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Abstract.

The total freeboard, which is the ice layer above water level and includes snow thickness, is needed to retrieve ice thickness

and ice surface topography. Single-pass interferometric synthetic aperture radar (InSAR) allows for the generation of digital

elevation models (DEMs) over the drifting sea ice. However, accurate sea ice DEMs (i.e., total freeboard) derived from InSAR

are impeded due to the radar signals penetrating the snow and ice layers. This research introduces a novel methodology for5

retrieving sea ice DEMs using dual-polarization interferometric SAR images, considering the variation in radar penetration

bias across multiple ice types. The accuracy of the method is verified through photogrammetric measurements, demonstrating

the derived DEM with a root-mean-square error of 0.26m over a 200× 19km area. The method is further applied to broader

regions in the Weddell and the Ross Sea, offering new insights into the regional variations of sea ice topography in the Antarc-

tic. We also characterize the non-Gaussian statistical behavior of total freeboard using log-normal and exponential-normal10

distributions. The results suggest that the exponential-normal distribution is superior in the thicker sea ice region (average total

freeboard > 0.5m), whereas the two distributions exhibit similar performance in the thinner ice region (average total freeboard

< 0.5m). These findings offer an in-depth representation of total freeboard and roughness in the Weddell and Ross Seas, which

can be conducted in time series data to comprehend sea ice dynamics, including its growth and deformation.

1 Introduction15

The Sea ice topography refers to the ice shape, height, and large-scale roughness at the meter scale. It encompasses a variety

of ice features, including rafted ice, ridges, rubble fields, and hummocks, all of which contribute to the intricate nature of sea

ice topography (Weeks and Ackley, 1986). The presence of snow cover atop the ice surface further influences the topographic

characteristics, adding another layer of complexity to the overall sea ice topography (Massom et al., 2001).

The sea ice surface topography plays a crucial role in understanding sea ice dynamics and interactions within the air-ocean-20

ice system. It determines the spatial distribution of distinct surface features such as snow dunes (Trujillo et al., 2016; Iacozza

and Barber, 1999) and deformed ice (Haas et al., 1999; Petty et al., 2016), which are impacted by the forces from winds and

currents. Moreover, the atmospheric drag coefficient over sea ice, which is topography-dependent, is an important parameter

for understanding interactions at the ice-atmosphere boundary (Garbrecht et al., 2002; Castellani et al., 2014).
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Sea ice topography can be described through digital elevation models (DEM), which refers to the total freeboard (snow+ice)25

above the local sea surface. The DEM (i.e., total freeboard) can be converted to thickness with the knowledge of snow depth

and the assumed values of snow, ice, and seawater densities (Kwok and Kacimi, 2018). Estimating sea ice thickness over time

offers valuable insights into the overall stability of sea ice in the changing climate. Furthermore, mapping sea ice topography

is paramount for safe navigation in polar oceans. By providing information on ice deformation and identifying safe routes, ac-

curate sea ice topography maps contribute to ensuring the safety and efficiency of ship navigation in challenging environments30

(Dammann et al., 2017).

Sea ice DEMs can be obtained using laser altimeter mounted on different platforms, including helicopters (Dierking, 1995),

aircraft such as IceBridge (Petty et al., 2016), and satellites like ICESat-1 (Zwally et al., 2008) and ICESat-2 (Kacimi and

Kwok, 2020). These laser altimeters provide high-spatial resolution (< 1m) in measuring total freeboard. However, limited

spatial coverage and long revisit times (e.g., 91 days for ICESat-2) restrict their capacity for consistent and comprehensive sea35

ice monitoring. In recent decades, synthetic aperture radar (SAR) has been of significant importance for Earth observation, of-

fering a balance between spatial resolution (meters to tens of meters) and swath coverage (tens to hundreds of kilometers). SAR

is unaffected by weather conditions or daylight limitations, enabling consistent data acquisition with a revisit time of around

ten days. Notably, the single-pass interferometric SAR (InSAR) sensor, exemplified by TanDEM-X, presents an unprecedented

opportunity to generate sea ice DEMs over landfast sea ice (Dierking et al., 2017; Yitayew et al., 2018). For drifting ice, the40

accuracy of InSAR-derived DEMs can be affected by additional phase shifts induced by ice motion. Dierking et al. (2017) cal-

culated and theoretically discussed the sensitivity of InSAR-derived DEMs concerning ice-drifting velocity, InSAR frequency,

and baseline configuration.

Nevertheless, the InSAR-derived DEM can be affected by the microwave penetration into the snow and ice layers. Dry snow

can have penetration depths up to hundreds of wavelengths (Guneriussen et al., 2001). For X-band SAR, the penetration into45

younger ice, such as new and first-year ice, is minimal due to the high salinity of the ice surface (Hallikainen and Winebrenner,

1992). On the other hand, for older and desalinated ice, such as multi-year ice, the penetration depth varies from 0− 1m de-

pending on the temperature and salinity (Hallikainen and Winebrenner, 1992; Huang et al., 2021). To account for the scattering

mechanism from the volumes (snow and ice) and layers (snow-ice-water interfaces), a two-layer-plus-volume (TLPV) model

(Huang et al., 2021) has been developed to determine the penetration depth over snow-covered old ice in the Antarctic. The50

model improves the precision of sea ice topographic mapping by offsetting the InSAR phase center to the top surface.

SAR polarimetry complements interferometry by providing valuable insights into scattering processes and has proven useful

for characterizing sea ice properties (Winebrenner et al., 1995; Ressel et al., 2016; Singha et al., 2018). For old and deformed

ice, a radar theory has been developed to examine the relationship between scattering mechanisms and sea ice DEM (Nghiem

et al., 2022), resulting in a geophysical model function based on co-polarimetric coherence for retrieving sea ice DEM (Huang55

et al., 2022). These findings emphasize the significance of integrating polarimetric and interferometric information for accurate

sea ice topography mapping using SAR imagery.

Given the variations in the microwaves’ penetration depth into snow and ice, deriving sea ice DEM from SAR imagery over a

broad spatial scale encompassing diverse ice types is still constrained. In this study, we develop an innovative two-step method
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to generate sea ice DEM across multiple ice types using machine learning and polarimetric-interferometry SAR techniques.60

The initial step involves the development of a random forest classifier using specific SAR features to categorize sea ice into

two groups: small-penetration condition ice (SPI) and large-penetration condition ice (LPI), based on the penetration depth

of microwaves into the snow and ice. Subsequently, a sea ice DEM is created for each ice type. In the case of SPI, standard

InSAR processing is applied to determine the total freeboard. For LPI, a novel inversion algorithm is proposed to estimate

the parameters of the developed TLPV model (Huang et al., 2021). This model allows for correcting penetration bias in the65

InSAR signal over LPI, resulting in an accurate retrieval of the total freeboard. We validate the proposed method against the

photogrammetric DEM from the IceBridge aircraft. A root-mean-square error (RMSE) of 0.26m between the derived DEM

and reference data indicates an improved accuracy in total freeboard retrieval.

