10

15

20

A Study of Sea Ice Topography in the Weddell and Ross Seas Using
Dual Polarimetric TanDEM-X Imagery

Lanqing Huang'-* and Irena Hajnsek'-?

Institute of Environmental Engineering, Swiss Federal Institute of Technology in Ziirich (ETH), Ziirich, 8093, Switzerland
ZMicrowaves and Radar Institute, German Aerospace Center (DLR), Wessling, 82234, Germany
3Center for Polar Observation and Modelling, University College London, WC1E6BS, London

Correspondence: Lanqing Huang (huang @ifu.baug.ethz.ch)

Abstract.

The total freeboard, which is the ice layer above water level and includes snow thickness, is needed to retrieve ice thickness
and ice surface topography. Single-pass interferometric synthetic aperture radar (InSAR) allows for the generation of digital
elevation models (DEMs) over the drifting sea ice. However, accurate sea ice DEMs (i.e., total freeboard) derived from InSAR
are impeded due to the radar signals penetrating the snow and ice layers. This research introduces a novel methodology for
retrieving sea ice DEMs using dual-polarization interferometric SAR images, considering the variation in radar penetration
bias across multiple ice types. The accuracy of the method is verified through photogrammetric measurements, demonstrating
the derived DEM with a root-mean-square error of 0.26 m over a 200 x 19km area. The method is further applied to broader
regions in the Weddell and the Ross Sea, offering new insights into the regional variations of sea ice topography in the Antarc-
tic. We also characterize the non-Gaussian statistical behavior of total freeboard using log-normal and exponential-normal
distributions. The results suggest that the exponential-normal distribution is superior in the thicker sea ice region (average total
freeboard > 0.5m), whereas the two distributions exhibit similar performance in the thinner ice region (average total freeboard
< 0.5m). These findings offer an in-depth representation of total freeboard and roughness in the Weddell and Ross Seas, which

can be conducted in time series data to comprehend sea ice dynamics, including its growth and deformation.

1 Introduction

The Sea ice topography refers to the ice shape, height, and large-scale roughness at the meter scale. It encompasses a variety
of ice features, including rafted ice, ridges, rubble fields, and hummocks, all of which contribute to the intricate nature of sea
ice topography (Weeks and Ackley, 1986). The presence of snow cover atop the ice surface further influences the topographic
characteristics, adding another layer of complexity to the overall sea ice topography (Massom et al., 2001).

The sea ice surface topography plays a crucial role in understanding sea ice dynamics and interactions within the air-ocean-
ice system. It determines the spatial distribution of distinct surface features such as snow dunes (Trujillo et al., 2016; lacozza
and Barber, 1999) and deformed ice (Haas et al., 1999; Petty et al., 2016), which are impacted by the forces from winds and
currents. Moreover, the atmospheric drag coefficient over sea ice, which is topography-dependent, is an important parameter

for understanding interactions at the ice-atmosphere boundary (Garbrecht et al., 2002; Castellani et al., 2014).
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Sea ice topography can be described through digital elevation models (DEM), which refers to the total freeboard (snow+ice)
above the local sea surface. The DEM (i.e., total freeboard) can be converted to thickness with the knowledge of snow depth
and the assumed values of snow, ice, and seawater densities (Kwok and Kacimi, 2018). Estimating sea ice thickness over time
offers valuable insights into the overall stability of sea ice in the changing climate. Furthermore, mapping sea ice topography
is paramount for safe navigation in polar oceans. By providing information on ice deformation and identifying safe routes, ac-
curate sea ice topography maps contribute to ensuring the safety and efficiency of ship navigation in challenging environments
(Dammann et al., 2017).

Sea ice DEMs can be obtained using laser altimeter mounted on different platforms, including helicopters (Dierking, 1995),
aircraft such as IceBridge (Petty et al., 2016), and satellites like ICESat-1 (Zwally et al., 2008) and ICESat-2 (Kacimi and
Kwok, 2020). These laser altimeters provide high-spatial resolution (< 1m) in measuring total freeboard. However, limited
spatial coverage and long revisit times (e.g., 91 days for ICESat-2) restrict their capacity for consistent and comprehensive sea
ice monitoring. In recent decades, synthetic aperture radar (SAR) has been of significant importance for Earth observation, of-
fering a balance between spatial resolution (meters to tens of meters) and swath coverage (tens to hundreds of kilometers). SAR
is unaffected by weather conditions or daylight limitations, enabling consistent data acquisition with a revisit time of around
ten days. Notably, the single-pass interferometric SAR (InSAR) sensor, exemplified by TanDEM-X, presents an unprecedented
opportunity to generate sea ice DEMs over landfast sea ice (Dierking et al., 2017; Yitayew et al., 2018). For drifting ice, the
accuracy of InSAR-derived DEMs can be affected by additional phase shifts induced by ice motion. Dierking et al. (2017) cal-
culated and theoretically discussed the sensitivity of InNSAR-derived DEMs concerning ice-drifting velocity, InNSAR frequency,
and baseline configuration.

Nevertheless, the InSAR-derived DEM can be affected by the microwave penetration into the snow and ice layers. Dry snow
can have penetration depths up to hundreds of wavelengths (Guneriussen et al., 2001). For X-band SAR, the penetration into
younger ice, such as new and first-year ice, is minimal due to the high salinity of the ice surface (Hallikainen and Winebrenner,
1992). On the other hand, for older and desalinated ice, such as multi-year ice, the penetration depth varies from 0 — 1 m de-
pending on the temperature and salinity (Hallikainen and Winebrenner, 1992; Huang et al., 2021). To account for the scattering
mechanism from the volumes (snow and ice) and layers (snow-ice-water interfaces), a two-layer-plus-volume (TLPV) model
(Huang et al., 2021) has been developed to determine the penetration depth over snow-covered old ice in the Antarctic. The
model improves the precision of sea ice topographic mapping by offsetting the InSAR phase center to the top surface.

SAR polarimetry complements interferometry by providing valuable insights into scattering processes and has proven useful
for characterizing sea ice properties (Winebrenner et al., 1995; Ressel et al., 2016; Singha et al., 2018). For old and deformed
ice, a radar theory has been developed to examine the relationship between scattering mechanisms and sea ice DEM (Nghiem
et al., 2022), resulting in a geophysical model function based on co-polarimetric coherence for retrieving sea ice DEM (Huang
et al., 2022). These findings emphasize the significance of integrating polarimetric and interferometric information for accurate
sea ice topography mapping using SAR imagery.

Given the variations in the microwaves’ penetration depth into snow and ice, deriving sea ice DEM from SAR imagery over a

broad spatial scale encompassing diverse ice types is still constrained. In this study, we develop an innovative two-step method
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to generate sea ice DEM across multiple ice types using machine learning and polarimetric-interferometry SAR techniques.
The initial step involves the development of a random forest classifier using specific SAR features to categorize sea ice into
two groups: small-penetration condition ice (SPI) and large-penetration condition ice (LPI), based on the penetration depth
of microwaves into the snow and ice. Subsequently, a sea ice DEM is created for each ice type. In the case of SPI, standard
InSAR processing is applied to determine the total freeboard. For LPI, a novel inversion algorithm is proposed to estimate
the parameters of the developed TLPV model (Huang et al., 2021). This model allows for correcting penetration bias in the
InSAR signal over LPI, resulting in an accurate retrieval of the total freeboard. We validate the proposed method against the
photogrammetric DEM from the IceBridge aircraft. A root-mean-square error (RMSE) of 0.26 m between the derived DEM
and reference data indicates an improved accuracy in total freeboard retrieval.

