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Moving beyond post-hoc XAl: A perspective paper on l-essons learned from dynamical climate
modeling

Abstract. Al models are criticized as being black boxes, potentially subjecting climate science to greater uncertainty.
Explainable artificial intelligence (XAl) has been proposed to probe Al models and increase trust. In this Review and
Perspective paper, we suggest that, in addition to using XAl methods, Al researchers in climate science can learn from
past successes in the development of physics-based dynamical climate models. Dynamical models are complex but
have gained trust because their successes and failures can_sometimes be attributed to specific components or sub-
models, such as when model bias is explained by pointing to a particular parameterization. We propose three types of
understanding as a basis to evaluate trust in dynamical and Al models alike: (1) instrumental understanding, which is
obtained when a model has passed a functional test; (2) statistical understanding, which-is obtained when researchers
can make sense of the modelling results using statistical techniques to identify input-output relationships; and (3)
Component-level understanding, which refers to modelers’ ability to point to specific model components or parts in
the model architecture as the culprit for erratic model behaviors or as the crucial reason why the model functions well.
We demonstrate how component-level understanding has been sought and achieved via climate model
intercomparison projects over the past several decades. Such component-level-of understanding routinely leads to
model improvements and may also serve as a template for thinking about Al-driven climate science. Currently, XAl
methods can help explain the behaviors of Al models by focusing on the mapping between input and output, thereby
increasing the statistical understanding of Al models. Yet, to further increase our understanding of Al models, we will
have to build Al models that have interpretable components amenable to component-level understanding. We give
recent examples from the Al climate science literature to highlight some recent, albeit limited, successes in achieving
component-level understanding and thereby explaining model behavior. The merit of such interpretable Al models is
that they serve as a stronger basis for trust in climate modeling and, by extension, downstream uses of climate model

data.

1. Introduction

Machine learning (ML) is becoming increasingly utilized in climate science for tasks ranging
from climate model emulation (Beucler et al. 2019), to downscaling (McGinnis et al. 2021),
forecasting (Ham, Kim, and Luo 2019). and analyzing complex and large datasets more
generally (for an overview of ML in climate science, see Reichstein et al. 2019; Molina et al.
2023; de Burgh-Day and Leeuwenburg 2023). Compared with physics-based methods, ML, once
trained, has a key advantage: orders of magnitude reduced computational expense. eomputational
efficieney-Along with the advantages of ML come challenges such as assessing ML
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trustworthiness. For example, scientists often do not understand why a neural net (NN) gives the
output that it does because the NN is a “black box.”*

To build trust in ML, the field of explainable artificial intelligence (XAI) has become
increasingly prominent in climate science (Bommer et al. 2023). Sometimes referred to as
“opening the black box,” XAl methods consist of additional models or algorithms intended to
shed light on why the ML model gives the output that it does. For example, {Labe and Barnes
(2021) use an XAI method, layer-wise relevance propagation, and find that their NN heavily
relies on datapoints from the North Atlantic, Southern Ocean, and Southeast Asia to make its
predictions.

While XAI methods can produce useful information about ML model behaviors, these methods
also face problems and have been subjected to critique. As Barnes et al. (2022) note, XAl
methods “do not explain the actual decision-making process of the network™ (p. 1). Additionally,
different XAI methods applied to the same ML model prediction have been shown to exhibit
discordance, i.e., yielding different and even incompatible “explanations” for the same ML
model (Mamalakis et al. 2022). Discordance in XAl is not unique to climate science. Krishna et
al. (2022) find that 84% of their interviewees (ML practitioners across fields who use XAI
methods) report experiencing discordance in their day-to-day workflow and when it comes to
resolving discordance, 86% of their online user study responses indicate that ML practitioners
either employed arbitrary heuristics (e.g., choosing a favorite method or result) or-just simply did
not know what to do.

As Molina et al. (2023) note, “identifying potential failure modes of XAl, and uncertainty
quantification pertaining to different types of XAl methods, are both crucial to establish
confidence levels in XAl output and determine whether ML predictions are ‘right for the right
reasons’” (p. 8). Rudin (2019) argues that, instead of attempting to use XAl to explain ML
models post hoc, scientists ought to build interpretable models informed by domain expertise
from the outset. Speaking about explainability in particular, Rudin writes, “many of the [XAI]
methods that claim to produce explanations instead compute useful summary statistics of
predictions made by the original model. Rather than producing explanations that are faithful to
the original model, they show trends in how predictions are related to the features” of the model
input (2019, p. 208).

Regardless, XAl methods will likely continue to be widely applied due to ease of use and as
benchmark metrics for XAI methods are proposed and implemented (Hedstrom et al. 2023;
Bommer et al. 2023). In some cases, XAl methods are applied with great success, e.g.,
(Mamalakis et al. 2022) found that the input x gradient method fit their ground truth model with
a high degree of accuracy. However, we believe that more progress can be made in establishing

! Note that computer scientists have proposed various conceptual approaches to articulate “transparency” (e.g.,
Lipton 2016). However, we aim to offer conceptual clarity for ML applications specifically in climate science by
comparing different types of understanding ofirn ML and-i# dynamical climate models.
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trust in ML-driven climate science, especially as an increasing number of researchers start

incorporating ML into climate research.-

In this Review and Perspective paper, we _target readers with expertise in traditional approaches

for climate science (e.g., development, evaluation, and application of traditional Earth System

Models) who are starting to utilize ML in their research and who may see XAl as a tempting way

to gain insight into model behavior and to build confidence. -In this perspective, we draw from

some ideas- in philosophy of science to recommend that ehmate-seientistssuch researchers

leverage the expanding array of freely available ML learning resources to move beyond
traditional-post hoc XAI methods and aim for component-level understanding of ML models. By
“component” we mean a functional unit of the model’s architecture, such as a layer or layers in a
neural net. By “understanding” we mean knowledge that could serve as a basis for an

explanation about the model. We distinguish between three levels of understanding:

Instrumental understanding: knowing that the model performed well (or not); e.g.,
knowing its error rate on a given test.