We further implement the proposed two-step approach to 162 SAR images covering 12 segments (each covering an area

of ∼ 500× 20km) in the Weddell and Ross Seas. This allows a broad mapping of sea ice DEM and roughness, offering new70

insights into the topographic patterns of sea ice at a large spatial scale. Note that the roughness in this study refers to the

macroscale roughness, which is defined as the standard deviation of total freeboard within 50× 50m window. We analyze the

variation in sea ice DEM and roughness along the southwards direction and associate it with the variation in sea ice classes

obtained from an operational product from the U.S. National Ice Center. The statistics of total freeboard over various regions

are modeled using the log-normal and exponential-modified normal distributions. The findings enhance our understanding of75

sea ice formation and dynamics and can be used to interpret geophysical parameters associated with sea ice topography.

The paper is structured as follows. Section 2 describes the data sets and data processing procedures. The two-step approach

for sea ice DEM retrieval is introduced in Sect. 3. The retrieval results and interpretation of topographic characteristics are

given in Sect. 4 and further discussed in Sect. 5. Finally, Section 6 summarizes the study.

2 Data sets and processing80

2.1 Study area

The region of interest includes both the Weddell Sea and the Ross Sea, as shown in Fig. 1. The SAR footprints over the two

seas are zoomed-in in boxes A and B, respectively. The footprints consist of 12 segments, each corresponding to a sequence of

SAR images within the same orbit that were acquired with only a few seconds difference. The segments will be referred to as

W1-U, W1-L, W2-U, W2-L, W3-U, W3-L, W4, W5-U, W5-L, R1-U, R1-L, and R5 in the following sections for conciseness.85

2.2 SAR Imagery

The TanDEM-X is a SAR interferometer that operates as a bistatic single-pass system, capable of acquiring two images simul-

taneously (Krieger et al., 2007). The two images are co-registered single-look complex products, which can be processed to

derive sea ice DEM through interferometry.
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Figure 1. Geolocation of the study area. The northernmost positions in each segment are marked with star symbols and serve as reference

points for calculating the relative distance in Sec. 4.2.

In the study, we collected 162 SAR images over the twelve segments in StripMap mode in dual-pol channels (HH and VV).90

The pixel spacing is around 0.9m× 2.7m in slant range and azimuth. The acquisition time and the number of images for each

segment are listed in Table 1. The incidence angle (InA) is measured at the center of the scene, and the height of ambiguity

(HoA) corresponds to an interferometric phase change of 2π. Note that for R5, the larger HoA leads to relatively higher average

uncertainty in the derived InSAR height (hInSAR) compared to other InSAR configurations with smaller HoA. More details

can be found in the appendix A1.95

The multilooking processing was conducted using a 4×12 window, resulting in a ∼ 10×10m pixel spacing in azimuth and

ground range. This resolution (∼ 10×10m) was subsequently utilized for the sea ice classification and DEM retrieval detailed

in Section 3. The backscattering intensity σmeasure of the images includes additive thermal noise, which can be described by

the noise equivalent sigma zero (NESZ) and assumed to be uncorrelated with the signal (Nghiem et al., 1995). Removing

the thermal noise allows for a better representation of sea ice features, which is crucial for ice classification. We denoised100

backscattering intensities for the different polarizations (i.e., HH, VV, Pauli-1 (HH+VV), and Pauli-2 (HH-VV)) by subtracting
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Table 1. Summary of SAR acquisitions and Ice Charts over the study area.

Segment
Number of

SAR images

SAR

acquisition time
HoA(m) InA(◦)

Weekly average

Ice Charts

(ending date)

W1-L 20 2017-10-24T23:30 30− 35 29 2017-10-26

W1-U 13 2017-10-29T23:41 33− 35 35 2017-11-02

W2-L 19 2017-10-25T23:13 30− 35 29 2017-10-26

W2-U 12 2017-10-30T23:23 32− 34 35 2017-11-02

W3-L 18 2017-10-26T22:56 30− 35 29 2017-11-02

W3-U 8 2017-11-22T23:05 36− 37 35 2017-11-23

W4 12 2017-11-01T22:49 32− 34 35 2017-11-02

W5-L 18 2017-11-02T22:30 30− 34 29 2017-11-09

W5-U 15 2017-10-27T22:41 31− 34 35 2017-11-02

R1-L 12 2017-11-11T07:16 33− 35 31 2017-11-16

R1-U 6 2017-10-25T07:25 34− 35 36 2017-10-26

R5 9 2017-11-07T09:58 40− 42 35 2017-11-09

the noise equivalent sigma zero (NESZ) from the σmeasure (Huang et al., 2022). More details about the thermal noise removal

can be found in the appendix A2. The denoised backscattering intensities are used in the following sections.

2.3 Optical Digital Mapping System (DMS) data

With an objective to investigate Antarctic sea ice topography, Operation IceBridge (OIB) and TanDEM-X Antarctic Science105

Campaign (OTASC) (Nghiem et al., 2018) was successfully carried out along a portion of the W1, shown in Fig. 2a. Equipped

with a digital mapping system (DMS), the OIB aircraft captured optical images (Dominguez, 2010, updated 2018) and gener-

ated DEM using photogrammetric techniques at a spatial resolution of approximately 40cm×40cm with a vertical accuracy of

0.2m (Dotson and Arvesen., 2012, updated 2014). The DMS acquisitions occurred between 17:45 and 18:44 UTC on October

29, 2017. Figure 2b and c showcase DMS optical images over specific areas, highlighting a diverse range of sea ice features,110

including ridges, deformed ice, smooth ice with snow cover, and snow-free ice.

In this study, we geocoded the DMS DEM to match the same coordinates and resolution as the multilooked SAR image,

which is approximately 10×10m in both range and azimuth. Note that DMS DEM gives height values relative to the WGS-84

ellipsoid. To obtain the total freeboard, we calibrated the DMS DEM to the local sea level through a manual selection of the

water surface from DMS images (Huang et al., 2021). The calibrated DMS DEM, henceforth is referred to as DMS DEM for115

brevity.

As the sea ice is constantly moving, co-registration is crucial to compensate for the time lag (∼ 6 hours) between the DMS

sensor and TanDEM-X. To achieve this, we carefully aligned the two data by identifying distinctive sea ice features in both
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Figure 2. (a) Geolocation of DMS measurements superimposed on four SAR footprints in segment W1-U. Zoomed-in views of DMS digital

images at points A and B (green dots) are displayed in (b) and (c), respectively.

optical and SAR images (Huang et al., 2021, 2022). Note that the segments lacking distinctive sea ice features in optical and

SAR images were eliminated to ensure co-registration quality. The co-registered DMS DEM is used as reference data in this120

study.

2.4 Ice Charts

The U.S. National Ice Center’s Antarctic sea ice charts (referred to as Ice Charts hereafter) offer weekly products detailing

total sea ice concentration, partial concentration, and stage of development (U.S. National Ice Center., 2022). The Ice Charts

covering the date of SAR acquisitions are listed in Table 1.125

The Ice Charts are provided in Shapefile format as grids with a spatial resolution of 10× 10km. For each specified latitude

and longitude, three ice concentration values are given, each corresponding to a different stage of ice development. Details

of these stages and their corresponding thicknesses can be found in the first and second columns of Table 2, respectively. The

postprocessing of the Ice Charts consists of two steps. First, we categorized the three stages of ice into thin ice (TI), first-year

ice (FYI), and multiyear ice (MYI) types according to the third column of Table 2. Next, we extracted the ice concentration130

values for TI, FYI, and MYI, respectively. An example of the ice chart showing the dominant ice type is provided in Fig. 3.

