clouds. For instance, Grenier and Bretherton built on a 302 
standard 1.5-order boundary layer turbulence parameterization in which turbulent mixing is 303 
treated as a diffusive process related to the amount of turbulent kinetic energy (TKE) and in 304 
which TKE is treated as a conservative, prognostic quantity. Their key additions to the 1.5-order 305 
turbulence approach were (1) a more accurate numerical treatment of diffusion in the vicinity of 306 
step-function-like jumps in temperature and humidity (inversions) and (2) contribution of cloud-307 
top radiative cooling to the production of TKE. These two ingredients allow the turbulence 308 
parameterization to emulate the physics that drive stratocumulus clouds. Variations on the 309 
parameterization of (Grenier and Bretherton (2001) and other similarly sophisticated boundary 310 
layer parameterizations have been included in numerous weather and climate models, leading to 311 
improvements in the simulation of stratocumulus clouds specifically and general improvements 312 
in model climatology.   313 

In certain circumstances component-level responsibility for particular model biases can be 314 
determined. As an example, the Community Earth System Model 2 (CESM2) was recognized as 315 
exhibiting a too-large climate sensitivity—one that did not appear in standard CMIP simulations. 316 
This behavior was discovered in a surprising way. Zhu et al. 2021 had shown an instability in the 317 
simulation of the last glacial maximum, a much colder period than present day, using CESM2. 318 
This instability did not exist in CESM. By reverting to the original, component-level 319 
microphysics scheme the model behaved as expected, and erroneous specification of 320 
microphysical particle concentrations were discovered and remedied. More generally, the 321 
understanding and observational constraint of ice microphysics is a challenge as demonstrated by 322 
the very large variations in ice water path across CMIP models. Using Perturbed Parameter 323 
Estimation (PPE, e.g., Eidhammer et al. 2024) can also reveal component level sensitivities and 324 
shortcomings. 325 

We take the above cases from CMIP to indicate that climate scientists aim for component-level 326 
understanding of their models, which relates to a standard that climate models be at least 327 
somewhat intelligible. Adopting the idea of “intelligibility” from philosopher of science de Regt 328 
(2017) we can say that a complex model is intelligible for scientists if they can recognize 329 
qualitatively characteristic consequences of the model without performing exact calculations. 330 
Intelligibility is facilitated by having models made up of components. In dynamical models, 331 
these components typically represent real-world processes, even in cases of empirically based 332 
parameterizations. More generally, knowing that a model component plays a particular role—333 
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either representing the process as designed or a role later discovered during model 334 
development—in a climate simulation is invaluable for reasoning about the behavior, successes, 335 
and biases of the GCM as a whole. 336 

The climate modeling community has long strived for component-level understanding and 337 
intelligibility. This is especially evident in the work on climate model hierarchies, i.e., a group of 338 
models which spans a range of complexity and comprehensiveness Jeevanjee et al. (2017). 339 
Writing nearly two decades ago, Issac Held (2005) identified model hierarchies as necessary if 340 
we wish to understand both the climate system and complex climate models: 341 

we need a model hierarchy on which to base our understanding, describing how the dynamics 342 
change as key sources of complexity are added or subtracted... (p. 1609) 343 

…the construction of such hierarchies must, I believe, be a central goal of climate theory in 344 
the twenty-first century. There are no alternatives if we want to understand the climate 345 
system and our comprehensive climate models. Our understanding will be embedded within 346 
these hierarchies. (p. 1610)  347 

 348 

Along similar lines, and before the advent of CMIP, Stephen Schneider (1979) wrote that  349 

…the field of climate modeling needs to “fill in the blanks” at each level in the hierarchy of 350 
climate models. For only when the effect of adding one change at a time in models of 351 
different complexity can be studied, will we have any real hope of understanding cause and 352 
effect in the climatic system. (p. 748) 353 

