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Abstract. AI models are criticized as being black boxes, potentially subjecting climate science to greater uncertainty. 5 

Explainable artificial intelligence (XAI) has been proposed to probe AI models and increase trust. In this Review and 6 

Perspective paper, we suggest that, in addition to using XAI methods, AI researchers in climate science can learn from 7 

past successes in the development of physics-based dynamical climate models. Dynamical models are complex but 8 

have gained trust because their successes and failures can sometimes be attributed to specific components or sub-9 

models, such as when model bias is explained by pointing to a particular parameterization. We propose three types of 10 

understanding as a basis to evaluate trust in dynamical and AI models alike: (1) instrumental understanding, which is 11 

obtained when a model has passed a functional test; (2) statistical understanding, which is obtained when researchers 12 

can make sense of the modelling results using statistical techniques to identify input-output relationships; and (3) 13 

Component-level understanding, which refers to modelers’ ability to point to specific model components or parts in 14 

the model architecture as the culprit for erratic model behaviors or as the crucial reason why the model functions well. 15 

We demonstrate how component-level understanding has been sought and achieved via climate model 16 

intercomparison projects over the past several decades. Such component-level of understanding routinely leads to 17 

model improvements and may also serve as a template for thinking about AI-driven climate science. Currently, XAI 18 

methods can help explain the behaviors of AI models by focusing on the mapping between input and output, thereby 19 

increasing the statistical understanding of AI models. Yet, to further increase our understanding of AI models, we will 20 

have to build AI models that have interpretable components amenable to component-level understanding. We give 21 

recent examples from the AI climate science literature to highlight some recent, albeit limited, successes in achieving 22 

component-level understanding and thereby explaining model behavior. The merit of such interpretable AI models is 23 

that they serve as a stronger basis for trust in climate modeling and, by extension, downstream uses of climate model 24 

data.  25 

 26 

 27 

1. Introduction 28 

Machine learning (ML) is becoming increasingly utilized in climate science for tasks ranging 29 

from climate model emulation (Beucler et al. 2019), to downscaling (McGinnis et al. 2021), 30 

forecasting (Ham, Kim, and Luo 2019), and analyzing complex and large datasets more 31 

generally (for an overview of ML in climate science, see Reichstein et al. 2019; Molina et al. 32 

2023; de Burgh-Day and Leeuwenburg 2023). Compared with physics-based methods, ML, once 33 

trained, has a key advantage: orders of magnitude reduced computational expense. computational 34 

efficiency. Along with the advantages of ML come challenges such as assessing ML 35 
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trustworthiness. For example, scientists often do not understand why a neural net (NN) gives the 36 

output that it does because the NN is a “black box.”1  37 

To build trust in ML, the field of explainable artificial intelligence (XAI) has become 38 

increasingly prominent in climate science (Bommer et al. 2023). Sometimes referred to as 39 

“opening the black box,” XAI methods consist of additional models or algorithms intended to 40 

shed light on why the ML model gives the output that it does. For example, (Labe and Barnes 41 

(2021) use an XAI method, layer-wise relevance propagation, and find that their NN heavily 42 

relies on datapoints from the North Atlantic, Southern Ocean, and Southeast Asia to make its 43 

predictions.  44 

While XAI methods can produce useful information about ML model behaviors, these methods 45 

also face problems and have been subjected to critique. As Barnes et al. (2022) note, XAI 46 

methods “do not explain the actual decision-making process of the network” (p. 1). Additionally, 47 

different XAI methods applied to the same ML model prediction have been shown to exhibit 48 

discordance, i.e., yielding different and even incompatible “explanations” for the same ML 49 

model (Mamalakis et al. 2022). Discordance in XAI is not unique to climate science. Krishna et 50 

al. (2022) find that 84% of their interviewees (ML practitioners across fields who use XAI 51 

methods) report experiencing discordance in their day-to-day workflow and when it comes to 52 

resolving discordance, 86% of their online user study responses indicate that ML practitioners 53 

either employed arbitrary heuristics (e.g., choosing a favorite method or result) or just simply did 54 

not know what to do.  55 

As Molina et al. (2023) note, “identifying potential failure modes of XAI, and uncertainty 56 

quantification pertaining to different types of XAI methods, are both crucial to establish 57 

confidence levels in XAI output and determine whether ML predictions are ‘right for the right 58 

reasons’” (p. 8). Rudin (2019) argues that, instead of attempting to use XAI to explain ML 59 

models post hoc, scientists ought to build interpretable models informed by domain expertise 60 

from the outset. Speaking about explainability in particular, Rudin writes, “many of the [XAI] 61 

methods that claim to produce explanations instead compute useful summary statistics of 62 

predictions made by the original model. Rather than producing explanations that are faithful to 63 

the original model, they show trends in how predictions are related to the features” of the model 64 

input (2019, p. 208).  65 

Regardless, XAI methods will likely continue to be widely applied due to ease of use and as 66 

benchmark metrics for XAI methods are proposed and implemented (Hedström et al. 2023; 67 

Bommer et al. 2023). In some cases, XAI methods are applied with great success, e.g., 68 

(Mamalakis et al. 2022) found that the input x gradient method fit their ground truth model with 69 

a high degree of accuracy. However, we believe that more progress can be made in establishing 70 

 
1 Note that computer scientists have proposed various conceptual approaches to articulate “transparency” (e.g., 

Lipton 2016). However, we aim to offer conceptual clarity for ML applications specifically in climate science by 

comparing different types of understanding ofin ML and in dynamical climate models. 
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trust in ML-driven climate science, especially as an increasing number of researchers start 71 

incorporating ML into climate research..  72 

In this Review and Perspective paper, we target readers with expertise in traditional approaches 73 

for climate science (e.g., development, evaluation, and application of traditional Earth System 74 

Models) who are starting to utilize ML in their research and who may see XAI as a tempting way 75 

to gain insight into model behavior and to build confidence.  In this perspective, we draw from 76 

some ideas in in philosophy of science to recommend that climate scientistssuch researchers 77 

leverage the expanding array of freely available ML learning resources to move beyond 78 

traditional post hoc XAI methods and aim for component-level understanding of ML models. By 79 