Note that the dominant ice type refers to the ice type with the highest concentration values.
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Table 2. Stage of develops for ice type categories (U.S. National Ice Center., 2022).

Ice Stage of development Thickness (cm) Ice type

New ice

Nilas, ice rind

Young ice

Gray ice

Gray-white ice

< 10

< 10

10−< 30

10−< 15

15−< 30

Thin ice (TI)

FYI

Thin FYI

Medium FYI

Thick FYI

≥ 30− 200

30−< 70

70−< 120

≥ 120

First-year ice (FYI)

Old ice

2nd year ice

multiyear ice

N/A Multiyear ice (MYI)

Figure 3. The dominant ice type from the U.S. National Ice Center’s Antarctica weekly sea ice chart (October 26th, 2017).
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2.5 SAR interferometry

Single-pass interferometer acquires two simultaneous observations, denoted as s1 and s2. The complex interferogram γ and

the interferometric phase ϕγ can be described as (Cloude, 2010)135

γ = s1s
∗
2 (1)

ϕγ = arg{s1s∗2} (2)

The further processing of ϕγ includes flat earth removal, interferogram filtering, low-coherence area mask, and phase un-

wrapping (Huang and Hajnsek, 2021). The resulting ϕ
′

γ can be converted to height by140

hInSAR = ha

ϕ
′

γ

2π
(3)

where hInSAR is the height of InSAR phase center and ha is the HoA related to the InSAR baseline configuration provided in

Table 1.

The complex interferometric coherence γ̃InSAR between the two images can be estimated by (Cloude, 2010)

γ̃InSAR = γInSAR · eiϕγ =
< s1s

∗
2 >√

< s1s∗1 >< s2s∗2 >
(4)145

where the symbol < . > denotes an ensemble average within a 4× 12 multilooking window. Pixels with γInSAR < 0.3 were

designated as water areas and excluded from further processing. The above interferometric processing was carried out using

the GAMMA software.

The hInSAR obtained from Eq. 3 was further calibrated to the average water surface. Instead of identifying water pixels that

were masked out due to the low InSAR coherence (less than 0.3), we selected smooth and new ice regions, assuming they are150

thin enough and their elevation (i.e., radar freeboard) is negligible and approximately equal to the water surface. The smooth

and thin ice regions typically exhibit very low backscattering intensities in SAR image (Dierking et al., 2017). Therefore, we

selected pixels with backscattering intensities within the range of −19dB to −18dB, slightly above TanDEM-X’s noise level

(−19dB), and generated a histogram of hInSAR values for these pixels. We determined the 3rd percentile of the height of these

pixels as the water surface elevation. The threshold value, i.e., the 3rd percentile, was chosen based on applying the method to155

four SAR scenarios overlaid with DMS DEM. By choosing the 3rd percentile as the water surface level, we ensured alignment

between the water surface levels derived from InSAR and those from the DMS data, thus validating the threshold value. Note

that we estimate a single value representing the water surface for each SAR scene. However, it is important to note that this

method may introduce inaccuracies due to the centimeter-level radar freeboard of the selected thin and new ice, as well as the

fluctuating water surface within each SAR scenario.160
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2.6 SAR polarimetry

SAR Polarimetry reflects scattering mechanisms and has been proven as a proxy for characterizing sea ice properties (Wak-

abayashi et al., 2004; Ressel et al., 2016; Huang and Hajnsek, 2021; Singha et al., 2018; Nghiem et al., 2022).

2.6.1 Co-polarization ratio

The co-polarization (coPol) ratio (RcoPol) measures the backscattering intensity ratio between the dual-pol channels and can165

be calculated as follows

RcoPol =
σHH

σVV
(5)

where σHH and σVV are denoised SAR backscattering intensity in dual-pol channels in linear scale. RcoPol extracted from

L-band SAR images is associated with the dielectric constant and has therefore been used as an indicator of ice thickness

(Wakabayashi et al., 2004). Further investigation is required to determine if RcoPol from the X-band can also serve as a proxy170

for ice thickness. Additionally, RcoPol has been identified as an important feature for discriminating thicker ice and water and

is an effective tool for classifying sea ice in X-band SAR imagery (Ressel et al., 2016).

2.6.2 Pauli-polarization ratio

Similarly, we can obtain the Pauli-polarization ratio (Rpauli) by

RPauli =
σP1

σP2
=

|sHH + sVV|2

|sHH − sVV|2
(6)175

where σP1 and σP2 are denoised SAR backscattering intensity in Pauli-1 and Pauli-2 polarizations in linear scale, respectively.

sHH and sVV are single-look complex images in dual-pol channels, respectively.

2.6.3 Complex coPol coherence

The complex coPol correlation γ̃coPol is calculated as (Lee and Pottier, 2009)

γ̃coPol = γcoPol · eiϕcoPol =
< sVVs

∗
HH >√

< sVVs∗VV >< sHHs∗HH >
(7)180

where γcoPol is the coPol coherence magnitude and ϕcoPol is the coPol phase.

γcoPol measures the degree of electromagnetic wave depolarization caused by the surface roughness and the volume scatter-

ing. This parameter has been shown to be associated with sea ice DEM (Huang and Hajnsek, 2021) and thickness (Kim et al.,

2011).

ϕcoPol is sensitive to the anisotropic structure of the medium and deviates from 0◦ when the signal delay becomes polariza-185

tion dependent (Leinss et al., 2014). ϕcoPol has been utilized in retrieving fresh-snow anisotropy over ground (Leinss et al.,

2016) and characterizing the topography of snow layer (Huang and Hajnsek, 2021).
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Figure 4. (a) The proposed two-step approach for sea ice DEM retrieval. (b) The details (training and validation) of the sea ice classifier and

(c) the PolInSAR height retrieval module.

3 Methodology

This section introduces an innovative two-step approach for retrieving sea ice DEM across various ice conditions. The initial

step is categorizing sea ice into LPI and SPI types based on radar penetration depths. The second step involves generating the190

sea ice DEM using different methods for the two ice categories. The two-step approach is presented in Fig. 4(a) and are detailed

in Sect. 3.1 and Sect. 3.2, respectively. The method is developed and validated using the four SAR images (Fig. 2) overlapped

with DMS DEM.

3.1 Sea ice classification

As shown in Fig. 4(a), in Step 1, the sea ice is classified into SPI and LPI using a random forest (RF) classifier (Breiman, 2001).195

A detailed description of the training and validating process for the classifier is given in Fig. 4(b), where DMS DEM (hDMS)
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are utilized as reference data. The penetration depth hpene = hDMS −hInSAR, where hDMS measures the total freeboard, i.e.,

elevation from the snow-air surface relative to the water level. InSAR DEM (hInSAR) measures the radar freeboard, i.e., the

elevation of the InSAR phase center relative to the water level, which can be somewhere inside of the snow or ice, depending

on the snow and ice condition. hInSAR is generated from TanDEM-X InSAR pair following the principles in Sect. 2.5. In200

general, microwaves can penetrate much shallower into the younger and more saline compared to the older and less saline

sea ice. According to Hallikainen and Winebrenner (1992) the penetration depth into multi-year ice varies between 0.3 and

1m at X-band, depending on salinity and temperature. Desalination within ice ridges increases the effective penetration depth

compared to level ice (Dierking et al., 2017). Considering these findings and given the study area’s snow cover and the presence

of deformed ice formations such as ridges, we chose a penetration depth of 0.3m as the threshold for distinguishing the two205

ice types. Hence, pixels with hpene < 0.3m are labeled as SPI, whereas those with hpene ≥ 0.3m are LPI.

