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 30 
Abstract 31 

Compared to drought and heat waves, the impact of winter warming on forest CO2 fluxes has 32 

been less studies, despite its significant relevance in colder regions with higher soil carbon 33 

content. Our objective was to test the effect of the exceptionally warm winter in 2020, on the 34 

winter CO2 budget of cold-adapted evergreen needle-leaf forests across Europe, and identify 35 

the contribution of climate factors to changes in winter CO2 fluxes. Our hypothesis was that 36 

warming in winter leads to higher emissions across colder sites due to increased ecosystem 37 

respiration. To test this hypothesis, we used 98 site-year eddy covariance measurements across 38 

14 evergreen needle-leaf forests (ENFs) distributed from north to south of Europe (from 39 

Sweden to Italy). We used a data-driven approach to quantify the effect of radiation, air 40 

temperature, and soil temperature on changes in CO2 fluxes during the warm winter of 2020. 41 

Our results showed that warming in winter declined forest net ecosystem productivity (NEP)  42 

significantly across most sites. The contribution of climate variables to CO2 fluxes varied across 43 

the sites: in southern regions with warmer mean temperatures, radiation had a greater influence 44 
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on NEP. Conversely in colder sites, air temperature played a more critical role in affecting NEP. 66 

During the warm winter of 2020, colder sites experienced larger air temperature anomalies and 67 

given their greater sensitivity to these changes, NEP in these regions declined significantly with 68 

winter warming. At sites with deeper snow cover, soil temperature remained relatively stable 69 

during the warm winter, due to the insulating properties of the snow. Our study confirms that 70 

winter warming can significantly reduce NEP particularly in colder regions where ecosystems 71 

are more sensitive to changes in temperature. The divergent responses of NEP across different 72 

sites underscore the complex interplay between climate variables, such as air and soil 73 

temperature, and radiation. These findings emphasize the need to incorporate winter warming 74 

effects in order to better predict and mitigate the impacts of climate change on forest carbon 75 

dynamics. 76 

 77 
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 82 
Introduction 83 

One of the key challenges in assessing the role of  forests in mitigating climate change lies in 84 

understanding how forest CO2 fluxes respond to extreme climatic conditions, particularly 85 

increases in air temperature. While forests serve as a significant sink for anthropogenic CO2 86 

emissions (Friedlingstein et al. 2023), extreme warming events can compromise their ability to 87 

sequester carbon effectively (Shekhar et al. 2023). Although much research has focused on 88 

extreme events during the growing season, the impacts of warming winters remain relatively 89 

understudied (Kreyling et al. 2019).  90 

In regions where evergreen conifers predominate, such as northern latitudes or higher altitudes, 91 

winter warming events can be particularly pronounced (IPCC, 2014). For instance, in 2020, 92 

Europe witnessed its warmest winter on record since 1981, with the most significant deviation 93 

from the reference period (1981–2020) observed in northeastern Europe (Copernicus Climate 94 

Change Service, 2020). However, the specific effects of such winter warming on CO2 fluxes, 95 

especially in forested areas covered by snow and rich in soil carbon content, remain unclear. 96 

 97 

Effect of warming on forest carbon fluxes 98 

Forest net ecosystem productivity (NEP) depends on the balance between gross ecosystem CO2 99 

uptake (gross primary productivity, GPP) and emission (ecosystem respiration, Reco). Both 100 

these flux components are highly sensitive to climate drivers (e.g., air temperature, soil 101 
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temperature, solar radiation). When canopy structural changes from one year to another are 169 

negligible, the interannual variations can be predominantly explained by changes in the climatic 170 

conditions (Hui et al. 2003). Net ecosystem productivity can increase or decrease with changes 171 

in temperature. In temperature-limited ecosystems for example, increase in air temperature 172 

increases photosynthesis which leads to a larger gross productivity and potentially increased 173 

net CO2 uptake (if respiration does not increase more). However with warming and increased 174 

temperatures, respiration (autotrophic and heterotrophic) can also increase, and the balance of 175 

this with changes in gross productivity could lead to an increase, no change, or a reduction in 176 

net CO2 uptake (Gharun et al. 2020).  177 

Evergreen forests in the northern  hemisphere contribute significantly to the terrestrial carbon 178 

(C) storage and exchange (Beer et al., 2010; Thurner et al., 2014). High-latitude evergreen 179 

forests have shown an increase in gross primary productivity (GPP) with increasing temperature 180 

largely due to longer growing seasons (Myneni et al., 1997; Randerson et al., 1999; Forkel et 181 

al., 2016). Multiple other changes under warming however could counter effect such increase 182 

for the overall CO2 uptake capacity of the forest (e.g., due to an increase in ecosystem 183 

respiration). In the absence of soil moisture limitation, respiration increases exponentially with 184 

increase in temperature (Law et al. 1999).  185 

Additionaly, in the presence of winter warming, despite more favourable conditions for 186 

photosynthesis, factors such as water stress or photoinhibition caused by high photon flux 187 

densities, in combination with low air temperatures could downregulate photochemical 188 

efficiency and negatively affect net photosynthesis which could decline gross primary 189 

productivity (Troeng and Linder 1982).  190 

The temperature sensitivity of ecosystem respiration regulates how the terrestrial CO2 191 

emissions respond to a warming climate. Within naturally occurring temperature ranges, 192 

ecosystem respiration (sum of autotrophic and heterotrophic respirations) typically shows an 193 

exponential increase with  temperature (Lloyd and Taylor 1994). While previous studies have 194 

shown an increase in Q10 (times of increased soil respiration with a 10 °C increase of 195 

temperature) with decrease in site mean temperature (e.g.,  Chen et al. 2020), the temperature 196 

sensitivity of ecosystem respiration incorporates both the direct response of ecosystem 197 

respiration to temperature (i.e., increased metabolic activity of plants and microorganisms), and 198 

indirect influences from other climatic and physiological variables such as moisture, leaf area 199 

index, photosynthate input, litter quality, microbial community. For example soil moisture 200 

affects the microbial activity and decomposition rates, which in turn influence respiration rates. 201 

