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Abstract. The sea icetopography is essential for understanding the interactions within the air-ocean-ice system

:::
The

::::
total

:::::::::
freeboard

:::::::::
(snow+ice)

::
is

::::::
crucial

:::
for

::::::::
reflecting

:::
sea

:::
ice

::::::::
dynamics

::::
and

::::::::::
interpreting

:::
the

::::::::::
geophysical

:::::::::::
environments

:::
of

::::
polar

::::::
oceans. Single-pass interferometric synthetic aperture radar (InSAR) allows for the generation of digital elevation model

(DEM
::::::
models

::::::
(DEMs) over the drift

::::::
drifting

:
sea ice. However, accurate sea ice DEMs (i.e., snow

:::
total

:
freeboard) derived from

InSAR are impeded due to the radar signals penetrating the snow and ice layers. This research introduces a novel methodology5

for retrieving sea ice DEMs using dual-polarization interferometric SAR images, considering the variation in radar penetration

bias across multiple ice types. The accuracy of the method is verified through photogrammetric measurements, demonstrat-

ing the derived DEM with a root-mean-square error of 0.26m over a 200× 19km area. The method is further applied to

broader regions in the Weddell and the Ross Sea, offering new insights into the regional variations of sea ice topography in

the Antarctic. We also characterize the non-Gaussian statistical behavior of sea ice elevations
:::
total

:::::::::
freeboard using log-normal10

and exponential-normal distributions. The results suggest that the exponential-normal distribution is superior in the thicker sea

ice region (average elevation
::::
total

::::::::
freeboard

:
> 0.5m), whereas the two distributions exhibit similar performance in the thinner

ice region (average elevation
::::
total

::::::::
freeboard

:
< 0.5m). These findings offer an in-depth representation of sea ice elevation

::::
total

::::::::
freeboard and roughness in the Weddell and Ross Sea

::::
Seas, which can be conducted in time series data to comprehend sea ice

dynamics, including its growth and deformation.15

1 Introduction

:::
The

:
Sea ice topography refers to the ice shape, height, and large-scale roughness at the meter scale. It encompasses a variety

of ice features, including rafted ice, ridges, rubble fields, and hummocks, all of which contribute to the intricate nature of sea

ice topography (Weeks and Ackley, 1986). The presence of snow cover atop the ice surface further influences the topographic

characteristics, adding another layer of complexity to the overall sea ice topography (Massom et al., 2001).20

:::
The

:::
sea

:::
ice

:::::::::
topography

:::::
plays

::
a

:::::
crucial

::::
role

::
in

::::::::
reflecting

:::
sea

:::
ice

::::::::
dynamics

:::
and

::::::::::
interactions

::::::
within

:::
the

:::::::::::
air-ocean-ice

::::::
system.

::
It

::::::::
showcases

:::
the

::::::
spatial

:::::::::
distribution

::
of

:::::::
distinct

::::::
surface

:::::::
features

::::
such

::
as

::::
snow

:::::
dunes

:::::::::::::::::::::::::::::::::::::::
(Trujillo et al., 2016; Iacozza and Barber, 1999)

:::
and

::::::::
deformed

:::
ice

::::::::::::::::::::::::::::::
(Haas et al., 1999; Petty et al., 2016),

::::::
which

:::
are

:::::::
impacted

:::
by

:::
the

:::::
forces

:::::
from

:::::
winds

:::
and

::::::::
currents.

:::::::::
Moreover,
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::
the

:::::::::::
atmospheric

::::
drag

:::::::::
coefficient

::::
over

::::
sea

:::
ice,

::::::
which

::
is

:::::::::::::::::::
topography-dependent,

::
is

:::
an

::::::::
important

:::::::::
parameter

:::
for

::::::::::::
understanding

:::::::::
interactions

::
at
:::
the

:::::::::::::
ice-atmosphere

::::::::
boundary

::::::::::::::::::::::::::::::::::::::
(Garbrecht et al., 2002; Castellani et al., 2014).

:
25

Sea ice topography can be described through digital elevation models (DEM). The DEM stands as an essential input into sea

ice dynamic modeling, important for determining the air-ice drag coefficient and momentum flux (Garbrecht et al., 2002; Castellani et al., 2014; Nghiem et al., 2022)

. Moreover, the ,
::::::

which
:::::
refers

::
to

:::
the

::::
total

:::::::::
freeboard

:::::::::
(snow+ice)

::::::
above

:::
the

::::
local

:::
sea

:::::::
surface.

::::
The DEM (i.e., snow freeboard)

, together with
:::
total

::::::::::
freeboard)

:::
can

:::
be

::::::::
converted

:::
to

::::::::
thickness

::::
with

:::
the

::::::::::
knowledge

::
of

:
snow depth and the assumed values

of snow, ice, and seawater densities , enables the determination of
:::::::::::::::::::::
(Kwok and Kacimi, 2018)

:
.
:::::::::
Estimating

:
sea ice thickness30

(Kwok and Kacimi, 2018). This estimation is crucial in assessing the impacts of climate change on sea ice dynamics
::::
over

::::
time

:::::
offers

:::::::
valuable

:::::::
insights

:::
into

:::
the

::::::
overall

:::::::
stability

:::
of

:::
sea

:::
ice

::
in

:::
the

::::::::
changing

::::::
climate. Furthermore, mapping sea ice topography

is paramount for safe navigation in polar oceans. By providing information on ice deformation and identifying safe routes, ac-

curate sea ice topography maps contribute to ensuring the safety and efficiency of ship navigation in challenging environments