We investigate a range of features for classification, including denoised backscattering intensity in HH polarization (σHH),

polarimetric features such as coPol ratio (RcoPol), Pauli-polarization ratio (RPauli), coPol coherence magnitude (γcoPol), and

coPol phase (ϕcoPol), as well as interferometric features including InSAR coherence magnitude (γInSAhR) and height of inter-

ferometric phase center (hInSAR). To improve computational performance, we rank features based on Gini Importance (i.e.,210

Mean Decrease in Impurity), which measures the average gain of purity by splits of a given variable. The top five features,

i.e., RPauli, σHH, hInSAR, γcoPol, and γInSAR are selected as effective predictors for the RF classifier. The ranking of all the

SAR features is given in the appendix Fig. A3. Note that the computed Gini importance is not inherently specific to a particular

class or ice type. Instead, it represents the relative importance of features in making overall classification decisions within the

context of the entire dataset. Therefore, the importance level determined by Gini importance is not specific to individual ice215

types but reflects the significance of features for the classifier’s overall predictive performance across all classes.

The selected features together with the ice labels (i.e., LPI and SPI) form the sample set. 75% is used for training the

RF classifier, implemented in Python using default hyperparameters. Since sample numbers for the SPI and LPI classes are

well-balanced (48% and 52%, respectively), no balanced training strategy is particularly implemented. The validation of ice

classification over the testing subset (25%) will be given in Sect. 4.1.220

3.2 DEM generation

As shown in Fig. 4(a), in Step 2, we separately retrieve the sea ice DEMs for the two categories of ice based on the classification

map. For SPI, the conventional InSAR processing (Section 2.5) is conducted, given the minimal penetration depth attributed to

the saline ice. On the other hand, for LPI which is subject to radar signal penetration, we apply the TLPV model developed in

(Huang et al., 2021), which incorporates InSAR processing and corrects for the radar penetration bias into the snow-covered225

old ice.

The TLPV model includes surface scattering from the top and bottom interfaces and volumes scattering from the snow and

ice, shown in Fig. 5. The model was further simplified by merging the contributions of the snow volume, the ice volume, and
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Figure 5. The schematic of the proposed TLPV model for sea ice (Huang et al., 2021).

the top layer into one Dirac delta (Huang et al., 2021):

γ̃InSAR

≈ eiϕ0
1 · eiϕ1 +m · eiϕ2

1+m

= eiϕ0 γ̃mod(m,z1,z2)

= eiϕ0 γ̃mod(m,z1,hv)

(8)230

where ϕ0 is the topographic phase at the snow-air interface, ϕ1 = κz_volz1, ϕ2 = κz_volz2, z1 and z2 are the locations of the

layers, respectively. hv = z1−z2 refers to the depth between the top and bottom layers. It is worth noting that the bottom layer

may not always be at the ice-water interface. In certain situations, there might be a lower basal saline ice layer, inducing strong

surface scattering from the ice-basal layer interface (Nghiem et al., 2022). This basal saline layer contains brine inclusions

with higher salinity, transitioning towards the ice-seawater interface (Tison et al., 2008). κz_vol is the vertical wavenumber in235

the volume which depends on the InSAR configuration such as HoA and the incidence angle, and the dielectric constant of

the volume (Dall, 2007; Sharma et al., 2012; Huang et al., 2021). m refers to the layer-to-layer scattering ratio, which is the

backscattering power ratio between the top and bottom layers:

m=
σbottom(ω)

σtop(ω)
(9)

where σtopω) and σbottom(ω) denotes the backscattering power from the top and bottom interface, respectively, at a given240

polarization ω. m potentially reveals the relative importance of scattering from these interfaces, depending on factors like

interface roughness, dielectric constant, and radar polarization. A larger value of m signifies that surface scattering from the

bottom layer predominates, while a smaller m indicates that surface scattering from the top layer is more significant.

The aim is to estimate ϕ0 and convert it into height (hmod), which is the total freeboard of LPI. When fixing the origin at the

air-snow interface, z1 is equivalent to snow depth, which can be obtained from the AMSR Level-3 data (Meier et al., 2018).245
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However, Eq. (8) still contains two unknown variables, m and hv , preventing direct estimation of ϕ0. Therefore, we develop a

PolInSAR height retrieval module to invert the TLPV model and estimate m and hv , shown in Fig. 4(c). We first establish an

empirical relation (RF regression) between SAR features and the true values of m and hv which can be derived using DMS

DEM as a priori information. Specifically, we simulate the interferometric phase (ϕDMS = ϕ0) from the height (hDMS) using

Eq. (3) tailored to the specific InSAR configuration with ha given in Table 1. With snow depth z1 and γ̃InSAR from AMSR data250

and InSAR observations, respectively, m and hv values are derived by inverting Eq. (8) and used as true values for training the

RF regressor.

We use Gini importance to rank the seven features for regression, selecting the top five predictors for estimating m̂ and ĥv:

σHH, hInSAR, γInSAR, RPauli, and ϕcoPol. The ranking of all the SAR features is given in the appendix Fig. A4. The selected

features, together with the true m and hv , form the sample set. 75% is used for training the RF regressor. Note that the RF255

regressor is trained using the same sample set as the sea ice classification.

The well-trained RF regressor is subsequently utilized to estimate m̂ and ĥv for SAR scenes that do not overlap with DMS

measurements. Selected features from SAR images, along with z1 from ancillary data, serve as inputs to the RF regression

model for estimating m̂ and ĥv . Subsequently, the topographic phase ϕ̂0 can be derived by solving Eq. (8), and transformed

into total freeboard hmod using Eq. (3). For SAR scenes overlaid with DMS measurements, validation of height retrieval260

accuracy over the testing subset (25%) will be given in Sect. 4.1.

4 Results

Following the two-step approach developed in Sect. 3, this section obtains the SAR-derived DEM from 162 dual-pol InSAR

pairs that cover the sea ice in the Weddell and Ross Seas. We verify the accuracy of the SAR-derived DEM. We further analyze

the variation of total freeboard and roughness along the southward direction and examine the statistical characteristics of sea265

ice DEM across various geographic regions.

4.1 Sea ice topography retrieval and validation

The proposed two-step approach for sea ice DEM retrieval is visually and quantitatively validated based on the four scenes

overlapped with DMS measurements. The SAR backscattering intensities over the four scenes are displayed in the left column

in Fig. 6. In the first step, the proposed classification scheme demonstrates good performance on the testing set, with an accuracy270

of 0.84 and a confusion matrix presented in Fig. 7(a). The classifier is then applied to the entire SAR images, including the

region not overlapped by DMS DEM, and the classified maps are shown in the middle column of Fig. 6.

In the second step, the sea ice DEM (hmod_SAR) is obtained by merging hmod and hInSAR over LPI and SPI. Note that

hmod_SAR represents the total freeboard relative to the water surface retrieved from the pixel at 10× 10m spacing size. The

retrieved sea ice DEMs are compared with hDMS over the testing set, shown in Fig. 7(b). The RMSE between hmod_SAR and275

hDMS is 0.26m. This result is promising as Dierking et al. (2017) suggested the satisfactory accuracy for a sea ice DEM being
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Figure 6. First column: SAR backscattering intensity in HH polarization. Second column: sea ice classification. Third column: sea ice DEM

(hmod_SAR) over the four scenarios. Each row corresponds to Scene No.1-4 in Fig. 2, respectively. The spatial resolution is 10× 10m. The

void pixels in the second and third columns represent water areas excluded from processing due to γInSAR < 0.3. The white dashed line

indicates the flight track overlapped by the DEM DEM (hDMS)

.