 354 
These appeals to climate model hierarchies highlight how component-level understanding is a 355 
longstanding goal in climate modeling (see also Katzav and Parker 2015). This is not to say that 356 
component-level understanding automatically translates to understanding all model behaviors. 357 
Emergent properties such as equilibrium climate sensitivity may elude explanation. Even when 358 
components such as cloud parameterizations are appealed to as causally relevant for higher ECS 359 
values (e.g., Zelinka et al. 2020), it must be granted that these cloud parameterizations interact 360 
with other components and pieces of the overall GCM. That is, GCMs exhibit fuzzy 361 
modularity—sub-model behaviors do not add up linearly or in an easy-to-understand way 362 
(Lenhard and Winsberg 2010). So there may be a more complete explanation detailing how, as a 363 
whole, the GCM simulates a higher ECS. Producing a complete explanation may prove elusive, 364 
however, to the extent that GCMs are epistemically opaque or have such a high degree of 365 
complexity that human minds cannot track all of the relevant information (Humphreys 2009).7 366 
Therefore, we do not regard our three proposed types of understanding as exhaustive—perhaps a 367 

 
7 This complexity includes both the impossibility of fully knowing a climate model’s code in its entirety, and the 
impossibility of being able to follow the calculations as the model steps forward in time. With today’s GCMs, 
humans can do neither of these things.  
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component-interaction or structural type of understanding ought to be theorized and strived for 368 
as well.   369 

However, the examples from earlier in this section show how the goal of component-level 370 
understanding is regularly achieved, overall model complexity notwithstanding. Having achieved 371 
such understanding, scientists can be more confident that their models have indeed captured 372 
some truths about the target systems, and they are thereby justified to increase their confidence in 373 
these complex models. In the climate modeling literature, component-level understanding 374 
routinely leads to model improvements.  375 

We end this section with a brief discussion distinguishing between component-level and 376 
statistical understanding. Overall, our analysis is in the same spirit as that of Knüsel and 377 
Baumberger (2020) who argue that data-driven models and dynamical models alike can be 378 
understood through manipulating the model so that modelers can qualitatively anticipate model 379 
behaviors. However, not all manipulations are equal. Manipulating input data and seeing 380 
associated changes in output data does not tell you how the model produces its output. The 381 
hierarchy of understanding we propose—instrumental, statistical, and component-level—382 
concerns the degree to which and ways in which a model is intelligible or graspable (Knüsel and 383 
Baumberger 2020; Jebeile, Lam, and Räz 2021). Complex models are intelligible or graspable 384 
just in case, and to the degree that, their behavior can be qualitatively anticipated or explained  385 
(De Regt and Dieks 2005; Lenhard 2006). From our perspective, component-level understanding 386 
puts scientists into a position to better anticipate and better explain model behavior. In general, 387 
statistical understanding can help us answer questions such as “do the input-output relations of 388 
the model make sense and, if so, in what way do they make sense?” This is great for finding out 389 
whether the model’s behavior is consistent with expectations across a variety of cases. This may 390 
also involve manipulating input and examining associated changes in output, to better anticipate 391 
future model behavior (Knüsel and Baumberger 2020; Jebeile, Lam, and Räz 2021). However, 392 
this is distinct from learning why the model behaves the way it does. To answer this distinct 393 
question, we need to know how the model is working, which, in turn, involves knowing 394 
something about the pieces making up the model. Hence, component-level understanding is 395 
called for. This is exactly the type of understanding that we see aimed for, and often grasped, in 396 
CMIP experiments.  397 

Component-level understanding often involves a different kind of knowledge related to model 398 
architecture and beyond input-output relationships. On the one hand it can demonstrate that you 399 
know what role the component is playing in the model—this shows some knowledge of model-400 
building. It may also be helpful for answering a wider range of what-if-things-had-been-different 401 
questions. Finally, and potentially the clearest benefit of component-level understanding, is that 402 
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it can tell one what needs to be fixed in cases of error. This should produce additional trust in the 403 
modeling enterprise more generally.8  404 

4. Lessons learned: examples of component level understanding in ML 405 

Component-level understanding is not the privilege solely of dynamic climate modeling. ML 406 
models can be built with intelligible components as well, although their components look very 407 
different from those in dynamic models. In this section, we offer three examples in which ML 408 
researchers are able to acquire component-level understanding of model behaviors by 409 
intentionally designing or discovering model components that are interpretable and intelligible.  410 

