Divergent responses of evergreen needle-leaf forests in Europe to the 2020 warm winter
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Abstract

Compared to drought and heat waves, the impact of winter warming on forest COp fluxes has ,’\

been less studies, despite its significant relevance in colder regions with higher soil carbon

content. Our objective was to test the effect of the exceptionally warm winter in 2020, on the

winter CO2 budget of cold-adapted evergreen needle-leaf forests across Europe, and identify

the contribution of climate factors, to changes in winter CO; fluxes, Our hypothesis was that

warming in winter leads to higher emissions across colder sites due to increased ecosystem
respiration. To test this hypothesis, we used 98 site-year eddy covariance measurements across
14 evergreen needle-leaf forests (ENFs) distributed from north to south of Europe (from

Sweden to Italy). We used a data-driven approach to quantify the effect of radiation. air |

temperature, and soil temperature on changes in COp fluxes, during the warm winter of 2020.

Our results showed that warming in winter declined forest net ecosystem, productivity (NEP) g

significantly across most sites, The contribution of climate variables to CO;, fluxes varied across
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on NEP. Conversely in colder sites, air temperature played a more critical role in affecting NEP.
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temperature, solar radiation). When canopy structural changes from one year to another are

negligible, the interannual variations can be predominantly explained by changes in the climatic

conditions (Hui et al. 2003). Net ecosystem productivity can increase or decrease with changes
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increases photosynthesis which leads to a larger gross productivity and potentially increased
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emissions respond to a warming climate. Within naturally occurring temperature ranges,

ecosystem respiration (sum of autotrophic and heterotrophic respirations) typically shows an

exponential increase with temperature (Lloyd and Taylor 1994). While previous studies have

shown an increase in Q10 (times of increased soil respiration with a 10 °C increase of

temperature) with decrease in site mean temperature (e.g., Chen et al. 2020), the temperature

sensitivity of ecosystem respiration incorporates both the direct response of ecosystem

respiration to temperature (i.e., increased metabolic activity of plants and microorganisms), and

indirect influences from other climatic and physiological variables such as moisture, leaf area

index, photosynthate input, litter quality, microbial community. For example soil moisture

affects the microbial activity and decomposition rates, which in turn influence respiration rates.

In moist conditions, microbial activity increases, leading to increased decomposition and
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respiration rates. Conversely, in dry conditions, microbial activity slows down, reducing the

respiration rates. The amount of organic matter produced through photosynthesis affects the

availability of substrates for microbial decomposition, and higher photosynthate input results
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Environmental cues such as temperature, photoperiod, and light quality control a network of

signalling pathways that coordinate cold acclimation and cold hardiness in trees that ensure

survival during long periods of low temperature and freezing (Oquist and Hiiner 2003

Ensminger et al. 2006). These signalling pathways include the gating of cold responses by the

circadian clock, the interaction of light quality and photoperiod, and the involvement of
phytohormones in low temperature acclimation (Chang et al. 2021). Soluble carbohydrates,

including sucrose (most abundant) accumulate in response to low temperatures, starting from

late autumn throughout winter (Strimbeck & Schaberg 2009: Chang et al. 2015). Persistent

uninterrupted cold periods thus play an important role in forming the photosynthetic capacity

of'the trees as warmer winter temperatures increases the chance of photo-oxidative frost damage

during earlier stages of the growing season (Gu et al. 2008; Chamberlain et al. 2019) which

would compromise the capacity of the forest for COp uptake throughout the year (Desai et al.

2016). The risks of photo-oxidative frost damage increases with winter warming, as warmer

winter temperatures can lead to an accumulation of photosynthetically active compounds in

plants, and when sudden frost events occur, during periods of high radiation, the combination

of low temperatures and intense sunlight can induce photo-oxidative stress in plant tissues. This L

occurs because the photosynthetic machinery is still active, but the low temperatures impair the

plant's ability to dissipate excess energy, leading to the production (and imbalance) of reactive

oxygen species (ROS) that can damage cells and tissues. Photochemical damage can also

happen in the case of high radiation, low water content in the leaf tissue and low temperature,
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The winter of 2019-2020 was reported as the hottest winter in the last four decades (1981-2022)

across Europe (Copernicus Climate Change Service/ ECMWF). When compared to the average
conditions, up to 45 less winter ice days were detected in eastern Europe Russe (C3S/KNMI).
In Finland, for example, the average air temperature for January and February was over 6
degrees higher than the 1981-2010 mean (Copernicus Climate Change Service/ECMWF). In
this study we investigated how the exceptionally warm winter of 2019-2020 affected ENFs in