We further implement the proposed two-step approach to 162 SAR images covering 12 segments (each covering an area
of ~ 500 x 20km) in the Weddell and Ross Seas. This allows a broad mapping of sea ice DEM and roughness, offering new
insights into the topographic patterns of sea ice at a large spatial scale. Note that the roughness in this study refers to the
macroscale roughness, which is defined as the standard deviation of total freeboard within 50 x 50 m window. We analyze the
variation in sea ice DEM and roughness along the southwards direction and associate it with the variation in sea ice classes
obtained from an operational product from the U.S. National Ice Center. The statistics of total freeboard over various regions
are modeled using the log-normal and exponential-modified normal distributions. The findings enhance our understanding of
sea ice formation and dynamics and can be used to interpret geophysical parameters associated with sea ice topography.

The paper is structured as follows. Section 2 describes the data sets and data processing procedures. The two-step approach
for sea ice DEM retrieval is introduced in Sect. 3. The retrieval results and interpretation of topographic characteristics are

given in Sect. 4 and further discussed in Sect. 5. Finally, Section 6 summarizes the study.

2 Data sets and processing
2.1 Study area

The region of interest includes both the Weddell Sea and the Ross Sea, as shown in Fig. 1. The SAR footprints over the two
seas are zoomed-in in boxes A and B, respectively. The footprints consist of 12 segments, each corresponding to a sequence of
SAR images within the same orbit that were acquired with only a few seconds difference. The segments will be referred to as

WI1-U, WI-L, W2-U, W2-L, W3-U, W3-L, W4, W5-U, W5-L, R1-U, R1-L, and RS in the following sections for conciseness.
2.2  SAR Imagery

The TanDEM-X is a SAR interferometer that operates as a bistatic single-pass system, capable of acquiring two images simul-
taneously (Krieger et al., 2007). The two images are co-registered single-look complex products, which can be processed to

derive sea ice DEM through interferometry.
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Figure 1. Geolocation of the study area. The northernmost positions in each segment are marked with star symbols and serve as reference

points for calculating the relative distance in Sec. 4.2.

In the study, we collected 162 SAR images over the twelve segments in StripMap mode in dual-pol channels (HH and VV).
The pixel spacing is around 0.9m X 2.7m in slant range and azimuth. The acquisition time and the number of images for each
segment are listed in Table 1. The incidence angle (InA) is measured at the center of the scene, and the height of ambiguity
(HoA) corresponds to an interferometric phase change of 27. Note that for RS, the larger HoA leads to relatively higher average
uncertainty in the derived InSAR height (hinsar) compared to other InSAR configurations with smaller HoA. More details
can be found in the appendix Al.

The multilooking processing was conducted using a 4 x 12 window, resulting in a ~ 10 x 10m pixel spacing in azimuth and
ground range. This resolution (~ 10 x 10m) was subsequently utilized for the sea ice classification and DEM retrieval detailed
in Section 3. The backscattering intensity oeasure Of the images includes additive thermal noise, which can be described by
the noise equivalent sigma zero (NESZ) and assumed to be uncorrelated with the signal (Nghiem et al., 1995). Removing
the thermal noise allows for a better representation of sea ice features, which is crucial for ice classification. We denoised

backscattering intensities for the different polarizations (i.e., HH, VV, Pauli-1 (HH+VV), and Pauli-2 (HH-VV)) by subtracting



105

110

115

Table 1. Summary of SAR acquisitions and Ice Charts over the study area.

Weekly average
Segment Number of SAR HoA(m) InA(o) Ice Charts
SAR images acquisition time

(ending date)

WI-L 20 2017-10-24T23:30 30— 35 29 2017-10-26
W1-U 13 2017-10-29T23:41 33 —35 35 2017-11-02
W2-L 19 2017-10-25T23:13 30— 35 29 2017-10-26
W2-U 12 2017-10-30T23:23 32 —34 35 2017-11-02
W3-L 18 2017-10-26T22:56 30 — 35 29 2017-11-02
WwW3-U 8 2017-11-22T23:05 36 — 37 35 2017-11-23
w4 12 2017-11-01T22:49 32 —34 35 2017-11-02
W5-L 18 2017-11-02T22:30 30 — 34 29 2017-11-09
Ws-U 15 2017-10-27T22:41 31 —34 35 2017-11-02
RI-L 12 2017-11-11T07:16 33 —35 31 2017-11-16
R1-U 6 2017-10-25T07:25 34 —35 36 2017-10-26
RS 9 2017-11-07T09:58 40 — 42 35 2017-11-09

the noise equivalent sigma zero (NESZ) from the oeasure (Huang et al., 2022). More details about the thermal noise removal

can be found in the appendix A2. The denoised backscattering intensities are used in the following sections.
2.3 Optical Digital Mapping System (DMS) data

With an objective to investigate Antarctic sea ice topography, Operation IceBridge (OIB) and TanDEM-X Antarctic Science
Campaign (OTASC) (Nghiem et al., 2018) was successfully carried out along a portion of the W1, shown in Fig. 2a. Equipped
with a digital mapping system (DMS), the OIB aircraft captured optical images (Dominguez, 2010, updated 2018) and gener-
ated DEM using photogrammetric techniques at a spatial resolution of approximately 40 cm x 40 cm with a vertical accuracy of
0.2m (Dotson and Arvesen., 2012, updated 2014). The DMS acquisitions occurred between 17:45 and 18:44 UTC on October
29, 2017. Figure 2b and c showcase DMS optical images over specific areas, highlighting a diverse range of sea ice features,
including ridges, deformed ice, smooth ice with snow cover, and snow-free ice.

In this study, we geocoded the DMS DEM to match the same coordinates and resolution as the multilooked SAR image,
which is approximately 10 x 10m in both range and azimuth. Note that DMS DEM gives height values relative to the WGS-84
ellipsoid. To obtain the total freeboard, we calibrated the DMS DEM to the local sea level through a manual selection of the
water surface from DMS images (Huang et al., 2021). The calibrated DMS DEM, henceforth is referred to as DMS DEM for
brevity.

As the sea ice is constantly moving, co-registration is crucial to compensate for the time lag (~ 6 hours) between the DMS

sensor and TanDEM-X. To achieve this, we carefully aligned the two data by identifying distinctive sea ice features in both
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Figure 2. (a) Geolocation of DMS measurements superimposed on four SAR footprints in segment W1-U. Zoomed-in views of DMS digital

images at points A and B (green dots) are displayed in (b) and (c), respectively.

optical and SAR images (Huang et al., 2021, 2022). Note that the segments lacking distinctive sea ice features in optical and
SAR images were eliminated to ensure co-registration quality. The co-registered DMS DEM is used as reference data in this

study.
2.4 Ice Charts

The U.S. National Ice Center’s Antarctic sea ice charts (referred to as Ice Charts hereafter) offer weekly products detailing
total sea ice concentration, partial concentration, and stage of development (U.S. National Ice Center., 2022). The Ice Charts
covering the date of SAR acquisitions are listed in Table 1.