In moist conditions, microbial activity increases, leading to increased decomposition and 202 

Formatted: Subscript

Formatted: Subscript

Formatted: English (US)

Formatted: English (US)

Deleted: show203 

Formatted: English (US)

Formatted: English (US)

Formatted: Subscript

Deleted: 204 

Formatted: English (US)

Deleted: I205 

Formatted: English (US)

Formatted: Subscript



4 
 

respiration rates. Conversely, in dry conditions, microbial activity slows down, reducing the 206 

respiration rates.  The amount of organic matter produced through photosynthesis affects the 207 

availability of substrates for microbial decomposition, and higher photosynthate input results 208 

in increased carbon availability, stimulating microbial activity and respiration rates (Reichstein 209 

et al. 2002; Fierer et al. 2005; Lindroth et al. 2008; Migliavacca et al. 2011; Karhu et al. 2014; 210 

Collalti et al. 2020). The temperature response of net ecosystem productivity is the product of 211 

sensitivity of GPP and ecosystem respiration to temperature (Lloyd and Taylor 1994; Niu et al. 212 

2011), and temperature sensitivity of respiration (Q10) changes proportionally with site mean 213 

temperature (e.g., higher Q10 in colder sites, Chen et al. 2020) 214 

      215 

Importance of winter period for evergreen needle-leaf forests (ENF) 216 

Environmental cues such as temperature, photoperiod, and light quality control a network of 217 

signalling pathways that coordinate cold acclimation and cold hardiness in trees that ensure 218 

survival during long periods of low temperature and freezing (Öquist and Hüner 2003; 219 

Ensminger et al. 2006). These signalling pathways include the gating of cold responses by the 220 

circadian clock, the interaction of light quality and photoperiod, and the involvement of 221 

phytohormones in low temperature acclimation (Chang et al. 2021). Soluble carbohydrates, 222 

including sucrose (most abundant) accumulate in response to low temperatures, starting from 223 

late autumn throughout winter (Strimbeck & Schaberg 2009; Chang et al. 2015). Persistent 224 

uninterrupted cold periods thus play an important role in forming the photosynthetic capacity 225 

of the trees as warmer winter temperatures increases the chance of photo-oxidative frost damage 226 

during earlier stages of the growing season (Gu et al. 2008; Chamberlain et al. 2019) which 227 

would compromise the capacity of the forest for CO2 uptake throughout the year (Desai et al. 228 

2016). The risks of photo-oxidative frost damage increases with winter warming, as warmer 229 

winter temperatures can lead to an accumulation of photosynthetically active compounds in 230 

plants, and when sudden frost events occur during periods of high radiation, the combination 231 

of low temperatures and intense sunlight can induce photo-oxidative stress in plant tissues. This 232 

occurs because the photosynthetic machinery is still active, but the low temperatures impair the 233 

plant's ability to dissipate excess energy, leading to the production (and imbalance) of reactive 234 

oxygen species (ROS) that can damage cells and tissues. Photochemical damage can also 235 

happen in the case of high radiation, low water content in the leaf tissue and low temperature, 236 

when photosynthesis and protein turnover become inhibited by low temperatures and when non 237 

photochemical, heat dissipation mechanisms are insufficient to deal with excess excitation 238 
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(hence the negative effect of freezing temperatures after de-hardening) (Anderson & Osmond 276 

1987; Öquist & Huner 2003). 277 

 Experimental evidence from temperature-sensitive conifers shows that warm spells in winter 278 

can induce premature dehardening of buds, and result in stunted shoot development in the 279 

following spring (Nørgaard Nielsen & Rasmussen, 2008). Additionally, increased respiration 280 

due to warming can deplete stored non-structural carbohydrates (NSC) and tree hydraulic 281 

functioning (if combined with drought) and affect tree functioning in spring (Sperling et al. 282 

2015).   283 

The winter of 2019-2020 was reported as the hottest winter in the last four decades (1981-2022) 284 

across Europe (Copernicus Climate Change Service/ECMWF). When compared to the average 285 

conditions, up to 45 less winter ice days were detected in eastern Europe Russe (C3S/KNMI). 286 

In Finland, for example, the average air temperature for January and February was over 6 287 

degrees higher than the 1981-2010 mean (Copernicus Climate Change Service/ECMWF). In 288 

this study we investigated how the exceptionally warm winter of 2019-2020 affected ENFs in 289 

Europe and whether increasing winter temperature increased or decreased the carbon uptake of 290 

the forest. Our objectives were to:       291 

1) evaluate the relative change in air and soil temperature and incoming radiation during the 292 

winter 2019-2020, compared to a 6-year reference period of 2014-2019, 2) quantify the relative 293 

changes in the winter CO2 fluxes across coniferous sites with available ecosystem-level CO2 294 

flux measurements, 3) identify the contribution of climatic drivers (air temperature, soil 295 

temperature, solar radiation) to changes in CO2 fluxes during the warm winter, 4) test the 296 

sensitivity of CO2 fluxes to each of the climatic drivers, and 5) test if the sensitivity of CO2 297 

fluxes to temperature changed during the warmer winter compared to previous years. Our 298 

hypothesis was that warming in winter will lead to a larger negative effect on net ecosystem 299 

productivity (i.e., higher CO2 emissions) across colder forests due to increased ecosystem 300 

respiration. We addressed these objectives and tested our hypothesis by exploring ecosystem-301 

level CO2 fluxes measured with the eddy covariance method over 98 site-years in 14 evergreen 302 

needle-leaf forests distributed from the Boreal to the Mediterranean regions in Europe.  303 