Statistical understanding: being able to offer a reason why we should trust a given ML
model by appealing to input-output mappings. These mappings can be retrieved by
statistical techniques.

Component-level understanding: being able to point to specific model components or
parts in the model architecture as the cause of erratic model behaviors or as the crucial
reason why the model functions well.

These levels concern the degree to which complex models are intelligible or graspable to
scientists (De Regt and Dieks 2005; Regt 2017; Kniisel and Baumberger 2020). Therefore, our
proposal has a narrower but deeper focus than recent philosophy of science accounts of

understanding climate phenomena with or by using ML and dynamical climate models (Kniisel

and Baumberger 2020; Jebeile, Lam, and Rdz 2021). We are concerned with understanding,

diagnosing, and improving model behavior to inform model development.

Instrumental understanding, while clearly necessary, is fairly straightforward and is a
prerequisite for any explanation of model behavior. It involves knowing the degree to which a
model fits some data (Lloyd 2010; Baumberger et al. 2017). It may also involve knowing
whether the model both fits some data and agrees with simpler models about a prediction of
interest or whether the model has performed well on an out-of-sample test (e.g., (Hausfather et
al. 2020) or according to other metrics (e.g., Gleckler et al. 2008).

However, in this Review and Perspective paper, we will only focus on the other two types of
understanding. Statistical understanding can be gained via traditional XAl methods but does not
require knowledge of the model’s innerworkings, i.e., its components and/or architecture (see
Sect. 2 below). In contrast, component-level understanding does involve knowledge of the
model’s innerworkings. Therefore, component-level understanding allows scientists to offer
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causal explanations that attribute ML model behaviors to its components. Scientists need to build
and analyze their models in such a way that they can understand how distinct model components
contribute to the model’s overall predictive successes or failures rather than merely probe model

data to yield input-output mappings. The latter is emblematic of traditional XAl methods.

Our recommendation to strive for component-level understanding is inspired by how dynamical
climate models have been built, tested, and improved, such as those in the coupled model
intercomparison projects (CMIP). Therefore, a novel contribution of this paper is in the linking
of existing climate model development practices to practices that could be employed in ML
model development.

H<ntiseland Baumberger 2020)In CMIP, when models agree on a particular result, scientists

sometimes infer that the governing equations and prescribed forcings shared by the models are
responsible for the models’ similar results. As Baumberger et al. (2017) put it, “robustness of
model results (combined with their empirical accuracy) is often seen as making it likely, or at
least increasing our confidence, that the processes that determine these results are encapsulated
sufficiently well in the models” (p. 11; see also Hegerl et al. 2007; Kravitz et al. 2013; Lloyd
2015; Schmidt and Sherwood 2015; O’Loughlin 2021). Conversely, when climate models exhibit
biases or errors, scientists can often point to specific parameterizations or sub-models as the
likely cause (e.g., Gleckler et al. 1995; Pitari et al. 2014; Gettelman et al. 2019; Zelinka et al.
2020); O’Loughlin 2023), although models can get the right answer for the wrong reasons (e.g.,
see Knutti 2008).

To be clear, there are limits to how much component-level understanding can be achieved in
CMIP. Dynamical climate models exhibit fuzzy (rather than sharp) modularity, meaning that the

behavior of a fully coupled model is “the complex result of the interaction of the modules—not
the interaction of the results of the modules” (Lenhard and Winsberg 2010, p. 256). Climate
scientists are familiar with a related problem: the difficulty in explaining how climate models

generate (or not) emergent phenomena like the Madden Julian Oscillation (\Lin et al. 2024‘). [Commented [RO1]: Add Zotero

(citations?). Despite these difficulties, philosophers and other scholars of climate science have

documented successes in attributing model behavior to individual model components in the
climate science literature [(Frigg et al. 2015; Carrier and Lenhard 2019; Touzé-Peiffer et al. 2020;
Pincus et al. 2016; Hall and Qu 2006; Hourdin et al. 2013: Notz et al. 2013: Oreopoulos et al.

2012: Mayernik 2021: Gettelman et al. 2019)\. These successes do not imply anything like a [Commented [RO2]: Add O’Loughlin 2023 citation

“full” or “complete” understanding of all model behavior, rather, the component-level
understanding of climate model behavior comes in degrees (Jebeile et al.; am;andRéaz 2021).

Fortunately, we see component-level understanding exemplified in ML-driven climate science to
some extent already (Beucler et al. 2019; Kashinath et al. 2021; Bonev et al. 2023, see Sect. 4
below). Indeed, the thinking behind physics-informed machine learning, which incorporates
known physical relations into the models from the outset (Kashinath et al. 2021;Wang et al.
2022; Cuomo et al. 2022), often involves component-level understanding. Thus, our proposal is
an endorsement of these ongoing best practices, a recognition of the relationship between the
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evaluation of dynamical models and data-driven models, and a warning about the limits of
statistical understanding.

In addition, there is a concurrent need to establish the trustworthiness of ML models as ML-
driven climate science potentially becomes increasingly used to inform decision makers (NSF Al
Institute for Research on Trustworthy Al in Weather, Climate, and Coastal Oceanography
(AI2ES)). While decision makers themselves do not need to understand exactly how a model
arrives at the answer it does, they may desire an explanation of the model’s behavior that comes
from a credible expert. One way to establish credibility is to be able to explain ML model
behavior by appealing to the innerworkings of the model, which requires component-level
understanding of the model. In this way, component-level understanding can serve as a basis for
trust in ML-driven climate science.