The Ice Charts are provided in Shapefile format as grids with a spatial resolution of 10 x 10km. For each specified latitude
and longitude, three ice concentration values are given, each corresponding to a different stage of ice development. Details
of these stages and their corresponding thicknesses can be found in the first and second columns of Table 2, respectively. The
postprocessing of the Ice Charts consists of two steps. First, we categorized the three stages of ice into thin ice (TI), first-year
ice (FYI), and multiyear ice (MYI) types according to the third column of Table 2. Next, we extracted the ice concentration
values for TI, FYI, and MY], respectively. An example of the ice chart showing the dominant ice type is provided in Fig. 3.

Note that the dominant ice type refers to the ice type with the highest concentration values.



Table 2. Stage of develops for ice type categories (U.S. National Ice Center., 2022).

Ice Stage of development  Thickness (cm) Ice type
New ice <10
Nilas, ice rind <10
Young ice 10— < 30 Thin ice (TD)
Gray ice 10— <15
Gray-white ice 15— < 30
FYI > 30— 200
Thin EY1 0= <70 First-year ice (FYI)
Medium FYI 70— <120
Thick FYT >120
Old ice
2nd year ice N/A Multiyear ice (MYT)

multiyear ice

Dominant Ice type
] Water

[ Thinice

I First-year ice
B Multiyear ice
B Glacier ice

e

Figure 3. The dominant ice type from the U.S. National Ice Center’s Antarctica weekly sea ice chart (October 26th, 2017).



135

140

145

150

155

160

2.5 SAR interferometry

Single-pass interferometer acquires two simultaneous observations, denoted as s; and ss. The complex interferogram - and

the interferometric phase ¢., can be described as (Cloude, 2010)

v =518 9]

0, = ang{s15) @

The further processing of ¢, includes flat earth removal, interferogram filtering, low-coherence area mask, and phase un-
wrapping (Huang and Hajnsek, 2021). The resulting qb/7 can be converted to height by

¢/
hinsAR = hui 3)

where hi,sar is the height of InNSAR phase center and h,, is the HoA related to the InSAR baseline configuration provided in
Table 1.
The complex interferometric coherence y,saRr between the two images can be estimated by (Cloude, 2010)

¢_Y _ < SlS; >
/< 5187 >< sa85 >

“)

VInSAR = VInSAR - €’

where the symbol < . > denotes an ensemble average within a 4 x 12 multilooking window. Pixels with yr,sar < 0.3 were
designated as water areas and excluded from further processing. The above interferometric processing was carried out using
the GAMMA software.

The hiysar obtained from Eq. 3 was further calibrated to the average water surface. Instead of identifying water pixels that
were masked out due to the low InSAR coherence (less than 0.3), we selected smooth and new ice regions, assuming they are
thin enough and their elevation (i.e., radar freeboard) is negligible and approximately equal to the water surface. The smooth
and thin ice regions typically exhibit very low backscattering intensities in SAR image (Dierking et al., 2017). Therefore, we
selected pixels with backscattering intensities within the range of —19dB to —18dB, slightly above TanDEM-X’s noise level
(—19dB), and generated a histogram of hi,sar values for these pixels. We determined the 3rd percentile of the height of these
pixels as the water surface elevation. The threshold value, i.e., the 3rd percentile, was chosen based on applying the method to
four SAR scenarios overlaid with DMS DEM. By choosing the 3rd percentile as the water surface level, we ensured alignment
between the water surface levels derived from InSAR and those from the DMS data, thus validating the threshold value. Note
that we estimate a single value representing the water surface for each SAR scene. However, it is important to note that this
method may introduce inaccuracies due to the centimeter-level radar freeboard of the selected thin and new ice, as well as the

fluctuating water surface within each SAR scenario.
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2.6 SAR polarimetry

SAR Polarimetry reflects scattering mechanisms and has been proven as a proxy for characterizing sea ice properties (Wak-

abayashi et al., 2004; Ressel et al., 2016; Huang and Hajnsek, 2021; Singha et al., 2018; Nghiem et al., 2022).
2.6.1 Co-polarization ratio

The co-polarization (coPol) ratio (R.,po1) measures the backscattering intensity ratio between the dual-pol channels and can

be calculated as follows

g
Reopol = —2 (5)
ovv

where oy and oyvy are denoised SAR backscattering intensity in dual-pol channels in linear scale. R.,po1 extracted from
L-band SAR images is associated with the dielectric constant and has therefore been used as an indicator of ice thickness
(Wakabayashi et al., 2004). Further investigation is required to determine if R.,po1 from the X-band can also serve as a proxy
for ice thickness. Additionally, R.,po] has been identified as an important feature for discriminating thicker ice and water and

is an effective tool for classifying sea ice in X-band SAR imagery (Ressel et al., 2016).
2.6.2 Pauli-polarization ratio

Similarly, we can obtain the Pauli-polarization ratio (Rpauii) by

op1_ |sum +svv|?

(6)

Rpawi = = — 5
op2  [sEH — Svv|

where op; and ops are denoised SAR backscattering intensity in Pauli-1 and Pauli-2 polarizations in linear scale, respectively.

suu and syvy are single-look complex images in dual-pol channels, respectively.
2.6.3 Complex coPol coherence

The complex coPol correlation 7.,po is calculated as (Lee and Pottier, 2009)

< Syvy S;IH >

\/< SVVS(/V > SHHSItIH >

t¢coPol

(7

:YCOPOI = YcoPol * €

where v.opol 1S the coPol coherence magnitude and ¢..po1 is the coPol phase.

YeoPol Measures the degree of electromagnetic wave depolarization caused by the surface roughness and the volume scatter-
ing. This parameter has been shown to be associated with sea ice DEM (Huang and Hajnsek, 2021) and thickness (Kim et al.,
2011).

PcoPol 18 sensitive to the anisotropic structure of the medium and deviates from 0° when the signal delay becomes polariza-
tion dependent (Leinss et al., 2014). ¢¢opo1 has been utilized in retrieving fresh-snow anisotropy over ground (Leinss et al.,

2016) and characterizing the topography of snow layer (Huang and Hajnsek, 2021).
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Figure 4. (a) The proposed two-step approach for sea ice DEM retrieval. (b) The details (training and validation) of the sea ice classifier and

(c) the PolInSAR height retrieval module.

3 Methodology

This section introduces an innovative two-step approach for retrieving sea ice DEM across various ice conditions. The initial
step is categorizing sea ice into LPI and SPI types based on radar penetration depths. The second step involves generating the
sea ice DEM using different methods for the two ice categories. The two-step approach is presented in Fig. 4(a) and are detailed
in Sect. 3.1 and Sect. 3.2, respectively. The method is developed and validated using the four SAR images (Fig. 2) overlapped
with DMS DEM.