 304 

Material and Methods 305 

Site description 306 

We selected 14 evergreen needle-leaf forests where continuous CO2 fluxes and meteorological 307 

measurements were available for at least six years until the end of 2020. Selected sites were 308 
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located from the northern to the southern edge of ENF forest distribution in Europe (Figure 1). 406 

The most northern site studied  is located in Sweden at 64.2 °N (SE-Svb) and the most southern 407 

site  in Italy at 43.7 °N (IT-SR2). Mean annual air temperature varies between 1.8 °C (in SE-408 

Ros and SE-Svb) and 15.4 °C (in IT-SR2) across sites. Mean annual total precipitation varies 409 

from 527 mm (in SE-Nor) to 1316 mm (in CZ-BK1). Elevation ranges from 4 m a.s.l. (IT-SR2) 410 

to 1730 m a.s.l. (IT-Ren). CZ-BK1 has the largest LAI (4.52 ± 0.09 se) and SE-Ros the smallest 411 

(2.59 ± 0.09). Table 1 summarizes the description of sites including their dominant canopy 412 

species. 413 

Dataset 414 

We used the Warm Winter 2020 eddy covariance dataset processed with FLUXNET pipeline 415 

(compatible with the FLUXNET2015 collection) in this study (Warm Winter 2020 Team, & 416 

ICOS Ecosystem Thematic Centre, 2022); https://www.icos-cp.eu/data-products/2G60-ZHAK) 417 

(Pastorello et al. 2020). We included the analysis of soil and air temperature during the spring 418 

season at each site to check for any significant changes in the climate immediately after the 419 

winter season. Winter months included December, January, and February and spring months 420 

included March, April, and May. The 6-year reference period was from 2014 to 2019. This 421 

period was selected to have sufficient temporal overlap between the sites. NEE quality-checked 422 

with a constant friction velocity (u*) threshold was used for all sites (NEE_CUT_REF)(Shekhar 423 

et al. 2023). For an easier interpretation, we present net ecosystem exchange as net ecosystem 424 

productivity (NEP = -NEE) where a negative NEP indicates that the forest is a net source, and 425 

positive NEP indicates that the forest is a net sink of CO2 (Chapin et al. 2006).  426 

In terms of climatic variables we selected those that overlapped in data availability across all 427 

sites during the study period. These included incoming shortwave radiation (Rg), air 428 

temperature (Tair), soil temperature at 5cm (Tsoil), and precipitation and top soil water content. 429 

Given that continuous long-term snow depth measurements were not available at all sites, we 430 

used remotely sensed snow depth products to quantify mean snow depth and snow depth 431 

anomalies in winter 2020. The snow depth data were derived from the simulation of the Famine 432 

Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) 433 

(McNally et al., 2017). FLDAS data are produced from the Noah version 3.6.1 Land Surface 434 

Model (LSM) at a monthly resolution with a global coverage at a spatial resolution of 435 

0.1° × 0.1° (approx.10 km × 10 km) (Kumar et al., 2013) and has been used in the past to study 436 

global spatiotemporal patterns of snow depth and cover (Notarnicola 2022). For snow cover we 437 

used MODIS/Terra (MOD10A2) and MODIS/AQUA (MYD10A2) (Hall and Riggs, 2021) 438 
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Snow Cover 8-Day L3 Global 500m SIN Grid, Version 6 dataset, which provides maximum 441 

snow cover extent at 8-day temporal resolution and 500m spatial resolution. For quality check, 442 

we compared the measured snow depth against the remotely-sensed snow depth for one site 443 

(DE-Tha) where these measurements were available during the study period and found a 444 

reasonable agreement between the two datasets (r = 0.86, p < 0.001). For each forest site, we 445 

derived average (2014-2019) leaf area index (LAI) from the LAI Collection 300 m Version 1.1 446 

product (LAI300) provided by the Copernicus Global Land Service (Fuster et al., 2020). 447 

Average LAI was estimated for each site during the mean net CO2 uptake period. Start of the 448 

net carbon uptake period was defined as when daily NEP crosses from negative to positive, and 449 

end is the inverse following Shekhar et al. (2023).  450 

Statistical analysis  451 

We compared average daily and daytime (when Rg > 10 W/m2 and local time 8-18h) means of 452 

each variable (v; climate drivers, CO2 fluxes) during the winter and spring of 2020 to the mean 453 

from a 6-year reference period (2014-2019) using a t-test (p < 0.05). Daily means of each 454 

variable were calculated only using the measured and good quality gap-filled half-hourly data 455 

(variable quality control = 0 or 1). To understand the major drivers of winter NEP for each 456 

forest site, we derived conditional variable importance (CVIv) of each predictor variable (Rg, 457 

Tair, and Tsoil) based on a random forest regression model (Breiman, 2001). For training the 458 

random forest model of Reco, we additionally used GPP as an explanatory variable. In addition 459 

to the influence of abiotic drivers, the empirical relationship between photosynthesis (and thus 460 

GPP) and ecosystem respiration in forests has been established by a large body of research 461 