The remainder of the paper is structured as follows. In Sect. 2, we give an overview of XAl in
climate science and explain the idea of statistical understanding and how XAI can only give us
statistical understanding. In Sect. 3, we detail the notion of component-level understanding and
demonstrate it using examples from CMIP. -In Sect. 4, we show how component-level
understanding is achievable in ML. In Sect. 5, we conclude and make suggestions for ML-driven
climate science, including describing some resources that interested readers might utilize to build

the expertise in ML model design necessary to probe, build, and adapt models in a way that is

amenable to component-level understanding.

Dynamic climate models Machine learning models ."

Statistical

understanding x+Ax —

look for input-output mapping f
to explain model output success

Component-level

understanding
pinpoint model components to explain
model behaviors

Examples of components in
machine learning modeling

X i i ;
4 V) 3 i ) ety i)
Energy constraints layers @ Fourier Subsets of neurons

transformation discovered by GAN dissection




167
168

169
170
171
172
173
174

175
176
177
178
179
180
181
182
183
184

185
186
187
188
189
190
191
192
193

Figure 1. Scientists can obtain statistical understanding of models by seeking input-output mapping, e.g., via perturbation
experiments. To acquire component-level understanding, one needs to be able to pinpoint specific components to explain
models’ erratic behaviors or successes. This has been done in dynamic climate modeling, e.g., by pointing to cloud
parameterization as a means to improve modeling outcomes. We offer three examples of component-level understanding in
machine learningmedeling. In panel (a), Beucler et al. (2021) design layers of neurons in their neural network to enforce
energy conservation and improved model outcome. In panel (b), Bonevkathrash et al. (2023) use spherical Fourier
transformation to ensure Fourier Neural Operators perform with climate data. In panel (c), Bau et al. (2019) use a method
called GAN dissection to identify which subsets of neurons control parts of images that correspond to semantics (e.g., trees or
doors).

2. Post-hoc XAl in climate science and statistical understanding

XAI methods are intended to shed light on the behavior of complex opaque ML models. As
Mamalakis et al. (2022b) put it, XAl “methods aim at a post hoc attribution of the NN prediction
to specific features in the input domain (usually referred to as attribution/relevance heatmaps),
thus identifying relationships between the input and the output that may be interpreted physically
by the scientists" (p. 316). XAI methods are typically applied to ML models which are multi-
layer, convolutional, recurrent neural networks, and/or tree ensembles.

The general idea behind XAI methods is to attribute the predictive success of the model’s output
(i.e., the model’s prediction or decision) to subsets of its input in supervised ML. Broadly, there
are two conceptual approaches to achieve this.2 One approach is to figure out how the changes in
input affect the output. For example, Local Interpretable Model-agonistic Explanation (LIME)
first perturbs an input data point to create surrogate data near said data point. Then, after the
trained ML model classifies the surrogate data, LIME fits a linear regression using classified
surrogate data and measures how model output can be attributed to features of the surrogate data
manifold. In this way, LIME attributes the predictive success for the actual data point to a subset
of input features. Note that L stands for “local” because LIME starts with perturbing specific
classificatory instances rather than with global classification.

Another commonly used method is Shapley Additive explanation (SHAP), which is based on
calculating the Shapley values of each input feature. Shapley values are cooperative game
theoretic measures that distribute gains or costs to members of a coalition. Roughly put, Shapley
values are calculated by repeatedly randomly removing a member from the group to form a new
coalition and calculating the consequent gains and then averaging all marginal contributions to
all possible coalitions. In the XAI context, input features will have different Shapley values,
denoting their different contribution to the model’s predictive success. E.g., see (Chakraborty et
al. 2021; Felsche and Ludwig 2021; Cilli et al. 2022; Clare et al. 2022; Grundner et al. 2022; W.
Lietal. 2022; Xue et al. 2022)

2 Yuan et al. (2023) break down the various XAI methods into four categories. They divide those related to
manipulating input-output into perturbation-based methods and surrogate-based methods (e.g., LIME). They divide
the methods that rely on model parameter values into gradient-based methods (e.g., gradient) and decomposition-
based method (e.g., layerwise relevance propagation ERP).
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Another approach relies on treating a trained black box model as a function to understand how
the input-output mapping relationship is represented by this function. For example, vanilla
gradient (also known as saliency) is an XAl method that relies on calculating the gradient of
probabilities of output being in each possible category with respect to its input and
backpropagates the information to its input. In this way, vanilla gradient quantifies the relative
importance of each element of the input vector with respect to the output, thereby attributing the
predictive success to subsets of input. E.g., see Balmaceda-Huarte et al. 2023; Liu et al. 2023; He
etal. 20243

Let’s examine how XAI methods yield statistical understanding in a detailed example. Gonzalez-
Abad et al. (2023) use the saliency method to examine input-output mappings in three different
convolutional neural nets (CNNs) which were trained and used to downscale climate data. They
computed and produced accumulated saliency maps which account for “the overall importance
of the different elements” of the input data for the model’s prediction (p. 8). One of their results
is that, in one of the CNNss, air temperature (at 500hPa, 700 hPa, 850hPa, and 1000 hPA)
accumulates the highest relevance for predicting North American near-surface air temperature,
although different regions are apparently more relevant than others to the models’ predictions
(see their figure 6, p. 12). In other words, it appeared that the CNN had correctly picked up on a
relationship between coarse resolution temperature at certain geopotential heights on the one
hand, and higher resolution near-surface air temperatures on the other hand.

