
 

Reviewer comments and our responses 

[Responses in blue; line numbers refer to tracked-changes revision document unless 
otherwise indicated] 

1. Reviewer 1 comments 

The paper is clear, well-organized, and discusses a very interesting approach, XAI methods, 
that could help scientists overcome epistemic opacity of ML-based models. I believe this 
paper can contribute in the reflection within the climate science community on the use of 
machine learning for modelling on the one side, and, on the other side, in the philosophy of 
science debates on understanding through climate models and epistemic opacity of 
machine learning techniques. 
Indeed, the two original contributions of the paper are, first, to use philosophical concepts 
in order to analyse the possible difficulty in the use of ML-based models in climate science, 
and, second, to discuss promising novel methods, i.e. XAI methods. But a number of 
revisions are needed. In what follows, I give some suggestions. 

For the philosophy of science part: 

As an intersdiciplinary researcher working with climate scientists, I find important to not 
introduce new terms that actually refer to already existing concepts in philosophy, but also 
to make connection with the relevant philosophy of science literature. Yet, there is now a 
rich discussion in philosophy of science on understanding through climate models and 
epistemic opacity of machine learning techniques which would be worth being cited and 
used for this paper. More precisely, I think that the following aspects of the paper should be 
revised:1_ The authors argue that what they call “component-level understanding” should 
and can be reached with climate models but also with ML-based models with the help of 
XAI methods. They also argue that CMIP is a place where component-level understanding 
has successfully increased. 

1.1 _ However, this understanding — that seems similar to what Frisch (2015) calls “analytical 
understanding” — comes with the assumption that climate models are modular and that the 
interactions between the different modules (or model components) can be grasped and 
anticipated. But this modularity has been qualified as “fuzzy” by Lenhard and Winsberg (2010) 
and therefore scientists are facing what Lenhard and Winsberg call “entrenchment”. Clearly this 
is in conflict with what the authors are claiming in this paper. That is why I believe the authors 
should engage with this debate (and revise the paper accordingly, all along the paper, not only at 
the beginning of the paper). I don’t think that it would undermine their argument at all but will 
make it more nuanced and stronger; what they call “component-level understanding” might 
still be an ideal to pursue in the scientific practice. I also recommend the authors to read and 
cite the paper on modularity by Lenhard (2018). 
 
Thank you for this comment. We have added a discussion (see footnote 6, lines 368-
375)  in the manuscript. We have added citations throughout. The notion of 
“component-level” understanding is indeed similar to Lenhard and Winsberg’s 
(2010) idea of “analytic understanding” that Frisch (2015) also discusses. One of us 
has argued in print (O’Loughlin 2023) that much of Lenhard and Winsberg’s 
argument is flawed because they misrepresent how climate models are built and 



their empirical evidence is inadequate to show what they want it to show. Lenhard 
and Winsberg define “analytic understanding” as “the ability to tease apart the 
various sources of success and failure of a simulation and to attribute them to 
particular model assumptions” and they argue “Unfortunately, analytic 
understanding is hard or even impossible to achieve… One cannot trace back the 
effects of assumptions because the tracks get covered” (emphasis added). If they 
are right, then model improvement would seem like a miracle! Indeed, O’Loughlin 
(2023) lists several examples where climate modelers successfully attribute model 
error to particular components.  However, we agree that fuzzy modularity limits how 
much a model’s behavior can be understood. We have revised the manuscript 
accordingly. In our revisions, (e.g., lines 138-140) we also clarify that component-
level understanding comes in degrees.  
 
More generally, several philosophers and other scholars of climate modeling (e.g., 
Baumberger et al., 2017; Carrier & Lenhard, 2019; Frigg et al., 2015; Touzé-Peiffer et 
al., 2020; Easterbrook 2023) have also responded to Lenhard and Winsberg. An 
illustrative recent example comes from Steve Easterbrook’s 2023 book, Computing 
the Climate, based on his in-depth study of multiple climate modeling institutions. 
Easterbrook writes “For example, Lenhard and Winsberg argue that design 
decisions built into these core elements [of GCMs] become deeply buried within the 
model over time – that is, entrenched – which means those decisions can no longer 
be understood or critiqued. But you only have to step into a climate modelling lab 
and talk to the modellers to realize this isn’t the case at all” (2023, p. 142).  
 

New sources mentioned:  

Baumberger, Christoph, Reto Knutti, and Gertrude Hirsch Hadorn. 2017. “Building 
Confidence in Climate Model Projections: An Analysis of Inferences from Fit.” WIREs 
Climate Change 8 (3): e454. https://doi.org/10.1002/wcc.454. 
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Touzé-Peiffer, Ludovic, Anouk Barberousse, and Hervé Le Treut. 2020. “The Coupled 
Model Intercomparison Project: History, Uses, and Structural Effects on Climate 
Research.” WIREs Climate Change 11 (4): e648. https://doi.org/10.1002/wcc.648. 
 
 

1.2 The paper of Lenhard and Winsberg (2010) also demonstrates the failure of CMIP in making 
intercomparisons and thereby reaching what the authors call “component-level understanding”. 
In this draft, the scientific references used to support the claim that AMIP / CMIP allowed for 
more component-level understanding are not recent (e.g. first paragraph p. 5 for instance or 
Glecker et al. 1995 cited p. 8), thus it would be nice that the authors explore whether it is the aim 
of CMIP6/7 using recent examples/illustrations. There might be another interesting paper on this 
topic, the paper of Touzé-Peiffer, Barberousse and Le Treut (2020). 