14



Figure 7. (a) Confusion matrix for sea ice classification. (b) Comparison between the reference height and the derived height over LPI and

SPI.

less than 0.3m. Note that the average RMSE value of LPI without compensating the penetration bias is ∼ 1.10m (Huang et al.,

2021).

The hmod_SAR over the entire SAR images are displayed in the right column of Fig. 6. For each scene, the white dash

line delineates a 50km×100m strip overlapped with DMS DEM. By extracting the values at the center of the strip, the height280

profiles are presented in Fig. 8, where hmod_SAR performs good agreement with the reference data (hDMS) and well capture the

topographic variation. Considering that hDMS already contains an uncertainty of 0.2m (Dotson and Arvesen., 2012, updated

2014), these results prove the effectiveness of the proposed two-step approach for sea ice DEM retrieval over both SPI and LPI.

4.2 Sea ice topography along the southwards direction

We obtain sea ice DEM over the total 162 images using the two-step approach. A visualization of the derived sea ice DEM can285

be found in the appendix Fig. A5 and A6. The derived DEM is downsampled to a resolution of 500m, utilized in the subsequent

analyses.

The northernmost location on each segment is selected and marked with star symbol in Fig. 1. Subsequently, we characterize

the variation of sea ice category, total freeboard, and roughness moving southward, using distances relative to the northernmost

locations and averaging over every 100km interval. These topographic variations along the distance are illustrated in Fig. 9- 11.290

The first column shows the LPI percentages estimated from the proposed two-step approach and compared with the Ice

Charts. The overall trend of estimated LPI percentages correlates well with dominant ice types and ice concentrations from

the Ice Charts across most segments (W1-U, W1-L, W2-U, W4, W5-U, W5-L, and R5). Specifically, W1-U and W1-L are

explained as two examples. W1-U from 0− 120km is covered by 100% MYI, where the LPI percentage reaches its highest

value (58%). As the dominant ice transitions from MYI to FYI from 120− 400km, the LPI percentage decreases accordingly.295

The dominance of MYI ice from 400−600km also corresponds to the increasing LPI percentage. For W1-L, where the distance

between 500−600km is covered by 100% MYI, and the LPI percentage peaks before decreasing after 650km distance as FYI

becomes dominant. The lowest LPI percentage is found around 1200km, consistent with the occurrence of TI at this distance.
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Figure 8. Comparison between the total freeboard profiles (hmod_SAR) from the proposed method and the DMS DEM (hDMS) along the

dotted line (from A to B) over Scene No.1-4 in Fig. 6(c). The spatial resolution is 10×10m. The data gaps are the water areas and segments

that were excluded due to the absence of distinctive features, ensuring co-registration quality.
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The observed similar trend can be explained by the general assumption that MYI is thicker and less saline, allowing for

deeper radar penetration compared to FYI and TI. However, penetration depth is influenced by various factors not only ice300

age, but also ice salinity, snow condition, flooding effects, and temperature. This explains the discrepancies for other segments

(W2-L, W3-U, W3-L, R1-U, R1-L). Furthermore, discrepancies can also be attributed to differences in spatial resolution and

temporal gaps between Ice Charts and SAR imagery, considering the dynamic nature of sea ice.

It is essential to clarify that we utilized Ice Charts data as external information to interpret the classification results and spatial

variation of topography. However, we did not use Ice Charts to quantitatively validate the proposed method. For validation305

purposes, we conducted pixel-by-pixel comparisons using co-registered DMS data.

The second and third columns in Fig. 9- 11 display the distance dependency of total freeboard (hmod_SAR) and roughness

(σR), respectively. Sea ice roughness is the standard deviation of the total freeboard within a 50×50m area. For each 100km-

distance interval, we calculate and display the average and median values, as well as the first and third quartiles of hmod_SAR

and σR using boxplots.310

The Ice Charts are also used to validate and explain the topographic variation of sea ice. In general, the region with thicker

ice (e.g., MYI) is anticipated to display higher total freeboard or larger roughness compared to the area with thinner ice, such as

FYI and TI. This hypothesis is substantiated by the agreement between topographical variations (total freeboard and roughness)

and ice types observed in Fig. 9 to 11 across most segments, with the exception of W3-L and W5-L. The sea ice is identified as

MYI between 450−750km in W3-L and 650−950km in W5-L. However, neither total freeboard nor roughness significantly315

increases within these specific ranges. Minor discrepancies also persist, for instance, in W1-U and W2-L, where there is no

clear reduction in either total freeboard or roughness when FYI is present at around 600km. These discrepancies may arise due

to the local cases where rough FYI exhibits greater roughness than smooth level MYI. FYI may also show higher elevations

when covered by very thick snow. In addition, considering that the Ice Charts data are weekly products, the inconsistencies

could be attributed to mis-coregistration caused by sea ice drift during the time lag between the Ice Charts and the SAR images.320

In the northwestern Weddell Sea, we observe that the sea ice near the Antarctic Peninsula (AP) in the W1-U and W2-U

segments exhibits the highest average total freeboard (mean > 0.7m) and roughness (mean = 0.19m), shown in the first and

third rows in Fig. 9. This observation aligns with a previous study using OIB Airborne Topographic Mapper (ATM) data from

November 14 and 22, 2017 (Wang et al., 2020), which has reported that the total freeboard near the eastern AP ranges from

1.5− 2.5m. Moving outwards from the AP, the total freeboard and roughness along W1-U and W2-U demonstrate a sharp325

decrease within approximately 0− 200km before gradually increasing as it heads southward. Similar trends are observed in

W3-U (first row in Fig. 10) and W5-U (first row in Fig. 11), with a more subtle decrease in total freeboard within the 0−200km

range, compared to W1-U and W2-U, followed by a southward increase. Conversely, in the initial 0− 200km of W4 (third

row in Fig. 10), there’s no observed decrease in total freeboard or roughness. Instead, a gradual increase in both parameters

is evident as one moves southward, consistent with the dominance of MYI beyond 100km from the Ice Charts data. In the330

southeastern region, segments W1-L, W2-L, W3-L, and W5-L exhibit similar patterns in the topographic variation, with total

freeboard and roughness generally decreasing towards the south as they approach the Coats Land (see location in Fig. 1). This

trend can be explained by the increasing occurrence of FYI or TI beyond around 1000km from the Ice Charts data.
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Figure 9. Sea ice characteristics along the southwards direction along W1 and W2 segments. The blue line in the first column displays the LPI

percentages derived from SAR images, and the blue dot indicates the ice types obtained from the Ice Charts. The second and third columns

plot the total freeboard (hmod_SAR) and roughness (σR), respectively. Distance is measured from the northernmost SAR image reference

point towards the south. The orange line denotes the average values of hmodSAR and σR. The box’s upper and lower boundaries represent

the first (Q1) and third (Q3) quartiles, while the upper (lower) whisker extends to the last (first) sample outside of Q3 ±1.5×(Q3-Q1).
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Figure 10. Sea ice characteristics along the southwards direction along W3, W4, and R5 segments. The blue line in the first column displays

the LPI percentages derived from SAR images, and the blue dot indicates the ice types obtained from the Ice Charts. The second and third

columns plot the total freeboard (hmod_SAR) and roughness (σR), respectively.
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Figure 11. Sea ice characteristics along the southwards direction along W5 and R1 segments. The blue line in the first column displays

the LPI percentages derived from SAR images, and the blue dot indicates the ice types obtained from the Ice Charts. The second and third

columns plot the total freeboard (hmod_SAR) and roughness (σR), respectively.
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The observed variation in sea ice topography can result from the formation and dynamics of sea ice in the East Weddell