Europe and whether increasing winter temperature increased or decreased the carbon uptake of

the forest. Our objectives were to:

1) evaluate the relative change in air and soil temperature and incoming radiation during the

winter 2019-2020, compared to a 6-year reference period of 2014-2019, 2) quantify the relative
changes in the winter CO» fluxes across coniferous sites with available ecosystem-level CO2

flux measurements,, 3) identify the contribution of climatic drivers (air temperature, soil

temperature, solar radiation) to changes in CO: fluxes during the warm winter, 4) test the

sensitivity of CO, fluxes to each of the climatic drivers, and 5) test if the sensitivity of CO,
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Material and Methods

Site description
We selected 14 evergreen needle-leaf forests where continuous CO; fluxes and meteorological

measurements were available for at least six years until the end of 2020. Selected sites were
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located from the northern to the southern edge of ENF forest distribution in Europe (Figure 1).
The most northern site studied is located in Sweden at 64.2 °N (SE-Svb) and the most southern
site in Italy at 43.7 °N (IT-SR2). Mean annual air temperature varies between 1.8 °C (in SE-
Ros and SE-Svb) and 15.4 °C (in IT-SR2) across sites. Mean annual total precipitation varies
from 527 mm (in SE-Nor) to 1316 mm (in CZ-BK1). Elevation ranges from 4 m a.s.l. (IT-SR2)
to 1730 m a.s.l. (IT-Ren). CZ-BK1 has the largest LAI (4.52 + 0.09 se) and SE-Ros the smallest
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Dataset

We used the Warm Winter 2020 eddy covariance dataset processed with FLUXNET pipeline
(compatible with the FLUXNET2015 collection) in this study (Warm Winter 2020 Team, &
ICOS Ecosystem Thematic Centre, 2022); https://www.icos-cp.eu/data-products/2G60-ZHAK)

(Pastorello et al. 2020). We included the analysis of soil and air temperature during the spring

CFormatted: English (US)

season at each site to check for any significant changes in the climate immediately after the

winter season., Winter months included December, January, and February and spring months

included March, April, and May. The 6-year reference period was from 2014 to 2019. This
period was selected to have sufficient temporal overlap between the sites. NEE quality-checked
with a constant friction velocity (u*) threshold was used for all sites (NEE_CUT_REF)(Shekhar
et al. 2023). For an easier interpretation, we present net ecosystem exchange as net ecosystem
productivity (NEP = -NEE) where a negative NEP indicates that the forest is a net source, and
positive NEP indicates that the forest is a net sink of CO; (Chapin et al. 2006).

In terms of climatic variables we selected those that overlapped in data availability across all
sites during the study period. These included incoming shortwave radiation (Rg), air

temperature (Tair), soil temperature at Scm (Tsoit), and precipitation and top soil water content.

Given that continuous long-term snow depth measurements were not available at all sites, we
used remotely sensed snow depth products to quantify mean snow depth and snow depth
anomalies in winter 2020. The snow depth data were derived from the simulation of the Famine
Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS)
(McNally et al., 2017). FLDAS data are produced from the Noah version 3.6.1 Land Surface
Model (LSM)at a monthly resolution with a global coverage at a spatial resolution of
0.1° % 0.1° (approx.10 km x 10 km) (Kumar et al., 2013) and has been used in the past to study
global spatiotemporal patterns of snow depth and cover (Notarnicola 2022). For snow cover we

used MODIS/Terra (MOD10A2) and MODIS/AQUA (MYD10A2) (Hall and Riggs, 2021)
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Snow Cover 8-Day L3 Global 500m SIN Grid, Version 6 dataset, which provides maximum
snow cover extent at 8-day temporal resolution and 500m spatial resolution. For quality check,

we compared the measured snow depth against the remotely-sensed snow depth for one site

NN

(DE-Tha) where these measurements were available during the study period, and found a (Formatted: English (US)
reasonable agreement between the two datasets ( = 0.86. p < 0.001). For each forest site, we (Formatted: Font: Italic
derived average (2014-2019) leaf area index (LAI) from the LAI Collection 300 m Version 1.1 <F°rmmed: Font: ltalic

product (LAI300) provided by the Copernicus Global Land Service (Fuster et al., 2020).