4.1 Attributing model success with physics-informed machine learning 411 

Our first example involves physics-informed machine learning, i.e., machine learning 412 
incorporated with domain knowledge and physical principles (Kashinath et al. 2021). Model 413 
success can be attributed to a specific component in a neural net, if it is known that said 414 
component in the neural net is performing a physically relevant role for a given modeling task.  415 

Beucler et al. (2019; 2021) augment a neural net’s architecture via layers which enforce 416 
conservation laws that are important for emulating convection (see Figure 1, panel a). These laws 417 
include enthalpy conservation, column-integrated water conservation, and both long- and short-418 
wave radiation conservation. The conservation laws are enforced “to machine precision” 419 
(Beucler et al. 2021). Following Beucler et al. (2019) and because this neural net has a physics-420 
informed architecture, we will use the acronym NNA. NNA is trained on aqua-planet simulation 421 
data from the Super-Parameterized Community Atmosphere Model 3.0. NNA’s results are 422 
compared with those of two other neural nets: one unconstrained by physics (NNU) and another 423 
“softly” constrained through a penalization term in the loss function (NNL; see Beucler et al. 424 
(2019) for further discussion).  425 

All three NNs are evaluated based on the mean squared errors (MSE) of their predictions and 426 
based on whether their output violates physics conservation laws (they call this a P-score). While 427 
NNU has the highest performance in a baseline climate—i.e., a climate well-represented by the 428 
training data—NNA and NNL each outperform NNU in a 4k warmer climate (see Beucler et al. 429 
2019, Table 1), which is impressive since generalizing into warmer climate is particularly 430 
challenging for ML models (Rasp et al. 2018; Li 2023). These results may indicate that NNU 431 
performed better in the baseline climate for the “wrong” reasons. Indeed, NNU had a far lower 432 
P-score in both the baseline and the 4k warmer climate cases.  433 

Beucler et al. (2021) further show that NNA predicts the total thermodynamic tendency in the 434 
enthalpy conservation equation more accurately than the other NNs—“by an amount closely 435 

 
8 This is not to say that component-level understanding is necessarily superior to statistical understanding. E.g., 
knowing about a robustly detected statistical relationship could be more valuable than knowing how a single model 
component functions, especially since many important model behaviors arise from interactions between multiple 
model components.  
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related to how much each NN violates enthalpy conservation” (p. 5). The particular layer in 436 
NNA responsible for enthalpy conservation is obviously the explanation for this result. This case 437 
therefore exemplifies component-level understanding, which was straightforward because of 438 
Beucler et al.’s choice of model design.  439 

It should be noted that both NNA and NNL perform well in the 4k warmer climate and, more 440 
generally, “[e]nforcing constraints, whether in the architecture or the loss function, can 441 
systematically reduce the error of variables that appear in the constraints” (Beucler et al. 2021, p. 442 
5). This suggests that, when thinking purely about model performance, physical constraints do 443 
not necessarily need to be implemented in the model’s architecture. However, compared with 444 
NNL, Beucler et al.’s use of NNA facilitates straightforward component-level understanding. 445 
The component-level understanding is straightforward because we know that, by virtue of the 446 
physics knowledge built into the model’s architecture, NNA obeys conservation laws as it is 447 
trained and as it is tested. We can draw an analogy with dynamical climate models. NNL is to 448 
NNA as bias-corrected GCM simulations are to ones which capture relevant physical processes 449 
with high-fidelity to begin with. Knowing that a model produces a physically consistent answer 450 
for physical reasons is a stronger basis for trust than merely knowing that a model produces 451 
physically consistent answers due to post-hoc bias correction.  452 

 453 

4.2 Explaining model error in a case of Fourier Neural Operators 454 

Another example involves a recent development in using machine learning to solve partial 455 
differential equations: the Fourier neural operator (FNO) pioneered by Li et al. (2021). The 456 
innovation of FNO is the application of Fourier transforms to enable CNN-based layers that learn 457 
“solution operators” to partial differential equations in a scale-invariant way. Building on Li et al. 458 
(2021), Pathak et al. (2022) demonstrated that training an FNO network on output from a 459 
numerical weather prediction (NWP) model produced a machine learning model that emulates 460 
NWP models with high fidelity and efficiency. A key challenge noted by Pathak et al. (2022), 461 
however, was a numerical instability that limited application of the FNO model to forecasts of 462 
lengths less than 10 days. 463 