(E-Wedd) and West Weddell (W-Wedd) regions, which are defined by specific longitude ranges: E-Wedd encompasses 15◦E to335

40◦W, while W-Wedd extends from 40◦W to 62◦W. Segments of W1-U, W2-U, W3-U, W4, and W5-U are located within the

W-Wedd, which has been reported for the presence of MYI in the Antarctic (Lange and Eicken, 1991). Sea ice initially forms

in the eastern region and then circulates clockwise within the cyclonic gyre of the southern Weddell Sea. Later, older sea ice

drifts outward northwestern (Kacimi and Kwok, 2020). The sea ice undergoes thickening and deformation as it drifts (Vernet

et al., 2019; Kacimi and Kwok, 2020), resulting in increased total freeboard and greater roughness in the northwestern Weddell340

Sea.

In the Western Ross Sea, the sea ice along the R5 segment (last row in Fig. 10) exhibits greater total freeboard and roughness

near Terra Nova Bay (see Fig. 1 for the location), with decreasing southeastward. This observation aligns with the transition

of dominant ice types from FYI to TI in that direction. This observation is also consistent with recent research (Rack et al.,

2021), where airborne measurements in November 2017 revealed deformed sea ice exceeding 10m in thickness within the first345

100km south of Terra Nova Bay, and thinner ice was observed towards the southeastern area near McMurdo Sound (see Fig. 1

for the location). Satellite data also confirmed a region of thinner ice influenced by the Ross Sea Polynya, with thicker ice

located westward (Kurtz and Markus, 2012). The observed pattern can be attributed to significant deformation in the Western

Ross Sea caused by wind-driven shearing, rafting, and ridging within a convergent sea ice regime (Hollands and Dierking,

2016). This deformation leads to potentially thicker sea ice compared to the eastern part (Rack et al., 2021).350

For the R1 segment located in the Eastern Ross Sea (third and fourth rows in Fig. 11), although the sea ice exhibits relatively

stable total freeboard, which agrees with the consistent presence of predominantly FYI, the roughness decreases towards the

southeastern. This may be attributed to the influence of ocean circulation, considering that the R1 segment is situated farther

from the land than the other segments. The variation of the roughness along the R1 segment suggests that ice topography

provides add-on information that can be useful to be integrated into the operational ice charting. Furthermore, since the edges355

of ice floes with open water between the floes can also contribute to the ice roughness, combining ice topography with ice

concentration can help characterize the sea ice more comprehensively.

4.3 Regional variation of sea ice topography

Figure 12(a) displays the topographic variation across different segments. We present the average and median values, as well as

the first and third quartiles of total freeboard and roughness using boxplots. The mean values are listed in Table 3. Additionally,360

the percentages of the three ice types within each segment, calculated from the Ice Charts for reference, are presented in

Fig. 12(b).

Generally, sea ice in the northwestern Weddell Sea (W1-U, W2-U, W3-U, W4, W5-U) exhibits higher average total freeboard

(> 0.5m) compared to that in the southeastern Weddell Sea and the Ross Sea (W1-L, W2-L, W3-L, W5-L, R1-U, R1-L, R5),

see detailed values in Table 3. W1-U and W2-U exhibit the highest average total freeboard of 0.8m and 0.72m, respectively,365

along with the largest average roughness of 0.19m. This is comparable with the total freeboard retrieved from ICESat-2

(Kacimi and Kwok, 2020), reporting an average of 0.6− 0.7m total freeboard nearby the Eastern AP between April 1 and
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Table 3. Average total freeboard and roughness for each segment, as well as the Kolmogorov-Smirnov (KS) values between the observed

total freeboard and modeled distributions (i.e., exponential normal and log-normal). The smaller KS value is in bold.

segment
Mean

total freeboard (m)

Mean

roughness (m)
KS exp-normal KS log-normal

W1-U 0.80 0.19 0.083 0.106

W1-L 0.46 0.12 0.064 0.05

W2-U 0.72 0.19 0.052 0.07

W2-L 0.42 0.12 0.079 0.054

W3-U 0.50 0.11 0.113 0.2

W3-L 0.39 0.12 0.065 0.05

W4 0.57 0.18 0.035 0.072

W5-U 0.52 0.16 0.074 0.076

W5-L 0.44 0.11 0.038 0.078

R1-U 0.49 0.18 0.053 0.049

R1-L 0.45 0.11 0.049 0.106

R5 0.46 0.10 0.052 0.039

Overall 0.063 0.079

November 16, 2019. W4 and W5-U show average total freeboard of 0.57m and 0.52m, and average roughness values of

0.18m and 0.16m, respectively. The above topographic values (i.e., total freeboard and roughness) are consistent with the ice

types presented in Fig. 12(b), where W1-U, W2-U, W4, and W5-U exhibit a substantial proportion (≥ 57%) of MYI, known370

for greater total freeboard and roughness characteristics. W3-U, which consists of 47% MYI, exhibits a total freeboard of

0.50m but with relatively lower roughness at 0.11m, suggesting the possibility of a smooth snow-air interface over older and

thicker ice.

For the segments in the southeastern Weddell Sea and the Ross Sea (W1-L, W2-L, W3-L, W5-L, R1-L, and R5), the

average total freeboard remains below 0.46m and roughness around 0.11m. The reduced average total freeboard and roughness375

correspond to ice types with fewer MYI percentages (≤ 52%) and greater amounts of FYI and TI (> 52%). R1-U demonstrates

an average total freeboard of 0.49m and roughness of 0.18m, with the presence of predominantly FYI throughout the region.

This observation suggests a plausible scenario of a rougher snow-air interface over younger and thinner ice (Tin and Jeffries,

2001; Tian et al., 2020).

4.4 Statistical analyses of sea ice topography380

Studies on sea ice topography in the Arctic have extensively examined the applicability of statistical distributions such as the

log-normal distribution (Landy et al., 2020; Duncan and Farrell, 2022) and the exponentially modified normal (exp-normal)

distribution (Yi et al., 2022). However, there remains a gap in understanding the most suitable distribution models for describing
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Figure 12. (a) Total freeboard (hmod_SAR) and roughness (σR) derived from SAR images across the 12 segments. (b) The percentage of

multi-year ice (MYI), first-year ice (FYI), and thin ice (TI) from the Ice Charts. (c) Probability density function (PDF) of derived total

freeboard (hmod_SAR) and their fits to the exponential-normal, log-normal, and normal distributions.
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the total freeboard of Antarctic sea ice. We aim to address this gap by evaluating three distribution models: Gaussian, log-

normal, and exp-normal, to determine the most appropriate probability density function (PDF) for describing the sea-ice total385

freeboard across segments.