(Dammann et al., 2017).35

Sea ice elevation has been measured
:::::
DEMs

:::
can

::
be

::::::::
obtained using laser altimeter mounted on different platforms, including

helicopters (Dierking, 1995), aircraft such as IceBridge (Petty et al., 2016), and satellites like ICESat-1 (Zwally et al., 2008)

and ICESat-2 (Kacimi and Kwok, 2020). These laser altimeters provide high-spatial resolution (< 1m) in measuring sea ice

elevation
::::
total

::::::::
freeboard. However, limited spatial coverage and long revisit times (e.g., 91 days for ICESat-2) restrict their

capacity for consistent and comprehensive sea ice monitoring. In recent decades, synthetic aperture radar (SAR) has been40

of significant importance for Earth observation, offering a balance between spatial resolution (meters to tens of meters) and

swath coverage (tens to hundreds of kilometers). SAR is unaffected by weather conditions or daylight limitations, enabling

consistent data acquisition with a revisit time of around ten days. Notably, the advent of single-pass interferometric SAR (In-

SAR) sensors
:::::
sensor, exemplified by TanDEM-X, presents an unprecedented opportunity to generate sea ice DEMs for drift

(Dierking et al., 2017) and landfast (Yitayew et al., 2018) sea ice .
:::
over

:::::::
landfast

:::
sea

::
ice

::::::::::::::::::::::::::::::::::::
(Dierking et al., 2017; Yitayew et al., 2018)45

:
.
:::
For

:::::::
drifting

:::
ice,

:::
the

::::::::
accuracy

::
of
:::::::::::::

InSAR-derived
::::::

DEMs
::::
can

::
be

:::::::
affected

:::
by

:::::::::
additional

:::::
phase

:::::
shifts

:::::::
induced

:::
by

:::
ice

:::::::
motion.

::::::::::::::::::
Dierking et al. (2017)

::::::::
calculated

:::
and

:::::::::::
theoretically

:::::::::
discussed

:::
the

::::::::
sensitivity

:::
of

:::::::::::::
InSAR-derived

:::::
DEMs

::::::::::
concerning

::::::::::
ice-drifting

:::::::
velocity,

::::::
InSAR

:::::::::
frequency,

:::
and

:::::::
baseline

::::::::::::
configuration.

Nevertheless, the InSAR-derived DEM can be affected by the microwave penetration into the snow and ice layers. Dry snow

can have penetration depths up to hundreds of wavelengths (Guneriussen et al., 2001). For X-band SAR, the penetration into50

younger ice, such as new and first-year ice, is minimal due to the high salinity of the ice surface (Hallikainen and Winebrenner,

1992). On the other hand, for older and desalinated ice, such as multi-year ice, the penetration depth varies from 0− 1m de-

pending on the temperature and salinity (Hallikainen and Winebrenner, 1992; Huang et al., 2021). To account for the scattering

mechanism from the volumes (snow and ice) and layers (snow-ice-water interfaces), a two-layer-plus-volume (TLPV) model

(Huang et al., 2021) has been developed to determine the penetration depth over snow-covered old ice in the Antarctic. The55

model improves the precision of sea ice topographic mapping by offsetting the InSAR phase center to the top surface.

SAR polarimetry complements interferometry by providing valuable insights into scattering processes and has proven useful

for characterizing sea ice properties (Winebrenner et al., 1995; Ressel et al., 2016; Singha et al., 2018). For old and deformed
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ice, a radar theory has been developed to examine the relationship between scattering mechanisms and sea ice DEM (Nghiem

et al., 2022), resulting in a geophysical model function based on co-polarimetric coherence for retrieving sea ice DEM (Huang60

et al., 2022). These findings emphasize the significance of integrating polarimetric and interferometric information for precise

:::::::
accurate sea ice topography mapping using SAR imagery.

Given the variations in the microwaves’ penetration depth into snow and ice, deriving sea ice DEM from SAR imagery over a

broad spatial scale encompassing diverse ice types is still constrained. In this study, we develop an innovative two-step method

to generate sea ice DEM across multiple ice types using machine learning and polarimetric-interferometry SAR techniques.65

The initial step involves the development of a random forest classifier using specific SAR features to categorize sea ice into

two groups: younger ice (YI) and older ice (OI
::::::::::::::
small-penetration

::::::::
condition

:::
ice

:::::
(SPI)

:::
and

:::::::::::::::
large-penetration

::::::::
condition

::
ice

:::::
(LPI),

based on the penetration depth of microwaves
:::
into

:::
the

:::::
snow

:::
and

:::
ice. Subsequently, a sea ice DEM is created for each ice type.

In the case of YI
:::
SPI, standard InSAR processing is applied to determine the elevation. For OI

::::
total

::::::::
freeboard.

:::
For

::::
LPI, a novel

inversion algorithm is proposed to estimate the parameters of the developed TLPV model (Huang et al., 2021). This
:::::
model70

allows for correcting penetration bias in the InSAR signal over OI
:::
LPI, resulting in a precise sea ice DEM

:
an

::::::::
accurate

:::::::
retrieval

::
of

:::
the

::::
total

::::::::
freeboard. We validate the proposed method against the photogrammetric DEM from the IceBridge aircraft. A

root-mean-square error (RMSE) of 0.26m between the derived DEM and reference data signifies a precise elevation mapping

for both YI and OI. Throughout the paper, “sea ice elevation" is the entire vertical height (including snow depth) above the

local sea surface.
:::::::
indicates

:::
an

::::::::
improved

:::::::
accuracy

::
in
::::
total

:::::::::
freeboard

:::::::
retrieval.

:
75

We further implement the proposed two-step approach to 162 SAR images covering 12 segments (each covering an area

of ∼ 500× 20km) in the Weddell and Ross Sea
:::
Seas. This allows a broad mapping of sea ice elevation

::::
DEM

:
and roughness,

offering new insights into the topographic patterns of sea ice at a large spatial scale. Note that the roughness in this study

refers to the macroscale roughness, which is defined as the standard deviation of elevation
::::
total

::::::::
freeboard

:
within 50× 50m

window. We analyze the variation in sea ice elevation
::::
DEM

:
and roughness along the southwards direction and associate it80

with the variation in sea ice classes obtained from the Ice Chart
::
an

:::::::::
operational

:::::::
product

::::
from

:::
the

::::
U.S.