Average LAI was estimated for each site during the mean net CO» uptake period, Start of the

net carbon uptake period was defined as when daily NEP crosses from negative to positive, and

end is the inverse, following Shekhar et al. (2023).
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Statistical analysis

We compared average daily and daytime (when Rg> 10 W/m? and local time 8-18h) means of
each variable (v; climate drivers, CO2 fluxes) during the winter and spring of 2020 to the mean
from a 6-year reference period (2014-2019) using a t-test (p < 0.05). Daily means of each
variable were, calculated only using the measured and good quality gap-filled half-hourly data

(variable quality control = 0 or 1). To understand the major drivers of winter NEP for each
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forest site, we derived conditional variable importance (CVIy) of each predictor variable (Rg,

Tair, and Tsoit) based on a random forest regression model (Breiman, 2001). For training the

N N

random forest model, of Reco. we additionally used GPP as an explanatory variablg. In addition { Formatted: English (US)

to the influence of abiotic drivers, the empirical relationship between photosynthesis (and thus <F°rmmed: English (US)

GPP) and ecosystem respiration in forests has been established by a large body of research

(Briigggemann et al., 2011; Koerner, 2013; Migliavacca et al., 2011; Shekhar et al. 2024). Soil

water content (SWC) was removed from the drivers analysis 1) because of its negligible effect

on the overall model (see details below), 2) since not all sites had complete measurements

throughout the study period, 3) and because soil water content measurements at freezing soil

temperature levels, are not reliable, and we observed that for several sites soil temperature in . CFormatted: English (US)

winter remained near or below zero (Supplementary Figure 1). The effect of soil water content <F°rmmed: English (US)
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We tuned the random forest model by iterating ‘ntree’ parameter (number of trees to grow)

from 100 to 500 with steps of 50, and ‘mtry’ parameter (number of variables to try at each split)

analysis because of its negligible effect on the overall model
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from 1 to 3 with steps of 1, and chose the parameter (ntree = 300 and mtry = 2) with the
minimum mean square error. CVI, accounts for the correlation between the predictor variables,
and was calculated using the party R-package (Hothorn et al., 2006). Based on a 7-day moving
window (centered on the central value of the window) we calculated the mean daily (and
daytime) NEP, Tair, Rg, and Tsoil. To compare the CVIy across sites, for each site we calculated

the relative CVI (RCVI) for each variable as per equation 2.

o) = — Vv i
RCVI, (%) Y X 100 Equation 2

Where y CVI, is the sum of CVI, of all variables used in the model. We expressed
changes in variable during 2020 (v,02¢) and the reference period (Vyeference) based on its

relative anomaly (Av, ) and absolute anomaly (Av,) as per equations 3 & 4.

V2020~ ¥ .
Av, (%) = 2220 “reference o 100 Equation 3
|Vreference|
Avg = V3020 = Ureference Equation4

To further understand, how (absolute) anomalies of different variables (Rg, Tair, Tsoil)

explained the variation in ANEP, we used the RCVI (as per equation 2) derived from (also) a

random forest regression model with hyperparameters ntree = 100 and mtry = 3 (tuned for
lowest mean squared error), for each site (number of data points at least 80 days). The %

variance explained of the model (%) was based on the out-of-bag estimates.
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Results

Warm winter 2019-2020 conditions across different sites

According to the in-situ data, compared to the reference period (2014-2019), winter 2020 was

the warmest winter across 10 sites. In seven sites, the winter was also drier than normal /

(Supplementary Figure 3). Positive air temperature anomalies in winter 2020 were significantly
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larger in sites with a lower mean (2014-2019) air temperature,(p < 0.05, 7 = -0.53) with largest

significant anomaly of 4.79 °C in RU-Fyo and lowest significant positive anomaly of 0.87 °C

observed in IT-SR2 (Figure 2). Incoming shortwave yadiation did not change significantly

across any of the sites during the warm winter (data not shown here).