The PDF of the Gaussian distribution with mean µg and standard deviation σg is defined as:

G(x) =
1√
2πσ2

g

e
− (x−µg)2

2σ2
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The PDF of the exp-normal distribution with mean µe+1/λ and variance σ2
e +1/λ2 is given as (Foley and Dorsey, 1984):
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where the erfc(·) is the complementary error function with erfc(x) = 2√
π

∫∞
x

e−t2 dt.

The observed and modeled distributions of total freeboard over each segment are depicted in the left column of Fig. 12(c).

The observed distributions of all segments exhibit asymmetrical with longer tails. A closer examination of the tail regions395

(right column in Fig. 12(c)) reveals significant deviations from the Gaussian distribution, particularly in segments W1-U and

W2-U, which are covered by deformed and thicker sea ice. The observed non-Gaussian nature of total freeboard distribution

aligns with the previous studies (Hughes, 1991; Davis and Wadhams, 1995; Castellani et al., 2014; Landy et al., 2019; Huang

et al., 2021). To quantitatively evaluate the fit of non-Gaussian distributions (i.e., log-normal and exp-normal) to the observed

total freeboard, we employ the Kolmogorov-Smirnov (KS) test (Massey Jr, 1951). This test measures the goodness of fitting400

by calculating the distance between the observed distribution function and the theoretical cumulative distribution function. The

values of the KS test are given in Table 3, where a lower value indicates a better fit.

In the northwestern Weddell Sea, where the segments (W1-U, W2-U, W3-U, W4, and W5-U) have average total freeboard

greater than 0.5m, the exp-normal distribution demonstrates superior fitting performance, as evidenced by smaller KS values.

This can be attributed to the exp-normal distribution’s incorporation of an exponential component, which enables a better fit to405

data with heavy or long tails compared to the log-normal distribution. Consequently, the exp-normal distribution is better suited

for characterizing the statistics of older and thicker sea ice, which often involves strong deformation and exhibits significant

total freeboard.

In the southern Weddell Sea and the Ross Sea, segments average below 0.5m in total freeboard, with varying fits between

exp-normal and log-normal distributions. The log-normal distribution exhibits a better fit for W1-L, W2-L, W3-L, R1-U,410

and R5, while the exp-normal distribution is more appropriate for W5-L and R1-L. This observation suggests that the two

distributions perform comparably in characterizing the total freeboard of younger and thinner sea ice.
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Evaluating the overall performance across all segments, the exp-normal distribution outperforms the log-normal distribution,

as indicated by a smaller average KS value of 0.063.

5 Discussion415

5.1 Factors affecting the model performance

In the proposed two-step method (Fig 4), we obtain snow depth from the AMSR products (Meier et al., 2018), which represents

a five-day running average of snow depth over sea ice. Due to the limited spatial (12.5km) and temporal resolution in the snow

depth data, we assume a constant value of snow depth across one SAR image. Hence, for each SAR acquisition covering a

spatial extent of 50× 19km, we compute the mean snow depth and utilize it as input parameter z1 in the TLPV model.420

In Fig. 8, it appears the derived total freeboard (hmod_SAR) underestimates some high and low peaks of the reference data

(hDMS). One factor contributing to the underestimation of total freeboard could be the assumption of a constant average snow

depth over one SAR scene. Using a single average value of snow depth may lead to an underestimation of snow depth in

high-peak areas such as ridges, consequently resulting in an underestimation of the total freeboard. Our prior study (Huang

et al., 2021) demonstrated a mean difference of 0.31m in the derived total freeboard due to snow depth variations from 0.05 to425

0.75m over Scene No.1, highlighting the impact on peak estimation. In the future, it would be interesting to adapt the proposed

method over the test sites co-locating with available high-resolution snow depth measurements.

Another factor that could potentially lead to the underestimation of high and low peaks is the residual shift between the SAR

and DMS images. Although we carefully co-registered the four SAR scenes with the DMS data, the co-registration can not be

perfect. In the process, we divided the entire overlapped transect into small patches (each corresponding to 100×1000m). We430

assumed the same drift location over one patch and no rotation; thus, only one shift vector was used for co-registration over

each patch. This could result in small residual shifts when the ice floes or features do not drift at the same velocity or involve

rotations within the patch. The presence of low- and high-peak ice features with narrow sizes spanning just a few pixels, poses

a challenge. Even slight residual shifts, as small as 1-2 pixels, can lead to loss or misalignment of peak structures in SAR

images. Consequently, these slightly misaligned SAR images input into the proposed model may result in an underestimation435

of the total freeboard.

5.2 Compare the InSAR-derived total freeboard with existing study

Wang et al. (2020) calculated the mean total freeboard in the Weddell Sea using the IceBridge Laser Altimetry. In this sub-

section, we conduct a visual comparison between Wang et al. (2020)’s result (Fig. 13) with the four segments (W2-U, W2-L,

W3-U, and W3-L) in our study (Fig. 9 and 10). Note that the window size is ten-of-kilometer scales in Wang et al. (2020)’s440

study, significantly exceeding the 500× 500m window size we used.

We denote the region in Fig. 13 with latitude < 70◦S (> 70◦S) as the northern (southern) track. The Northern and Southern

Track-W segments are partially overlaid with W2-U and W2-L, respectively. In our study, the total freeboard of W2-U and
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Figure 13. The total freeboard calculated from IceBridge Laser Altimetry (copy of Fig.6l by Wang et al. (2020)). We labeled the two tracks

Track-W and Track-E. The region with latitude < 70◦S (> 70◦S) is referred to as the northern (southern) track.

W2-L in Fig. 9 reaches a mean value of ∼ 1m and 75% percentile value of ∼ 1.5m within the first 100km, which agrees with

the red dot in Fig. 13 Track-W. Then, the total freeboard goes down to a mean value as ∼ 0.7m and 75% percentile value445

of ∼ 0.75m from 100− 200m. Although there is a data gap in Fig. 13, we can see that color of the dots changes from red to

yellow, which is consistent with the decreasing trend of the total freeboard within 300km from our results. For W2-L, the mean

total freeboard from our result is around 0.5m, agreeing with a mix of green and yellow dots (0.4− 0.9m) in the Southern

Track-W in Fig. 13. Note that the OIB ATM data in (Wang et al., 2020) was acquired on 14 and 22 November 2017, while the

SAR images in our study were acquired on 30 and 25 October 2017 for W2-U and W2-L, respectively. The sea ice drifts and450

potential melting could induce slight differences between our results and Wang et al. (2020).