We see the evidence from AMIP/CMIP presented in Lenhard and Winsberg (2010) as 
only supporting a much weaker claim, i.e., that climate modelers did not achieve as 
much understanding of the sources of failures/successes in their models as they 
had hoped. Moreover, the reasons for this lesser degree of understanding are 
underdetermined—it could be due to model building/complexity (à la Lenhard and 
Winsberg), it could be due to the complexity of the model intercomparison effort 
itself (see O’Loughlin 2023), or some combination (or some other reasons). That’s 
why we have not added further discussion of Lenhard and Winsberg beyond what 
was added in response to comment 1.1.  For a more thorough analysis of Lenhard 
and Winsberg 2010, see O’Loughlin 2023, pp. 3-14. 

The manuscript does include discussions of some recent examples in addition to 
the older ones (e.g., see lines 235-243 in original (unrevised) manuscript). Our main 
aim is to show how, historically, CMIP has involved component-level understanding, 
error diagnosis, and fixing of models. Component-level understanding has been 
fruitful for CMIP. The explanation of progress made b/w IPCC AR3 and AR6 directly 
speaks to this. However, we agree that including another more recent example can 
strengthen the paper. To wit, we have added: 

 
In certain circumstances component-level responsibility can be determined. As an 
example, the Community Earth System Model 2 (CESM2) was recognized as exhibiting a 
too large climate sensitivity—one that did not appear in standard CMIP simulations. 
This behavior was discovered in a surprising way. Zhu et al. (2022) had shown an 
instability in the simulation of the last glacial maximum, a much colder period than 
present day, using CESM2. This instability did not exist in CESM. By reverting to the 
original, component-level microphysics scheme the model behaved as expected, and 
erroneous specification of microphysical particle concentrations were discovered and 
remedied. More generally, the understanding and observational constraint of ice 
microphysics is a challenge as demonstrated by the very large variations in ice water 
path across CMIP models. Using Perturbed Parameter Estimation (PPE, e.g., Eidhamer 
et al. 2024) can also reveal component level sensitivities and shortcomings. 

https://doi.org/10.1002/wcc.648


Sources: 

Eidhammer, Trude, Andrew Gettelman, Katherine Thayer-Calder, Duncan Watson-
Parris, Gregory Elsaesser, Hugh Morrison, Marcus van Lier-Walqui, Ci Song, and 
Daniel McCoy. 2024. “An Extensible Perturbed Parameter Ensemble (PPE) for the 
Community Atmosphere Model Version 6.” EGUsphere, January, 1–27. 
https://doi.org/10.5194/egusphere-2023-2165. 
 
J. Zhu, B. L. Otto-Bliesner, E. Brady, A. Gettelman, J. T. Bacmeister, R. B. Neale, C. J. 
Poulsen, J. K. Shaw, Z. McGraw, J. E. Kay, 2022: LGM paleoclimate constraints inform 
cloud parameterizations and equilibrium climate sensitivity in CESM2, J. Adv. Model. 
Earth Syst., https://doi.org/10.1029/2021MS002776 

 

1.3 _ Another well-discussed issue in philosophy of science that makes “component-level 
understanding” difficulty to reach in the case of climate models is the epistemic opacity of 
climate models simulations, that models be dynamical or ML-based. Here are examples of such 
papers: Knüsel and Baumberger 2020; Kawamleh 2021; Jebeile, Lam and Räz 2021. 

We thank the reviewer for these paper suggestions.  

First, we have added a discussion of epistemic opacity (see lines 368-375).  

Second, we would like to point out here how our proposal differs from the analysis 
of Knüsel and Baumberger. Knüsel and Baumberger (2020) develop a framework to 
assess the fitness of climate models for providing understanding. They first show 
their framework applies to process-based dynamic modeling and then show that 
“data-driven models can be useful tools for understanding” as well. More 
specifically, along the dimensions of “representational accuracy” and 
“graspability,” they demonstrate that a random forest model (a data-driven model) 
can satisfy these requirements as well.  

However, our proposal differs from theirs. Take their “graspability” as an example. 
“Graspability” is defined as modelers’ ability to qualitatively anticipate model 
outputs and their ability to explain model behavior. More specifically, random forest 
modelers can anticipate model outputs by “familiarizing themselves with the model 
through manipulation.” They can explain model behavior by “studying the variable 
importance plot” “through manipulation” and “making inferences from the working 
of the optimization algorithm to model behavior.” These ways of attaining 
graspability fall strictly within what post-hoc XAI methods can provide, which, in our 
paper, is statistical understanding. And we urge scientists to move beyond it. We 
now include in our manuscript (end of section 3) that “Overall, our analysis is in the 
same spirit as that of Knüsel and Baumberger (2020) who argue that data-driven 
models and dynamical models alike can be understood through manipulating the 
model so that modelers can qualitatively anticipate model behaviors. However, not 
all manipulations are equal. Manipulating input data and seeing associated 

https://doi.org/10.5194/egusphere-2023-2165


changes in output data does not tell you how the model produces its output.”   

Third, as to Kawamleh (2021), we would like not to include it in our manuscript 
because the paper is built on a flawed belief about machine learning. The author 
attributes “the widespread failure in neural network generalizability to the lack of 
process representation.” Here, generalizability refers to the ML model’s ability to 
generalize beyond training data. More specifically, the author writes, “The ability to 
simulate climate change is a test of the generalizability of the NNP [neural network 
parameterization] beyond the training data.” But a naïve ML cannot generalize 
beyond training data, and it is not supposed (or expected) to. That is, while ML can 
generalize beyond the specific data it was trained on, it is not expected perform well 
on data that comes from entirely different distributions. One of us, Li (2023) 
explains (1) how precisely ML is automated induction; and (2) various problems of 
induction have counterparts in ML practice or theory; and (3) mitigation strategies in 
ML applications informed by philosophy. We see the Li (2023) paper as in line with 
Pacchetti, Jebeile, and Thompson (2024) who note that “The ability to train longer-
time-scale ML models is lower… since we are always subject to the inductive 
problem that past performance does not guarantee future success.” For this 
reason, Kawamleh (2021) is both incorrect and irrelevant to our paper.  