::::::::
National

:::
Ice

::::::
Center. The

statistics of sea ice elevations
:::
total

:::::::::
freeboard over various regions are modeled using the log-normal and exponential-modified

normal distributions. The findings enhance our understanding of sea ice formation and dynamics and can be used to interpret

geophysical parameters associated with sea ice topography.

The paper is structured as follows. Section 2 describes the data sets and data processing procedures. The two-step approach85

for sea ice DEM retrieval is introduced in Sect. 3. The retrieval results and interpretation of topographic characteristics are

discussed
:::::
given in Sect. 4 .

:::
and

::::::
further

::::::::
discussed

::
in

::::::
Sect. 5.

:
Finally, Section 6 concludes

:::::::::
summarizes

:
the study.

2 Data sets and processing

2.1 Study area

The region of interest includes both the Weddell Sea and the Ross Sea, as shown in Fig. 1. The SAR footprints over the two90

seas are zoomed-in in boxes A and B, respectively. The footprints comprise
:::::
consist

:::
of 12 segments, each corresponding to a
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Figure 1. Geolocation of the study area. The northernmost positions in each segment are marked with star symbols and serve as reference

points for calculating the relative distance in Sec. 4.2.

sequence of SAR acquisitions at almost
::::::
images

:::::
within

::::
the

::::
same

:::::
orbit,

:::
all

:::::::
acquired

::
at
::::::

nearly
:
the same timestamp,

:::::
with

::::
only

::::::
seconds

:::::::
varying

:::::::
between

:::::
them. The segments will be referred to as W1-U, W1-L, W2-U, W2-L, W3-U, W3-L, W4, W5-U,

W5-L, R1-U, R1-L, and R5 in the following sections for conciseness.

2.2 SAR Imagery95

The TanDEM-X is a SAR interferometer that operates as a bistatic single-pass system, capable of acquiring two images simul-

taneously (Krieger et al., 2007). The two images are co-registered single-look complex products, which can be processed to

derive sea ice DEM through interferometry.

In the study, we collected 162 SAR images over the twelve segments in StripMap mode in dual-pol channels (HH and VV).

The pixel spacing is around 0.9m× 2.7m in slant range and azimuth. The acquisition time and the number of images for each100

segment are listed in Table 1. The incidence angle (InA) is measured at the center of the scene, and the height of ambiguity

(HoA) corresponds to an interferometric phase change of 2π.
::::
Note

::::
that

:::
for

:::
R5,

:::
the

::::::
larger

::::
HoA

:::::
leads

::
to

::
a
::::::::
relatively

::::::
higher
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Table 1. Summary of SAR acquisitions and Ice Charts over the study area.

Segment
Number of

SAR images

SAR

acquisition time
HoA(m) InA(◦)

Weekly average

Ice Charts

(ending date)

W1-L 20 2017-10-24T23:30 30− 35 29 2017-10-26

W1-U 13 2017-10-29T23:41 33− 35 35 2017-11-02

W2-L 19 2017-10-25T23:13 30− 35 29 2017-10-26

W2-U 12 2017-10-30T23:23 32− 34 35 2017-11-02

W3-L 18 2017-10-26T22:56 30− 35 29 2017-11-02

W3-U 8 2017-11-22T23:05 36− 37 35 2017-11-23

W4 12 2017-11-01T22:49 32− 34 35 2017-11-02

W5-L 18 2017-11-02T22:30 30− 34 29 2017-11-09

W5-U 15 2017-10-27T22:41 31− 34 35 2017-11-02

R1-L 12 2017-11-11T07:16 33− 35 31 2017-11-16

R1-U 6 2017-10-25T07:25 34− 35 36 2017-10-26

R5 9 2017-11-07T09:58 40− 42 35 2017-11-09

::::::
average

::::::::::
uncertainty

::
in

:::
the

::::::
derived

::::::
InSAR

::::::
height

::::::::
(hInSAR)

::::::::
compared

::
to
:::::

other
::::::
InSAR

::::::::::::
configurations

::::
with

:::::::
smaller

:::::
HoA.

:::::
More

:::::
details

:::
can

:::
be

:::::
found

::
in

:::
the

:::::::::::
appendix A1.

:

The multilooking processing was conducted using a 4× 12 window, resulting in a ∼ 10× 10m pixel spacing in azimuth105

and range.
::::::
ground

::::::
range.

::::
This

:::::::::
resolution

::::::::::::
(∼ 10× 10m)

::::
was

:::::::::::
subsequently

:::::::
utilized

:::
for

:::
the

::::
sea

:::
ice

:::::::::::
classification

::::
and

:::::
DEM

:::::::
retrieval

::::::
detailed

:::
in

::::::::
Section 3. The backscattering intensity σmeasure of the images includes additive thermal noise, which can

be described by the noise equivalent sigma zero (NESZ) and assumed to be uncorrelated with the signal (Nghiem et al., 1995).

::::::::
Removing

:::
the

:::::::
thermal

:::::
noise

::::::
allows

:::
for

:
a
:::::
better

::::::::::::
representation

:::
of

:::
sea

:::
ice

:::::::
features,

::::::
which

::
is

::::::
crucial

:::
for

:::
ice

:::::::::::
classification.

:
We

denoised backscattering intensities for the different polarizations (i.e., HH, VV, Pauli-1 (HH+VV), and Pauli-2 (HH-VV)) by110

subtracting the noise equivalent sigma zero (NESZ) from the σmeasure (Huang et al., 2022). These denoised
::::
More

::::::
details

:::::
about

::
the

:::::::
thermal

:::::
noise

:::::::
removal

:::
can

:::
be

:::::
found

::
in

:::
the

::::::::
appendix

:::
A2.

::::
The

:::::::
denoised

:::::::::::::
backscattering intensities are used in the following

sections.