The W3-U and W3-L can be compared with Northern and Southern Track-E, respectively. From Fig. 13, a mix of green and

yellow dots in the northern Track-E represent the total freeboard 0.5− 1.2m, which agrees well with our result for W3-U, see

the first row in Fig. 10. At around 70◦S, the dots transit to a mix of cyan and blue colors, representing the total freeboard of

0.2− 0.7m, which is consistent with the W3-L in Fig. 10. The slight difference can be attributed to the temporal difference of455

SAR images used in our study. Specifically, the image for W3-L was acquired on 26 October 2017, while the Track-E image

was acquired on 22 November 2017.
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6 Conclusions

In this study, we proposed a novel two-step approach integrating machine learning and polarimetric-interferometry techniques

to retrieve total freeboard from dual-pol single-pass InSAR images, taking into account the variations in penetration bias460

over different ice classes. Initially, a random forest classifier was employed to categorize sea ice (i.e, SPI and LPI) based on

microwaves’ penetration. Subsequently, the standard InSAR processing technique was applied to retrieve the total freeboard

over SPI regions, where the penetration depth is negligible. For LPI regions, an inversion algorithm for the TLPV model was

developed. This algorithm can effectively compensate for the radar penetration bias into snow and ice, achieving an accurate

sea ice DEM (i.e., total freeboard). The uncertainty level is satisfactory for LPI with RMSE of 0.26m. However, this accuracy465

is insufficient for thinner ice whose height above sea level is only tens of centimetres or even less. Given that a substantial

portion of Antarctic sea ice consists of first-year ice with a thickness of approximately one meter (Scott, 2023), achieving

accurate DEM retrieval over thinner ice remains a challenge. In the future, a potential single-pass InSAR configuration using

a higher frequency, such as Ku-band, along with a longer cross-track baseline, would result in a smaller height of ambiguity

(HoA) of less than 5m (López-Dekker et al., 2011). This setup can enhance InSAR sensitivity and improve the accuracy of470

total freeboard measurements.

The proposed approach was applied to a broad area in Antarctica. Overall, sea ice in the northwestern Weddell Sea exhibits

higher average total freeboard (> 0.5m) than the southeastern region and the Ross Sea, where the average total freeboard is

lower (< 0.5m). In the northwestern Weddell Sea, sea ice experiences substantial deformation near the eastern AP, followed

by a pronounced decline in both total freeboard and roughness within a range of 0− 200km. Subsequently, there is a gradual475

increase in these parameters as one moves southward. In the southeastern Weddell Sea, the total freeboard and roughness

generally decrease towards the south as they approach Coats Land. In the Western Ross Sea, thicker and rougher ice was

observed near Terra Nova Bay, while thinner ice was found in the southeastern area near McMurdo Sound. In the Eastern Ross

Sea, the stable total freeboard aligns with the prevalent presence of FYI, but roughness decreases towards the southeastern.

These findings emphasize that topographic mapping can enhance ice category delineation, providing an in-depth understanding480

of sea ice characteristics.

Furthermore, the statistical analyses of the total freeboard confirmed its non-Gaussian distribution. The results further sug-

gested that the exp-normal distribution outperforms the log-normal distribution in fitting the total freeboards of regions with

an average total freeboard greater than 0.5m, particularly for older and thicker sea ice, whereas both distributions perform

comparably for regions with an average total freeboard lower than 0.5m.485

The spatial distribution of penetration depth (total freeboard minus radar freeboard) can be an interesting topic for future

research. In snow-covered sea ice, penetration is significantly influenced by local snow conditions. Hence, conducting a co-

ordinated campaign encompassing TanDEM-X acquisitions, lidar measurements, and in-situ snow assessments holds great

promise for analyzing the relation between radar freeboard and total freeboard across different snow conditions. Future studies

also involve linking the derived sea ice topographic characteristics associated with oceanographic factors (ocean current and490
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bathymetry) and climatology parameters (wind and temperature). We aim to further advance our comprehension of sea ice

dynamics and evolution in Antarctica.

Appendix A: Further details of data processing and figures

A1 InSAR height uncertainty across various height of ambiguity values

The HoA (ha) is the height of ambiguity determined by the specific InSAR configuration such as the radar wavelength, orbit495

height, incidence angle, and baseline. A larger HoA will elevate the uncertainty in the InSAR-derived height. This uncertainty

(σh) can be estimated by (Madsen, 1998)

σh =
ha

2π
σ∆ϕ

where σ∆ϕ
is the phase noise, which can be expressed as a function of the interferometric coherence (γInSAR) and the inde-

pendent number of looks (NL) (Rosen et al., 2000)500

σ2
∆ϕ

=
1

2NL

1− γ2
InSAR

γ2
InSAR

Figure A1. Simulation of σh to the variations in ha and γInSAR with NL set to be 73.

The simulated σh to the variations in ha and γInSAR is illustrated in Fig. A1. At the γInSAR = 0.75, σh increases from

0.35m to 0.48m corresponding to ha ranging from 30m to 42m. Across the studied region, both the mean and median values

of γInSAR are around 0.75. Consequently, in the case of R5, the larger ha induces a relatively larger average uncertainty in the

derived InSAR height (hInSAR) compared to the smaller ha InSAR configuration in our dataset.505

28



A2 SAR thermal noise removal

The SAR-measured backscattering intensity (σmeasure) containing additive thermal noise can be denoted as

σmeasure =< (Sdenoised +N)× (Sdenoised +N)∗ > (A1)

where Sdenoised is the noise-subtracted backscattering amplitude, and N is the additive thermal noise. Considering Sdenoised

and N to be uncorrelated, the noise-subtracted backscattering intensity can be obtained from the following simple equation510

(Nghiem et al., 1995)

σdenoised = σmeasure −NESZ (A2)

where NESZ is the noise floor (i.e., the noise equivalent sigma zero (NESZ)), and all terms are in the linear scale.

Figure A2. NESZ patterns for one TanDEM-X acquisition (Scene No.1 in Fig. 2) as an example.

The TanDEM-X product contains a set of polynomial coefficients that describe the NESZ pattern for each polarization along

the range direction (Eineder et al., 2008) for both the TanDEM-X (TDX) and TerraSAR-X (TSX) images. An example of515

the calculated NESZ is shown in Fig.A2 in dB scale. By converting to the linear scale, the σdenoised can be calculated by

subtracting NESZ from the σmeasure. We calculate the NESZ pattern for each SAR acquisition and employ Eq. A2 to generate

denoised backscattering intensities for the different polarizations (i.e., HH, VV, Pauli-1 (HH+VV), and Pauli-2 (HH-VV)) from

the TSX image. Note that for Pauli-1 and Pauli-2, we use the average NESZ between HH and VV channels.

A3 Ranking of SAR features520

The Gini importance computed from the Random Forest (RF) classifier is given in Fig A3.
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Figure A3. Gini importance computed from the Random Forest (RF) classifier.

The Gini importance computed from the Random Forest (RF) regressor for estimating m and hv is given in Fig A4.

Figure A4. Gini importance computed from the Random Forest (RF) regressor for estimating m and hv .

A4 Overview of the InSAR-derived total freeboard

The derived total freeboard over the Weddell and Ross Seas are given in Fig. A5 and A6.
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Figure A5. Sea ice DEM (hmod_SAR) over the Weddell Sea retrieved from SAR images. The northernmost locations on each segment are

marked with star symbols and serve as reference points for calculating the relative distance. hmod_SAR was downsampled to 500m pixel

size.
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Figure A6. Sea ice DEM (hmod_SAR) over the Ross Sea retrieved from SAR images. The northernmost locations on each segment are marked

with star symbols and serve as reference points for calculating the relative distance. hmod_SAR was downsampled to 500m pixel size.

Data availability. TanDEM-X imagery can be acquired from the German Aerospace Center (DLR) by submitting a scientific proposal, acces-525

sible at https://eoweb.dlr.de. Additionally, DMS data can be obtained from the National Snow and Ice Data Center at https://nsidc.org/data/icebridge,

while Ice Charts data are available at https://nsidc.org/data/G10033/versions/1, also from the National Snow and Ice Data Center.
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