In this way, XAl methods yield information that can be helpful for making a model’s results
intelligible. E.g., it puts a scientist in the position to say, “this model was picking up on aspects
A, B, and C of the input data. These aspects contributed to prediction X, a prediction that seems
plausible.” This exemplifies what we call “statistical understanding”, i.e., being able to offer a
reason why we should trust a given ML model by appealing to statistical mappings between
input and output. Statistical techniques are often used to obtain these mappings by relating
variations in input to variations in output. Post hoc XAl methods can typically yield this type of
understanding. Note that this is not the same as explaining the innerworkings of the model itself,
or what we call “component-level understanding,” because the explanation does not attribute the
model behaviors to ML model components, but rather is focused on input-output mapping.

While XAI methods can give statistical understanding of model behaviors, this type of
understanding has limitations. The general limitation is a familiar one, i.e., that “while XAl can
reveal correlations between input features and outputs, the statistics adage states: ‘correlation
does not imply causation”” (Molina et al. 2023, p. 8)*. Even if genuine causal relationships

3 Yet another commonly used XAI method, layerwise relevance propagation-=RP), computes how each neuron
contributes to other neurons’ activations, therebyfere highlighting the subsets of the input that dominantly contribute
to the output. E.g., see (Gordon, Barnes, and Hurrell 2021; Toms, Barnes, and Hurrell 2021; Labe and Barnes 2021;
2022a; 2022b; Rader et al. 2022; Diffenbaugh and Barnes 2023).

4 To be more precise, we interpret this quote as saying that correlation does not (logically) entail causation.
Correlation may be a sign that there is a causal relation in play, and correlations between events often lead us to try
and relate events causally.
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between input and output can be established, we still do not know how the ML model produces a
certain set-ef-output. To answer this question, ideally, we would like to know the causal role
played by (at least) some of the components making up the model. We would like to know about
at least some processes, mechanisms, constraints, or structural dependencies inside of the model,
rather than merely probing the ML-model-as-black-box post hoc, from the outside-and-peost-hee.
While XAI methods can yield information that seems plausible and physically meaningful, this
information may be irrelevant with respect to how the model actually arrived at a given decision
or prediction (Rudin 2019; Baron 2023). This, in turn, can undermine our trust in the model for
future applications. In contrast, with component level understanding, the causal knowledge is
more secure and can also inform future development and improvement of the model in question
and ML models in general.

3. Understanding and Intelligibility in CMIP

To evaluate complex models, Jebeile, Lam, and Raz (2021) offer the notion of intelligibility: “the

ability and skill of the agent to use the model and to obtain explanations from it, and on the

features of the model that enable its manipulability” (p.??). Manipulation can come in degrees.

Scientists can manipulate the input of an model, obtaining statistical understanding. They can

also manipulate model components. In this section, we offer examples where scientists

manipulate model components to enhance intelligibility and obtain component-level
understanding.

Dynamical models are complex but have gained trust because their successes and failures can
sometimesregutarhy be attributed to specific components or sub-models, such as when model

bias is explained by pointing to a particular parameterization. Indeed, the practice of diagnosing
model errors pre-dates the Atmospheric Model Intercomparison Project (AMIP; Gates 1992). For
example, differences in the representation both of radiative processes and of atmospheric
stratification at the poles were featured in an evaluation of why 1-D models diverged from a
GCM in their estimate of climate sensitivity (see Schneider 1975).

Later, in one of the diagnostic subprojects following AMIP, Gleckler et al. (1995) attributed
incorrect calculations of ocean heat transport to the models’ representations of cloud radiative
effects. They first found that the models’ implied ocean heat transport was partially in the wrong
direction—northward in the Southern Hemisphere. They inferred that cloud radiative effects
were the culprit, explicitly noting that atmospheric GCMs at the time of their writing were
“known to disagree considerably in their simulations of the effects of clouds on the Earth’s
radiation budget (Cess et al. 1989), and hence the effects of simulated cloud-radiation
interactions on the implied meridional energy transports [were] immediately suspect” (Gleckler
et al. 1995, p. 793). They recalculated ocean heat transport using a hybrid of model data and
observational data. When they did this, they fixed the error—ocean heat transport turned
poleward. The observational data used to fix the error were of cloud radiative effects. In other
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words, they substituted the output data linked to the problematic cloud parameterizations (a
component of the models) with observational data of cloud radiative effects. This substitution
resulted in a better fit with observations of and physical background knowledge of ocean heat
transport.

One may argue that substituting model components merely exemplifies statistical understanding
because it concerns the input and output data of the models, which, in Glecker et al.’s case, are
cloud-radiation and ocean heat transport. Yet, this would be misguided. Gleckler et al. isolated
the cloud components as the causal culprit behind why the models produced biased ocean heat
transport data. There is also a physically intelligible link between cloud radiative forcing and
ocean surface heat, so the diagnosis made scientific sense. In this way, scientists can diagnose
and fix climate models.