(Brüggemann et al., 2011; Koerner, 2013; Migliavacca et al., 2011; Shekhar et al. 2024). Soil 462 

water content (SWC) was removed from the drivers analysis 1) because of its negligible effect 463 

on the overall model (see details below), 2) since not all sites had complete measurements 464 

throughout the study period, 3) and because soil water content measurements at freezing soil 465 

temperature levels are not reliable, and we observed that for several sites soil temperature in 466 

winter remained near or below zero (Supplementary Figure 1). The effect of soil water content 467 

on the RF model was negligible after we compared the random forest results once with, and 468 

once without including SWC. The comparison showed that the difference in the variance 469 

explained (r2) was less than 3% (negligible improvement in results based on the %variance 470 

explained of the model, Supplementary Figure 2). 471 

We tuned the random forest model by iterating ‘ntree’ parameter (number of trees to grow) 472 

from 100 to 500 with steps of 50, and ‘mtry’ parameter (number of variables to try at each split) 473 
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from 1 to 3 with steps of 1, and chose the parameter (ntree = 300 and mtry = 2) with the 481 

minimum mean square error. CVIv accounts for the correlation between the predictor variables, 482 

and was calculated using the party R-package (Hothorn et al., 2006). Based on a 7-day moving 483 

window (centered on the central value of the window) we calculated the mean daily (and 484 

daytime) NEP, Tair, Rg, and Tsoil. To compare the CVIv across sites, for each site we calculated 485 

the relative CVI (RCVI) for each variable as per equation 2. 486 

𝑅𝐶𝑉𝐼!	(%) 	= 	
"#$!

∑ "#$!
× 	100  Equation 2 487 

Where 	∑ 𝐶𝑉𝐼!  is the sum of CVIv of all variables used in the model. We expressed 488 

changes in variable during 2020 (𝑣&'&') and the reference period (𝑣()*)()+,)) based on its 489 

relative anomaly (∆𝑣( 	) and absolute anomaly (∆𝑣-) as per equations 3 & 4.  490 

∆𝑣( 	(%) 	=
!"#"#.	!$%&%$%'(%

0!$%&%$%'(%0
	× 	100  Equation 3  491 

∆𝑣- =	𝑣&'&' −	𝑣()*)()+,) 			 	 	 Equation4 492 

To further understand how (absolute) anomalies of different variables (Rg, Tair, Tsoil) 493 

explained the variation in ∆NEP, we used the RCVI (as per equation 2) derived from (also) a 494 

random forest regression model with hyperparameters ntree = 100 and mtry = 3 (tuned for 495 

lowest mean squared error), for each site (number of data points at least 80 days). The % 496 

variance explained of the model (r2) was based on the out-of-bag estimates. 497 

 498 

Results  499 

Warm winter 2019-2020 conditions across different sites 500 

According to the in-situ data, compared to the reference period (2014-2019), winter 2020 was 501 

the warmest winter across 10 sites. In seven sites, the winter was also drier than normal 502 

(Supplementary Figure 3). Positive air temperature anomalies in winter 2020 were significantly 503 

larger in sites with a lower mean (2014-2019) air temperature (p < 0.05, r = -0.53) with largest 504 

significant anomaly of 4.79 °C in RU-Fyo and lowest significant positive anomaly of 0.87 °C 505 

observed in IT-SR2 (Figure 2). Incoming shortwave radiation did not change significantly 506 

across any of the sites during the warm winter (data not shown here).  507 

The average number of snow cover days per year was highly variable across the study sites. 508 

(Table 1). The southernmost site studied here (IT-SR2) has no snow cover in winter, while the 509 

Deleted:  the510 
Deleted: daytime 511 
Deleted: daytime 512 

Formatted: Font: Italic

Formatted: English (US)

Deleted: had lower precipitation513 

Formatted: English (US)

Deleted:  514 

Deleted: Figure 2, and 515 
Deleted: 1516 
Deleted: the high latitude or high-altitude sites compared to 517 
the mid-latitude and low-elevation sites518 
Deleted: (519 
Deleted: Supplementary Figure 6, 520 
Deleted: Figure 3) 521 
Formatted: Font: Italic

Formatted: Font: Italic

Deleted: Supplementary Figure 5, 522 
Deleted: 3523 
Deleted: radiaiton524 
Deleted: oft he525 
Deleted: durign526 
Deleted: typically 527 



9 
 

subalpine forest in Switzerland (CH-Dav) has a snow cover on 139 days per year in average 528 

(Table 1). In those sites with consistent snow cover in winter (11 out of 14 sites) snow depth 529 

declined at 9 out of 11 sites during the warm winter of 2020, and this reduction was considerable 530 

in FI-Let, RU-Fyo, SE-Nor, DE-Obe, DE-Ruw, and DE-Tha (Figure 3). In SE-Svb, FI-Let and 531 

DE-Obe soil temperature at 5 cm was continuously above the freezing level in winter 2020 532 

(Supplementary Figure 1), unlike the mean conditions at the sites where soil temperature 533 

fluctuates around zero in winter. Changes in winter temperature were more significant in winter 534 

than in spring (Figure 2), which is the reason why we focus on the effect of winter warming on 535 

CO2 fluxes. 536 

Effect of climate drivers on winter CO2 fluxes 537 

The annual NEP of the ENFs varied from a maximum sink (±sd) of 797 (± 320) g C m-2 yr-1 538 

(CZ-BK1) to a maximum source of -311 (± 93) g C m-2 yr-1 (SE-Nor) during the six-year 539 

reference period (2014-2019) (Table 2). Inter-annual variation in NEP was largest in CZ-BK1 540 

(320 gC m-2 y-1) and lowest in SE-Svb (35 gC m-2 y-1) (Table 2). The length of the net CO2 541 

uptake period was on average 178 days but varied between the sites from 105 days (in RU-Fyo) 542 

to 315 days (in DE-Ruw) (Table 2). Except FR-Bil and DE-RuW, all sites were a CO2 source 543 

in winter under reference conditions (Supplementary Table 1). 544 

During the warm winter 2020, mean daily NEP (i.e., annual winter CO2 sink or source strength) 545 

changed significantly (p < 0.05) in 9 out of 14 sites (BE-Bra, CZ-BK1, DE-Obe, FI-Let, IT-546 

Ren, IT-SR2, SE-Svb, SE-Nor, RU-Fyo, grouped as the “affected” sites) compared to the 2014-547 