2.3 Optical Digital Mapping System (DMS) data

With an objective to investigate Antarctic sea ice topography, Operation IceBridge (OIB) and TanDEM-X Antarctic Science115

Campaign (OTASC) (Nghiem et al., 2018) was successfully carried out along a portion of the W1, shown in Fig. 2a. Equipped

with a digital mapping system (DMS), the OIB aircraft captured optical images (Dominguez, 2010, updated 2018) and gener-

ated DEM using photogrammetric techniques at a spatial resolution of approximately 40cm×40cm
:::
with

::
a
::::::
vertical

::::::::
accuracy

::
of

::::
0.2m

:
(Dotson and Arvesen., 2012, updated 2014). The DMS acquisitions occurred between 17:45 and 18:44 UTC on October

5



Figure 2. (a) Geolocation of DMS measurements superimposed on four SAR footprints in segment W1-U. Zoomed-in views of DMS digital

images at points A and B (green dots) are displayed in (b) and (c), respectively.

29, 2017. Figure 2b and c showcase DMS optical images over specific areas, highlighting a diverse range of sea ice features,120

including ridges, deformed ice, smooth ice with snow cover, and snow-free ice.

In this study, we geocoded the DMS DEM to match the same coordinates and resolution as the multilooked SAR im-

age, which is approximately 10× 10m in both range and azimuth. The calibration of the
::::
Note

:::
that

:::::
DMS

:::::
DEM

:::::
gives

::::::
height

:::::
values

:::::::
relative

::
to

:::
the

:::::::
WGS-84

::::::::
ellipsoid.

:::
To

:::::
obtain

:::
the

::::
total

:::::::::
freeboard,

:::
we

::::::::
calibrated

:::
the

:
DMS DEM to the local sea level was

accomplished through a manual process involving the selection of the water surface from DMS images (Huang et al., 2021).125

:::
The

::::::::
calibrated

:::::
DMS

::::::
DEM,

:::::::::
henceforth

::
is

::::::
referred

:::
to

::
as

:::::
DMS

::::
DEM

:::
for

:::::::
brevity.

As the sea ice is constantly moving, co-registration is crucial to compensate for the time lag (∼ 6 hours) between the DMS

sensor and TanDEM-X. To achieve this, we carefully aligned the two data by identifying distinctive sea ice features in both

optical and SAR images (Huang et al., 2021, 2022).
:::
Note

::::
that

:::
the

::::::::
segments

::::::
lacking

:::::::::
distinctive

:::
sea

:::
ice

:::::::
features

::
in

::::::
optical

::::
and

::::
SAR

::::::
images

:::::
were

:::::::::
eliminated

::
to

::::::
ensure

::::::::::::
co-registration

::::::
quality.

:
The co-registered DMS DEM is used as reference data in this130

study.

2.4 Ice Charts

Weekly sea ice concentration
:::
The

::::
U.S.

::::::::
National

:::
Ice

:::::::
Center’s

:::::::::
Antarctic

:::
sea

:::
ice

:
charts (referred to as Ice Charts hereafter)

represent the average
::::
offer

::::::
weekly

:::::::
products

::::::::
detailing

::::
total

:::
sea

:::
ice

::::::::::::
concentration,

::::::
partial

::::::::::::
concentration,

:::
and

:
stage of develop-

ment along with respective concentrations over a 7-day period (U.S. National Ice Center., 2022).
:::::::::::::::::::::::::::
(U.S. National Ice Center., 2022)135

:
. The Ice Charts covering the date of SAR acquisitions are listed in Table 1.
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Table 2. Stage of develops for ice type categories (U.S. National Ice Center., 2022).

Ice Stage of development Thickness (cm) Ice type

New ice

Nilas, ice rind

Young ice

Gray ice

Gray-white ice

< 10

< 10

10−< 30

10−< 15

15−< 30

Thin ice (TI)

FYI

Thin FYI

Medium FYI

Thick FYI

≥ 30− 200

30−< 70

70−< 120

≥ 120

First-year ice (FYI)

Old ice

2nd year ice

multiyear ice

N/A Multiyear ice (MYI)

The Ice Charts are provided in Shapefile format as grids with a spatial resolution of 10× 10km. For each specified latitude

and longitude, three ice concentration values are given, each corresponding to a different stage of ice development. Details

of these stages and their corresponding thicknesses can be found in the first and second columns of Table 2, respectively. The

postprocessing of the Ice Charts consists of two steps. First, we categorized the three stages of ice into thin ice (TI), first-year140

ice (FYI), and multiyear ice (MYI) types according to the third column of Table 2. Next, we calculated the average ice type by∑3
i=1 ICi × ITi, where ICi denotes the ice concentration value and ITi stands for the ice type index for each stage i. Ice-type

indices (ITi) are assigned as 0 for TI, 1 for
::::::::
extracted

:::
the

::
ice

::::::::::::
concentration

:::::
values

:::
for

:::
TI, FYI, and 2 for MYI

::::
MYI,

::::::::::
respectively.

2.5 SAR interferometry

Single-pass interferometer acquires two simultaneous observations, denoted as s1 and s2. The complex interferogram γ and145

the interferometric phase ϕγ can be described as (Cloude, 2010)

γ = s1s
∗
2 (1)

ϕγ = arg{s1s∗2} (2)

The further processing of ϕγ includes flat earth removal, interferogram filtering, low-coherence area mask, and phase un-150

wrapping (Huang and Hajnsek, 2021). The resulting ϕ
′

γ is
:::
can

::
be converted to height by

hInSAR = ha

ϕ
′

γ

2π
(3)

7



where hInSAR is the height of InSAR phase center and ha is the HoA related to the InSAR baseline configuration provided in

Table 1.

The complex interferometric coherence γ̃InSAR between the two images can be estimated by (Cloude, 2010)155

γ̃InSAR = γInSAR · eiϕγ =
< s1s

∗
2 >√

< s1s∗1 >< s2s∗2 >
(4)

where the symbol < . > denotes an ensemble average within a 4× 12 multilooking window. Pixels with γInSAR < 0.3 were

designated as water areas and excluded from further processing. The above interferometric processing was carried out using

the GAMMA software.