“component” we mean a functional unit of the model’s architecture, such as a layer or layers in a 80 

neural net. By “understanding” we mean knowledge that could serve as a basis for an 81 

explanation about the model. We distinguish between three levels of understanding: 82 

Instrumental understanding: knowing that the model performed well (or not); e.g., 83 

knowing its error rate on a given test. 84 

Statistical understanding: being able to offer a reason why we should trust a given ML 85 

model by appealing to input-output mappings. These mappings can be retrieved by 86 

statistical techniques.  87 

Component-level understanding: being able to point to specific model components or 88 

parts in the model architecture as the cause of erratic model behaviors or as the crucial 89 

reason why the model functions well.  90 

These levels concern the degree to which complex models are intelligible or graspable to 91 

scientists (De Regt and Dieks 2005; Regt 2017; Knüsel and Baumberger 2020). Therefore, our 92 

proposal has a narrower but deeper focus than recent philosophy of science accounts of 93 

understanding climate phenomena with or by using ML and dynamical climate models (Knüsel 94 

and Baumberger 2020; Jebeile, Lam, and Räz 2021). We are concerned with understanding, 95 

diagnosing, and improving model behavior to inform model development.    96 

Instrumental understanding, while clearly necessary, is fairly straightforward and is a 97 

prerequisite for any explanation of model behavior. It involves knowing the degree to which a 98 

model fits some data (Lloyd 2010; Baumberger et al. 2017). It may also involve knowing 99 

whether the model both fits some data and agrees with simpler models about a prediction of 100 

interest or whether the model has performed well on an out-of-sample test (e.g., (Hausfather et 101 

al. 2020) or according to other metrics (e.g., Gleckler et al. 2008).  102 

However, in this Review and Perspective paper, we will only focus on the other two types of 103 

understanding. Statistical understanding can be gained via traditional XAI methods but does not 104 

require knowledge of the model’s innerworkings, i.e., its components and/or architecture (see 105 

Sect. 2 below). In contrast, component-level understanding does involve knowledge of the 106 

model’s innerworkings. Therefore, component-level understanding allows scientists to offer 107 
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causal explanations that attribute ML model behaviors to its components. Scientists need to build 108 

and analyze their models in such a way that they can understand how distinct model components 109 

contribute to the model’s overall predictive successes or failures rather than merely probe model 110 

data to yield input-output mappings. The latter is emblematic of traditional XAI methods.  111 

Our recommendation to strive for component-level understanding is inspired by how dynamical 112 

climate models have been built, tested, and improved, such as those in the coupled model 113 

intercomparison projects (CMIP). Therefore, a novel contribution of this paper is in the linking 114 

of existing climate model development practices to practices that could be employed in ML 115 

model development. 116 

(Knüsel and Baumberger 2020)In CMIP, when models agree on a particular result, scientists 117 

sometimes infer that the governing equations and prescribed forcings shared by the models are 118 

responsible for the models’ similar results. As Baumberger et al. (2017) put it, “robustness of 119 

model results (combined with their empirical accuracy) is often seen as making it likely, or at 120 

least increasing our confidence, that the processes that determine these results are encapsulated 121 

sufficiently well in the models” (p. 11; see also Hegerl et al. 2007; Kravitz et al. 2013; Lloyd 122 

2015; Schmidt and Sherwood 2015; O’Loughlin 2021). Conversely, when climate models exhibit 123 

biases or errors, scientists can often point to specific parameterizations or sub-models as the 124 

likely cause (e.g., Gleckler et al. 1995; Pitari et al. 2014; Gettelman et al. 2019; Zelinka et al. 125 

2020); O’Loughlin 2023), although models can get the right answer for the wrong reasons (e.g., 126 

see Knutti 2008).   127 

To be clear, there are limits to how much component-level understanding can be achieved in 128 

CMIP. Dynamical climate models exhibit fuzzy (rather than sharp) modularity, meaning that the 129 

behavior of a fully coupled model is “the complex result of the interaction of the modules—not 130 

the interaction of the results of the modules” (Lenhard and Winsberg 2010, p. 256). Climate 131 

scientists are familiar with a related problem: the difficulty in explaining how climate models 132 

generate (or not) emergent phenomena like the Madden Julian Oscillation (Lin et al. 2024).  133 

(citations?). Despite these difficulties, philosophers and other scholars of climate science have 134 

documented successes in attributing model behavior to individual model components in the 135 

climate science literature (Frigg et al. 2015; Carrier and Lenhard 2019; Touzé-Peiffer et al. 2020; 136 

Pincus et al. 2016; Hall and Qu 2006; Hourdin et al. 2013; Notz et al. 2013; Oreopoulos et al. 137 

2012; Mayernik 2021; Gettelman et al. 2019). These successes do not imply anything like a 138 

“full” or “complete” understanding of all model behavior, rather, the component-level 139 

understanding of climate model behavior comes in degrees (Jebeile et al., Lam, and Räz 2021).  140 

Fortunately, we see component-level understanding exemplified in ML-driven climate science to 141 

some extent already (Beucler et al. 2019; Kashinath et al. 2021; Bonev et al. 2023, see Sect. 4 142 

below). Indeed, the thinking behind physics-informed machine learning, which incorporates 143 

known physical relations into the models from the outset (Kashinath et al. 2021;Wang et al. 144 

2022; Cuomo et al. 2022), often involves component-level understanding. Thus, our proposal is 145 

an endorsement of these ongoing best practices, a recognition of the relationship between the 146 

Commented [RO1]: Add Zotero 

Commented [RO2]: Add O’Loughlin 2023 citation 
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evaluation of dynamical models and data-driven models, and a warning about the limits of 147 

statistical understanding.  148 

In addition, there is a concurrent need to establish the trustworthiness of ML models as ML-149 

driven climate science potentially becomes increasingly used to inform decision makers (NSF AI 150 

Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography 151 

(AI2ES)). While decision makers themselves do not need to understand exactly how a model 152 

arrives at the answer it does, they may desire an explanation of the model’s behavior that comes 153 

from a credible expert. One way to establish credibility is to be able to explain ML model 154 

behavior by appealing to the innerworkings of the model, which requires component-level 155 

understanding of the model. In this way, component-level understanding can serve as a basis for 156 

trust in ML-driven climate science.  157 

The remainder of the paper is structured as follows. In Sect. 2, we give an overview of XAI in 158 

climate science and explain the idea of statistical understanding and how XAI can only give us 159 

statistical understanding. In Sect. 3, we detail the notion of component-level understanding and 160 

demonstrate it using examples from CMIP.  In Sect. 4, we show how component-level 161 

understanding is achievable in ML. In Sect. 5, we conclude and make suggestions for ML-driven 162 

climate science, including describing some resources that interested readers might utilize to build 163 

the expertise in ML model design necessary to probe, build, and adapt models in a way that is 164 

amenable to component-level understanding.   165 

 166 
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 167 

2. Post-hoc XAI in climate science and statistical understanding 168 

XAI methods are intended to shed light on the behavior of complex opaque ML models. As 169 

Mamalakis et al. (2022b) put it, XAI “methods aim at a post hoc attribution of the NN prediction 170 

to specific features in the input domain (usually referred to as attribution/relevance heatmaps), 171 

thus identifying relationships between the input and the output that may be interpreted physically 172 

by the scientists" (p. 316). XAI methods are typically applied to ML models which are multi-173 

layer, convolutional, recurrent neural networks, and/or tree ensembles.  174 

The general idea behind XAI methods is to attribute the predictive success of the model’s output 175 

(i.e., the model’s prediction or decision) to subsets of its input in supervised ML. Broadly, there 176 

are two conceptual approaches to achieve this.2 One approach is to figure out how the changes in 177 

input affect the output. For example, Local Interpretable Model-agonistic Explanation (LIME) 178 

first perturbs an input data point to create surrogate data near said data point. Then, after the 179 

trained ML model classifies the surrogate data, LIME fits a linear regression using classified 180 

surrogate data and measures how model output can be attributed to features of the surrogate data 181 

manifold. In this way, LIME attributes the predictive success for the actual data point to a subset 182 

of input features. Note that L stands for “local” because LIME starts with perturbing specific 183 

classificatory instances rather than with global classification.  184 

Another commonly used method is Shapley Additive explanation (SHAP), which is based on 185 

calculating the Shapley values of each input feature. Shapley values are cooperative game 186 

theoretic measures that distribute gains or costs to members of a coalition. Roughly put, Shapley 187 

values are calculated by repeatedly randomly removing a member from the group to form a new 188 

coalition and calculating the consequent gains and then averaging all marginal contributions to 189 

all possible coalitions. In the XAI context, input features will have different Shapley values, 190 

denoting their different contribution to the model’s predictive success. E.g., see (Chakraborty et 191 

al. 2021; Felsche and Ludwig 2021; Cilli et al. 2022; Clare et al. 2022; Grundner et al. 2022; W. 192 

Li et al. 2022; Xue et al. 2022) 193 

 
2 Yuan et al. (2023) break down the various XAI methods into four categories. They divide those related to 

manipulating input-output into perturbation-based methods and surrogate-based methods (e.g., LIME). They divide 

the methods that rely on model parameter values into gradient-based methods (e.g., gradient) and decomposition-

based method (e.g., layerwise relevance propagation LRP). 

Figure 1. Scientists can obtain statistical understanding of models by seeking input-output mapping, e.g., via perturbation 
experiments. To acquire component-level understanding, one needs to be able to pinpoint specific components to explain 
models’ erratic behaviors or successes. This has been done in dynamic climate modeling, e.g., by pointing to cloud 
parameterization as a means to improve modeling outcomes. We offer three examples of component-level understanding in 
machine learningmodeling. In panel (a), Beucler et al. (2021) design layers of neurons in their neural network to enforce 
energy conservation and improved model outcome. In panel (b), BonevKathnash et al. (2023) use spherical Fourier 
transformation to ensure Fourier Neural Operators perform with climate data. In panel (c), Bau et al. (2019) use a method 
called GAN dissection to identify which subsets of neurons control parts of images that correspond to semantics (e.g., trees or 
doors). 
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Another approach relies on treating a trained black box model as a function to understand how 194 

the input-output mapping relationship is represented by this function. For example, vanilla 195 

gradient (also known as saliency) is an XAI method that relies on calculating the gradient of 196 

probabilities of output being in each possible category with respect to its input and 197 

backpropagates the information to its input. In this way, vanilla gradient quantifies the relative 198 

importance of each element of the input vector with respect to the output, thereby attributing the 199 

predictive success to subsets of input. E.g., see Balmaceda-Huarte et al. 2023; Liu et al. 2023; He 200 

et al. 2024.3 201 

Let’s examine how XAI methods yield statistical understanding in a detailed example. González-202 

Abad et al. (2023) use the saliency method to examine input-output mappings in three different 203 

convolutional neural nets (CNNs) which were trained and used to downscale climate data. They 204 

computed and produced accumulated saliency maps which account for “the overall importance 205 

of the different elements” of the input data for the model’s prediction (p. 8). One of their results 206 

is that, in one of the CNNs, air temperature (at 500hPa, 700 hPa, 850hPa, and 1000 hPA) 207 

accumulates the highest relevance for predicting North American near-surface air temperature, 208 

although different regions are apparently more relevant than others to the models’ predictions 209 

(see their figure 6, p. 12). In other words, it appeared that the CNN had correctly picked up on a 210 

relationship between coarse resolution temperature at certain geopotential heights on the one 211 

hand, and higher resolution near-surface air temperatures on the other hand.  212 

In this way, XAI methods yield information that can be helpful for making a model’s results 213 

intelligible. E.g., it puts a scientist in the position to say, “this model was picking up on aspects 214 