3.1 Seaice classification

As shown in Fig. 4(a), in Step 1, the sea ice is classified into SPI and LPI using a random forest (RF) classifier (Breiman, 2001).
A detailed description of the training and validating process for the classifier is given in Fig. 4(b), where DMS DEM (hpns)

10
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are utilized as reference data. The penetration depth Apene = hpMs — hinsar, Where Apyis measures the total freeboard, i.e.,
elevation from the snow-air surface relative to the water level. INSAR DEM (h1,saR) measures the radar freeboard, i.e., the
elevation of the InSAR phase center relative to the water level, which can be somewhere inside of the snow or ice, depending
on the snow and ice condition. hy,gar is generated from TanDEM-X InSAR pair following the principles in Sect.2.5. In
general, microwaves can penetrate much shallower into the younger and more saline compared to the older and less saline
sea ice. According to Hallikainen and Winebrenner (1992) the penetration depth into multi-year ice varies between 0.3 and
1m at X-band, depending on salinity and temperature. Desalination within ice ridges increases the effective penetration depth
compared to level ice (Dierking et al., 2017). Considering these findings and given the study area’s snow cover and the presence
of deformed ice formations such as ridges, we chose a penetration depth of 0.3m as the threshold for distinguishing the two
ice types. Hence, pixels with Apene < 0.3m are labeled as SPI, whereas those with hpene > 0.3m are LPL

We investigate a range of features for classification, including denoised backscattering intensity in HH polarization (o),
polarimetric features such as coPol ratio (R.,po1), Pauli-polarization ratio (Rpay1i), coPol coherence magnitude (vcopo1), and
coPol phase (¢copo1), as well as interferometric features including InSAR coherence magnitude (yi,sanr) and height of inter-
ferometric phase center (hiusar). To improve computational performance, we rank features based on Gini Importance (i.e.,
Mean Decrease in Impurity), which measures the average gain of purity by splits of a given variable. The top five features,
i.e., Rpauli» ouH, RInSARs YeoPol, and ymsar are selected as effective predictors for the RF classifier. The ranking of all the
SAR features is given in the appendix Fig. A3. Note that the computed Gini importance is not inherently specific to a particular
class or ice type. Instead, it represents the relative importance of features in making overall classification decisions within the
context of the entire dataset. Therefore, the importance level determined by Gini importance is not specific to individual ice
types but reflects the significance of features for the classifier’s overall predictive performance across all classes.

The selected features together with the ice labels (i.e., LPI and SPI) form the sample set. 75% is used for training the
RF classifier, implemented in Python using default hyperparameters. Since sample numbers for the SPI and LPI classes are
well-balanced (48% and 52%, respectively), no balanced training strategy is particularly implemented. The validation of ice

classification over the testing subset (25%) will be given in Sect. 4.1.
3.2 DEM generation

As shown in Fig. 4(a), in Step 2, we separately retrieve the sea ice DEMs for the two categories of ice based on the classification
map. For SPI, the conventional InSAR processing (Section 2.5) is conducted, given the minimal penetration depth attributed to
the saline ice. On the other hand, for LPI which is subject to radar signal penetration, we apply the TLPV model developed in
(Huang et al., 2021), which incorporates InSAR processing and corrects for the radar penetration bias into the snow-covered
old ice.

The TLPV model includes surface scattering from the top and bottom interfaces and volumes scattering from the snow and

ice, shown in Fig. 5. The model was further simplified by merging the contributions of the snow volume, the ice volume, and

11
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Figure 5. The schematic of the proposed TLPV model for sea ice (Huang et al., 2021).

the top layer into one Dirac delta (Huang et al., 2021):

YInSAR

1+m (8)
= €' Fmod (M, 21, 22)
= €' Fmoa(m, 21, hy)
where ¢ is the topographic phase at the snow-air interface, ¢1 = k. vol21, P2 = K~ _vol22, 21 and zy are the locations of the
layers, respectively. h, = z; — 2o refers to the depth between the top and bottom layers. It is worth noting that the bottom layer
may not always be at the ice-water interface. In certain situations, there might be a lower basal saline ice layer, inducing strong
surface scattering from the ice-basal layer interface (Nghiem et al., 2022). This basal saline layer contains brine inclusions
with higher salinity, transitioning towards the ice-seawater interface (Tison et al., 2008). x, o is the vertical wavenumber in
the volume which depends on the InSAR configuration such as HoA and the incidence angle, and the dielectric constant of
the volume (Dall, 2007; Sharma et al., 2012; Huang et al., 2021). m refers to the layer-to-layer scattering ratio, which is the
backscattering power ratio between the top and bottom layers:

i = Tvottom (W) ©)

Trop(w)
where o4opw) and gporrom (W) denotes the backscattering power from the top and bottom interface, respectively, at a given
polarization w. m potentially reveals the relative importance of scattering from these interfaces, depending on factors like
interface roughness, dielectric constant, and radar polarization. A larger value of m signifies that surface scattering from the
bottom layer predominates, while a smaller m indicates that surface scattering from the top layer is more significant.
The aim is to estimate ¢ and convert it into height (hy,0q), which is the total freeboard of LPI. When fixing the origin at the

air-snow interface, z; is equivalent to snow depth, which can be obtained from the AMSR Level-3 data (Meier et al., 2018).

12
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However, Eq. (8) still contains two unknown variables, m and h,,, preventing direct estimation of ¢q. Therefore, we develop a
PolInSAR height retrieval module to invert the TLPV model and estimate m and h,,, shown in Fig. 4(c). We first establish an
empirical relation (RF regression) between SAR features and the true values of m and &, which can be derived using DMS
DEM as a priori information. Specifically, we simulate the interferometric phase (¢pys = ¢g) from the height (hpys) using
Eq. (3) tailored to the specific InNSAR configuration with h, given in Table 1. With snow depth z; and 41,5ar from AMSR data
and InSAR observations, respectively, m and h,, values are derived by inverting Eq. (8) and used as true values for training the
RF regressor.

We use Gini importance to rank the seven features for regression, selecting the top five predictors for estimating 1 and hy:
oHHs PInSARs YInSAR, FPauli> and @copol- The ranking of all the SAR features is given in the appendix Fig. A4. The selected
features, together with the true m and h,,, form the sample set. 75% is used for training the RF regressor. Note that the RF
regressor is trained using the same sample set as the sea ice classification.

The well-trained RF regressor is subsequently utilized to estimate 1 and h., for SAR scenes that do not overlap with DMS
measurements. Selected features from SAR images, along with z; from ancillary data, serve as inputs to the RF regression
model for estimating m and R, Subsequently, the topographic phase éo can be derived by solving Eq. (8), and transformed
into total freeboard h,,,q using Eq.(3). For SAR scenes overlaid with DMS measurements, validation of height retrieval

accuracy over the testing subset (25%) will be given in Sect. 4.1.

4 Results

Following the two-step approach developed in Sect. 3, this section obtains the SAR-derived DEM from 162 dual-pol InSAR
pairs that cover the sea ice in the Weddell and Ross Seas. We verify the accuracy of the SAR-derived DEM. We further analyze
the variation of total freeboard and roughness along the southward direction and examine the statistical characteristics of sea

ice DEM across various geographic regions.
4.1 Sea ice topography retrieval and validation

The proposed two-step approach for sea ice DEM retrieval is visually and quantitatively validated based on the four scenes
overlapped with DMS measurements. The SAR backscattering intensities over the four scenes are displayed in the left column
in Fig. 6. In the first step, the proposed classification scheme demonstrates good performance on the testing set, with an accuracy
of 0.84 and a confusion matrix presented in Fig. 7(a). The classifier is then applied to the entire SAR images, including the
region not overlapped by DMS DEM, and the classified maps are shown in the middle column of Fig. 6.