The average number of snow cover days per year was highly variable across the study sites. k

(Table 1). The southernmost site studied here (IT-SR2) has no snow cover in winter, while the
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subalpine forest in Switzerland (CH-Dav) has a snow cover on 139 days per year in average

(Table 1). In those sites with consistent snow cover in winter (11 out of 14 sites) snow depth

declined at 9 out of 11 sites during the warm winter of 2020, and this reduction was considerable

in FI-Let, RU-Fyo, SE-Nor, DE-Obe, DE-Ruw, and DE-Tha (Figure 3). In SE-Svb, FI-Let and

DE-Obe soil temperature at 5 cm was continuously above the freezing level in winter 2020

(Supplementary Figure 1), unlike the mean conditions at the sites where soil temperature

fluctuates around zero in winter. Changes in winter temperature were more significant in winter

than in spring (Figure 2), which is the reason why we focus on the effect of winter warming on

COs fluxes,
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Effect of climate drivers on winter CO; fluxes
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reference period (2014-2019) (Table 2). Inter-annual variation in NEP was largest in CZ-BK 1
(320 gC m? y') and lowest in SE-Svb (35 gC m? y!) (Table 2). The length of the net CO>
uptake period was on average 178 days but varied between the sites from 105 days (in RU-Fyo)
to 315 days (in DE-Ruw) (Table 2). Except FR-Bil and DE-RuW, all sites were a CO; source

in winter under reference conditions (Supplementary Table 1).
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example, in BE-Bra, DE-Obe, IT-Ren, SE-Svb and FI-Let, the forest became a significantly

larger source of CO: in winter 2020, while, SE-Nor, CZ-BK1, and RU-Fyo forest shifted

towards being a smaller source for COz and IT-SR2 turned into a net sink in winter 2020 (Figure

4, Supplementary Table 1). IT-SR2 showed the largest increased daily NEP in winter (331%)

and BE-Bra showed the largestdecline in daily NEP (-98%) (Figure 4). During the warm winter

ecosystem respiration (approximated by nighttime NEP) increased significantly across 10 out

of 14 sites, indicated by a negative anomaly in nighttime NEP (Figure 4). Daytime NEP -

however (dominated by productivity) increased significantly with warming in only 5 sites, and

mainly in the warmer sites (Figure 4).

Figure 5-7 shows the relationship, between air temperature, soil temperature and incoming '

shortwave radiation with NEP. While the response of NEP to Rg was, more consistent across

sites, the effect of soil and air temperature on NEP varied largely across sites. Average variable
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We tested how climate variables and CO; fluxes deviated from a reference period (2014-2019)
during the warm winter of 2020 , across 14 evergreen needle-leaf forest sites distributed from
north to south of Europe (from Sweden to Italy). The sites where winter 2020 was particularly

warm and dry were not clustered in a certain climatic region, however we observed a consistent

pattern that warming of the air was more pronounced in the colder sites ,.(Ei,,g,ll,r,,@,,,,,,%a,,;"

Supplementary Figure 11).

The strength of the coupling between the air and the soil temperature was not similar across all ™.

sites. In forests, topsoil temperature is directly affected by changes in air temperature; however
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several underlying processes and properties modify the magnitude of decoupling between air

and soil temperatures. This decoupling can reach up to 10 degrees, depending on the season

and the properties of the biome type (Lembrechts et al. 2022), These underlying factors and

processes include for example 1) a vertically complex and horizontally continuous forest
structure that leads to higher decoupling of the soil temperature from air temperature, 2) soil
moisture content as moisture increases the soil heat storage, 3) insulation by the litter or snow
cover, 4) cloud cover, ground surface albedo, and rate of evapotranspiration which collectively
affect the radiation balance and energy exchange between the soil and the air, and 5)
microtopography that affects the drainage of air (e.g., cool air drains in low-lying areas) (Guan
et al., 2009; Lozano-Parra et al., 2018; De Frenne et al., 2021; Gril et al., 2023). Although the
direct effect of canopy closure on snow distribution, accumulation and melting at different
periods was not tested here, it was evident that sites that had a larger LAI also showed a tighter

coupling between air temperature and soil temperature (p < 0.05, r = 0.69. Table 3) as forest
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canopy structure influences the coupling of air and soil temperature in forest ecosystems, for
\

example by shading the soil and reducing the snow depth beneath denser canopies (Woods et

al. 2006; Gao et al. 2022).