Analysis of the instability ultimately led the group to hypothesize that the instability was due to a 464 
specific component of the FNO model: the Fourier transform itself. The problem they identified 465 
was that the sine/cosine functions employed in Fourier transforms are the eigenfunctions of the 466 
Laplace operator on a doubly-periodic, Euclidean geometry, whereas the desired problem (i.e., 467 
NWP) is intrinsic to an approximately spherical geometry. In essence, the Earth’s poles represent 468 
a singularity that Fourier transforms on a latitude-longitude grid are not well-equipped to handle. 469 
Bonev et al. (2023) adapt the FNO approach to spherical geometry by utilizing spherical 470 
harmonic transforms with the Laplace-operator eigenfunctions for spherical geometries as basis 471 
functions, in lieu of Fourier transforms. These eigenfunctions, the spherical harmonic functions, 472 
smoothly handle the poles as a natural part of their formulation. Bonev et al. (2023) report that 473 
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the application of spherical harmonic transforms, rather than Fourier transforms, results in a 474 
model that is numerically stable up to at least O(100) days and possibly longer. 475 

The application of spherical transformations stabilizes the FNO model. Bonev et al. were able to 476 
fix the FNO because they could pinpoint the Fourier transformations, a component of the FNO 477 
model, demonstrating scientists’ component-level understanding.9  478 

4.3 GAN dissect for future applications in ML-driven climate science 479 

The final example comes from generative adversarial networks (GANs) in computer vision. Bau 480 
et al. (2018) identify particular units (i.e., sets of neurons and/or layers) in a neural net as 481 
causally relevant to the generation of particular classes within images such as doors on churches. 482 
They demonstrate that these units are actually causally relevant by showing what happens when 483 
said units are ablated (essentially setting them to 0).  484 

The example demonstrates component-level understanding because the units in question are 485 
manipulated. Components within the architecture of the model are turned on and off and the 486 
resultant effects are observed.10 This puts us in a position to say, for example, “these neurons are 487 
responsible for generating images of trees, and we know this because turning more of these 488 
neurons on yields an image with more trees (or bigger trees) and vice versa. Moreover, the other 489 
aspects of the image are unchanged no matter what we do to these neurons.” Bau et al. (2018) 490 
also show that visual artefacts are causally linked to particular units and can be removed using 491 
this causal knowledge.  492 

This case is analogous to the study from Gleckler et al. (1995) as described in Sect. 3 above. 493 
Recall that the cloud radiative effects from the GCMs were "turned off” (substituted out and 494 
replaced with observational data) and the calculations of ocean heat transport improved. 495 
Scientists can make sense of model error because they know that a certainty deficiency in GCMs, 496 
at the time, involved components of the GCMs responsible for representing clouds. In the same 497 
way, Bau et al. (2018) are able to intervene on generations of images by linking units in their 498 
model to particular types of image classes and examining what happens to the overall image 499 
when these units are manipulated. Note that this is distinct from the closely related method of 500 
ablating specific subsets of input data, which is more closely aligned with XAI and can therefore 501 
yield statistical understanding (e.g., see Brenowitz et al. 2020; Park et al. 2022).  502 

While GAN dissect isn’t typically used in climate science research, GANs are beginning to be 503 
adopted for some climate applications (Besombes et al. 2021; Beroche 2021). Additionally, there 504 
are potential future applications such as in atmospheric river detection Mahesh et al. (2023). In 505 

 
9 Fourier transformations turn out to be useful in other contexts of ML-driven climate science because scientists can 
use them to understand neural networks behaviors as combinations of filters, e.g., (Subel et al. 2023). 
10 As a reminder to the reader, by “component” we mean a functional unit of the model’s architecture, which 
includes the “units” described by (Bau et al. 2018). 
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any case, this example demonstrates yet again how component-level understanding is achievable 506 
with ML.  507 