In the second step, the sea ice DEM (h0d4_sar) is obtained by merging hy,oq and hingar over LPI and SPI. Note that
hmod_sARr represents the total freeboard relative to the water surface retrieved from the pixel at 10 X 10m spacing size. The
retrieved sea ice DEMs are compared with Apyg over the testing set, shown in Fig. 7(b). The RMSE between Apoq_sar and

hpms is 0.26 m. This result is promising as Dierking et al. (2017) suggested the satisfactory accuracy for a sea ice DEM being
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Figure 6. First column: SAR backscattering intensity in HH polarization. Second column: sea ice classification. Third column: sea ice DEM
(hmod_sar) over the four scenarios. Each row corresponds to Scene No.1-4 in Fig. 2, respectively. The spatial resolution is 10 x 10m. The
void pixels in the second and third columns represent water areas excluded from processing due to yinsar < 0.3. The white dashed line

indicates the flight track overlapped by the DEM DEM (hpwms)
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Figure 7. (a) Confusion matrix for sea ice classification. (b) Comparison between the reference height and the derived height over LPI and

SPIL

less than 0.3 m. Note that the average RMSE value of LPI without compensating the penetration bias is ~ 1.10m (Huang et al.,
2021).

The hmod sar over the entire SAR images are displayed in the right column of Fig. 6. For each scene, the white dash
line delineates a 50km x 100m strip overlapped with DMS DEM. By extracting the values at the center of the strip, the height
profiles are presented in Fig. 8, where hp,0q_sar performs good agreement with the reference data (hpys) and well capture the
topographic variation. Considering that hpyg already contains an uncertainty of 0.2m (Dotson and Arvesen., 2012, updated

2014), these results prove the effectiveness of the proposed two-step approach for sea ice DEM retrieval over both SPI and LPI.
4.2 Sea ice topography along the southwards direction

We obtain sea ice DEM over the total 162 images using the two-step approach. A visualization of the derived sea ice DEM can
be found in the appendix Fig. AS and A6. The derived DEM is downsampled to a resolution of 500 m, utilized in the subsequent
analyses.

The northernmost location on each segment is selected and marked with star symbol in Fig. 1. Subsequently, we characterize
the variation of sea ice category, total freeboard, and roughness moving southward, using distances relative to the northernmost
locations and averaging over every 100 km interval. These topographic variations along the distance are illustrated in Fig. 9- 11.

The first column shows the LPI percentages estimated from the proposed two-step approach and compared with the Ice
Charts. The overall trend of estimated LPI percentages correlates well with dominant ice types and ice concentrations from
the Ice Charts across most segments (W1-U, W1-L, W2-U, W4, W5-U, W5-L, and R5). Specifically, W1-U and W1-L are
explained as two examples. W1-U from 0 — 120km is covered by 100% MY, where the LPI percentage reaches its highest
value (58%). As the dominant ice transitions from MYT to FYT from 120 — 400km, the LPI percentage decreases accordingly.
The dominance of MYT ice from 400 —600 km also corresponds to the increasing LPI percentage. For W1-L, where the distance
between 500 — 600km is covered by 100% MYT, and the LPI percentage peaks before decreasing after 650 km distance as FYI

becomes dominant. The lowest LPI percentage is found around 1200 km, consistent with the occurrence of TI at this distance.
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The observed similar trend can be explained by the general assumption that MYT is thicker and less saline, allowing for
deeper radar penetration compared to FYI and TI. However, penetration depth is influenced by various factors not only ice
age, but also ice salinity, snow condition, flooding effects, and temperature. This explains the discrepancies for other segments
(W2-L, W3-U, W3-L, R1-U, R1-L). Furthermore, discrepancies can also be attributed to differences in spatial resolution and
temporal gaps between Ice Charts and SAR imagery, considering the dynamic nature of sea ice.

It is essential to clarify that we utilized Ice Charts data as external information to interpret the classification results and spatial
variation of topography. However, we did not use Ice Charts to quantitatively validate the proposed method. For validation
purposes, we conducted pixel-by-pixel comparisons using co-registered DMS data.

The second and third columns in Fig. 9- 11 display the distance dependency of total freeboard (A4 sar) and roughness
(o R), respectively. Sea ice roughness is the standard deviation of the total freeboard within a 50 x 50m area. For each 100 km-
distance interval, we calculate and display the average and median values, as well as the first and third quartiles of h,0q SAR
and o using boxplots.

The Ice Charts are also used to validate and explain the topographic variation of sea ice. In general, the region with thicker
ice (e.g., MY]I) is anticipated to display higher total freeboard or larger roughness compared to the area with thinner ice, such as
FYI and TI. This hypothesis is substantiated by the agreement between topographical variations (total freeboard and roughness)
and ice types observed in Fig. 9 to 11 across most segments, with the exception of W3-L and W5-L. The sea ice is identified as
MYI between 450 — 750km in W3-L and 650 — 950km in W5-L. However, neither total freeboard nor roughness significantly
increases within these specific ranges. Minor discrepancies also persist, for instance, in W1-U and W2-L, where there is no
clear reduction in either total freeboard or roughness when FYT is present at around 600 km. These discrepancies may arise due
to the local cases where rough FYI exhibits greater roughness than smooth level MYI. FYI may also show higher elevations
when covered by very thick snow. In addition, considering that the Ice Charts data are weekly products, the inconsistencies
could be attributed to mis-coregistration caused by sea ice drift during the time lag between the Ice Charts and the SAR images.

In the northwestern Weddell Sea, we observe that the sea ice near the Antarctic Peninsula (AP) in the W1-U and W2-U
segments exhibits the highest average total freeboard (mean > 0.7m) and roughness (mean = 0.19m), shown in the first and
third rows in Fig. 9. This observation aligns with a previous study using OIB Airborne Topographic Mapper (ATM) data from
November 14 and 22, 2017 (Wang et al., 2020), which has reported that the total freeboard near the eastern AP ranges from
1.5 —2.5m. Moving outwards from the AP, the total freeboard and roughness along W1-U and W2-U demonstrate a sharp
decrease within approximately 0 — 200km before gradually increasing as it heads southward. Similar trends are observed in
W3-U (first row in Fig. 10) and W5-U (first row in Fig. 11), with a more subtle decrease in total freeboard within the 0 —200km
range, compared to W1-U and W2-U, followed by a southward increase. Conversely, in the initial 0 — 200km of W4 (third
row in Fig. 10), there’s no observed decrease in total freeboard or roughness. Instead, a gradual increase in both parameters
is evident as one moves southward, consistent with the dominance of MYI beyond 100km from the Ice Charts data. In the
southeastern region, segments W1-L, W2-L, W3-L, and W5-L exhibit similar patterns in the topographic variation, with total
freeboard and roughness generally decreasing towards the south as they approach the Coats Land (see location in Fig. 1). This

trend can be explained by the increasing occurrence of FYTI or TI beyond around 1000 km from the Ice Charts data.
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Figure 9. Sea ice characteristics along the southwards direction along W1 and W2 segments. The blue line in the first column displays the LPI
percentages derived from SAR images, and the blue dot indicates the ice types obtained from the Ice Charts. The second and third columns
plot the total freeboard (hmod_sar) and roughness (o r), respectively. Distance is measured from the northernmost SAR image reference
point towards the south. The orange line denotes the average values of Amoagar and or. The box’s upper and lower boundaries represent
the first (Q1) and third (Q3) quartiles, while the upper (lower) whisker extends to the last (first) sample outside of Q3 +1.5x(Q3-Q1).
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Figure 10. Sea ice characteristics along the southwards direction along W3, W4, and R5 segments. The blue line in the first column displays