Winter warming effect on forest CO; fluxes
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southernmost forest site, , winter warming decreased net ecosystem productivity of the

coniferous forests albeit to varying degrees . This difference can generally be explained by the

balance of changes in the warming of the soil versus warming of the air (Bond-Lamberty and
Thomson 2010) which affects both soil respiration and tree CO> uptake. Where soil becomes
proportionally warmer and soil temperature reaches above freezing levels, root activity is

enhanced and tree productivity responds directly to the increased air temperatures, and CO>
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uptake increases. Warming of the air - if not translated into a direct warming of the soil- might

not interrupt the dormant season (Bowling et al. 2024) jif the soil within the rooting zone remains

frozen. In IT-Ren for example where daytime NEP declined significantly in the warm winter,
air temperature increased to over 3.5 degrees more than normal, however soil temperature

remained at freezing levels (Supplementary Figure 1).
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CO fluxes are sensitive to changes in both temperature and light (Supplementary Figures 5-9),

and site baseline climate conditions showed to be a good proxy of how changes in light and air

temperature lead to changes in NEP, There is however evidence that temperature responses of

biochemical processes are a function of plant growth temperature, and not just instantaneous
temperature (Firstenau Togashi et al. 2018). In addition, response of NEP to similar
temperature can be different across seasons (i.e., an evident hysteresis), depending on other
environmental factors such as solar radiation and soil water content (Niu et al. 2011). While
across different sites sensitivity of NEP to temperature increases with a decrease in site mean

temperature, as site mean temperature increases and femperature is no longer limiting, radiation

becomes a larger constraint on NEP (Figure 9) (Running et al. 2004).

Chamber-based observations from boreal forests show that snow-depth and soil moisture affect

temperature sensitivity of soil CO» fluxes as the freeze-thaw cycles abruptly change the
moisture content of the soil (Du et al., 2013). In that sense, warmer winters can trigger larger
respiration (and availability of nutrients to trees) because of higher Q1o of thawed than frozen
soils, meaning that soil respiration increases faster in response to warming (Wang et al., 2014),
however microbial C limitation can reduce expected increase in respired COz, if not countered

by greater labile C inputs_from plant material and root exudates (Sullivan et al., 2020). In

addition, aboveground productivity increases with increase in temperature (Supplementary

Figure 6. 7) and this can enhang, the autotrophic respiration. Warming in winter also affects the

microbial community that control labile and stable organic carbon decomposition in the soil
that would offset respiration response to temperature and lead to a reduction of soil respiration

(Tian et al., 2021). The magnitude of increase in belowground autotrophic respiration in
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response to warming and the supply of labile substrate through rhizodeposition and root exudate

also affects net CO: fluxes under warming (Nyberg et al., 2020), In our study sensitivity of _

Reco to air temperature (Q10) remained did not change significantly during the warm winter. _

and was copmarabale to the Q10 during the reference peorpiod (Supplementary Figure 10).,

A decrease in the snowpack and increased soil freezing has short-term immediate impacts on

plant CO, uptake, but it can also leave a long-lasting negative impact on the functioning of trees

(Repo et al. 2021). Particularly, sites with prolonged cold winter seasons could be significantly
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negatively affected by winter warming. Trees growing in northern latitudes and higher altitudes
could be more adversely impacted by winter warming, as optimal temperatures in these trees

are regulated by short-term temperature changes. In contrast, in ecosystems where temperature

fluctuations are seasonally larger, the optimal temperature for growth has a broader range

(Weng et al. 2010; Liu 2020).