Finally, see our response to 2.1 below for a how our proposal relates to Jebeile, Lam 
and Raz (2021).  

Source: 

Li, Dan. 2023. “Machines Learn Better with Better Data Ontology: Lessons from 
Philosophy of Induction and Machine Learning Practice.” Minds and Machines, June. 
https://doi.org/10.1007/s11023-023-09639-9. 

 

 

2_ The authors put forward three kinds of understanding, instrumental understanding, 
statistical understanding and component-level understanding. 

2.1 _ One would expect this taxonomy to be connected to what philosophers have already said 
about understanding with models, or to be motivated by what scientists tell about their own 
practices. Thus, in (Knüsel and Baumberger 2020) and (Jebeile, Lam and Räz 2021), the authors 
put forward different dimensions of understanding with models that therefore comes in degree. 
In particular, notably following the work of de Regt and Dieks cited in the paper, Jebeile, Lam and 
Räz (2021) use these evaluative criteria of understanding with models: intelligibility, 
representational accuracy, empirical accuracy, physical consistency, delimiting the domain of 
validity. Is this explicitation of “understanding with models” useful for this paper? For example, 
the difference between “statistical understanding” and “component-level understanding” is that 
only the latter meets intelligibility, no? (I am just curious here, this might not be crucial for the 
paper though).  

Indeed, Jebeile, Lam and Raz (2021) offer a comprehensive framework for model 

https://doi.org/10.1007/s11023-023-09639-9


evaluation. While we agree with these criteria, not all concepts apply to the problem 
presented in our paper mainly because the problems that this framework is trying to 
address are different from ours. The problem we are trying to address is how we can 
build AI/ML models that can be diagnosed and improved in climate science—and we 
argue XAI doesn’t really help as much as expected. This key question is suggested in 
our manuscript title: “Moving beyond post hoc XAI…” Hence our paper has a different 
focus than Jebeile, Lam and Raz (2021) do.  

The distinction between statistical understanding and component-level 
understanding is introduced to serve our purpose of characterizing the limitations of 
post-hoc XAI methods in that XAI at best gives us the former, rather than the latter. 
Regarding whether intelligibility captures the difference between statistical 
understanding and component-level understanding, we think the answer is no. 
Jebeile, Lam and Raz (2021) define “intelligibility” as “the ability and skill of the agent 
to use the model and to obtain explanations from it, and on the features of the model 
that enable its manipulability.” XAI methods also allow modelers to obtain 
explanations and manipulate the model. That is, both statistical and component-
level understanding involve some degree of intelligibility. In this sense, the 
replacement of “component-level understanding” with  “intelligibility” would 
collapse the distinction that we are trying to make. In our view, component-level 
understanding typically constitutes a higher degree of intelligibility than does 
statistical understanding, because agents will be better able to manipulate and 
generate explanations from a model when they can understand its innerworkings. As 
our examples demonstrate, this higher degree of intelligibility also involves 
diagnosing and correct model errors. Therefore, we would like to stick with statistical 
vs. component-level understanding.  

However, thanks to your comment, we now see that our paper can offer a more 
nuanced version of intelligibility. The higher level of intelligibility maps on to 
manipulating model components; whereas the lower level to manipulating model 
input and output. We have revised the manuscript to reflect this (see lines 383-394).  

2.2 _ What about the concept of “process understanding” used by climate scientists? It is usually 
referring to the aim of fundamental research. Is it not covered by the concept of “component-
level understanding”? 

They are related, often overlap in practice, but are distinct. “Process” refers to the 
physical process that the model aims to simulate. For example, Maloney et al. (2019) 
define process-oriented diagnostics as “characterizing a specific physical process 
or emergent behavior that is related to the ability to simulate an observed 
phenomenon.” The concept is related to Jebeile, Lam, and Raz’s (2021) 
“representational accuracy,” which is “evaluated with regard to how well a model 
captures the relevant physical processes at work in the target system under 
investigation.”  

In contrast, having components is an engineering choice. For example, scientists 
could incorporate cloud formation by increasing the resolution of a GCM—increasing 



the process representation (or what Knüsel and Baumberger call “representational 
depth”), and scientists can look at how clouds form in a GCM frame by frame to 
increase process understanding. But, in this case, cloud representation is not an 
isolated component in the model. It is merely a fine-grained small-scale process that 
also follows from the core physics. Conversely, scientists could build a cloud 
parameterization (a mini-model) that is connected to the original GCM. Now we have 
a component within the GCM. However, it is possible that the cloud parameterization 
offers very little process understanding whatsoever, as in the case of naïve or 
empirically based parameterizations.  

We’ve added a footnote to clarify:  

FN: Note that while processes and model components are linked, neither is reducible to the other. E.g., a 
coupler is a component in a GCM but it is not a real-world climate process; conversely, there is no cloud 
feedback parameterization but cloud feedbacks are a real-world climate process. 

*See also lines 238-243 in our original submitted manuscript.   