Many more recent cases of error diagnosis also aim to identify problematic parameterizations
(e.g., see (Hall and Qu 2006; O’Brien et al. 2013; Pitari et al. 2014; Bukovsky et al. 2017;
Gettelman et al. 2019); but see Neelin et al. 2023 for current challenges). In CMIP6 in particular,
there is an increased focus on process-level analysis (Eyring et al. 2019; Maloney et al. 2019). In
process-level analysis, scientists examine bias in the simulation of particular processes which
are, in turn, linked to one or more parameterizations, i.e., components within a whole GCM.>
Moreover, CMIP-endorsed model intercomparison projects (MIPs) also center on particular
processes or parameterizations, such as the cloud feedbacks MIP (Webb et al. 2017) and the land
surface, snow and soil moisture MIP (van den Hurk et al. 2016).°

The practice of updating model parameterizations during model development also demonstrates
an interest (and success) in achieving component-level understanding. We provide two examples
here: one associated with the radiative transfer parameterization in the Community Atmosphere
Model and another associated with the physical representation of stratocumulus clouds in
boundary layer parameterizations. With respect to the radiative transfer component
(parameterization), Collins et al. (2002) noted that, at the time their paper was written, studies
had “demonstrated that the longwave cooling rates and thermodynamic state simulated by GCMs
are sensitive to the treatment of water vapor line strengths.” Collins et al. used this knowledge—
along with updated information about absorption and emission of thermal radiation by water
vapor—to update the radiation parameterization in the Community Atmosphere Model. This
component-level improvement led to substantial improvements in the models’ simulated climate.

® Note that while processes and model components are linked, neither is reducible to the other. E.g.. a coupler is a
component in a GCM but it is not a real-world climate process; conversely, there is no cloud feedback
parameterization but cloud feedbacks are a real-world climate process.

6 These examples are in stark contrast to the pessimism about understanding climate models that some philosophers
of science have emphasized (Lenhard and Winsberg 2010) and others have rebutted (Frigg, Thompson, and Werndl
2015; Carrier and Lenhard 2019; Touzé-Peiffer, Barberousse, and Treut 2020; O’Loughlin 2023; Easterbrook 2023).

9
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Figure 2. Changes in the distribution of estimated cloud radiative forcing (CRF) across three generations of IPCC Assessment
Reports: 3 (TAR, published in 2001), 5 (AR5, 2014), and 6 (AR6, 2021). AR4 is omitted because data necessary to estimate
CRF are not readily available. Estimates of simulated CRF were acquired by manual digitization of Figure 7.2 of Stocker et al.
(2011) and by multiplying the equilibrium climate sensitivity and cloud feedback columns from Tables S1 and S2 of Zelinka
et al. (2020). As the distribution of estimated cloud radiative forcing shifts upwards from TAR to AR5 to ARG, the figure
shows that in AR5 and ARG, cloud feedbacks are largely positive. Indeed, AR6 states with high confidence that “future
changes in clouds will, overall, cause additional warming” (Forster et al., 2021, p. 1022), yet it was not clear in TAR whether
cloud feedbacks were positive. The increasing confidence in positive cloud feedbacks is partially due to improved boundry-
layer parameterization, which demonstrates modelers’ component-level understanding.

Regarding stratocumulus cloud parameterization in climate models, targeted developments
following the Third Intergovernmental Panel on Climate Change (IPCC) Assessment Report
reduced uncertainty in estimates of cloud feedbacks to the extent that the 6" IPCC Assessment
Report now states with high confidence that “future changes in clouds will, overall, cause
additional warming” (p. 1022). This systematic change in cloud radiative forcing is demonstrated
in Figure 2Figure-2. It was not clear in the Third IPCC Assessment Report (TAR) whether cloud
feedbacks were positive or negative, and the TAR noted in particular that the “difficulty in
simulation of observed boundary layer cloud properties is a clear testimony of the still
inadequate representation of boundary-layer processes” {(TAR 2001), p. 273). Around this time,
researchers developed improved boundary layer parameterizations with the goal of improving
the representation of low, boundary layer clouds. For instance, Grenier and Bretherton built on a
standard 1.5-order boundary layer turbulence parameterization in which turbulent mixing is
treated as a diffusive process related to the amount of turbulent kinetic energy (TKE) and in
which TKE is treated as a conservative, prognostic quantity. Their key additions to the 1.5-order
turbulence approach were (1) a more accurate numerical treatment of diffusion in the vicinity of
step-function-like jumps in temperature and humidity (inversions) and (2) contribution of cloud-

10



315  top radiative cooling to the production of TKE. These two ingredients allow the turbulence

316  parameterization to emulate the physics that drive stratocumulus clouds. Variations on the

317  parameterization of (Grenier and Bretherton (2001) and other similarly sophisticated boundary
318 layer parameterizations have been included in numerous weather and climate models, leading to
319  improvements in the simulation of stratocumulus clouds specifically and general improvements
320  in model climatology.

321  In certain circumstances component-level responsibility for particular model biases can be

322  determined. As an example, the Community Earth System Model 2 (CESM2) was recognized as

323 exhibiting a too large climate sensitivity—one that did not appear in standard CMIP simulations.

324  This behavior was discovered in a surprising way. [Zhu et al. (2022) had shown an instability in [Commented [RO3]: Add w/ Zotero. (Glitching now...)

325 the simulation of the last glacial maximum, a much colder period than present day, using
326 CESM2. This instability did not exist in CESM. By reverting to the original, component-level
327  microphysics scheme the model behaved as expected, and erroneous specification of

328  microphysical particle concentrations were discovered and remedied. More generally, the
329 understanding and observational constraint of ice microphysics is a challenge as demonstrated by
330 the very large variations in ice water path across CMIP models. Using Perturbed Parameter

331  Estimation (PPE. e.g., Eidhamer et al. 2024h can also reveal component level sensitivities and {Commented [ROA4]: Add w/ Zotero. (Glitching now).

332  shortcomings.

333  We take the above cases from CMIP to indicate that climate scientists aim for component-level
334  understanding of their models, which relates to a standard that climate models be at least

|335 somewhat intelligible. Adopting the idea of “intelligibility” from philosopher of science de Regt
336 (2017) we can say that a complex model is intelligible for scientists if they can recognize

337  qualitatively characteristic consequences of the model without performing exact calculations.
338 Intelligibility is facilitated by having models made up of components. In dynamical models,
|339 these components typically represent real-world processes, even in cases of empirically based
340  parameterizations. More generally, knowing that a model component plays a particular role—
341  either representing the process as designed or a role later discovered during model

342  development—in a climate simulation is invaluable for reasoning about the behavior, successes,
‘343 and biases of the GCM as a whole.