the LPI percentages derived from SAR images, and the blue dot indicates the ice types obtained from the Ice Charts. The second and third

columns plot the total freeboard (hmod sar) and roughness (o r), respectively.
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Figure 11. Sea ice characteristics along the southwards direction along W5 and R1 segments. The blue line in the first column displays
the LPI percentages derived from SAR images, and the blue dot indicates the ice types obtained from the Ice Charts. The second and third

columns plot the total freeboard (hmoa_sar) and roughness (o r), respectively.
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The observed variation in sea ice topography can result from the formation and dynamics of sea ice in the East Weddell
(E-Wedd) and West Weddell (W-Wedd) regions, which are defined by specific longitude ranges: E-Wedd encompasses 15°E to
40°W, while W-Wedd extends from 40°W to 62°W. Segments of W1-U, W2-U, W3-U, W4, and W5-U are located within the
W-Wedd, which has been reported for the presence of MYI in the Antarctic (Lange and Eicken, 1991). Sea ice initially forms
in the eastern region and then circulates clockwise within the cyclonic gyre of the southern Weddell Sea. Later, older sea ice
drifts outward northwestern (Kacimi and Kwok, 2020). The sea ice undergoes thickening and deformation as it drifts (Vernet
et al., 2019; Kacimi and Kwok, 2020), resulting in increased total freeboard and greater roughness in the northwestern Weddell
Sea.

In the Western Ross Sea, the sea ice along the RS segment (last row in Fig. 10) exhibits greater total freeboard and roughness
near Terra Nova Bay (see Fig. 1 for the location), with decreasing southeastward. This observation aligns with the transition
of dominant ice types from FYI to TI in that direction. This observation is also consistent with recent research (Rack et al.,
2021), where airborne measurements in November 2017 revealed deformed sea ice exceeding 10m in thickness within the first
100km south of Terra Nova Bay, and thinner ice was observed towards the southeastern area near McMurdo Sound (see Fig. 1
for the location). Satellite data also confirmed a region of thinner ice influenced by the Ross Sea Polynya, with thicker ice
located westward (Kurtz and Markus, 2012). The observed pattern can be attributed to significant deformation in the Western
Ross Sea caused by wind-driven shearing, rafting, and ridging within a convergent sea ice regime (Hollands and Dierking,
2016). This deformation leads to potentially thicker sea ice compared to the eastern part (Rack et al., 2021).

For the R1 segment located in the Eastern Ross Sea (third and fourth rows in Fig. 11), although the sea ice exhibits relatively
stable total freeboard, which agrees with the consistent presence of predominantly FYI, the roughness decreases towards the
southeastern. This may be attributed to the influence of ocean circulation, considering that the R1 segment is situated farther
from the land than the other segments. The variation of the roughness along the R1 segment suggests that ice topography
provides add-on information that can be useful to be integrated into the operational ice charting. Furthermore, since the edges
of ice floes with open water between the floes can also contribute to the ice roughness, combining ice topography with ice

concentration can help characterize the sea ice more comprehensively.
4.3 Regional variation of sea ice topography

Figure 12(a) displays the topographic variation across different segments. We present the average and median values, as well as
the first and third quartiles of total freeboard and roughness using boxplots. The mean values are listed in Table 3. Additionally,
the percentages of the three ice types within each segment, calculated from the Ice Charts for reference, are presented in
Fig. 12(b).

Generally, sea ice in the northwestern Weddell Sea (W1-U, W2-U, W3-U, W4, W5-U) exhibits higher average total freeboard
(> 0.5m) compared to that in the southeastern Weddell Sea and the Ross Sea (W1-L, W2-L, W3-L, W5-L, R1-U, R1-L, RS),
see detailed values in Table 3. W1-U and W2-U exhibit the highest average total freeboard of 0.8 m and 0.72m, respectively,
along with the largest average roughness of 0.19m. This is comparable with the total freeboard retrieved from ICESat-2

(Kacimi and Kwok, 2020), reporting an average of 0.6 — 0.7m total freeboard nearby the Eastern AP between April 1 and
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Table 3. Average total freeboard and roughness for each segment, as well as the Kolmogorov-Smirnov (KS) values between the observed

total freeboard and modeled distributions (i.e., exponential normal and log-normal). The smaller KS value is in bold.

segment Mean Mean KS exp-normal  KS log-normal
total freeboard (m)  roughness (m)
W1-U 0.80 0.19 0.083 0.106
WI1-L 0.46 0.12 0.064 0.05
W2-U 0.72 0.19 0.052 0.07
W2-L 0.42 0.12 0.079 0.054
W3-U 0.50 0.11 0.113 0.2
W3-L 0.39 0.12 0.065 0.05
W4 0.57 0.18 0.035 0.072
W5-U 0.52 0.16 0.074 0.076
W5-L 0.44 0.11 0.038 0.078
R1-U 0.49 0.18 0.053 0.049
R1-L 0.45 0.11 0.049 0.106
RS 0.46 0.10 0.052 0.039
Overall 0.063 0.079

November 16, 2019. W4 and W5-U show average total freeboard of 0.57m and 0.52m, and average roughness values of
0.18m and 0.16 m, respectively. The above topographic values (i.e., total freeboard and roughness) are consistent with the ice
370 types presented in Fig. 12(b), where W1-U, W2-U, W4, and W5-U exhibit a substantial proportion (> 57%) of MYI, known
for greater total freeboard and roughness characteristics. W3-U, which consists of 47% MYT, exhibits a total freeboard of
0.50m but with relatively lower roughness at 0.11m, suggesting the possibility of a smooth snow-air interface over older and
thicker ice.
For the segments in the southeastern Weddell Sea and the Ross Sea (W1-L, W2-L, W3-L, W5-L, R1-L, and RS), the
375 average total freeboard remains below 0.46 m and roughness around 0.11 m. The reduced average total freeboard and roughness
correspond to ice types with fewer MY percentages (< 52%) and greater amounts of FYT and TT (> 52%). R1-U demonstrates
an average total freeboard of 0.49m and roughness of 0.18 m, with the presence of predominantly FYI throughout the region.
This observation suggests a plausible scenario of a rougher snow-air interface over younger and thinner ice (Tin and Jeffries,
2001; Tian et al., 2020).

380 4.4 Statistical analyses of sea ice topography

Studies on sea ice topography in the Arctic have extensively examined the applicability of statistical distributions such as the
log-normal distribution (Landy et al., 2020; Duncan and Farrell, 2022) and the exponentially modified normal (exp-normal)

distribution (Yi et al., 2022). However, there remains a gap in understanding the most suitable distribution models for describing
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Figure 12. (a) Total freeboard (hmod_sar) and roughness (o) derived from SAR images across the 12 segments. (b) The percentage of
multi-year ice (MY]), first-year ice (FYI), and thin ice (TI) from the Ice Charts. (c) Probability density function (PDF) of derived total

freeboard (hmod_sar) and their fits to the exponential-normal, log-normal, and normal distributions.
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the total freeboard of Antarctic sea ice. We aim to address this gap by evaluating three distribution models: Gaussian, log-
normal, and exp-normal, to determine the most appropriate probability density function (PDF) for describing the sea-ice total
freeboard across segments.

The PDF of the Gaussian distribution with mean p, and standard deviation o, is defined as:

1 _ (z—ng)?