:::
The

:::::::
hInSAR :::::::

obtained
::::
from

:::::
Eq. 3

::::
was

:::::
further

:::::::::
calibrated

::
to

:::
the

:::::::
average

::::
water

:::::::
surface.

:::::::
Instead

::
of

:::::::::
identifying

:::::
water

:::::
pixels

::::
that160

::::
were

::::::
masked

::::
out

:::
due

::
to

:::
the

::::
low

::::::
InSAR

::::::::
coherence

::::
(less

::::
than

:::::
0.3),

::
we

:::::::
selected

:::::::
smooth

:::
and

::::
new

:::
ice

:::::::
regions,

::::::::
assuming

::::
they

:::
are

:::
thin

:::::::
enough

:::
and

::::
their

::::::::
elevation

::::
(i.e.,

:::::
radar

:::::::::
freeboard)

::
is

::::::::
negligible

::::
and

::::::::::::
approximately

:::::
equal

::
to

:::
the

:::::
water

:::::::
surface.

:::
The

:::::::
smooth

:::
and

::::
thin

::
ice

:::::::
regions

:::::::
typically

:::::::
exhibit

::::
very

:::
low

::::::::::::
backscattering

:::::::::
intensities

::
in

:::::
SAR

:::::
image

::::::::::::::::::
(Dierking et al., 2017)

:
.
:::::::::
Therefore,

:::
we

::::::
selected

::::::
pixels

::::
with

::::::::::::
backscattering

:::::::::
intensities

:::::
within

:::
the

:::::
range

::
of

:::::::
−19dB

::
to

::::::::
−18dB,

::::::
slightly

:::::
above

::::::::::::
TanDEM-X’s

::::
noise

:::::
level

::::::::
(−19dB),

:::
and

:::::::::
generated

:
a
:::::::::
histogram

::
of

::::::
hInSAR::::::

values
::
for

:::::
these

::::::
pixels.

:::
We

:::::::::
determined

:::
the

:::
3rd

:::::::::
percentile

::
of

:::
the

:::::
height

::
of

:::::
these165

:::::
pixels

::
as

:::
the

:::::
water

::::::
surface

::::::::
elevation.

::::
The

::::::::
threshold

:::::
value,

::::
i.e.,

::
the

::::
3rd

:::::::::
percentile,

:::
was

::::::
chosen

:::::
based

:::
on

:::::::
applying

:::
the

:::::::
method

::
to

:::
four

:::::
SAR

::::::::
scenarios

:::::::
overlaid

::::
with

::::
DMS

::::::
DEM.

:::
By

:::::::
choosing

:::
the

:::
3rd

:::::::::
percentile

::
as

:::
the

:::::
water

::::::
surface

:::::
level,

:::
we

::::::
ensured

:::::::::
alignment

:::::::
between

:::
the

:::::
water

::::::
surface

:::::
levels

::::::
derived

:::::
from

::::::
InSAR

:::
and

:::::
those

:::::
from

::
the

:::::
DMS

:::::
data,

::::
thus

::::::::
validating

:::
the

::::::::
threshold

:::::
value.

:::::
Note

:::
that

:::
we

:::::::
estimate

::
a
:::::
single

:::::
value

:::::::::::
representing

:::
the

:::::
water

::::::
surface

:::
for

::::
each

:::::
SAR

::::::
scene.

::::::::
However,

:::
it’s

::::::::
important

::
to
:::::

note
:::
that

::::
this

::::::
method

::::
may

::::::::
introduce

::::::::::
inaccuracies

::::
due

::
to

:::
the

:::::::::::::
centimeter-level

:::::
radar

::::::::
freeboard

::
of

:::
the

:::::::
selected

::::
thin

:::
and

::::
new

:::
ice,

:::
as

::::
well

::
as

:::
the170

:::::::::
fluctuating

::::
water

:::::::
surface

:::::
within

:::::
each

::::
SAR

::::::::
scenario.

2.6 SAR polarimetry

SAR Polarimetry reflects scattering mechanisms and has been proven as a proxy for characterizing sea ice properties (Wak-

abayashi et al., 2004; Ressel et al., 2016; Huang and Hajnsek, 2021; Singha et al., 2018; Nghiem et al., 2022).

2.6.1 Co-polarization ratio175

The co-polarization (coPol) ratio (RcoPol) measures the backscattering intensity ratio between the dual-pol channels and can

be calculated as follows

RcoPol =
σHH

σVV
(5)

where σHH and σVV are denoised SAR backscattering intensity in dual-pol channels in linear scale. RcoPol related to
::::::::
extracted

::::
from

::::::
L-band

:::::
SAR

::::::
images

:::
is

:::::::::
associated

::::
with

:
the dielectric constant , has been considered

:::
and

:::
has

::::::::
therefore

:::::
been

::::
used

:
as180

an indicator for
:
of

:
ice thickness (Wakabayashi et al., 2004).

:::::
Further

:::::::::::
investigation

:::
is

:::::::
required

::
to

:::::::::
determine

::
if

::::::
RcoPol:::::

from

::
the

:::::::
X-band

::::
can

:::
also

:::::
serve

:::
as

:
a
:::::
proxy

:::
for

:::
ice

:::::::::
thickness.

:
Additionally, RcoPol has been identified as an important feature for
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discriminating thicker ice and water and is an effective tool for classifying sea ice in X-band SAR imagery (Ressel et al.,

2016).

2.6.2 Pauli-polarization ratio185

Similarly, we can obtain the Pauli-polarization ratio (Rpauli) by

RPauli =
σP1

σP2
=

|sHH + sVV|2

|sHH − sVV|2
:::::::::::::

(6)

where σP1 and σP2 are denoised SAR backscattering intensity in Pauli-1 and Pauli-2 polarizations in linear scale, respectively.

:::
sHH::::

and
::::
sVV :::

are
:::::::::
single-look

::::::::
complex

::::::
images

::
in

:::::::
dual-pol

::::::::
channels,

::::::::::
respectively.