 508 

5. Discussion/Recommendations for practice 509 

In this Review and Perspective paper we have argued that component-level understanding ought 510 
to be strived for in ML-driven climate science. The value of component-level understanding is 511 
especially evident in the FNO problem described previously (Sect. 4.2 above). Instrumental 512 
understanding allowed the group to identify a performance issue (numerical ‘issues’ in the polar 513 
regions) that led to numerical instability. While the group did not employ any XAI—statistical 514 
understanding—approaches, it is clear that they would have been of limited value in identifying 515 
the underlying cause of the numerical instability, since XAI methods only probe input-output 516 
mappings. Ultimately the problem was identified and later solved by applying component-level 517 
understanding of the FNO network: knowledge that a component of the network implicitly (and 518 
incorrectly) assumed a Euclidean geometry for a problem on a spherical domain. 519 

However, a potential objection is that component-level understanding is unnecessary because 520 
XAI methods can simply be evaluated against benchmark metrics. For example, Bommer et al. 521 
(2023) propose five metrics to assess XAI methods, focusing especially on the methods’ output 522 
data (referred to as “explanations”). These include: 523 

Robustness of the explanation given small perturbations to input 524 

Faithfulness, by comparing the predictions of perturbed input and those of unperturbed input 525 
to determine if a feature deemed important by the XAI method does in fact change the 526 
network prediction 527 
 528 
Randomization, which measures how the explanation changes by perturbing the network 529 
weights, similar to the robustness metric, the thinking is that “the explanation of an input x 530 
should change if the model changes or if a different class is explained” (Bommer et al. 531 
(2023), p.8) 532 
 533 
Localization, which measures agreement between the explanation and a user-defined region 534 
of interest  535 

Complexity, a measure of how concise the highlighted features in an explanation are, and 536 
assumes that “that an explanation should consist of a few strong features” to aid 537 
interpretability (Bommer et al. 2023, p. 10).  538 

Insofar as the metrics are deemed desirable, we agree that such an approach could help establish 539 
trust in XAI. However, we view such benchmarks as complementary to, rather than a substitute 540 
for, component-level understanding. This is because benchmarks yield a sort of second-order 541 
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statistical understanding. That is, such metrics are largely focused on aspects of input and output 542 
data produced by a given XAI method. They are, in a sense, an XXAI method, an input-output 543 
mapping to help make sense of another input-output mapping. 544 

Therefore, our recommendation is that ML-driven climate science strive for component-level 545 
understanding. This will aid in evaluating the credibility of model results, in diagnosing model 546 
error, and in model development. The clearest path to component-level understanding in ML-547 
driven climate science would likely involve climate scientists building, or helping build, the ML 548 
models that are used for their research and implementing physics-based and other background 549 
knowledge to whatever extent feasible (Kashinath et al. 2021; Cuomo et al. 2022). Clear 550 
standards could also be developed for documenting ML architecture, training procedures, and 551 
past analyses, including error diagnoses (O’Loughlin 2023). Perhaps a model intercomparison 552 
project could be developed to systematically evaluate ML behavior across diverse groups of 553 
researchers. Lastly, with component-level understanding as a goal to strive for, scientists can 554 
better develop hybrid models where both ML and dynamic modeling components are employed. 555 

An increasing range of free or low-cost, high-quality resources are now available to enable 556 
researchers who are not (yet) experts in ML to gain a deep and practical level of understanding of 557 
modern ML model designs and applications. Some examples of free, high-quality resources 558 
include: 559 

• Practical Deep Learning for Coders - 1: Getting started (fast.ai) 560 
o Related: GitHub - fastai/fastbook: The fastai book, published as Jupyter Notebooks 561 

•  Introduction - Hugging Face NLP Course 562 
• How Diffusion Models Work - DeepLearning.AI 563 

 564 

Back in 2005, Held wrote that climate modeling “must proceed more systematically toward the 565 
creation of a hierarchy of lasting value, providing a solid framework within which our 566 
understanding of the climate system, and that of future generations, is embedded” (p. 1614). We 567 
think there is a parallel need in ML-driven climate science, i.e., to develop systematic standards 568 
for the use and evaluation of ML models that aid in our understanding of the climate system. 569 
Striving for component-level understanding of ML models is one way to help achieve this.  570 
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