This paper “Moving beyond post-hoc XAl: Lessons learned from dynamical climate modeling” (or a
variation of it) is vitally important to understanding how Al/ML techniques will be adopted by the
climate science community. Since climate science differs from other scientific disciplines in the
impossibility of performing controlled laboratory experiments at scale, any claims need to stand the test
of time or through extensive cross-validation against historical results. That’s the primary reason that
new ideas are treated with suspicion in climate science (or in any of the other earth sciences) -- without
experimental validation, all new models or hypotheses appear equally in doubt. Doesn’t matter if they
are Al-generated or by humans, climate scientists will file it away with all the other candidates, likely to
beignored as they can’t easily be validated, e.g. as a new semiconductor device model can be validated
by a lab experiment.

That is a daunting challenge but if nothing else, ML provides an extensive selection of cross-validation
approaches that climate science can borrow from. That needs to be stated up front. As ML can easily
generate matches to virtually any kind of data due to the magic of non-linear neural networks, cross-
validation is necessary to weed out the many that over-fit the observations. The Al literature is full of
cross-validation citations, as that is the lifeblood metric of the discipline of machine learning. The
majority of neural network model fits would fail on non-training data without the benefit of rigorous
cross-validation testing.

Yet, applying cross-validation alone is not enough. Climate science is further complicated by the fact
that there is no consensus physics model that explains a climate behavior as erratic as the El Nino
Southern Oscillation (ENSO). A cross-validation of an ML experiment matching ENSO observations
would also need to explore possibly novel physical mechanisms, especially with respect to the fluid
dynamics, that the GCM simulations may not be considering. That is part of the original promise of Al —
that of discovering emergent behavior not previously considered. So that needs to be stated as well, as it
could turn out that dynamical climate modeling could learn from XAl, as it’s not outside the realm of
possibility that an Al experiment could find something that a GCM formulation missed.

In the context of XAl, it’s also important to acknowledge an oft-overlooked Al approach that links pure
mathematical physics modeling to that of a physics-unaware neural network — that of symbolic
regression coupled with a genetic algorithm to explore the solution space. Whereas a neural network
will generate a tangled web of nonlinear interactions that are difficult to reverse engineer to a possible
physical mechanism, a symbolic regression application will apply algebraic/calculus formulations with a
selection of inputs to optimize a fit and perform cross-validation. Since the formulation is presented
symbolically, it takes far less effort for a human to discern and sort through possible plausible physical
mechanisms leading to the discovered equation.

There are certainly drawbacks to applying symbolic regression in comparison to a neural net, but there
are cases that could be cited for offering a promising approach. One in particular is the independent
discovery made by a symbolic regression tool called Eureqa in the plausible explanation of the
mechanism behind the quasi-biennial oscillation (QBO) of equatorial stratospheric winds. Eureqa was
able to discover a nonlinear interaction coupled to differential equation that reasonably fit to the data
overthe span of years that QBO data as collected, 1952 to the present. The human effort necessary was
to supply a physical mechanism for the equation and numerical parameters. This was reported as an
exact match to a non-linear lunar tidal interaction with the annual cycle, as described in Mathematical
Geoenergy, P. Pukite, D. Coyne, D. Challou (Wiley/AGU, 2019). Alas, this Al-adjacent model has not



gained any traction in the climate science community as it faces the same challenges of acceptance as

any other model outside of the consensus.

So concerning the paper, in the discussion section,
qualities such as robustness, faithfulness, etc are
suggested. In practice, the critical factors include the
3 P’s of plausibility, predictivity, and parsimony.
Plausibility covers the allowable physics. Predictivity
covers how well the model matches the observations,
by minimizing the error. Parsimony covers the
simplicity/complexity of the modelin terms of the
number of degrees of freedom (DOF) or terms
expressed. Any standard model optimization
technique features a Pareto front characterization
curve that tracks predictivity (error minimized) versus
parsimony (complexity minimized) as a metric. All

symbolic reasoning tools feature this as a optimization metric.
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A more rudimentary example of a Pareto front optimized symbolic reasoning solution is also described
in Mathematical Geoenergy. This uses several factors to model the global temperature with a simple
arithmetic superposition. The Pareto front is shown in the lower-right below.
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Figure 17.4 & Symbolic reasoning solution to global temperature series showing a composite of main factors

along a Pareto front of complexity and accuracy.
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Suggestion then is to incorporate symbolic regression in addition to the neural network approach. Each
of these approaches can be more suitable for different types of problems. Symbolic regression with
geneticalgorithms offers amore interpretable model which could be preferable in scientific applications
where understanding the underlying phenomenais crucial — closer to what XAl implies. Neuralnetworks
might be more suitable for problems involving high-dimensional data, which also describes the
requirements of a complex climate system. The jury is still out what will eventually work, perhaps a
combination of the two, but should state the possible choices and lessons learned.