G(z) = e %% (10)

\ /27703

The PDF of the log-normal distribution with mean e(m+a*/2) and variance e21+o7 (e"l2 — 1) follows (Gaddum, 1945):
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The PDF of the exp-normal distribution with mean s, + 1/ and variance o2 + 1/\? is given as (Foley and Dorsey, 1984):
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where the erfc(+) is the complementary error function with erfc(z) = % L. et dt.
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The observed and modeled distributions of total freeboard over each segment are depicted in the left column of Fig. 12(c).
The observed distributions of all segments exhibit asymmetrical with longer tails. A closer examination of the tail regions
(right column in Fig. 12(c)) reveals significant deviations from the Gaussian distribution, particularly in segments W1-U and
W2-U, which are covered by deformed and thicker sea ice. The observed non-Gaussian nature of total freeboard distribution
aligns with the previous studies (Hughes, 1991; Davis and Wadhams, 1995; Castellani et al., 2014; Landy et al., 2019; Huang
et al., 2021). To quantitatively evaluate the fit of non-Gaussian distributions (i.e., log-normal and exp-normal) to the observed
total freeboard, we employ the Kolmogorov-Smirnov (KS) test (Massey Jr, 1951). This test measures the goodness of fitting
by calculating the distance between the observed distribution function and the theoretical cumulative distribution function. The
values of the KS test are given in Table 3, where a lower value indicates a better fit.

In the northwestern Weddell Sea, where the segments (W1-U, W2-U, W3-U, W4, and W5-U) have average total freeboard
greater than 0.5 m, the exp-normal distribution demonstrates superior fitting performance, as evidenced by smaller KS values.
This can be attributed to the exp-normal distribution’s incorporation of an exponential component, which enables a better fit to
data with heavy or long tails compared to the log-normal distribution. Consequently, the exp-normal distribution is better suited
for characterizing the statistics of older and thicker sea ice, which often involves strong deformation and exhibits significant
total freeboard.

In the southern Weddell Sea and the Ross Sea, segments average below 0.5m in total freeboard, with varying fits between
exp-normal and log-normal distributions. The log-normal distribution exhibits a better fit for W1-L, W2-L, W3-L, R1-U,
and RS, while the exp-normal distribution is more appropriate for W5-L and R1-L. This observation suggests that the two

distributions perform comparably in characterizing the total freeboard of younger and thinner sea ice.
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Evaluating the overall performance across all segments, the exp-normal distribution outperforms the log-normal distribution,

as indicated by a smaller average KS value of 0.063.

S Discussion
5.1 Factors affecting the model performance

In the proposed two-step method (Fig 4), we obtain snow depth from the AMSR products (Meier et al., 2018), which represents
a five-day running average of snow depth over sea ice. Due to the limited spatial (12.5km) and temporal resolution in the snow
depth data, we assume a constant value of snow depth across one SAR image. Hence, for each SAR acquisition covering a
spatial extent of 50 x 19km, we compute the mean snow depth and utilize it as input parameter z; in the TLPV model.

In Fig. 8, it appears the derived total freeboard (hy,04 sar) underestimates some high and low peaks of the reference data
(hpms). One factor contributing to the underestimation of total freeboard could be the assumption of a constant average snow
depth over one SAR scene. Using a single average value of snow depth may lead to an underestimation of snow depth in
high-peak areas such as ridges, consequently resulting in an underestimation of the total freeboard. Our prior study (Huang
et al., 2021) demonstrated a mean difference of 0.31m in the derived total freeboard due to snow depth variations from 0.05 to
0.75m over Scene No.1, highlighting the impact on peak estimation. In the future, it would be interesting to adapt the proposed
method over the test sites co-locating with available high-resolution snow depth measurements.

Another factor that could potentially lead to the underestimation of high and low peaks is the residual shift between the SAR
and DMS images. Although we carefully co-registered the four SAR scenes with the DMS data, the co-registration can not be
perfect. In the process, we divided the entire overlapped transect into small patches (each corresponding to 100 x 1000 m). We
assumed the same drift location over one patch and no rotation; thus, only one shift vector was used for co-registration over
each patch. This could result in small residual shifts when the ice floes or features do not drift at the same velocity or involve
rotations within the patch. The presence of low- and high-peak ice features with narrow sizes spanning just a few pixels, poses
a challenge. Even slight residual shifts, as small as 1-2 pixels, can lead to loss or misalignment of peak structures in SAR
images. Consequently, these slightly misaligned SAR images input into the proposed model may result in an underestimation

of the total freeboard.
5.2 Compare the InSAR-derived total freeboard with existing study

Wang et al. (2020) calculated the mean total freeboard in the Weddell Sea using the IceBridge Laser Altimetry. In this sub-
section, we conduct a visual comparison between Wang et al. (2020)’s result (Fig. 13) with the four segments (W2-U, W2-L,
W3-U, and W3-L) in our study (Fig.9 and 10). Note that the window size is ten-of-kilometer scales in Wang et al. (2020)’s
study, significantly exceeding the 500 x 500 m window size we used.

We denote the region in Fig. 13 with latitude < 70°S (> 70°S) as the northern (southern) track. The Northern and Southern
Track-W segments are partially overlaid with W2-U and W2-L, respectively. In our study, the total freeboard of W2-U and
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Figure 13. The total freeboard calculated from IceBridge Laser Altimetry (copy of Fig.61 by Wang et al. (2020)). We labeled the two tracks
Track-W and Track-E. The region with latitude < 70°S (> 70°S) is referred to as the northern (southern) track.

W2-L in Fig. 9 reaches a mean value of ~ 1 m and 75% percentile value of ~ 1.5m within the first 100 km, which agrees with
the red dot in Fig. 13 Track-W. Then, the total freeboard goes down to a mean value as ~ 0.7m and 75% percentile value
of ~ 0.75m from 100 — 200m. Although there is a data gap in Fig. 13, we can see that color of the dots changes from red to
yellow, which is consistent with the decreasing trend of the total freeboard within 300 km from our results. For W2-L, the mean
total freeboard from our result is around 0.5m, agreeing with a mix of green and yellow dots (0.4 — 0.9m) in the Southern
Track-W in Fig. 13. Note that the OIB ATM data in (Wang et al., 2020) was acquired on 14 and 22 November 2017, while the
SAR images in our study were acquired on 30 and 25 October 2017 for W2-U and W2-L, respectively. The sea ice drifts and
potential melting could induce slight differences between our results and Wang et al. (2020).