:

2.6.3 Complex coPol coherence190

The complex coPol correlation γ̃coPol is calculated as (Lee and Pottier, 2009)

γ̃coPol = γcoPol · eiϕcoPol =
< sVVs

∗
HH >√

< sVVs∗VV >< sHHs∗HH >
(7)

where γcoPol is the coPol coherence magnitude and ϕcoPol is the coPol phase. sHH and sVV are single-look complex images in

dual-pol channels, respectively.

γcoPol measures the degree of electromagnetic wave depolarization caused by the surface roughness and the volume scat-195

tering. This parameter has been shown to be associated with sea ice elevation
:::::
DEM (Huang and Hajnsek, 2021) and thickness

(Kim et al., 2011). ϕcoPol is sensitive to the anisotropic structure of the medium and deviates from 0◦ when the signal delay

becomes polarization dependent (Leinss et al., 2014). ϕcoPol has been utilized in retrieving fresh-snow anisotropy over ground

(Leinss et al., 2016) and characterizing the topography of snow layer (Huang and Hajnsek, 2021).

3 Methodology200

This section introduces an innovative
:::::::
two-step approach for retrieving sea ice elevation

::::
DEM

:
across various ice conditions,

shown in Fig. 3. .
:
The initial step is categorizing sea ice into OI and YI

:::
LPI

:::
and

::::
SPI types based on radar penetration depths.

The second step involves generating the sea ice DEM using different methods for the two sea ice categories. The two steps

:::::::
two-step

::::::::
approach

::
is

::::::::
presented

::
in

::::::::
Fig. 3(a)

:::
and

:
are detailed in Sect. 3.1 and Sect. 3.2, respectively. The method is developed

and validated using the four SAR images
::::::
(Fig. 2)

:
overlapped with DMS DEM, see Fig. 2.

:
.205

3.1 Sea ice classification

The
::
As

::::::
shown

::
in

:::::::
Fig. 3(a),

::
in
:::::
Step

::
1,

:::
the

:::
sea

::
ice

::
is
::::::::
classified

::::
into

:::
SPI

::::
and

:::
LPI

:::::
using

::
a random forest (RF) classifier (Breiman,

2001)is implemented to categorize sea ice, shown .
::
A

:::::::
detailed

:::::::::
description

::
of

:::
the

:::::::
training

:::
and

::::::::
validating

:::::::
process

::
for

:::
the

::::::::
classifier

:
is
:::::
given

:
in Fig. ??, where SAR images and

::::
3(b),

:::::
where

:
DMS DEM (hDMS) are utilized as inputs into the proposed flowchart

9



Figure 3.
::
(a)

:
The proposed two-step approach for sea ice DEM retrieval.

::
(b) The details

::::::
(training

:::
and

::::::::
validation) of the sea ice classifier and

::
(c) the PolInSAR height retrieval moduleare illustrated in Fig. ?? and ??, respectively.

(Fig. ??).
:::::::
reference

:::::
data.

:
The penetration depth hpene = hDMS −hInSAR, where hDMS measures the

:::
total

:::::::::
freeboard,

::::
i.e.,210

elevation from the snow-air surface relative to the seawater
:::::
water

::::
level. InSAR DEM (hInSAR) measures the

::::
radar

::::::::
freeboard,

::::
i.e.,

::
the

:
elevation of the InSAR phase center

:::::
relative

::
to
:::
the

:::::
water

::::
level, which can be somewhere inside of the snow or ice, depending

on the snow and ice condition. hInSAR is generated from TanDEM-X InSAR pair following the principles in Sect. 2.5. In

general, microwaves can penetrate much shallower into the younger and more saline compared to the older and less saline

sea ice(Hallikainen and Winebrenner, 1992).
:
.
:::
The

::::
sea

::
ice

::::::::::
penetration

:::::
depth

::::
over

::::::::
multiyear

:::
ice

::
is

::::::::
suggested

::
to

:::
be

::::::::
0.3− 1m

::
at215

::
the

::::::::
X-band,

:::::
which

:::::
varies

::::
with

:::::::::::
temperature

::::::::::::::::::::::::::::::
Hallikainen and Winebrenner (1992).

:::::::::::
Desalination

:::::
within

:::
ice

::::::
ridges

::::::::
increases

:::
the

:::::::
effective

:::::::::
penetration

:::::
depth

:::::::::
compared

::
to

::::
level

:::
ice

::::::::::::::::::
(Dierking et al., 2017)

:
.
::::::::::
Considering

:::::
these

:::::::
findings

:::
and

:::::
given

:::
the

:::::
study

:::::
area’s

::::
snow

:::::
cover

:::
and

:::
the

::::::::
presence

::
of

::::::::
deformed

:::
ice

:::::::::
formations

::::
such

::
as

::::::
ridges,

:::
we

:::::
chose

:
a
::::::::::
penetration

:::::
depth

::
of

:::::
0.3m

::
as

:::
the

::::::::
threshold

10



::
for

::::::::::::
distinguishing

:::
the

::::
two

::
ice

::::::
types. Hence, pixels with hpene < 0.3m are labeled as YI

:::
SPI, whereas those with hpene ≤ 0.3m

are OI
:::::::::::
hpene ≥ 0.3m

:::
are

::::
LPI.220

Flowchart for sea ice classification.

We investigate a range of features for classification, including denoised backscattering intensity in HH polarization (σHH),

polarimetric features such as coPol ratio (RcoPol), Pauli-polarization ratio (RPauli), coPol coherence magnitude (γcoPol), and

coPol phase (ϕcoPol), as well as interferometric features including InSAR coherence magnitude (γInSAR:::::::
γInSAhR) and height

of interferometric phase center (hInSAR). To improve computational performance, we rank features based on Gini Importance225

(i.e., Mean Decrease in Impurity), which measures the average gain of purity by splits of a given variable. The ranking of

the features is illustrated in Fig. A3, where the top five features, i.e., RPauli, σHH, hInSAR, γcoPol, and γInSAR are selected as

effective predictors for the RF classifier.
:::
The

:::::::
ranking

::
of

:::
all

:::
the

:::::
SAR

::::::
features

::
is
:::::
given

:::
in

:::
the

::::::::
appendix

:::::::
Fig. A3.