2019 reference period, with changes in both positive and negative directions (Figure 4). For 548 

example, in BE-Bra, DE-Obe, IT-Ren, SE-Svb and FI-Let, the forest became a significantly 549 

larger source of CO2 in winter 2020, while SE-Nor, CZ-BK1, and RU-Fyo forest shifted 550 

towards being a smaller source for CO2 and IT-SR2 turned into a net sink in winter 2020 (Figure 551 

4, Supplementary Table 1). IT-SR2 showed the largest increased daily NEP in winter (331%) 552 

and BE-Bra showed the largest decline in daily NEP (-98%) (Figure 4). During the warm winter 553 

ecosystem respiration (approximated by nighttime NEP) increased significantly across 10 out 554 

of 14 sites, indicated by a negative anomaly in nighttime NEP (Figure 4). Daytime NEP 555 

however (dominated by productivity) increased significantly with warming in only 5 sites, and 556 

mainly in the warmer sites (Figure 4).  557 

Figure 5-7 shows the relationship between air temperature, soil temperature and incoming 558 

shortwave radiation with NEP. While the response of NEP to Rg was more consistent across 559 

sites, the effect of soil and air temperature on NEP varied largely across sites. Average variable 560 
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explained by the random forest regression for NEP in winter was 78% (Supplementary Figure 586 

4). The relative importance results of the random forest regression analysis showed that across 587 

tested variables, Rg generally had the largest control on NEP. However, with decrease in site 588 

baseline (i.e., mean) temperature, the effect of Rg declined (Figure 8). For example, in the three 589 

coldest sites (SE-Svb, CH-Dav, IT-Ren) Rg had a relative importance of 52%, 23% and 41% 590 

for the variations in NEP respectively, while in the three warmest sites (IT-SR2, FR-Bil and 591 

BE-Bra), Rg had a relative importance of 73%, 81% and 58% for NEP respectively (Figure 8). 592 

When looking into partitioned fluxes, radiation dominated the effect on winter GPP and 593 

temperature dominated the effect on winter respiration fluxes (Figure 8). Particularly in the 594 

colder sites the effect of radiation was the least important (Figure 8).  595 

Effect of warming on NEP anomalies 596 

Across the colder sites (low latitude or altitude < 1000 m a.s.l.) where NEP changed 597 

significantly in winter 2020 (IT-SR2, BE-Bra, DE-Obe), average NEP anomaly was +75%. In 598 

the warmer sites where NEP was significantly different in winter 2020 (SE-Nor, CZ-BK1, RU-599 

Fyo, FI-Let, IT-Ren, SE-Svb) the average NEP anomaly was -8.8% (i.e., reduced net uptake) 600 

(Figure 4). Changes in NEP are attributed only to changes in climatic factors because except in 601 

FI-Let the forests did not undergo significant changes in the canopy density. While FI-Let was 602 

affected by a partial cut in 2016 (Korkiakoski et al. 2019; Korkiakoski et al. 2020), winter fluxes 603 

remained relatively stable in all pre- and post-harvest years as the partial cut affected mostly 604 

the summer fluxes (data not shown here).  605 

Figure 9 shows the sensitivity of NEP anomalies to anomalies of air temperature, soil 606 

temperature and radiation across different sites. Overall, the sensitivity of NEP anomalies to 607 

soil temperature anomalies was larger than to anomalies of air temperature and radiation as 608 

shown by the test of the slope of change in NEP anomalies (Figure 9).  609 

While the relationship between air temperature and soil temperature was stronger than the 610 

relationship between radiation and air temperature during the winter, we observed large 611 

variability in the strength of the relationship between soil and air temperature across the sites, 612 

as it is shown in Table 3. Nevertheless the relationship between air and soil temperature was 613 

stronger across warmer sites (Table 3).  614 

      615 

      616 
Discussion 617 

Warming of the air and the soil in winter 618 
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We tested how climate variables and CO2 fluxes deviated from a reference period (2014-2019) 663 

during the warm winter of 2020 , across 14 evergreen needle-leaf forest sites distributed from 664 

north to south of Europe (from Sweden to Italy). The sites where winter 2020 was particularly 665 

warm and dry were not clustered in a certain climatic region, however we observed a consistent 666 

pattern that warming of the air was more pronounced in the colder sites  (Figure 2, 667 

Supplementary Figure 11).       668 

The strength of the coupling between the air and the soil temperature was not similar across all 669 

sites. In forests, topsoil temperature is directly affected by changes in air temperature; however, 670 

several underlying processes and properties modify the magnitude of decoupling between air 671 

and soil temperatures. This decoupling can reach up to 10 degrees, depending on the season 672 

and the properties of the biome type (Lembrechts et al. 2022). These underlying factors and 673 

processes include for example 1) a vertically complex and horizontally continuous forest 674 

structure that leads to higher decoupling of the soil temperature from air temperature, 2) soil 675 

moisture content as moisture increases the soil heat storage, 3) insulation by the litter or snow 676 

cover, 4) cloud cover, ground surface albedo, and rate of evapotranspiration which collectively 677 

affect the radiation balance and energy exchange between the soil and the air, and 5) 678 

microtopography that affects the drainage of air (e.g., cool air drains in low-lying areas) (Guan 679 

et al., 2009; Lozano-Parra et al., 2018; De Frenne et al., 2021; Gril et al., 2023). Although the 680 

direct effect of canopy closure on snow distribution, accumulation and melting at different 681 

periods was not tested here, it was evident that sites that had a larger LAI also showed a tighter 682 

coupling between air temperature and soil temperature (p < 0.05, r = 0.69, Table 3) as forest 683 

canopy structure influences the coupling of air and soil temperature in forest ecosystems, for 684 

example by shading the soil and reducing the snow depth beneath denser canopies (Woods et 685 

al. 2006; Gao et al. 2022). 686 

Winter warming effect on forest CO2 fluxes 687 

Our general observation was that across sites with a lower mean average temperature, winter 688 

warming was concurrent with increased net CO2 emissions (Figure 4). Except in the 689 

southernmost forest site,  winter warming decreased net ecosystem productivity of the 690 

coniferous forests albeit to varying degrees . This difference can generally be explained by the 691 

balance of changes in the warming of the soil versus warming of the air (Bond-Lamberty and 692 