344  The climate modeling community has long strived for component-level understanding and

345 intelligibility. This is especially evident in the work on climate model hierarchies, i.e., a group of
346  models which spans a range of complexity and comprehensiveness Jeevanjee et al. (2017).

347  Writing nearly two decades ago, Issac Held (2005) identified model hierarchies as necessary if
348  we wish to understand both the climate system and complex climate models:

349 we need a model hierarchy on which to base our understanding, describing how the dynamics
350 change as key sources of complexity are added or subtracted... (p. 1609)

351 ...the construction of such hierarchies must, I believe, be a central goal of climate theory in
352 the twenty-first century. There are no alternatives if we want to understand the climate
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system and our comprehensive climate models. Our understanding will be embedded within
these hierarchies. (p. 1610)

Along similar lines, and before the advent of CMIP, Stephen Schneider (1979) wrote that

...the field of climate modeling needs to “fill in the blanks™ at each level in the hierarchy of
climate models. For only when the effect of adding one change at a time in models of
different complexity can be studied, will we have any real hope of understanding cause and
effect in the climatic system. (p. 748)

These appeals to climate model hierarchies highlight how component-level understanding is a
longstanding goal in climate modeling (see also (Katzav and Parker 2015). This is not to say that
component-level understanding automatically translates to understanding all model behaviors.
Emergent properties such as equilibrium climate sensitivity may elude explanation. —Eeven
when components such as cloud parameterizations are appealed to as causally relevant for higher
ECS values (e.g., Zelinka et al. 2020), it must be granted that these cloud parameterizations
interact with other components and pieces of the overall GCM. That is, GCMs exhibit fuzzy

modularity—sub-model behaviors do not add up linearly or in an easy-to-understand way
(Lenhard and Winsberg 2010). So there may be a more complete explanation detailing how, as a
whole, the GCM simulates a higher ECS. Producing a complete explanation may prove elusive
however, to the extent that GCMs are epistemically opaque or have such a high degree of

complexity that human minds cannot track all of the relevant information (Humphreys 2009).”

Therefore, we do not regard our three proposed types of understanding as exhaustive—perhaps a
component-interaction or structural type of understanding ought to be theorized and strived for
as well.

However, the examples from earlier in this section show how the goal of component-level
understanding is regularly achieved, overall model complexity notwithstanding. Having achieved
such understanding, scientists can be more confident that their models have indeed captured
some truths about the target systems, and they are thereby justified to increase their confidence in
these complex models. In the climate modeling literature, component-level understanding
routinely leads to model improvements.

We end this section with a brief discussion distinguishing between component-level and
statistical understanding. Overall. our analysis is in the same spirit as that of Kniisel and

Baumberger (2020) who argue that data-driven models and dynamical models alike can be

understood through manipulating the model so that modelers can qualitatively anticipate model

behaviors. However, not all manipulations are equal. Manipulating input data and seeing

" This complexity includes both the impossibility of fully knowing a climate model’s code in its entirety, and the
impossibility of being able to follow the calculations as the model steps forward in time. With today’s GCMs
humans can do neither of these things.
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associated changes in output data does not tell you how the model produces its output. The

hierarchy of understanding we propose—instrumental, statistical, and component-level—

concerns the degree to which and ways in which a model is intelligible or graspable (Kniisel and

Baumberger 2020; Jebeile, Lam, and Réz 2021). Complex models are intelligible or graspable

just in case, and to the degree that, their behavior can be qualitatively anticipated or explained

(De Regt and Dieks 2005; Lenhard 2006). From our perspective, component-level understanding

puts scientists into a position to better anticipate and better explain model behavior.

In general, statistical understanding can help us answer questions such as “do the input-output
relations of the model make sense and, if so, in what way do they make sense?” This is great for
finding out whether the model’s behavior is consistent with expectations across a variety of
cases. This may also involve manipulating input and examining associated changes in output, to
better anticipate future model behavior (Kniisel and Baumberger 2020; Jebeile, Lam, and Réz
2021). However, this is distinct from learning why the model behaves the way it does. To answer
this distinct question, we need to know how the model is working, which, in turn, involves

knowing something about the pieces making up the model. Hence, component-level
understanding is called for. This is exactly the type of understanding that we see aimed for, and
often grasped, in CMIP experiments.

Component-level understanding often involves a different kind of knowledge related to model
architecture and beyond input-output relationships. On the one hand it can demonstrate that you
know what role the component is playing in the model—this shows some knowledge of model-
building. It may also be helpful for answering a wider range of what-if-things-had-been-different
questions. Finally, and potentially the clearest benefit of component-level understanding, is that
it can tell one what needs to be fixed in cases of error. This should produce additional trust in the
modeling enterprise more generally.®

4. Lessons learned: examples of component level understanding in ML

Component-level understanding is not the privilege solely of dynamic climate modeling. ML
models can be built with intelligible components as well, although their components look very
different from those in dynamic models. In this section, we offer three examples in which ML
researchers are able to acquire component-level understanding of model behaviors by
intentionally designing or discovering model components that are interpretable and intelligible.

4.1 Attributing model success with physics-informed machine learning

8 This is not to say that component-level understanding is necessarily superior to statistical understanding. E.g.,
knowing about a robustly detected statistical relationship could be more valuable than knowing how a single model
component functions, especially since many important model behaviors arise from interactions between multiple
model components.
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Our first example involves physics-informed machine learning, i.e., machine learning
incorporated with domain knowledge and physical principles (Kashinath et al. 2021)Kashinath
etal-2019). Model success can be attributed to a specific component in a neural net, if it is
known that said component in the neural net is performing a physically relevant role for a given
modeling task.