::::
Note

::::
that

:::
the

::::::::
computed

::::
Gini

:::::::::
importance

::
is

:::
not

::::::::
inherently

:::::::
specific

::
to

:
a
::::::::
particular

::::
class

::
or
:::
ice

:::::
type.

::::::
Instead,

::
it

::::::::
represents

:::
the

::::::
relative

::::::::::
importance

::
of

:::::::
features

::
in

::::::
making

::::::
overall

:::::::::::
classification

::::::::
decisions

::::::
within

:::
the

:::::::
context

::
of

:::
the

:::::
entire

:::::::
dataset.

:::::::::
Therefore,

:::
the

:::::::::
importance

:::::
level230

:::::::::
determined

::
by

:::::
Gini

:::::::::
importance

::
is

:::
not

:::::::
specific

::
to

::::::::
individual

:::
ice

:::::
types

:::
but

::::::
reflects

:::
the

::::::::::
significance

::
of

:::::::
features

:::
for

:::
the

:::::::::
classifier’s

:::::
overall

:::::::::
predictive

:::::::::::
performance

:::::
across

:::
all

::::::
classes.

:

The selected features together with the ice labels (i.e., OI and YI
:::
LPI

:::
and

::::
SPI) form the sample set. 75% is used for training

the RF classifier, implemented in Python using default hyperparameters. Since sample numbers for the YI and OI
:::
SPI

::::
and

:::
LPI

:
classes are well-balanced (48% and 52%, respectively), no balanced training strategy is particularly implemented. The235

validation of ice classification over the testing subset (25%) will be given in Sect. 4.1.

Gini importance computed from the Random Forest (RF) classifier.

3.2 DEM generation

Based on the classification map,
::
As

::::::
shown

::
in

::::::::
Fig. 3(a),

::
in

::::
Step

::
2,

:
we separately retrieve the sea ice elevations

:::::
DEMs for the

two categories of ice . For YI
::::
based

:::
on

:::
the

:::::::::::
classification

:::::
map.

:::
For

::::
SPI, the conventional InSAR processing (Section 2.5) is240

conducted, given the minimal penetration depth attributed to the saline ice. On the other hand, for OI
:::
LPI

:
which is subject to

radar signal penetration, we apply the TLPV model developed in (Huang et al., 2021), which incorporates InSAR processing

and corrects for the radar penetration bias into the snow-covered old ice.

The TLPV model includes surface scattering from the top and bottom interfaces and volumes scattering from the snow and

ice, shown in Fig. 4. The model was further simplified by merging the contributions of the snow volume, the ice volume, and245

the top layer into one Dirac delta (Huang et al., 2021):

γ̃InSAR

≈ eiϕ0
1 · eiϕ1 +m · eiϕ2

1+m

= eiϕ0 γ̃mod(m,z1,z2)

= eiϕ0 γ̃mod(m,z1,hv)

(8)
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Figure 4. The schematic of the proposed TLPV model for sea ice (Huang et al., 2021).

where ϕ0 is the topographic phase at the snow-air interface, m refers to the layer-to-layer ratio, ϕ1 = κz_volz1, ϕ2 = κz_volz2, z1

and z2 are the locations of the layers, respectively. hv = z1−z2 refers to the depth between the top and bottom layer.
:::
It’s

:::::
worth

:::::
noting

::::
that

:::
the

::::::
bottom

:::::
layer

::::
may

:::
not

::::::
always

:::
be

::
at

:::
the

::::::::
ice-water

::::::::
interface.

::
In

::::::
certain

:::::::::
situations,

:::::
there

:::::
might

::
be

::
a
:::::
lower

:::::
basal250

:::::
saline

:::
ice

:::::
layer,

:::::::
inducing

::::::
strong

::::::
surface

:::::::::
scattering

::::
from

:::
the

::::::::
ice-basal

:::::
layer

:::::::
interface

::::::::::::::::::
(Nghiem et al., 2022)

:
.
::::
This

::::
basal

::::::
saline

::::
layer

:::::::
contains

:::::
brine

::::::::
inclusions

::::
with

::::::
higher

:::::::
salinity,

:::::::::::
transitioning

::::::
towards

:::
the

:::::::::::
ice-seawater

:::::::
interface

::::::::::::::::
(Tison et al., 2008).

:
κz_vol

is the vertical wavenumber in the volume which depends on the InSAR configuration such as HoA and the incidence angle,

and the dielectric constant of the volume (Dall, 2007; Sharma et al., 2012; Huang et al., 2021).
::
m

:::::
refers

::
to

:::
the

::::::::::::
layer-to-layer

::::
ratio,

::::::
which

:
is
:::
the

::::::::::::
backscattering

::::::
power

::::
ratio

:::::::
between

:::
the

:::
top

::::
and

::::::
bottom

:::::
layer:255

m=
σbottom(ω)

σtop(ω)
:::::::::::::

(9)

:::::
where

::::::
σtopω)

::::
and

::::::::::
σbottom(ω)

:::::::
denotes

:::
the

::::::::::::
backscattering

:::::
power

:::::
from

:::
the

:::
top

::::
and

::::::
bottom

::::::::
interface,

:::::::::::
respectively,

::
at

::
a
:::::
given

::::::::::
polarization

::
ω.

:::
m

:::::::::
potentially

::::::
reveals

:::
the

:::::::
relative

::::::::::
importance

::
of

:::::::::
scattering

::::
from

:::::
these

:::::::::
interfaces,

:::::::::
depending

:::
on

::::::
factors

::::
like

:::::::
interface

:::::::::
roughness,

::::::::
dielectric

::::::::
constant,

:::
and

:::::
radar

:::::::::::
polarization.