A, B, and C of the input data. These aspects contributed to prediction X, a prediction that seems 215 

plausible.” This exemplifies what we call “statistical understanding”, i.e., being able to offer a 216 

reason why we should trust a given ML model by appealing to statistical mappings between 217 

input and output. Statistical techniques are often used to obtain these mappings by relating 218 

variations in input to variations in output. Post hoc XAI methods can typically yield this type of 219 

understanding. Note that this is not the same as explaining the innerworkings of the model itself, 220 

or what we call “component-level understanding,” because the explanation does not attribute the 221 

model behaviors to ML model components, but rather is focused on input-output mapping.  222 

While XAI methods can give statistical understanding of model behaviors, this type of 223 

understanding has limitations. The general limitation is a familiar one, i.e., that “while XAI can 224 

reveal correlations between input features and outputs, the statistics adage states: ‘correlation 225 

does not imply causation’” (Molina et al. 2023, p. 8)4. Even if genuine causal relationships 226 

 
3 Yet another commonly used XAI method, layerwise relevance propagation (LRP), computes how each neuron 

contributes to other neurons’ activations, therebyfore highlighting the subsets of the input that dominantly contribute 

to the output. E.g., see (Gordon, Barnes, and Hurrell 2021; Toms, Barnes, and Hurrell 2021; Labe and Barnes 2021; 

2022a; 2022b; Rader et al. 2022; Diffenbaugh and Barnes 2023). 
4 To be more precise, we interpret this quote as saying that correlation does not (logically) entail causation. 

Correlation may be a sign that there is a causal relation in play, and correlations between events often lead us to try 

and relate events causally.    
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between input and output can be established, we still do not know how the ML model produces a 227 

certain set of output. To answer this question, ideally, we would like to know the causal role 228 

played by (at least) some of the components making up the model. We would like to know about 229 

at least some processes, mechanisms, constraints, or structural dependencies inside of the model, 230 

rather than merely probing the ML-model-as-black-box post hoc, from the outside and post hoc. 231 

While XAI methods can yield information that seems plausible and physically meaningful, this 232 

information may be irrelevant with respect to how the model actually arrived at a given decision 233 

or prediction (Rudin 2019; Baron 2023). This, in turn, can undermine our trust in the model for 234 

future applications. In contrast, with component level understanding, the causal knowledge is 235 

more secure and can also inform future development and improvement of the model in question 236 

and ML models in general.  237 

 238 

3. Understanding and Intelligibility in CMIP  239 

To evaluate complex models, Jebeile, Lam, and Raz (2021) offer the notion of intelligibility: “the 240 

ability and skill of the agent to use the model and to obtain explanations from it, and on the 241 

features of the model that enable its manipulability” (p.??). Manipulation can come in degrees. 242 

Scientists can manipulate the input of an model, obtaining statistical understanding. They can 243 

also manipulate model components. In this section, we offer examples where scientists 244 

manipulate model components to enhance intelligibility and obtain component-level 245 

understanding.   246 

Dynamical models are complex but have gained trust because their successes and failures can 247 

sometimesregularly be attributed to specific components or sub-models, such as when model 248 

bias is explained by pointing to a particular parameterization. Indeed, the practice of diagnosing 249 

model errors pre-dates the Atmospheric Model Intercomparison Project (AMIP; Gates 1992). For 250 

example, differences in the representation both of radiative processes and of atmospheric 251 

stratification at the poles were featured in an evaluation of why 1-D models diverged from a 252 

GCM in their estimate of climate sensitivity (see Schneider 1975).  253 

Later, in one of the diagnostic subprojects following AMIP, Gleckler et al. (1995) attributed 254 

incorrect calculations of ocean heat transport to the models’ representations of cloud radiative 255 

effects. They first found that the models’ implied ocean heat transport was partially in the wrong 256 

direction—northward in the Southern Hemisphere. They inferred that cloud radiative effects 257 

were the culprit, explicitly noting that atmospheric GCMs at the time of their writing were 258 

“known to disagree considerably in their simulations of the effects of clouds on the Earth’s 259 

radiation budget (Cess et al. 1989), and hence the effects of simulated cloud-radiation 260 

interactions on the implied meridional energy transports [were] immediately suspect” (Gleckler 261 

et al. 1995, p. 793). They recalculated ocean heat transport using a hybrid of model data and 262 

observational data. When they did this, they fixed the error—ocean heat transport turned 263 

poleward. The observational data used to fix the error were of cloud radiative effects. In other 264 
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words, they substituted the output data linked to the problematic cloud parameterizations (a 265 

component of the models) with observational data of cloud radiative effects. This substitution 266 

resulted in a better fit with observations of and physical background knowledge of ocean heat 267 

transport.  268 

One may argue that substituting model components merely exemplifies statistical understanding 269 

because it concerns the input and output data of the models, which, in Glecker et al.’s case, are 270 

cloud-radiation and ocean heat transport. Yet, this would be misguided. Gleckler et al. isolated 271 

the cloud components as the causal culprit behind why the models produced biased ocean heat 272 

transport data. There is also a physically intelligible link between cloud radiative forcing and 273 

ocean surface heat, so the diagnosis made scientific sense. In this way, scientists can diagnose 274 

and fix climate models.  275 

Many more recent cases of error diagnosis also aim to identify problematic parameterizations 276 

(e.g., see (Hall and Qu 2006; O’Brien et al. 2013; Pitari et al. 2014; Bukovsky et al. 2017; 277 

Gettelman et al. 2019); but see Neelin et al. 2023 for current challenges). In CMIP6 in particular, 278 

there is an increased focus on process-level analysis (Eyring et al. 2019; Maloney et al. 2019). In 279 

process-level analysis, scientists examine bias in the simulation of particular processes which 280 

are, in turn, linked to one or more parameterizations, i.e., components within a whole GCM.5 281 

Moreover, CMIP-endorsed model intercomparison projects (MIPs) also center on particular 282 

processes or parameterizations, such as the cloud feedbacks MIP (Webb et al. 2017) and the land 283 

surface, snow and soil moisture MIP (van den Hurk et al. 2016).6   284 

 285 

The practice of updating model parameterizations during model development also demonstrates 286 

an interest (and success) in achieving component-level understanding. We provide two examples 287 

here: one associated with the radiative transfer parameterization in the Community Atmosphere 288 