Winter tree physiology effect on CO; fluxes

Responses of coniferous species to soil warming can vary largely depending on the species'
adaptive traits, the overall ecosystem context, and interactions with other environmental factors
such as precipitation, temperature, and nutrient availability (Dawes et al. 2017; Oddi et al.
2022). The sites we studied here, although all were dominated by evergreen needle-leaf species,
consisted of different canopy species and some sites were dominated by a mixture of species
(Table 1). There can be significant differences in photosynthetic parameters across different
species of evergreen conifers that would affect tree and ecosystem response to warming
(Fiirstenau Togashi et al. 2018). The different responses of productivity to increased warming
in ENFs can stem from differences in the quantity (and quality) of stored NSC in the roots, and
the rate at which this C storage is mobilized within the tree during the warm winter (Bansal and
Germino 2009). Warmer temperatures and dry conditions in winter lead to stomatal closure and
depletion of carbohydrate reserves for trees that are adapted to ample precipitation and low
VPD conditions in winter, and this effect leads to reduced CO- uptake of trees during warmer
winters (Earles et al. 2018).

Low temperature is essential for signals that trigger the synthesis of soluble carbohydrates
involved in osmotic and freezing protection against cold extremes (Chang et al. 2021) that
otherwise impair the Calvin cycle by inhibiting the regeneration of ribulose bisphosphate
(RuBP) and decrease the efficiency of Rubisco carboxylation (Ensminger et al. 2012; Crosatti
et al. 2013). Non-structural carbohydrates (sugar and starch) that are accumulated during the
growing season are utilized in winter to ensure survival of trees (Zhu et al. 2012; Tixier et al.
2020) and failure to develop overwintering defences can cause evergreen conifer needles to
remain susceptible for example to photo-oxidative damage during frost events (Chang et al.

2016). Studies that combine ecosystem-scale flux measurements with tree-level observations

have the potential to closely examine the adverse effects of winter warming on cold-adapted

forests.
Our results provide the first analysis of the effect of winter warming on CO; fluxes of evergreen
needle-leaf forests in Europe and point to the importance of understanding multiple underlying

mechanisms that govern forest CO; fluxes. Data on the responses of photosynthetic traits on a

Deleted: Decrease in the snow pack and increased soil
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uptake, but can also leave a long-lasting negative impact on
functioning of trees (Repo et al. 2021). Particularly sites with
prolonged cold winter seasons could be rather negatively
affected by the warming in winter, as we observed through
reduced daytime NEP which is an indication of stress from
warming during winter. Trees growing in northern latitudes
and higher altitudes could be more negatively affected by
warming in winter as optimal temperatures in trees are
regulated by the short-term changes in temperature, whereas
in ecosystems where temperature fluctuations are seasonally
larger, optimal temperature for growth has a broader range
(Weng et al. 2010; Liu 2020).
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timescale that is ecologically relevant (days to years) are scarce, but eddy covariance
observations provide an opportunity for constructing long-term time series of canopy level

processes to investigate the effect of extreme climatic conditions across all seasons. We further

'CFormatted: English (US)

encourage studies that combine long-term observations and plant-level experiments to
investigate how changes in the functioning in winter might affect trees’ response to extremes
that occur earlier in the growing season (e.g., spring frost, spring drought) and to understand

the consequences of such extremes for ecosystem carbon uptake.

Conclusion

Our study investigated the effects of the warm 2019-2020 winter on CO2 fluxes in evergreen

needle-leaf forests across Europe. We observed increased net CO2 emissions, especially in

colder sites, due to enhanced soil respiration and reduced net ecosystem productivity. However

responses varied among sites, with factors such as forest structure and local climatic conditions

creating microclimates that either buffered or amplified the impact of warming on CO2 fluxes.

By integrating long-term eddy covariance data with plant-level experiments, we can gain

crucial insights into how winter warming affects forest ecosystems. Future research should

focus on the carryover effects of winter warming on tree responses to seasonal climatic

extremes, as understanding these processes in cold-adapted ecosystems is essential for

predicting how forests will respond to future winter warming,
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1254  Table 1 Description of the 14 ENF study sites. Mean annual temperature and total precipitation refer to the 2014-2019 period. Mean number of
1255  days with snow cover for each site is based on the MODIS satellite observations. Sites are listed in a decreasing order in the mean annual

1256  temperature.