 

2.3 _ In the paper, what is the role of this taxonomy after all? Couldn’t the authors simply 
introduce the definition of “component-level understanding” (or process understanding) and 
argue that it can be reached in ML-based modeling with the help of XAI methods (where we 
could imagine that only statistical understanding is reached)? 

We have clarified the role of the taxonomy in the manuscript (see 388-390).. The key 
point is that our proposed hierarchy, in a sense, zooms in on differing degrees of 
intelligibility. Here is an excerpt from our revised introduction:  

 

In this Review and Perspective paper, we target readers with expertise in traditional approaches for climate science 
(e.g., development, evaluation, and application of traditional Earth System Models) who are starting to utilize ML 
in their research and who may see XAI as a tempting way to gain insight into model behavior and to build 
confidence. In this perspective, we draw from some ideas in philosophy of science to recommend that such 
researchers leverage the expanding array of freely available ML learning resources to move beyond post hoc XAI 
methods and aim for component-level understanding of ML models. By “component” we mean a functional unit of 
the model’s architecture, such as a layer or layers in a neural net. By “understanding” we mean knowledge that 
could serve as a basis for an explanation about the model. We distinguish between three levels of understanding: 

Instrumental understanding: knowing that the model performed well (or not); e.g., knowing its error rate on a 
given test. 

Statistical understanding: being able to offer a reason why we should trust a given ML model by appealing to 
input-output mappings. These mappings can be retrieved by statistical techniques.  

Component-level understanding: being able to point to specific model components or parts in the model 
architecture as the cause of erratic model behaviors or as the crucial reason why the model functions well.  

These levels concern the degree to which complex models are intelligible or graspable to scientists (De Regt and 
Dieks 2005; Regt 2017; Knüsel and Baumberger 2020). Therefore, our proposal has a narrower but deeper focus 
than recent philosophy of science accounts of understanding climate phenomena with or by using ML and 



dynamical climate models (Knüsel and Baumberger 2020; Jebeile, Lam, and Räz 2021). We are concerned with 
understanding, diagnosing, and improving model behavior to inform model development.    

 

2.4 _ It would also be interesting to have a characterization of this taxonomy: is instrumental 
understanding a weaker form of understanding than statistical understanding? Is statistical 
understanding in turn a weaker form than component-level understanding? 
Or do they overlap? 
 
No, they are not necessarily reducible to each other. For example, a technician might say, 
“I don’t know why whenever you pat the TV really hard, it fixes the snowflakes on the 
screen, but I do know your TV needs a new set of LED backlight strips.” Presumably, I, a 
layperson, discovered that patting on TV in a particular way will fix the snowflakes—
statistical understanding—but this is unlikely to produce (in me) component-level 
understanding. Neither do statistical and component-level understanding overlap in an 
interesting way—except, maybe, in some lucky instances. They may overlap in a very 
general sense in that both include counterfactual probing (e.g., manipulate input data and 
see what happens vs. manipulate a model component and see what happens). However, 
statistical understanding could lead to a discovery of component-level understanding. 
Indeed, if the layperson decides to study patting and snowflakes, she may end up learning 
something useful and component-based about the TV. But it would be wrong to argue that 
these different levels can be reduced to each other.  
 

 
 

2.5 _ In the hierarchy of models envisioned by Held (2005), is he referring to model component? 
In the quotations given p. 11, he instead speaks about the dynamics. 
Another paper on hierarchy of climate models is (Katzav and Parker 2015). 
 
In the quote given, Held talks about understanding changes in model dynamics as model 
complexity increases by which he means, among other things, adding parameterizations. 
Further evidence of this can be found when he says: “My reading of the literature is that 
elegance is often sacrificed unnecessarily, primarily for the sake of competition with 
comprehensive models” (Held 2005 p. 1613, emphasis added). “Comprehensive” refers to 
representing more and more physical processes, which often involves adding more 
parameterizations.  
 
We’ve added the citation to Katzav and Parker 2015.  
 

 
Regarding the contribution of this paper for the scientific practice: 

1_ It would be worth defining what “computational efficiency” of machine learning is 
(introduction p. 2) as it is usually the main motivation in the use of machine learning. It would 
be important for this paper to clarify what it means. 

We have replaced it with “orders of magnitude reduced computational expense.” 

2_ It seems that the authors are assuming (or have to assume) that there is some kind of 
isomorphism between layers in neural net and model components. Can they clarify their 



position on this? (cf. second paragraph p. 4). 

Layers of a neural net do not necessarily need to be components. Components are 
just what scientists can isolate, turn on and off, in the model. If they choose to 
isolate layers or even neurons in a neural net, as shown in our examples, then these 
isolated parts serve as components. However, one can also imagine where mini 
neural networks serve as components and make up a big model.  

For example, generalized additive neural net adopts a structure like this (see 
Agarwal, R., Melnick, L., Frosst, N., Zhang, X., Lengerich, B., Caruana, R. and Hinton, 
G.E., 2021. Neural additive models: Interpretable machine learning with neural nets. 
Advances in neural information processing systems, 34, pp.4699-4711). 

Therefore, we do not have to assume layers must be components.  

3_ Can it not be that search for “component-level understanding” is actually search for 
“representational accuracy”. Trying to correct for previous idealizations and 
parameterizations seem to be line with the “natural” direction of scientific research, no? 
(This is what is assumed in Jebeile and Roussos 2023; Baldissera Pacchetti, Jebeile and 
Thompson 2024). 