Thomson 2010) which affects both soil respiration and tree CO2 uptake. Where soil becomes 693 

proportionally warmer and soil temperature reaches above freezing levels, root activity is 694 

enhanced and tree productivity responds directly to the increased air temperatures, and CO2 695 
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uptake increases. Warming of the air - if not translated into a direct warming of the soil– might 757 

not interrupt the dormant season (Bowling et al. 2024) if the soil within the rooting zone remains 758 

frozen. In IT-Ren for example where daytime NEP declined significantly in the warm winter, 759 

air temperature increased to over 3.5 degrees more than normal, however soil temperature 760 

remained at freezing levels (Supplementary Figure 1).  761 

CO2 fluxes are sensitive to changes in both temperature and light (Supplementary Figures 5-9), 762 

and site baseline climate conditions showed to be a good proxy of how changes in light and air 763 

temperature lead to changes in NEP. There is however evidence that temperature responses of 764 

biochemical processes are a function of plant growth temperature, and not just instantaneous 765 

temperature (Fürstenau Togashi et al. 2018). In addition, response of NEP to similar 766 

temperature can be different across seasons (i.e., an evident hysteresis), depending on other 767 

environmental factors such as solar radiation and soil water content (Niu et al. 2011). While 768 

across different sites sensitivity of NEP to temperature increases with a decrease in site mean 769 

temperature, as site mean temperature increases and temperature is no longer limiting, radiation 770 

becomes a larger constraint on NEP (Figure 9) (Running et al. 2004).  771 

Chamber-based observations from boreal forests show that snow-depth and soil moisture affect 772 

temperature sensitivity of soil CO2 fluxes as the freeze-thaw cycles abruptly change the 773 

moisture content of the soil (Du et al., 2013). In that sense, warmer winters can trigger larger 774 

respiration (and availability of nutrients to trees) because of higher Q10 of thawed than frozen 775 

soils, meaning that soil respiration increases faster in response to warming (Wang et al., 2014), 776 

however microbial C limitation can reduce expected increase in respired CO2, if not countered 777 

by greater labile C inputs from plant material and root exudates (Sullivan et al., 2020). In 778 

addition, aboveground productivity increases with increase in temperature (Supplementary 779 

Figure 6, 7) and this can enhanc the autotrophic respiration. Warming in winter also affects the 780 

microbial community that control labile and stable organic carbon decomposition in the soil 781 

that would offset respiration response to temperature and lead to a reduction of soil respiration 782 

(Tian et al., 2021). The magnitude of increase in belowground autotrophic respiration in 783 

response to warming and the supply of labile substrate through rhizodeposition and root exudate 784 

also affects net CO2 fluxes under warming (Nyberg et al., 2020). In our study sensitivity of 785 

Reco to air temperature (Q10) remained did not change significantly during the warm winter, 786 

and was copmarabale to the Q10 during the reference peorpiod (Supplementary Figure 10).  787 

A decrease in the snowpack and increased soil freezing has short-term immediate impacts on 788 

plant CO2 uptake, but it can also leave a long-lasting negative impact on the functioning of trees 789 

(Repo et al. 2021). Particularly, sites with prolonged cold winter seasons could be significantly 790 
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negatively affected by winter warming. Trees growing in northern latitudes and higher altitudes 802 

could be more adversely impacted by winter warming, as optimal temperatures in these trees 803 

are regulated by short-term temperature changes. In contrast, in ecosystems where temperature 804 

fluctuations are seasonally larger, the optimal temperature for growth has a broader range 805 

(Weng et al. 2010; Liu 2020).  806 

Winter tree physiology effect on CO2 fluxes 807 

Responses of coniferous species to soil warming can vary largely depending on the species' 808 

adaptive traits, the overall ecosystem context, and interactions with other environmental factors 809 

such as precipitation, temperature, and nutrient availability (Dawes et al. 2017; Oddi et al. 810 

2022). The sites we studied here, although all were dominated by evergreen needle-leaf species, 811 

consisted of different canopy species and some sites were dominated by a mixture of species 812 

(Table 1). There can be significant differences in photosynthetic parameters across different 813 

species of evergreen conifers that would affect tree and ecosystem response to warming 814 

(Fürstenau Togashi et al. 2018). The different responses of productivity to increased warming 815 

in ENFs can stem from differences in the quantity (and quality) of stored NSC in the roots, and 816 

the rate at which this C storage is mobilized within the tree during the warm winter (Bansal and 817 

Germino 2009). Warmer temperatures and dry conditions in winter lead to stomatal closure and 818 

depletion of carbohydrate reserves for trees that are adapted to ample precipitation and low 819 

VPD conditions in winter, and this effect leads to reduced CO2 uptake of trees during warmer 820 

winters (Earles et al. 2018).  821 

Low temperature is essential for signals that trigger the synthesis of soluble carbohydrates 822 

involved in osmotic and freezing protection against cold extremes (Chang et al. 2021) that 823 

otherwise impair the Calvin cycle by inhibiting the regeneration of ribulose bisphosphate 824 