Model and another associated with the physical representation of stratocumulus clouds in 289 

boundary layer parameterizations. With respect to the radiative transfer component 290 

(parameterization), Collins et al. (2002) noted that, at the time their paper was written, studies 291 

had “demonstrated that the longwave cooling rates and thermodynamic state simulated by GCMs 292 

are sensitive to the treatment of water vapor line strengths.” Collins et al. used this knowledge—293 

along with updated information about absorption and emission of thermal radiation by water 294 

vapor—to update the radiation parameterization in the Community Atmosphere Model.  This 295 

component-level improvement led to substantial improvements in the models’ simulated climate. 296 

 
5 Note that while processes and model components are linked, neither is reducible to the other. E.g., a coupler is a 

component in a GCM but it is not a real-world climate process; conversely, there is no cloud feedback 

parameterization but cloud feedbacks are a real-world climate process.  
6 These examples are in stark contrast to the pessimism about understanding climate models that some philosophers 

of science have emphasized (Lenhard and Winsberg 2010) and others have rebutted (Frigg, Thompson, and Werndl 

2015; Carrier and Lenhard 2019; Touzé-Peiffer, Barberousse, and Treut 2020; O’Loughlin 2023; Easterbrook 2023). 
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 297 

 298 

Regarding stratocumulus cloud parameterization in climate models, targeted developments 299 

following the Third Intergovernmental Panel on Climate Change (IPCC) Assessment Report 300 

reduced uncertainty in estimates of cloud feedbacks to the extent that the 6th IPCC Assessment 301 

Report now states with high confidence that “future changes in clouds will, overall, cause 302 

additional warming” (p. 1022). This systematic change in cloud radiative forcing is demonstrated 303 

in Figure 2Figure 2. It was not clear in the Third IPCC Assessment Report (TAR) whether cloud 304 

feedbacks were positive or negative, and the TAR noted in particular that the “difficulty in 305 

simulation of observed boundary layer cloud properties is a clear testimony of the still 306 

inadequate representation of boundary-layer processes” ((TAR 2001), p. 273). Around this time, 307 

researchers developed improved boundary layer parameterizations with the goal of improving 308 

the representation of low, boundary layer clouds. For instance, Grenier and Bretherton built on a 309 

standard 1.5-order boundary layer turbulence parameterization in which turbulent mixing is 310 

treated as a diffusive process related to the amount of turbulent kinetic energy (TKE) and in 311 

which TKE is treated as a conservative, prognostic quantity. Their key additions to the 1.5-order 312 

turbulence approach were (1) a more accurate numerical treatment of diffusion in the vicinity of 313 

step-function-like jumps in temperature and humidity (inversions) and (2) contribution of cloud-314 

Figure 2. Changes in the distribution of estimated cloud radiative forcing (CRF) across three generations of IPCC Assessment 
Reports: 3 (TAR, published in 2001), 5 (AR5, 2014), and 6 (AR6, 2021). AR4 is omitted because data necessary to estimate 
CRF are not readily available. Estimates of simulated CRF were acquired by manual digitization of Figure 7.2 of Stocker et al. 
(2011) and by multiplying the equilibrium climate sensitivity and cloud feedback columns from Tables S1 and S2 of Zelinka 
et al. (2020). As the distribution of estimated cloud radiative forcing shifts upwards from TAR to AR5 to AR6, the figure 
shows that in AR5 and AR6, cloud feedbacks are largely positive. Indeed, AR6 states with high confidence that “future 
changes in clouds will, overall, cause additional warming” (Forster et al., 2021, p. 1022), yet it was not clear in TAR whether 
cloud feedbacks were positive. The increasing confidence in positive cloud feedbacks is partially due to improved boundry-
layer parameterization, which demonstrates modelers’ component-level understanding.  
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top radiative cooling to the production of TKE. These two ingredients allow the turbulence 315 

parameterization to emulate the physics that drive stratocumulus clouds. Variations on the 316 

parameterization of (Grenier and Bretherton (2001) and other similarly sophisticated boundary 317 

layer parameterizations have been included in numerous weather and climate models, leading to 318 

improvements in the simulation of stratocumulus clouds specifically and general improvements 319 

in model climatology.   320 

In certain circumstances component-level responsibility for particular model biases can be 321 

determined. As an example, the Community Earth System Model 2 (CESM2) was recognized as 322 

exhibiting a too large climate sensitivity—one that did not appear in standard CMIP simulations. 323 

This behavior was discovered in a surprising way. Zhu et al. (2022) had shown an instability in 324 

the simulation of the last glacial maximum, a much colder period than present day, using 325 

CESM2. This instability did not exist in CESM. By reverting to the original, component-level 326 

microphysics scheme the model behaved as expected, and erroneous specification of 327 

microphysical particle concentrations were discovered and remedied. More generally, the 328 

understanding and observational constraint of ice microphysics is a challenge as demonstrated by 329 

the very large variations in ice water path across CMIP models. Using Perturbed Parameter 330 

Estimation (PPE, e.g., Eidhamer et al. 2024) can also reveal component level sensitivities and 331 

shortcomings. 332 

We take the above cases from CMIP to indicate that climate scientists aim for component-level 333 

understanding of their models, which relates to a standard that climate models be at least 334 

somewhat intelligible. Adopting the idea of “intelligibility” from philosopher of science de Regt 335 

(2017) we can say that a complex model is intelligible for scientists if they can recognize 336 

qualitatively characteristic consequences of the model without performing exact calculations. 337 

Intelligibility is facilitated by having models made up of components. In dynamical models, 338 

these components typically represent real-world processes, even in cases of empirically based 339 

parameterizations. More generally, knowing that a model component plays a particular role—340 

either representing the process as designed or a role later discovered during model 341 

development—in a climate simulation is invaluable for reasoning about the behavior, successes, 342 

and biases of the GCM as a whole.  343 

The climate modeling community has long strived for component-level understanding and 344 

intelligibility. This is especially evident in the work on climate model hierarchies, i.e., a group of 345 

models which spans a range of complexity and comprehensiveness Jeevanjee et al. (2017). 346 