The W3-U and W3-L can be compared with Northern and Southern Track-E, respectively. From Fig. 13, a mix of green and
yellow dots in the northern Track-E represent the total freeboard 0.5 — 1.2m, which agrees well with our result for W3-U, see
the first row in Fig. 10. At around 70°S, the dots transit to a mix of cyan and blue colors, representing the total freeboard of
0.2 — 0.7m, which is consistent with the W3-L in Fig. 10. The slight difference can be attributed to the temporal difference of
SAR images used in our study. Specifically, the image for W3-L was acquired on 26 October 2017, while the Track-E image

was acquired on 22 November 2017.
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6 Conclusions

In this study, we proposed a novel two-step approach integrating machine learning and polarimetric-interferometry techniques
to retrieve total freeboard from dual-pol single-pass InSAR images, taking into account the variations in penetration bias
over different ice classes. Initially, a random forest classifier was employed to categorize sea ice (i.e, SPI and LPI) based on
microwaves’ penetration. Subsequently, the standard InSAR processing technique was applied to retrieve the total freeboard
over SPI regions, where the penetration depth is negligible. For LPI regions, an inversion algorithm for the TLPV model was
developed. This algorithm can effectively compensate for the radar penetration bias into snow and ice, achieving an accurate
sea ice DEM (i.e., total freeboard). The uncertainty level is satisfactory for LPI with RMSE of 0.26 m. However, this accuracy
is insufficient for thinner ice whose height above sea level is only tens of centimetres or even less. Given that a substantial
portion of Antarctic sea ice consists of first-year ice with a thickness of approximately one meter (Scott, 2023), achieving
accurate DEM retrieval over thinner ice remains a challenge. In the future, a potential single-pass InNSAR configuration using
a higher frequency, such as Ku-band, along with a longer cross-track baseline, would result in a smaller height of ambiguity
(HoA) of less than 5m (Lépez-Dekker et al., 2011). This setup can enhance InSAR sensitivity and improve the accuracy of
total freeboard measurements.

The proposed approach was applied to a broad area in Antarctica. Overall, sea ice in the northwestern Weddell Sea exhibits
higher average total freeboard (> 0.5m) than the southeastern region and the Ross Sea, where the average total freeboard is
lower (< 0.5m). In the northwestern Weddell Sea, sea ice experiences substantial deformation near the eastern AP, followed
by a pronounced decline in both total freeboard and roughness within a range of 0 — 200km. Subsequently, there is a gradual
increase in these parameters as one moves southward. In the southeastern Weddell Sea, the total freeboard and roughness
generally decrease towards the south as they approach Coats Land. In the Western Ross Sea, thicker and rougher ice was
observed near Terra Nova Bay, while thinner ice was found in the southeastern area near McMurdo Sound. In the Eastern Ross
Sea, the stable total freeboard aligns with the prevalent presence of FYI, but roughness decreases towards the southeastern.
These findings emphasize that topographic mapping can enhance ice category delineation, providing an in-depth understanding
of sea ice characteristics.

Furthermore, the statistical analyses of the total freeboard confirmed its non-Gaussian distribution. The results further sug-
gested that the exp-normal distribution outperforms the log-normal distribution in fitting the total freeboards of regions with
an average total freeboard greater than 0.5m, particularly for older and thicker sea ice, whereas both distributions perform
comparably for regions with an average total freeboard lower than 0.5 m.

The spatial distribution of penetration depth (total freeboard minus radar freeboard) can be an interesting topic for future
research. In snow-covered sea ice, penetration is significantly influenced by local snow conditions. Hence, conducting a co-
ordinated campaign encompassing TanDEM-X acquisitions, lidar measurements, and in-situ snow assessments holds great
promise for analyzing the relation between radar freeboard and total freeboard across different snow conditions. Future studies

also involve linking the derived sea ice topographic characteristics associated with oceanographic factors (ocean current and
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bathymetry) and climatology parameters (wind and temperature). We aim to further advance our comprehension of sea ice

dynamics and evolution in Antarctica.

Appendix A: Further details of data processing and figures
Al InSAR height uncertainty across various height of ambiguity values

495 The HoA (h,) is the height of ambiguity determined by the specific InSAR configuration such as the radar wavelength, orbit

height, incidence angle, and baseline. A larger HoA will elevate the uncertainty in the InSAR-derived height. This uncertainty
(o) can be estimated by (Madsen, 1998)

hq
Op = %U Ay
where o, is the phase noise, which can be expressed as a function of the interferometric coherence (ymmsar) and the inde-

500 pendent number of looks (/Ny,) (Rosen et al., 2000)

o3 = 1 1-9fsar
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Figure A1l. Simulation of ¢, to the variations in h, and yinsar With Ny, set to be 73.
The simulated o}, to the variations in h, and y,sag is illustrated in Fig. Al. At the yusar = 0.75, oy, increases from
0.35m to 0.48 m corresponding to h, ranging from 30m to 42m. Across the studied region, both the mean and median values

of ymsar are around 0.75. Consequently, in the case of RS, the larger h,, induces a relatively larger average uncertainty in the

505 derived InSAR height (h1,sar) compared to the smaller h, InSAR configuration in our dataset.
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A2 SAR thermal noise removal
The SAR-measured backscattering intensity (0 measure) containing additive thermal noise can be denoted as
Omeasure =< (Sdenoised + N) X (Sdenoised + N)* > (Al)

where Sgenoised 18 the noise-subtracted backscattering amplitude, and IV is the additive thermal noise. Considering Sqenoised
and NV to be uncorrelated, the noise-subtracted backscattering intensity can be obtained from the following simple equation

(Nghiem et al., 1995)

Odenoised = Tmeasure — NESZ (AZ)

where N ESZ is the noise floor (i.e., the noise equivalent sigma zero (NESZ)), and all terms are in the linear scale.

=20 T
—TDX HH
—TDX VV
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Figure A2. NESZ patterns for one TanDEM-X acquisition (Scene No.1 in Fig. 2) as an example.

The TanDEM-X product contains a set of polynomial coefficients that describe the NESZ pattern for each polarization along
the range direction (Eineder et al., 2008) for both the TanDEM-X (TDX) and TerraSAR-X (TSX) images. An example of
the calculated NESZ is shown in Fig.A2 in dB scale. By converting to the linear scale, the 0genoised can be calculated by
subtracting N E.SZ from the oyeasure. We calculate the NESZ pattern for each SAR acquisition and employ Eq. A2 to generate
denoised backscattering intensities for the different polarizations (i.e., HH, VV, Pauli-1 (HH+VV), and Pauli-2 (HH-VV)) from
the TSX image. Note that for Pauli-1 and Pauli-2, we use the average N E'SZ between HH and VV channels.

A3 Ranking of SAR features

The Gini importance computed from the Random Forest (RF) classifier is given in Fig A3.
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Figure A3. Gini importance computed from the Random Forest (RF) classifier.

The Gini importance computed from the Random Forest (RF) regressor for estimating m and h,, is given in Fig A4.
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Figure A4. Gini importance computed from the Random Forest (RF) regressor for estimating m and h,,.

A4 Overview of the InSAR-derived total freeboard

The derived total freeboard over the Weddell and Ross Seas are given in Fig. A5 and A6.
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Figure AS. Sea ice DEM (hmod_sar) over the Weddell Sea retrieved from SAR images. The northernmost locations on each segment are
marked with star symbols and serve as reference points for calculating the relative distance. hmod_sar Was downsampled to 500m pixel

size.

31



1.4
70°S 12
1.0
E
e
0.8 8
o
[}
g
S Y—
750 —_—
0.6 2
0.4
0.2
0.0

160°E 170°E 180° 170°W 160°W

Figure A6. Seaice DEM (hmod_sar) over the Ross Sea retrieved from SAR images. The northernmost locations on each segment are marked

with star symbols and serve as reference points for calculating the relative distance. hmod_sar Was downsampled to 500m pixel size.

525 Data availability. TanDEM-X imagery can be acquired from the German Aerospace Center (DLR) by submitting a scientific proposal, acces-
sible at https://eoweb.dlr.de. Additionally, DMS data can be obtained from the National Snow and Ice Data Center at https://nsidc.org/data/icebridge,
while Ice Charts data are available at https://nsidc.org/data/G10033/versions/1, also from the National Snow and Ice Data Center.
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