(RuBP) and decrease the efficiency of Rubisco carboxylation (Ensminger et al. 2012; Crosatti 825 

et al. 2013). Non-structural carbohydrates (sugar and starch) that are accumulated during the 826 

growing season are utilized in winter to ensure survival of trees (Zhu et al. 2012; Tixier et al. 827 

2020) and failure to develop overwintering defences can cause evergreen conifer needles to 828 

remain susceptible for example to photo-oxidative damage during frost events (Chang et al. 829 

2016). Studies that combine ecosystem-scale flux measurements with tree-level observations 830 

have the potential to closely examine the adverse effects of winter warming on cold-adapted 831 

forests.  832 

Our results provide the first analysis of the effect of winter warming on CO2 fluxes of evergreen 833 

needle-leaf forests in Europe and point to the importance of understanding multiple underlying 834 

mechanisms that govern forest CO2 fluxes. Data on the responses of photosynthetic traits on a 835 
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timescale that is ecologically relevant (days to years) are scarce, but eddy covariance 852 

observations provide an opportunity for constructing long-term time series of canopy level 853 

processes to investigate the effect of extreme climatic conditions across all seasons. We further 854 

encourage studies that combine long-term observations and plant-level experiments to 855 

investigate how changes in the functioning in winter might affect trees’ response to extremes 856 

that occur earlier in the growing season (e.g., spring frost, spring drought) and to understand 857 

the consequences of such extremes for ecosystem carbon uptake. 858 

 859 

Conclusion 860 

Our study investigated the effects of the warm 2019-2020 winter on CO2 fluxes in evergreen 861 

needle-leaf forests across Europe. We observed increased net CO2 emissions, especially in 862 

colder sites, due to enhanced soil respiration and reduced net ecosystem productivity. However, 863 

responses varied among sites, with factors such as forest structure and local climatic conditions 864 

creating microclimates that either buffered or amplified the impact of warming on CO2 fluxes. 865 

By integrating long-term eddy covariance data with plant-level experiments, we can gain 866 

crucial insights into how winter warming affects forest ecosystems. Future research should 867 

focus on the carryover effects of winter warming on tree responses to seasonal climatic 868 

extremes, as understanding these processes in cold-adapted ecosystems is essential for 869 

predicting how forests will respond to future winter warming 870 
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Table 1 Description of the 14 ENF study sites. Mean annual temperature and total precipitation refer to the 2014-2019 period. Mean number of 1254 
days with snow cover for each site is based on the MODIS satellite observations. Sites are listed in a decreasing order in the mean annual 1255 
temperature. 1256 
 1257 
Site ID Latitude 

(degrees) 
Longitude 
(degrees) 

Altitude 
(m a.s.l.) 

Canopy species (dominant first) Mean 
annual 
temperat
ure (ºC) 

Mean 
annual 
precipitation 
(mm) 

Number of 
days with 
snow cover  

IT-SR2 43.7020 10.2909       4 Pinus pinea 15.7   950     0 

FR-Bil 44.4936 -0.9560     39 Pinus pinaster 14.1   930   11 

BE-Bra 51.3076   4.5198     16 Pinus sylvestris   11.5   750   20 

DE-Tha 50.9625 13.5651   385 Picea abies   10.2   843   41 

DE-RuW 50.5049   6.3310   610 Picea abies   8.7 1250   50 

DE-Obe 50.7866 13.7212   734 Picea abies   7.4   996   90 

SE-Nor 60.0864 17.4795     45 Mixed (Pinus sylvestris, Picea abies)   7.2   527   89 

CZ-Bk1 49.5020 18.5368   875 Picea abies   7.1 1316   71 

RU-Fyo 56.4615 32.9220  265 Mixed (Picea abies, Betula pubescens)   6.1   711   58 

FI-Let 60.6418 23.9595   111 Mixed (Pinus sylvestris, Picea abies, Betula pubescens)   5.9   627   99 

IT-Ren 46.5868 11.4336 1735 Picea abies   5.5   809 112 

CH-Dav 46.8153   9.8559 1639 Picea abies   4.8 1062 139 

SE-Ros 64.1725  19.738   160 Pinus sylvestris   4.0   614 102 
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SE-Svb 64.2561 19.774   267 Mixed (Pinus sylvestris, Picea abies, Betula pubescens)   3.2   614 106 
 1258 
 1259 
 1260 
 1261 
 1262 
 1263 
 1264 
 1265 
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Table 2 Mean total annual net ecosystem productivity (NEP) and the standard deviation (inter-1266 
annual variation) during the reference period (2014 and 2019). Start of the net carbon uptake 1267 
period (SOS, day of year, DOY) is when daily NEP changes from negative to positive and end 1268 
(EOS) is the inverse (following Shekhar et al. 2023). Sites are listed in a decreasing order in 1269 
mean annual air temperature. 1270 
 1271 

Site ID NEP (±sd) 
(g C m-2 y-1) 

SOS (DOY) EOS (DOY) Net carbon 
uptake period 
(days) 

IT-SR2 197 (±67) 35 200 165 

FR-Bil 324 (±103) 20 215 195 

BE-Bra 279 (±158) 95 270 175 

DE-Tha 484 (±88) 55 305 250 

DE-Ruw 597 (±155) 1 315 315 

DE-Obe 251 (±147) 75 265 190 

SE-Nor -311 (±93) 90 200 110 

CZ-Bk1 797 (±320) 70 310 240 

RU-Fyo   25 (±50) 95 200 105 

FI-Let -113 (±123) 100 230 130 

IT-Ren 675 (±70) 75 305 230 

CH-Dav 231 (±139) 80 280 200 

SE-Ros 320 (±136) 95 255 160 

SE-Svb 163 (±35) 95 240 145 
 1272 
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Table 3 Pearson correlation coefficient between mean daily incoming shortwave 1291 
radiation (Rg), air temperature (Tair ) and soil temperature at 5m (Tsoil) at each site 1292 
during the reference period (2014-2019). Sites are ordered by a decreasing mean air 1293 
temperature. Leaf area index (LAI) values are shown as mean across the study period 1294 
± standard error of the mean.  1295 
 1296 