No, component-level understanding and representational accuracy are distinct aims. 
Representational accuracy refers to “how well a model captures the relevant physical 
processes at work in the target system under investigation” (Jebeile, Lam and Räz 
2021). Representational accuracy implies a commitment to realism, as Pacchetti, 
Jebeile, and Thompson (2024) note, “… realism of the model assumptions. For a 
given system, there is a tendency to work toward more realistic representations, thus 
correcting for previous simplifications, notably through the integration of more 
variables and fine-grained details, or replacing previous parameterizations by explicit 
theory-based equations.” As Pacchetti et al. have convincingly argued, the current 
trend of increasing resolution is motivated by the pursuit of representational 
accuracy.  

Yet, representational accuracy is not always prioritized in AI/ML, at least not as much 
as it is in dynamic modeling. As Pacchetti, Jebeile, and Thompson (2024) themselves 
say, “Regarding realism, one characteristic of ML is that the data are not assumed to 
conform to given physical laws or regularities, instead relying on the emergence of 
those regularities in statistical form. In climate modeling, physical process 
representation has generally been the preferred form of modeling, with statistical or 
empirically derived parameterizations used only where physical processes are 
insufficiently well understood or would require a prohibitive share of the computing 
resource. Hard AI, or larger-scale implementation of ML methods to directly predict 
field-scale outputs, is in conflict with the aim of realism.” (emphasis added.)  

Furthermore, we argue that component-level understanding should be pursued 
mainly because it will serve scientists for diagnosis and improvement, rather than 
because it leads to realism. If realism is obtained, that’s a bonus. Of course, in 
physics-informed ML, (see our example in section 4.2 of the manuscript) the goals of 
component-level understanding and representational accuracy may align, but they 
need not. To reiterate what we said in earlier responses, our aim is to focus on the 
component-level understanding of models rather than of real-world phenomena 
(although, of course, understanding and predicting real world phenomena is the 
ultimate goal).   



Lastly, we would like to stay away from a commitment to realism also because it 
implies a metaphysical commitment to a particular scientific worldview. For example, 
dynamic models use physics as core. Physical laws are expressed as partial different 
equations, which typically involves spatial derivatives 𝝏𝝏𝝏𝝏,𝝏𝝏𝝏𝝏,𝝏𝝏𝝏𝝏, and temporal 
derivatives 𝝏𝝏𝝏𝝏 of different physical quantities. These representations match the 
Newtonian worldview. Some may even argue that they match common sense. Yet, as 
Jebeile and Roussos (2023) have argued, “climate science retains much of its initial 
“physics-first” orientation, and that it adheres to a problematic notion of objectivity 
as freedom from value judgments.” And the pursuit of representational accuracy 
based on physics limits methodological pluralism, as Pacchetti, Jebeile, and 
Thompson (2024) have argued. The same argument also applies if representational 
accuracy also includes “comprehensiveness” from Pacchetti, Jebeile, and Thompson 
(2024).   

For these reasons, it is our deliberate choice to stay away from representational 
accuracy and simply focus on components that can aid model diagnosis and 
improvement, which, again is more about engineering practice than it is about 
realism.   

  

4_As it is, section 4.3 fails to be persuasive because GAN does not to apply to climate 
science. The authors should explain whey they believe that, in the future, GAN will be applied 
to ML-driven climate science. 

It turns out GAN is sometimes used in climate science (e.g., in Besombes et al. 2021 
and in Berohe 2021).  

It is also not unreasonable to think that GAN dissect could be used in future climate 
applications. Indeed, ablation (an XAI technique which involves turning on/off specific 
input data) has been used successfully in climate modeling already (e.g., see 
Brenowitiz et al. 2020).  

We have revised the manuscript to reflect these points. 

Sources: 

 

Beroche, Hubert. 2021. “Generative Adversarial Networks for Climate Change 
Scenarios.” URBAN AI (blog). April 2, 2021. https://urbanai.fr/generative-adversarial-
networks-for-climate-change-scenarios/. 

Besombes, Camille, Olivier Pannekoucke, Corentin Lapeyre, Benjamin Sanderson, and 
Olivier Thual. 2021. “Producing Realistic Climate Data with Generative Adversarial 
Networks.” Nonlinear Processes in Geophysics 28 (3): 347–70. 
https://doi.org/10.5194/npg-28-347-2021. 

Brenowitz, Noah D., Tom Beucler, Michael Pritchard, and Christopher S. Bretherton. 
2020. “Interpreting and Stabilizing Machine-Learning Parametrizations of Convection.” 
Journal of the Atmospheric Sciences 77 (12): 4357–75. https://doi.org/10.1175/JAS-D-
20-0082.1. 

https://doi.org/10.5194/npg-28-347-2021


 
Minor comments: 

1_ In what sense, do AI models entail “greater uncertainty”? Could you specify what you mean: 
is that that the outputs / predictions of models are more uncertain? (abstract, p. 2) 

We don’t claim that AI models “entail” greater uncertainty. In the abstract, we suggest 
that using black box models will subject climate science to greater uncertainty. The 
basic idea is that if you use a model that you do not understand, then the knowledge 
gained from the model could be more uncertain.  

2_ What is actually the “functional test” that a model has to pass in order to provide 
instrumental understanding? (abstract, p. 2) 

There are many possible ones. Basically, any performance assessment. What we 
have in mind are the types of performance assessments described, e.g., in lines 82-87 
in the original submitted manuscript.   

3_ Some technical terms should be (better) defined: “layer-wise relevance propagation”; 
“attribution/relevance heatmaps”; “multi-layer, convolutional recurrent neural networks”, 
“tree ensembles” (p. 6); distinction between “specific classificatory instances” and “global 
classification” (p. 7); “P-score” (p. 13) 

We will defer to the editor – should we explain these terms better?  