Beucler et al. (2019; 2021) augment a neural net’s architecture via layers which enforce
conservation laws that are important for emulating convection (see Figure 1, panel a). These laws
include enthalpy conservation, column-integrated water conservation, and both long- and short-
wave radiation conservation. The conservation laws are enforced “to machine precision”
(Beucler et al. 2021). Following Beucler et al. (2019) and because this neural net has a physics-
informed architecture, we will use the acronym NNA. NNA is trained on aqua-planet simulation
data from the Super-Parameterized Community Atmosphere Model 3.0. NNA’s results are
compared with those of two other neural nets: one unconstrained by physics (NNU) and another
“softly” constrained through a penalization term in the /oss function (NNL; see Beucler et al.
(2019) for further discussion).

All three NNs are evaluated based on the mean squared errors (MSE) of their predictions and
based on whether their output violates physics conservation laws (they call this a P-score). While
NNU has the highest performance in a baseline climate—i.e., a climate well-represented by the
training data—NNA and NNL each outperform NNU in a 4k warmer climate (see Beucler et al.
2019, Table 1), which is impressive since generalizing into warmer climate is particularly
challenging for ML models (Rasp et al. 2018; Li 2023). These results may indicate that NNU
performed better in the baseline climate for the “wrong” reasons. Indeed, NNU had a far lower
P-score in both the baseline and the 4k warmer climate cases.

Beucler et al. (2021) further show that NNA predicts the total thermodynamic tendency in the
enthalpy conservation equation more accurately than the other NNs—*“by an amount closely
related to how much each NN violates enthalpy conservation” (p. 5). The particular layer in
NNA responsible for enthalpy conservation is obviously the explanation for this result. This case
therefore exemplifies component-level understanding, which was straightforward because of

Beucler et al.’s choice of model designly.

It should be noted that both NNA and NNL perform well in the 4k warmer climate and, more
generally, “[e]nforcing constraints, whether in the architecture or the loss function, can
systematically reduce the error of variables that appear in the constraints” (Beucler et al. 2021, p.
5). This suggests that, when thinking purely about model performance, physical constraints do
not necessarily need to be implemented in the model’s architecture. However, compared with
NNL, Beucler et al.’s use of NNA facilitates straightforward component-level understanding.
The component-level understanding is straightforward because we know that, by virtue of the
physics knowledge built into the model’s architecture, NNA obeys conservation laws as it is
trained and as it is tested. We can draw an analogy with dynamical climate models. NNL is to
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NNA as bias-corrected GCM simulations are to ones which capture relevant physical processes
with high-fidelity to begin with. Knowing that a model produces a physically consistent answer
for physical reasons is a stronger basis for trust than merely knowing that a model produces
physically consistent answers due to post-hoc bias correction.

4.2 Explaining model error in a case of Fourier Neural Operators

Another example involves a recent development in using machine learning to solve partial
differential equations: the Fourier neural operator (FNO) pioneered by Li et al. (2021). The
innovation of FNO is the application of Fourier transforms to enable CNN-based layers that learn
“solution operators” to partial differential equations PDEs-in a scale-invariant way. Building on
Lietal. (2021). (Pathak et al. (2022) demonstrated that training an FNO network on output from
a numerical weather prediction (NWP) model produced a machine learning model that emulates
NWP models with high fidelity and efficiency. A key challenge noted by (Pathak et al. (2022)
Pathalk-etal:, however, was a numerical instability that limited application of the FNO model to

forecasts of lengths less than 10 days.

Analysis of the instability ultimately led the group to hypothesize that the instability was due to a
specific component of the FNO model: the Fourier transform itself. The problem they identified
was that the sine/cosine functions employed in Fourier transforms are the eigenfunctions of the
Laplace operator on a doubly-periodic, Euclidean geometry, whereas the desired problem (i.c.,
NWP) is intrinsic to an approximately spherical geometry. In essence, the Earth’s poles represent
a singularity that Fourier transforms on a latitude-longitude grid are not well-equipped to handle.
Bonev et al. (2023) adapt the FNO approach to spherical geometry by utilizing spherical
harmonic transforms with the Laplace-operator eigenfunctions for spherical geometries as basis
functions, in lieu of Fourier transforms. These eigenfunctions, the spherical harmonic functions,
smoothly handle the poles as a natural part of their formulation. Bonev et al. (2023) report that
the application of spherical harmonic transforms, rather than Fourier transforms, results in a
model that is numerically stable up to at least O(100) days and possibly longer.

The application of spherical transformations stabilizes the FNO model. Bonev et al. were able to
fix the FNO because they could pinpoint the Fourier transformations, a component of the FNO
model, demonstrating scientists’ component-level understanding.®

4.3 GAN dissect for future applications in ML-driven climate science

The final example comes from generative adversarial networks (GANs) in computer vision. Bau
et al. (2018) identify particular units (i.e., sets of neurons and/or layers) in a neural net as
causally relevant to the generation of particular classes within images such as doors on churches.

9 Fourier transformations turn out to be useful in other contexts of ML-driven climate science because scientists can
use them to understand neural networks behaviors as combinations of filters, e.g., (Subel et al. 2023).

15



492
493

494
495
496
497
498
499
500
501

502
503
504
505
506
507
508
509
510
511

512
513
514
515

516

517

518
519
520
521
522
523
524
525
526

They demonstrate that these units are actually causally relevant by showing what happens when
said units are ablated (essentially setting them to 0).