Writing nearly two decades ago, Issac Held (2005) identified model hierarchies as necessary if 347 

we wish to understand both the climate system and complex climate models: 348 

we need a model hierarchy on which to base our understanding, describing how the dynamics 349 

change as key sources of complexity are added or subtracted... (p. 1609) 350 

…the construction of such hierarchies must, I believe, be a central goal of climate theory in 351 

the twenty-first century. There are no alternatives if we want to understand the climate 352 
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system and our comprehensive climate models. Our understanding will be embedded within 353 

these hierarchies. (p. 1610)  354 

 355 

Along similar lines, and before the advent of CMIP, Stephen Schneider (1979) wrote that  356 

…the field of climate modeling needs to “fill in the blanks” at each level in the hierarchy of 357 

climate models. For only when the effect of adding one change at a time in models of 358 

different complexity can be studied, will we have any real hope of understanding cause and 359 

effect in the climatic system. (p. 748) 360 

 361 

These appeals to climate model hierarchies highlight how component-level understanding is a 362 

longstanding goal in climate modeling (see also (Katzav and Parker 2015). This is not to say that 363 

component-level understanding automatically translates to understanding all model behaviors. 364 

Emergent properties such as equilibrium climate sensitivity may elude explanation. --Eeven 365 

when components such as cloud parameterizations are appealed to as causally relevant for higher 366 

ECS values (e.g., Zelinka et al. 2020), it must be granted that these cloud parameterizations 367 

interact with other components and pieces of the overall GCM. That is, GCMs exhibit fuzzy 368 

modularity—sub-model behaviors do not add up linearly or in an easy-to-understand way 369 

(Lenhard and Winsberg 2010). So there may be a more complete explanation detailing how, as a 370 

whole, the GCM simulates a higher ECS. Producing a complete explanation may prove elusive, 371 

however, to the extent that GCMs are epistemically opaque or have such a high degree of 372 

complexity that human minds cannot track all of the relevant information (Humphreys 2009).7 373 

Therefore, we do not regard our three proposed types of understanding as exhaustive—perhaps a 374 

component-interaction or structural type of understanding ought to be theorized and strived for 375 

as well.   376 

However, the examples from earlier in this section show how the goal of component-level 377 

understanding is regularly achieved, overall model complexity notwithstanding. Having achieved 378 

such understanding, scientists can be more confident that their models have indeed captured 379 

some truths about the target systems, and they are thereby justified to increase their confidence in 380 

these complex models. In the climate modeling literature, component-level understanding 381 

routinely leads to model improvements.  382 

We end this section with a brief discussion distinguishing between component-level and 383 

statistical understanding. Overall, our analysis is in the same spirit as that of Knüsel and 384 

Baumberger (2020) who argue that data-driven models and dynamical models alike can be 385 

understood through manipulating the model so that modelers can qualitatively anticipate model 386 

behaviors. However, not all manipulations are equal. Manipulating input data and seeing 387 

 
7 This complexity includes both the impossibility of fully knowing a climate model’s code in its entirety, and the 

impossibility of being able to follow the calculations as the model steps forward in time. With today’s GCMs, 

humans can do neither of these things.  
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associated changes in output data does not tell you how the model produces its output. The 388 

hierarchy of understanding we propose—instrumental, statistical, and component-level—389 

concerns the degree to which and ways in which a model is intelligible or graspable (Knüsel and 390 

Baumberger 2020; Jebeile, Lam, and Räz 2021). Complex models are intelligible or graspable 391 

just in case, and to the degree that, their behavior can be qualitatively anticipated or explained  392 

(De Regt and Dieks 2005; Lenhard 2006). From our perspective, component-level understanding 393 

puts scientists into a position to better anticipate and better explain model behavior.    394 

In general, statistical understanding can help us answer questions such as “do the input-output 395 

relations of the model make sense and, if so, in what way do they make sense?” This is great for 396 

finding out whether the model’s behavior is consistent with expectations across a variety of 397 

cases. This may also involve manipulating input and examining associated changes in output, to 398 

better anticipate future model behavior (Knüsel and Baumberger 2020; Jebeile, Lam, and Räz 399 

2021). However, this is distinct from learning why the model behaves the way it does. To answer 400 

this distinct question, we need to know how the model is working, which, in turn, involves 401 

knowing something about the pieces making up the model. Hence, component-level 402 

understanding is called for. This is exactly the type of understanding that we see aimed for, and 403 

often grasped, in CMIP experiments.  404 

Component-level understanding often involves a different kind of knowledge related to model 405 

architecture and beyond input-output relationships. On the one hand it can demonstrate that you 406 

know what role the component is playing in the model—this shows some knowledge of model-407 

building. It may also be helpful for answering a wider range of what-if-things-had-been-different 408 

questions. Finally, and potentially the clearest benefit of component-level understanding, is that 409 

it can tell one what needs to be fixed in cases of error. This should produce additional trust in the 410 

modeling enterprise more generally.8  411 

 412 

4. Lessons learned: examples of component level understanding in ML 413 

Component-level understanding is not the privilege solely of dynamic climate modeling. ML 414 

models can be built with intelligible components as well, although their components look very 415 

different from those in dynamic models. In this section, we offer three examples in which ML 416 

researchers are able to acquire component-level understanding of model behaviors by 417 

intentionally designing or discovering model components that are interpretable and intelligible.  418 