4_ There should be no bracket after “Gettelman et al. 2019.” (p. 5). 
Thanks, fixed it.  
 
5_ References are needed to support the claim that “In addition, there is a concurrent need to 
establish the trustworthiness of ML models as driven climate science potentially becomes 
increasingly used to inform decision makers” (p. 5). 
 
Added this: “NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and 
Coastal Oceanography (AI2ES).” n.d. Accessed August 13, 2024. https://www.ai2es.org/. 
  

6_ In the introduction of section 4, the authors write “we offer three examples in which 
ML researchers are able to acquire component-level understanding of model behaviors by 
intentionally designing or discovering model components that are interpretable and 
intelligible.” This sentence seems to suggest that “interpretable and intelligible” model 
components will bring component-level understanding (p. 13). Could the authors clarify this 
point? 
 
We think that, in the examples we describe, having interpretable and intelligible model 
components exemplifies component-level understanding and helps scientists 
diagnose (and correct, if needed) model behavior.  

7_ The authors should write what the acronym PDEs is referring to in all letters (p. 14) 

Thanks -- fixed it 

https://www.ai2es.org/


8_ The authors should indicate the year of Pathak et. Al (p. 14) and add the reference in the list 
of references. 

Thanks – fixed it 
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2. Reviewer 2 comments 

Summary of paper:  
 
This manuscript emphasizes the need to develop more interpretable AI models for climate 
applications, with emphasis on AI models that provide component-level understanding. It points 



out that (posthoc) XAI methods that are applied after an AI model is built are not the way to go 
to achieve that goal. Instead, AI models should be built a priori to allow for component-level 
understanding. Comparisons are drawn to numerical climate models which tend to be built in 
components, making them easier to debug and interpret. 

Comments: 

I agree with the overall intent of the paper to push toward more interpretable AI models, rather 
than relying on XAI methods. While I agree with this intent, to me this seems to be a well-known 
goal and thus I do not see significant new contributions in this manuscript. Let me explain this 
section by section.  

While many climate scientists know about the importance of moving towards interpretable 
AI instead of relying on XAI methods, many do not. This may be especially true of our 
intended audience, climate modelers who are relatively new to ML.  

To demonstrate this point, we collected publications related to AI, ML, or XAI, from three 
major journals (BAMS, GMD, JAMES). 178 valid references are acquired from the Web of 
Science. These references are categorized into one of the following based on their abstract: 
(1) Blackbox applications; (2) XAI applications; (3) Interpretable applications; (4) Review 
papers; and (5) Miscellaneous, e.g., workshop reports.  

The results are:  
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The majority of publications still employ Blackbox AI methods, without explicit reference 
to interpretable components. There are roughly as many XAI papers as papers with 
interpretable models, which are still in the minority (around 10 papers each, in contrast to 
over 130 black box applications).  

If deemed appropriate, we would be happy to include this data in the manuscript. We 
could look at more journals too, if desired.  

Section 1 argues that relying on applying XAI methods after a model has been built has many 
drawbacks, and that Instead one should build models that are interpretable (what they call 
component-level understanding) from the start. However, this point has already been made many 
times. For example, the highly cited paper by Rudin (2019) (which is also cited in this 
manuscript) is entitled “Stop Explaining Black Box Models for High Stakes Decisions and Use 
Interpretable Models Instead,” and makes this point very clearly: whenever possible build 
interpretable models, rather than relying on applying XAI methods after a model has been built. 
In the context of weather and climate the argument for interpretable models has been made many 
times, too, see for example: 

• Yang, R., Hu, J., Li, Z., Mu, J., Yu, T., Xia, J., Li, X., Dasgupta, A. and Xiong, H., 2024. 
Interpretable Machine Learning for Weather and Climate Prediction: A Survey. arXiv 
preprint arXiv:2403.18864. 

• Nhu, A.N. and Xie, Y., 2023, November. Towards Inherently Interpretable Deep 
Learning for Accelerating Scientific Discoveries in Climate Science. In Proceedings of 
the 31st ACM International Conference on Advances in Geographic Information 
Systems (pp. 1-2). 

• Hilburn, K.A., 2023. Understanding spatial context in convolutional neural networks 
using explainable methods: Application to interpretable gremlin. Artificial Intelligence 
for the Earth Systems, 2(3), p.220093. 
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We recognize that the call for interpretable models has been made in other work, and we 
thank the reviewer for pointing out some additional papers that make this point. This 
review/perspective paper makes a unique addition to the literature by demonstrating the 
parallels between a similar (and better known—to this community at least) challenge in 
building confidence in, and improving of, climate models. This unique addition is bolstered 
by the choice of GMD as the venue, as its audience consists of a mix of traditional and ML 
climate model developers and will therefore has better chances of reaching our target 
audience: traditional model developers who are starting to wade into ML and who may be 
tempted to rely solely on XAI for probing model behavior. 

 

We have revised the introduction to make the contribution of this paper clearer. 

 

Section 2 outlines shortcomings and limitations of XAI methods. It mainly cites a few papers 
that have studied this topic. I did not find anything new here. 

 

We agree with this characterization of Section 2, though we are unsure whether the 
reviewer makes this point as a criticism. Given that the intended purpose of this paper is to 
help new ML model developers in the climate field to (a) understand XAI and its 
limitations, and (b) ultimately move beyond XAI, we argue that this outlining of 
shortcomings and limitations of XAI methods is necessary. 