1257

Site ID Latitude Longitude Altitude Canopy species (dominant first) Mean Mean Number of
(degrees) (degrees) (ma.s.l.) annual annual days with
temperat precipitation snow cover
ure (°C)  (mm)

IT-SR2  43.7020  10.2909 4 Pinus pinea 15.7 950 0
FR-Bil 44.4936  -0.9560 39 Pinus pinaster 14.1 930 11
BE-Bra  51.3076 4.5198 16 Pinus sylvestris 11.5 750 20
DE-Tha 50.9625 13.5651 385 Picea abies 10.2 843 41
DE-RuW 50.5049 6.3310 610 Picea abies 8.7 1250 50
DE-Obe 50.7866  13.7212 734 Picea abies 7.4 996 90
SE-Nor  60.0864 17.4795 45 Mixed (Pinus sylvestris, Picea abies) 7.2 527 89
CZ-Bkl  49.5020 18.5368 875 Picea abies 7.1 1316 71
RU-Fyo 56.4615 32.9220 265 Mixed (Picea abies, Betula pubescens) 6.1 711 58
FI-Let 60.6418  23.9595 111 Mixed (Pinus sylvestris, Picea abies, Betula pubescens) 59 627 99
IT-Ren  46.5868  11.4336 1735 Picea abies 5.5 809 112
CH-Dav  46.8153 9.8559 1639 Picea abies 4.8 1062 139
SE-Ros  64.1725 19.738 160 Pinus sylvestris 4.0 614 102
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Table 2 Mean total annual net ecosystem productivity (NEP) and the standard deviation (inter-

annual variation) during the reference period (2014 and 2019). Start of the net carbon uptake
period (SOS, day of year, DOY) is when daily NEP changes from negative to positive and end
(EOS) is the inverse_(following Shekhar et al. 2023), Sites are listed in a decreasing order in

mean annual air temperature.

Site ID NEP (£sd) SOS (DOY) EOS (DOY) Net carbon
(gCm?yh) uptake period
(days)
IT-SR2 197 (£67) 35 200 165
FR-Bil 324 (£103) 20 215 195
BE-Bra 279 (£158) 95 270 175
DE-Tha 484 (+88) 55 305 250
DE-Ruw 597 (£155) 1 315, 315,
DE-Obe 251 (£147) 75 265 190
SE-Nor -311 (£93) 90 200 110
CZ-Bkl 797 (£320) 70 310 240
RU-Fyo 25 (£50) 95 200 105
FI-Let -113 (£123) 100 230 130
IT-Ren 675 (£70) 75 305 230
CH-Dav 231 (£139) 80 280 200
SE-Ros 320 (£136) 95 255 160
SE-Svb 163 (£35) 95 240 145
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Table 3 Pearson correlation coefficient between mean daily incoming shortwave
radiation (Rg), air temperature (Tair) and soil temperature at Sm (Tsoil) at each site
during the reference period (2014-2019). Sites are ordered by a decreasing mean air

temperature. Leaf area index (LAI) values are shown as mean across the study period

+ standard error of the mean.

Site ID Rg-Tair Tair-Tsoil LAI +se

IT-SR2 0.69 0.97 3.12(0.11)
FR-Bil 0.65 0.76 3.50 (0.08)
BE-Bra 0.67 0.92 4.42(0.13)
DE-Tha 0.73 0.96 4.04 (0.19)
DE-RuW 0.59 0.83 2.99 (0.22)
DE-Obe 0.72 0.94 3.69 (0.21)
SE-Nor 0.71 0.90 3.08 (0.09)
CZ-Bkl 0.72 0.92 4.52 (0.09)
RU-Fyo 0.74 0.78 4.06 (0.14)
FI-Let 0.66 0.88 3.29(0.27)
IT-Ren 0.64 0.84 3.54 (0.08)
CH-Dav 0.63 0.87 3.25(0.12)
SE-Ros 0.69 0.77 2.59 (0.09)
SE-Svb 0.71 0.84 2.79 (0.12)
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1320  Figure 1 Location of the 14 Evergreen Needleleaf Forest (ENF) sites included in this study.
1321  Base-map is the MODIS Land Cover Product (MOD12Q1, 500m spatial resolution) showing
1322 the distribution of ENFs in Europe in 2020. Elevation of the sites ranges from 4 m a.s.l. (IT-
1323 SR2) to 1735 m a.s.l. (IT-Ren).
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Figure 2 Secasonal changes in air temperature (Tar) and soil temperature (Tsoi) in 2020 E

compared to the 6-year reference period (2014-2019). Asterisk marks where means in 2020
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air temperature.
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