4.1 Attributing model success with physics-informed machine learning 419 

 
8 This is not to say that component-level understanding is necessarily superior to statistical understanding. E.g., 

knowing about a robustly detected statistical relationship could be more valuable than knowing how a single model 

component functions, especially since many important model behaviors arise from interactions between multiple 

model components.  
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Our first example involves physics-informed machine learning, i.e., machine learning 420 

incorporated with domain knowledge and physical principles (Kashinath et al. 2021)(Kashinath 421 

et al. 2019). Model success can be attributed to a specific component in a neural net, if it is 422 

known that said component in the neural net is performing a physically relevant role for a given 423 

modeling task.  424 

Beucler et al. (2019; 2021) augment a neural net’s architecture via layers which enforce 425 

conservation laws that are important for emulating convection (see Figure 1, panel a). These laws 426 

include enthalpy conservation, column-integrated water conservation, and both long- and short-427 

wave radiation conservation. The conservation laws are enforced “to machine precision” 428 

(Beucler et al. 2021). Following Beucler et al. (2019) and because this neural net has a physics-429 

informed architecture, we will use the acronym NNA. NNA is trained on aqua-planet simulation 430 

data from the Super-Parameterized Community Atmosphere Model 3.0. NNA’s results are 431 

compared with those of two other neural nets: one unconstrained by physics (NNU) and another 432 

“softly” constrained through a penalization term in the loss function (NNL; see Beucler et al. 433 

(2019) for further discussion).  434 

All three NNs are evaluated based on the mean squared errors (MSE) of their predictions and 435 

based on whether their output violates physics conservation laws (they call this a P-score). While 436 

NNU has the highest performance in a baseline climate—i.e., a climate well-represented by the 437 

training data—NNA and NNL each outperform NNU in a 4k warmer climate (see Beucler et al. 438 

2019, Table 1), which is impressive since generalizing into warmer climate is particularly 439 

challenging for ML models (Rasp et al. 2018; Li 2023). These results may indicate that NNU 440 

performed better in the baseline climate for the “wrong” reasons. Indeed, NNU had a far lower 441 

P-score in both the baseline and the 4k warmer climate cases.  442 

Beucler et al. (2021) further show that NNA predicts the total thermodynamic tendency in the 443 

enthalpy conservation equation more accurately than the other NNs—“by an amount closely 444 

related to how much each NN violates enthalpy conservation” (p. 5). The particular layer in 445 

NNA responsible for enthalpy conservation is obviously the explanation for this result. This case 446 

therefore exemplifies component-level understanding, which was straightforward because of 447 

Beucler et al.’s choice of model designly.  448 

It should be noted that both NNA and NNL perform well in the 4k warmer climate and, more 449 

generally, “[e]nforcing constraints, whether in the architecture or the loss function, can 450 

systematically reduce the error of variables that appear in the constraints” (Beucler et al. 2021, p. 451 

5). This suggests that, when thinking purely about model performance, physical constraints do 452 

not necessarily need to be implemented in the model’s architecture. However, compared with 453 

NNL, Beucler et al.’s use of NNA facilitates straightforward component-level understanding. 454 

The component-level understanding is straightforward because we know that, by virtue of the 455 

physics knowledge built into the model’s architecture, NNA obeys conservation laws as it is 456 

trained and as it is tested. We can draw an analogy with dynamical climate models. NNL is to 457 
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NNA as bias-corrected GCM simulations are to ones which capture relevant physical processes 458 

with high-fidelity to begin with. Knowing that a model produces a physically consistent answer 459 

for physical reasons is a stronger basis for trust than merely knowing that a model produces 460 

physically consistent answers due to post-hoc bias correction.  461 

 462 

4.2 Explaining model error in a case of Fourier Neural Operators 463 

Another example involves a recent development in using machine learning to solve partial 464 

differential equations: the Fourier neural operator (FNO) pioneered by Li et al. (2021). The 465 

innovation of FNO is the application of Fourier transforms to enable CNN-based layers that learn 466 

“solution operators” to partial differential equations PDEs in a scale-invariant way. Building on 467 

Li et al. (2021), (Pathak et al. (2022) demonstrated that training an FNO network on output from 468 

a numerical weather prediction (NWP) model produced a machine learning model that emulates 469 

NWP models with high fidelity and efficiency. A key challenge noted by (Pathak et al. (2022) 470 

Pathak et al., however, was a numerical instability that limited application of the FNO model to 471 

forecasts of lengths less than 10 days. 472 

Analysis of the instability ultimately led the group to hypothesize that the instability was due to a 473 

specific component of the FNO model: the Fourier transform itself. The problem they identified 474 

was that the sine/cosine functions employed in Fourier transforms are the eigenfunctions of the 475 

Laplace operator on a doubly-periodic, Euclidean geometry, whereas the desired problem (i.e., 476 

NWP) is intrinsic to an approximately spherical geometry. In essence, the Earth’s poles represent 477 

a singularity that Fourier transforms on a latitude-longitude grid are not well-equipped to handle. 478 

Bonev et al. (2023) adapt the FNO approach to spherical geometry by utilizing spherical 479 

harmonic transforms with the Laplace-operator eigenfunctions for spherical geometries as basis 480 

functions, in lieu of Fourier transforms. These eigenfunctions, the spherical harmonic functions, 481 

smoothly handle the poles as a natural part of their formulation. Bonev et al. (2023) report that 482 

the application of spherical harmonic transforms, rather than Fourier transforms, results in a 483 

model that is numerically stable up to at least O(100) days and possibly longer. 484 

The application of spherical transformations stabilizes the FNO model. Bonev et al. were able to 485 

fix the FNO because they could pinpoint the Fourier transformations, a component of the FNO 486 

model, demonstrating scientists’ component-level understanding.9  487 

4.3 GAN dissect for future applications in ML-driven climate science 488 

The final example comes from generative adversarial networks (GANs) in computer vision. Bau 489 

et al. (2018) identify particular units (i.e., sets of neurons and/or layers) in a neural net as 490 

causally relevant to the generation of particular classes within images such as doors on churches. 491 