 

Section 3 states that traditional (numerical) climate models tend to be based on components, 
which makes it easier to attribute problems to specific components of the model, and that the 
modularity of these components should be followed by AI models. Firstly, as one of the other 
reviewers already pointed out, the complex interactions of components in climate models can 
make it very difficult to attribute problems to individual components, so that reasoning does not 
always work for traditional climate models either. Secondly, traditional climate models are built 
in a modular structure because that is the only way humans can built such a complex system – by 
building one module at a time. Sure, that has other advantages as well – such as higher 
interpretability – but it wasn’t the main reason. In contrast, modern AI tools are not naturally 
built on modularity, so it takes considerable effort to try to enforce modularity, especially for 
very complex tasks. Thus, in essence, I agree that it would be nice for AI models to be modular, 
but it might not always be possible. 

We break our response to this comment by the two separate points the reviewer makes in 
this paragraph. 



1.) “Firstly, as one of the other reviewers already pointed out, the complex interactions of 
components in climate models can make it very difficult to attribute problems to individual 
components, so that reasoning does not always work for traditional climate models either.” 

 

This is a fair point, though “difficult to attribute problems” does not mean “impossible to 
attribute problems.” We cite numerous sources and have added more in the revised draft, 
thereby demonstrating instances in which component-level understanding directly led to 
model improvements. We have also revised our language to be clearer that the issue of 
complexity may prevent component-level understanding from leading to useful insights. 
(See also our responses to reviewer 1, above).  

 

2.) “Secondly, traditional climate models are built in a modular structure because that is the only 
way humans can built such a complex system – by building one module at a time. Sure, that has 
other advantages as well – such as higher interpretability – but it wasn’t the main reason. In 
contrast, modern AI tools are not naturally built on modularity, so it takes considerable effort to 
try to enforce modularity, especially for very complex tasks. Thus, in essence, I agree that it 
would be nice for AI models to be modular, but it might not always be possible.” 

 

We are unsure whether it is fair to claim that “it wasn’t the main reason,” given that as far 
back as 1979, Schneider advocated for a hierarchy-based approach to climate model 
development that necessarily implies a modular design. Regardless, the original reasoning 
for a modular design approach, to climate models, is tangential to the point being made 
here: that modularity has had practical benefits for the understandability, interpretability, 
and ultimately the improvement of climate models. We are arguing that that practical 
benefit could be realized for ML models too. 

Granted, the reviewer makes a fair point that current ML model design practices may 
make modularity more difficult. There is a value judgement in there: whether to value 
human time and effort versus valuing models that are, by design, amenable to component-
level understanding and therefore interpretability and improvability. Making such a 
judgement call is beyond the scope of this paper; it is a judgement we would prefer to leave 
in the hands of climate researchers who are emerging as ML model developers.   

  

Section 4 provides examples of three papers that are supposed to show how “component-level 
understanding” can be achieved for AI. How exactly is “component-level understanding” 
defined? Does it mean that we need to understand ONE component of the AI model? Or ALL 
components? If it’s just one component – which it seems to be in several examples – then how is 
this different from physics-guided machine learning, which is an entire field? See for example:  



• Willard, J., Jia, X., Xu, S., Steinbach, M. and Kumar, V., 2020. Integrating physics-based 
modeling with machine learning: A survey. arXiv preprint arXiv:2003.04919, 1(1), pp.1-
34. 

Note: we cite literature on physics-informed ML, so we are aware of this field. Here’s a few 
things we can say:  

- Understanding comes in degrees. Knowing one component gives some 
understanding; knowing more components gives more (see lines 138-140) 

- Physics informed ML does not always involve component-level understanding (see 
section 4.1 of our manuscript) 

- Component-level understanding is not limited to physics-informed ML (see section 
4.2 of our manuscript) 

Also, there are many, many other examples from climate science that could have been cited, and 
I did not find any new ideas here. 

We added a co-author who is also an Earth System Model developer to help provide more 
perspective and relevant examples from climate science. 

We also reiterate that the novel contribution of this paper is in the linking of existing 
climate model development practices to practices that could be employed in ML model 
development.   

Section 5 recommends striving for component-level understanding. It’s a good idea to strive for 
more modular AI architectures whenever possible, but I did not learn anything new here about 
how that could be achieved. I would also argue that we should focus on the more general topic of 
achieving interpretability, whether that is achieved through modularity or other means, such as 
feature engineering and/or symbolic regression. 

Review summary: While I agree with the general idea that we should strive to make AI models 
more interpretable, unfortunately, I do not see any convincing new ideas here.  
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The reviewer’s primary criticism in this last section seems to be “I did not learn anything 
new here about how that could be achieved” and “I do not see any convincing new ideas 
here.”  Those statements are understandable, given that the original draft was not clear in 
pointing out that (1) this is a perspective piece that aims to connect existing ideas in the 
literature and (2) the intended audience of this perspective is emerging ML model users 
and developers who may be tempted to rely on XAI methods. The reviewer is a well-known 
ML expert and model developer who is not in the intended audience for this perspective; it 
is understandable that the reviewer would not have learned anything new here. We have 
revised the paper to make clear that (a) this is a perspective piece, and (b) who the intended 
audience is. 
 



 

3. Reviewer 3 comments 

 

Summary: 

The authors hold the opinion that the artificial intelligence (AI) models should gain trust in the 
climate science community as the physics-based dynamical climate models do. 