The example demonstrates component-level understanding because the units in question are
manipulated. Components within the architecture of the model are turned on and off and the
resultant effects are observed.'® This puts us in a position to say, for example, “these neurons are
responsible for generating images of trees, and we know this because turning more of these
neurons on yields an image with more trees (or bigger trees) and vice versa. Moreover, the other
aspects of the image are unchanged no matter what we do to these neurons.” Bau et al. (2018)
also show that visual artefacts are causally linked to particular units and can be removed using
this causal knowledge.

This case is analogous to the study from Gleckler et al. (1995) as described in Sect. 3 above.
Recall that the cloud radiative effects from the GCMs were "turned off”” (substituted out and
replaced with observational data) and the calculations of ocean heat transport improved.
Scientists can make sense of model error because they know that a certainty deficiency in GCMs,
at the time, involved components of the GCMs responsible for representing clouds. In the same
way, Bau et al. (2018) are able to intervene on generations of images by linking units in their
model to particular types of image classes and examining what happens to the overall image
when these units are manipulated. Note that this is distinct from the closely related method of
ablating specific subsets of input data, which is more closely aligned with XAl and can therefore
yield statistical understanding [(e.g., see Brenowitz et al. 2020; Park et al. 2022). \

While GAN dissect isn’t typically used in climate science research, GANs they-are beginning to
be adopted for some climate applications (SOURCE). Additionally, there are potential future

applications such as in atmospheric river detection Mahesh et al. (2023). In any case, this
example demonstrates yet again how component-level understanding is achievable with ML.

5. Discussion/Recommendations for practice

In this Review and Perspective paper weWe have argued that component-level understanding
ought to be strived for in ML-driven climate science. The value of component-level
understanding is especially evident in the FNO problem described previously (Sect. 4.2 above).
Instrumental understanding allowed the group to identify a performance issue (numerical ‘issues’
in the polar regions) that led to numerical instability. While the group did not employ any XAI—
statistical understanding—approaches, it is clear that they would have been of limited value in
identifying the underlying cause of the numerical instability, since XAl methods only probe
input-output mappings. Ultimately the problem was identified and later solved by applying
component-level understanding of the FNO network: knowledge that a component of the

10 As a reminder to the reader, by “component” we mean a functional unit of the model’s architecture, which
includes the “units” described by (Bau et al. 2018).
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network implicitly (and incorrectly) assumed a Euclidean geometry for a problem on a spherical
domain.

However, a potential objection is that component-level understanding is unnecessary because
XAI methods can simply be evaluated against benchmark metrics. For example, Bommer et al.
(2023) propose five metrics to assess XAl methods, focusing especially on the methods’ output
data (referred to as “explanations”). These include:

Robustness of the explanation given small perturbations to input

Faithfulness, by comparing the predictions of perturbed input and those of unperturbed input
to determine if a feature deemed important by the XAl method does in fact change the
network prediction

Randomization, which measures how the explanation changes by perturbing the network
weights, similar to the robustness metric, the thinking is that “the explanation of an input x
should change if the model changes or if a different class is explained” (Bommer et al.
(2023), p.8)

Localization, which measures agreement between the explanation and a user-defined region
of interest

Complexity, a measure of how concise the highlighted features in an explanation are, and
assumes that “that an explanation should consist of a few strong features” to aid
interpretability (Bommer et al. 2023, p. 10).

Insofar as the metrics are deemed desirable, we agree that such an approach could help establish
trust in XAI. However, we view such benchmarks as complementary to, rather than a substitute
for, component-level understanding. This is because benchmarks yield a sort of second-order
statistical understanding. That is, such metrics are largely focused on aspects of input and output
data produced by a given XAl method. They are, in a sense, an XXAI method, an input-output
mapping to help make sense of another input-output mapping.

Therefore, our recommendation is that ML-driven climate science strive for component-level
understanding. This will aid in evaluating the credibility of model results, in diagnosing model
error, and in model development. The clearest path to component-level understanding in ML-
driven climate science would likely involve climate scientists building, or helping build, the ML
models that are used for their research and implementing physics-based and other background
knowledge to whatever extent feasible (Kashinath et al. 2021; Cuomo et al. 2022). Clear
standards could also be developed for documenting ML architecture, training procedures, and
past analyses, including error diagnoses (O’Loughlin 2023). IPerhaps a model intercomparison
project could be developed to systematically evaluate ML behavior across diverse groups of

17



563
564

565
566
567
568

569
570
571
572

573
574
575
576
577
578

579
580

581
582
583

584
585
586
587
588
589
590

591

592
593

594

595

596
597
598
599

researchers.\ Lastly, with component-level understanding as a goal to strive for, scientists can
better develop hybrid models where both ML and dynamic modeling components are employed.

An increasing range of free or low-cost, high-quality resources are now available to enable

researchers who are not (yet) experts in ML to gain a deep and practical level of understanding of

modern ML model designs and applications. -Some examples of free, high-quality resources
include:

® -Practical Deep Learning for Coders - 1: Getting started (fast.ai)
o Related: GitHub - fastai/fastbook: The fastai book, published as Jupyter Notebooks
e  -Introduction - Hugging Face NLP Course

e How Diffusion Models Work - DeepLearning.Al

Back in 2005, Held wrote that climate modeling “must proceed more systematically toward the
creation of a hierarchy of lasting value, providing a solid framework within which our
understanding of the climate system, and that of future generations, is embedded” (p. 1614). We
think there is a parallel need in ML-driven climate science, i.e., to develop systematic standards
for the use and evaluation of ML models that aid in our understanding of the climate system.
Striving for component-level understanding of ML models is one way to help achieve this.
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