 
9 Fourier transformations turn out to be useful in other contexts of ML-driven climate science because scientists can 

use them to understand neural networks behaviors as combinations of filters, e.g., (Subel et al. 2023). 
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They demonstrate that these units are actually causally relevant by showing what happens when 492 

said units are ablated (essentially setting them to 0).  493 

The example demonstrates component-level understanding because the units in question are 494 

manipulated. Components within the architecture of the model are turned on and off and the 495 

resultant effects are observed.10 This puts us in a position to say, for example, “these neurons are 496 

responsible for generating images of trees, and we know this because turning more of these 497 

neurons on yields an image with more trees (or bigger trees) and vice versa. Moreover, the other 498 

aspects of the image are unchanged no matter what we do to these neurons.” Bau et al. (2018) 499 

also show that visual artefacts are causally linked to particular units and can be removed using 500 

this causal knowledge.  501 

This case is analogous to the study from Gleckler et al. (1995) as described in Sect. 3 above. 502 

Recall that the cloud radiative effects from the GCMs were "turned off” (substituted out and 503 

replaced with observational data) and the calculations of ocean heat transport improved. 504 

Scientists can make sense of model error because they know that a certainty deficiency in GCMs, 505 

at the time, involved components of the GCMs responsible for representing clouds. In the same 506 

way, Bau et al. (2018) are able to intervene on generations of images by linking units in their 507 

model to particular types of image classes and examining what happens to the overall image 508 

when these units are manipulated. Note that this is distinct from the closely related method of 509 

ablating specific subsets of input data, which is more closely aligned with XAI and can therefore 510 

yield statistical understanding (e.g., see Brenowitz et al. 2020; Park et al. 2022).  511 

While GAN dissect isn’t typically used in climate science research, GANs they are beginning to 512 

be adopted for some climate applications (SOURCE). Additionally, there are potential future 513 

applications such as in atmospheric river detection Mahesh et al. (2023). In any case, this 514 

example demonstrates yet again how component-level understanding is achievable with ML.  515 

 516 

5. Discussion/Recommendations for practice 517 

In this Review and Perspective paper weWe have argued that component-level understanding 518 

ought to be strived for in ML-driven climate science. The value of component-level 519 

understanding is especially evident in the FNO problem described previously (Sect. 4.2 above). 520 

Instrumental understanding allowed the group to identify a performance issue (numerical ‘issues’ 521 

in the polar regions) that led to numerical instability. While the group did not employ any XAI—522 

statistical understanding—approaches, it is clear that they would have been of limited value in 523 

identifying the underlying cause of the numerical instability, since XAI methods only probe 524 

input-output mappings. Ultimately the problem was identified and later solved by applying 525 

component-level understanding of the FNO network: knowledge that a component of the 526 

 
10 As a reminder to the reader, by “component” we mean a functional unit of the model’s architecture, which 

includes the “units” described by (Bau et al. 2018). 
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network implicitly (and incorrectly) assumed a Euclidean geometry for a problem on a spherical 527 

domain. 528 

However, a potential objection is that component-level understanding is unnecessary because 529 

XAI methods can simply be evaluated against benchmark metrics. For example, Bommer et al. 530 

(2023) propose five metrics to assess XAI methods, focusing especially on the methods’ output 531 

data (referred to as “explanations”). These include: 532 

Robustness of the explanation given small perturbations to input 533 

Faithfulness, by comparing the predictions of perturbed input and those of unperturbed input 534 

to determine if a feature deemed important by the XAI method does in fact change the 535 

network prediction 536 

 537 

Randomization, which measures how the explanation changes by perturbing the network 538 

weights, similar to the robustness metric, the thinking is that “the explanation of an input x 539 

should change if the model changes or if a different class is explained” (Bommer et al. 540 

(2023), p.8) 541 

 542 

Localization, which measures agreement between the explanation and a user-defined region 543 

of interest  544 

Complexity, a measure of how concise the highlighted features in an explanation are, and 545 

assumes that “that an explanation should consist of a few strong features” to aid 546 

interpretability (Bommer et al. 2023, p. 10).  547 

Insofar as the metrics are deemed desirable, we agree that such an approach could help establish 548 

trust in XAI. However, we view such benchmarks as complementary to, rather than a substitute 549 

for, component-level understanding. This is because benchmarks yield a sort of second-order 550 

statistical understanding. That is, such metrics are largely focused on aspects of input and output 551 

data produced by a given XAI method. They are, in a sense, an XXAI method, an input-output 552 

mapping to help make sense of another input-output mapping. 553 

Therefore, our recommendation is that ML-driven climate science strive for component-level 554 

understanding. This will aid in evaluating the credibility of model results, in diagnosing model 555 

error, and in model development. The clearest path to component-level understanding in ML-556 

driven climate science would likely involve climate scientists building, or helping build, the ML 557 

models that are used for their research and implementing physics-based and other background 558 

knowledge to whatever extent feasible (Kashinath et al. 2021; Cuomo et al. 2022). Clear 559 

standards could also be developed for documenting ML architecture, training procedures, and 560 

past analyses, including error diagnoses (O’Loughlin 2023). Perhaps a model intercomparison 561 

project could be developed to systematically evaluate ML behavior across diverse groups of 562 
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researchers. Lastly, with component-level understanding as a goal to strive for, scientists can 563 

better develop hybrid models where both ML and dynamic modeling components are employed. 564 

An increasing range of free or low-cost, high-quality resources are now available to enable 565 

researchers who are not (yet) experts in ML to gain a deep and practical level of understanding of 566 

modern ML model designs and applications.  Some examples of free, high-quality resources 567 

include: 568 

•  Practical Deep Learning for Coders - 1: Getting started (fast.ai) 569 

o Related: GitHub - fastai/fastbook: The fastai book, published as Jupyter Notebooks 570 

•   Introduction - Hugging Face NLP Course 571 

• How Diffusion Models Work - DeepLearning.AI 572 

Back in 2005, Held wrote that climate modeling “must proceed more systematically toward the 573 

creation of a hierarchy of lasting value, providing a solid framework within which our 574 

understanding of the climate system, and that of future generations, is embedded” (p. 1614). We 575 

think there is a parallel need in ML-driven climate science, i.e., to develop systematic standards 576 

for the use and evaluation of ML models that aid in our understanding of the climate system. 577 

Striving for component-level understanding of ML models is one way to help achieve this.  578 
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