They proposed three types of understanding as a basis to evaluate trust in dynamical and AI 
models alike: instrumental understanding, statistical understanding and component-level 
understanding. The instrumental understanding is defined as knowing a model performed well 
(or not), or knowing its error rate on a given test. Statistical understanding is defined as  being 
able to offer a reason why we should trust a given machine learning model by appealing to input-
output mappings which can be retrieved by statistical techniques, and the component-level 
understanding refers to being able to point to specific model components or parts in the model 
architecture as the cause of erratic model behaviors or as the crucial reason why the model 
functions well. And they further argue that the currently Explainable artificial intelligence (XAI) 
models are only helping in increasing statistical understanding and hence not sufficient. They 
argue that the component understanding is essential for models to gain trust and propose for AI 
models to have interpretable components that are amenable to component-level understanding. 
Then the authors demonstrate some examples to support the arguments that XAI models only 
provide statistical understanding; dynamical climate models provide component understanding 
and finally AI models can (and should) have component understanding as well. 

  

Overall comment: 

The paper is clear and easy to understand with good writing. And it tries to address ML/AI 
model explainability which is a very important topic in climate science (or in any other areas), 
and argues that we should improve the explainability of AI models. However, I don’t think this 
paper provides a comprehensive or innovative approach to achieve this goal. It seems to me that 
this paper proposes a concept that already exists in the common practice in the community. The 
key argument of the paper is to advocate for the ‘component level understanding’ which is 
essentially finding out which part of the model is not working, and tweaking or adjusting that 
part until it works. It is quite common for researchers to have some intuition or expectation on 
the functionality of each component in model architecture when they design a ML/AI model 
(including models applied to climate). Therefore the model naturally will have some ‘component 
level’ understanding albeit sometimes not explicitly decoupled. If the authors of the paper are 
arguing for the more explicitly decoupled or independent component for the model, I think they 
may need more concrete examples to illustrate the concept in the ML/AI models besides the 
current examples in the paper.  



Because this is a Review and Perspective paper, we do not claim to present an innovative 
new method. Our goal is to present a helpful way of thinking about understanding and 
explaining model behaviors. In particular, we draw the connection between diagnosing 
model behavior in traditional GCMs and in ML-driven climate science. Our paper is 
philosophical in character, as we now make clear in the revised introduction:  

In this Review and Perspective paper, we target readers with expertise in traditional approaches 
for climate science (e.g., development, evaluation, and application of traditional Earth System 
Models) who are starting to utilize ML in their research and who may see XAI as a tempting way 
to gain insight into model behavior and to build confidence. In this perspective, we draw from 
some ideas in philosophy of science to recommend that such researchers leverage the expanding 
array of freely available ML learning resources to move beyond post hoc XAI methods and aim 
for component-level understanding of ML models. By “component” we mean a functional unit of 
the model’s architecture, such as a layer or layers in a neural net. By “understanding” we mean 
knowledge that could serve as a basis for an explanation about the model. We distinguish 
between three levels of understanding: 

Instrumental understanding: knowing that the model performed well (or not); e.g., knowing 
its error rate on a given test. 

Statistical understanding: being able to offer a reason why we should trust a given ML model 
by appealing to input-output mappings. These mappings can be retrieved by statistical 
techniques.  

Component-level understanding: being able to point to specific model components or parts in 
the model architecture as the cause of erratic model behaviors or as the crucial reason why the 
model functions well.  

These levels concern the degree to which complex models are intelligible or graspable to 
scientists (De Regt and Dieks 2005; Regt 2017; Knüsel and Baumberger 2020). Therefore, our 
proposal has a narrower but deeper focus than recent philosophy of science accounts of 
understanding climate phenomena with or by using ML and dynamical climate models (Knüsel 
and Baumberger 2020; Jebeile, Lam, and Räz 2021). We are concerned with understanding, 
diagnosing, and improving model behavior to inform model development.    

 

Session comment: 

In the following sections of the paper the authors take some examples to illustrate the three types 
of understandings. In section two the authors explain how an XAI method utilizes saliency map 
in convolutional neural networks to examine the input / output mapping and achieve statistical 
understanding, but they argue that XAI methods have limitation of not being able to distinguish 
between correlation and causation. 



  

In session three the authors take other examples to argue that dynamical models, on the other 
hand, have component understanding. The examples include fixing errors in the Atmospheric 
Model Intercomparison Project by identifying and fixing ocean heat transport, and two more 
examples of updating parameterization help improve model performance and achieve component 
understanding. The example in this session is from 30 years ago and climate science has 
advanced a lot since then. It would be better to provide a more recent example. 

 Thank you – we now include a more recent example (see lines 321-332).  

In session four the authors give three examples to claim that the AI models can achieve 
component understanding by either intentional model architecture design or finding interpretable 
model components. However, these examples are not persuasive enough to support the claims, 
especially for example three, which is in fact an ablation study, and XAI methods can also utilize 
this mechanism. 

We have revised the manuscript to highlight the relationship between the GAN dissect 
example and ablation studies (and we’ve added some citations; see lines 509 – 515). The key 
difference is that climate XAI applications of ablation typically involve turning input data 
on/off. As we argue in section 2 of the manuscript, this can only yield statistical 
understanding.  

As for the persuasiveness of the examples overall, we reiterate that this is a Review and 
Perspective paper, not a presentation of novel research results. As we mentioned in 
response to reviewer 2, above, we realize that this point was not clear in the original 
manuscript and so we have revised to make our aim and intended audience clearer.  

  

In session five the authors further advocate for component level understanding and argue that the 
XAI methods can be complementary to the component level understanding. 

  

Throughout the paper, the examples are briefly explained in plain text without detailed 
information or rigorous numbers to support their arguments. There are only two figures in the 
paper and they do not help much in explaining the contents in the text. 
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