Site ID Rg-Tair Tair-Tsoil LAI ± se 

IT-SR2 0.69 0.97 3.12 (0.11) 

FR-Bil 0.65 0.76 3.50 (0.08) 

BE-Bra 0.67 0.92 4.42 (0.13) 

DE-Tha 0.73 0.96 4.04 (0.19) 

DE-RuW 0.59 0.83 2.99 (0.22) 

DE-Obe 0.72 0.94 3.69 (0.21) 

SE-Nor 0.71 0.90 3.08 (0.09) 

CZ-Bk1 0.72 0.92 4.52 (0.09) 

RU-Fyo 0.74 0.78 4.06 (0.14) 

FI-Let 0.66 0.88 3.29 (0.27) 

IT-Ren 0.64 0.84 3.54 (0.08) 

CH-Dav 0.63 0.87 3.25 (0.12) 

SE-Ros 0.69 0.77 2.59 (0.09) 

SE-Svb 0.71 0.84 2.79 (0.12) 
 1297 
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 1315 

 1316 
 1317 
 1318 
 1319 
Figure 1 Location of the 14 Evergreen Needleleaf Forest (ENF) sites included in this study. 1320 
Base-map is the MODIS Land Cover Product (MOD12Q1, 500m spatial resolution) showing 1321 
the distribution of ENFs in Europe in 2020. Elevation of the sites ranges from 4 m a.s.l. (IT-1322 
SR2) to 1735 m a.s.l. (IT-Ren).  1323 
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 1326 

 1327 
 1328 
 1329 
Figure 2 Seasonal changes in air temperature (Tair) and soil temperature (Tsoil) in 2020 1330 
compared to the 6-year reference period (2014-2019). Asterisk marks where means in 2020 1331 
were significantly different from the reference period (p<0.05). Anomalies were calculated 1332 
from daily values. Sites are listed from top to bottom in a decreasing order of site mean annual 1333 
air temperature.  1334 
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 1409 
 1410 
 1411 
 1412 
Figure 3 December to May snow depth changes in winter 2020 compared to the average 1413 
winters during the reference period (2014-2019). Note that only 11 out of 14 sites have 1414 
persistent snow cover in winter. Sites are ordered from top left to right, by increasing site 1415 
mean temperature (SE-Svb coldest and DE-Tha warmest).  1416 
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 1443 
 1444 

Figure 4 Relative change (anomaly, %) in mean daily, mean nighttime, and mean daytime NEP 1445 
in winter 2020 compared to the 6-year reference winters (2014-2019). Asterisks mark where 1446 
the mean in 2020 was significantly different from the reference period (p <0.05). Positive NEP 1447 
change indicates increased net uptake (due to increased uptake or reduced emission) and 1448 
negative change indicates decreased net uptake (due to reduced uptake or increased emission). 1449 
Sites are listed from top to bottom in a decreasing mean annual air temperature order.  1450 
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 1483 

 1484 
 1485 
 1486 
Figure 5 Comparison of NEP vs Rg (incoming shortwave radiation) binned response during 1487 
the winters of the reference period (2014-2019) and winter 2020 across all sites (arranged from 1488 
top left to bottom based on increasing mean air temperature). The daily mean NEP is aggregated 1489 
(mean ± 95% CI as error bars) at 10 Wm-2 Rg bins.   1490 
 1491 
 1492 
 1493 
 1494 
 1495 
 1496 
 1497 
 1498 
 1499 



30 
 

 1500 
Figure 6 Comparison of NEP vs Tair (air temperature) binned response during the winters of 1501 
the reference period (2014-2019) and winter 2020 across all sites (arranged from top left to 1502 
bottom based on increasing mean air temperature). The daily mean NEP is aggregated (mean ± 1503 
95% C.I as error bars) at 1°C Tair bins.   1504 
 1505 
 1506 
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 1507 
 1508 
Figure 7 Comparison of NEP vs Tsoil (soil temperature) binned response during the winters of 1509 
the reference period (2014-2019) and winter 2020 across all sites (arranged from top left to 1510 
bottom based on increasing mean air temperature). The daily mean NEP is aggregated (mean ± 1511 
95% CI as error bars) at 1°C Tsoil bins.   1512 
      1513 
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 1531 
      1532 
Figure 8 Relative conditional variable importance (RCVI, %) of three climatic variables for 1533 
explaining the variance in daily winter NEP, GPP and Reco, and the overall variability 1534 
explained (r2) (marked with red triangles) estimated from the random forest regression analysis. 1535 
The RFR model was trained on winter observations during the reference period (2014-2019). 1536 
Sites are ordered by increasing site mean annual temperature (from left to right). For modelling 1537 
Reco, GPP was used as an additional predictor (see the Methods section for more detail).  1538 
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 1561 
 1562 

 1563 
Figure 9 Sensitivity of NEP anomalies in winter (∆NEP) to (a) anomalies of incoming solar 1564 
radiation (∆Rg) (b) anomalies of air temperature (∆Tair), and (c) anomalies of soil 1565 
temperature (∆Tsoil). The sensitivities represent the slope of ∆Rg, ∆Tair, and ∆Tsoil when 1566 
regressed with ∆NEP using a multivariate linear regression (∆NEP ~ ∆Rg + ∆Tair + ∆Tsoil). 1567 
The non-significant (p<0.05) sensitivity is shown as a transparent point. Error-bar shows the 1568 
95% CI of the slope obtained from the multivariate linear regression.  Sites are ordered by 1569 
increasing site mean air temperature (from left to right). 1570 
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