::
A

:::::
larger

:::::
value

::
of

:::
m

:::::::
signifies

:::
that

:::::::
surface

::::::::
scattering

:::::
from

:::
the

::::::
bottom

::::
layer

::::::::::::
predominates,

:::::
while

:
a
:::::::
smaller

::
m

::::::::
indicates

:::
that

::::::
surface

:::::::::
scattering

::::
from

:::
the

:::
top

::::
layer

::
is
:::::
more

:::::::::
significant.

:
260

The aim is to estimate ϕ0 and convert it into height (hmod),
:::::
which

::
is
:::
the

::::
total

::::::::
freeboard

::
of

::::
LPI. When fixing the origin at the

air-snow interface, z1 is equivalent to snow depth, which can be obtained from the AMSR Level-3 data (Meier et al., 2018).

However, Eq. (8) still contains two unknown variables, m and hv , preventing direct estimation of ϕ0.

PolInSAR height retrieval module.

To address the above issue
::::::::
Therefore, we develop a new algorithm

::::::::
PolInSAR

::::::
height

:::::::
retrieval

:::::::
module to invert the TLPV265

model and estimate m and hvfrom SAR observations using RF regression, illustrated
:
,
::::::
shown in Fig. ??. The RF regressor is

trained using the same sample set as the sea ice classification.
::::
3(c).

:::
We

::::
first

::::::::
establish

::
an

:::::::::
empirical

::::::
relation

::::
(RF

::::::::::
regression)

:::::::
between

::::
SAR

:::::::
features

::::
and

:::
the

::::
true

::::::
values

:::
of

::
m

::::
and

:::
hv :::::

which
::::

can
:::
be

::::::
derived

:::::
using

:::::
DMS

::::::
DEM

::
as

::
a
:::::
priori

:::::::::::
information.

12



::::::::::
Specifically,

:::
we

:::::::
simulate

:::
the

:::::::::::::
interferometric

:::::
phase

::::::::::::
(ϕDMS = ϕ0)

::::
from

:::
the

::::::
height

:
(hDMScan be transformed into ϕDMS by

:
)

::::
using

:
Eq. (3) and input as a priori information. With the above specific parameters,

::::::
tailored

::
to

:::
the

:::::::
specific

::::::
InSAR

:::::::::::
configuration270

::::
with

::
ha:::::

given
::
in

:::::
Table

::
1.

:::::
With

::::
snow

:::::
depth

:::
z1:::

and
:::::::
γ̃InSAR ::::

from
::::::
AMSR

::::
data

::::
and

::::::
InSAR

:::::::::::
observations,

::::::::::
respectively,

:
m and hv

values can be
:::
are derived by inverting Eq. (8) .

::
and

:::::
used

::
as

:::
true

::::::
values

:::
for

:::::::
training

::
the

:::
RF

:::::::::
regressor.

We also use Gini Importance
::
use

:::::
Gini

:::::::::
importance

:
to rank the seven features for regression, selecting the top five predictors

for estimating m and hv :̂
m

::::
and

::
ĥv: σHH, hInSAR, γInSAR, RPauli, and ϕcoPol, shown in .

::::
The

:::::::
ranking

::
of

::
all

:::
the

:::::
SAR

:::::::
features

:
is
:::::
given

:::
in

:::
the

::::::::
appendix Fig. A4. The selected features, together with the derived

:::
true m and hv , form the sample setthat is275

partitioned into training (
:
. 75% ) and testing subsets (25%).

:
is
:::::
used

::
for

:::::::
training

:::
the

:::
RF

::::::::
regressor.

:::::
Note

:::
that

:::
the

:::
RF

::::::::
regressor

::
is

::::::
trained

::::
using

:::
the

:::::
same

::::::
sample

:::
set

::
as

:::
the

:::
sea

:::
ice

:::::::::::
classification.

:

The selected features from InSAR observations
:::
The

::::::::::
well-trained

:::
RF

::::::::
regressor

::
is

:::::::::::
subsequently

::::::
utilized

::
to

:::::::
estimate

:::̂
m

:::
and

:::
ĥv

::
for

:::::
SAR

:::::
scenes

::::
that

::
do

:::
not

:::::::
overlap

::::
with

::::
DMS

:::::::::::::
measurements.

:::::::
Selected

:::::::
features

::::
from

::::
SAR

::::::
images, along with z1 from ancillary

data, are input into the well-trained
:::::
serve

::
as

:::::
inputs

:::
to

:::
the RF regression model to estimate

:::
for

:::::::::
estimating m̂ and ĥvover the280

testing set. Then .
::::::::::::
Subsequently, the topographic phase ϕ̂0 ::

ϕ̂0:
can be derived by solving Eq. (8), and tranformed into elevation

::::::::::
transformed

:::
into

::::
total

:::::::::
freeboard hmod by

::::
using Eq. (3). The

::
For

:::::
SAR

:::::
scenes

::::::::
overlaid

::::
with

:::::
DMS

::::::::::::
measurements,

:
validation of

height retrieval accuracy over the testing subset (25%) will be given in the next section.
:::::::
Sect. 4.1.

:

Gini importance computed from the Random Forest (RF) regressor for estimating m and hv .

4 Results285

Following the two-step approach developed in Sect. 3, this section obtains the SAR-derived DEM from 162 dual-pol InSAR

pairs that cover the sea ice in the Weddell and Ross Seas. We verify the accuracy of the SAR-derived DEM. We further analyze

the variation of elevation
::::
total

::::::::
freeboard and roughness along the southward direction and examine the statistical characteristics

of sea ice elevation
::::
DEM

:
across various geographic regions.

4.1 Sea ice topography retrieval and validation290

The proposed two-step approach for sea ice elevation
:::::
DEM retrieval is visually and quantitatively validated based on the four

scenes overlapped with DMS measurements. The SAR backscattering intensities over the four scenes are displayed in the left

column in Fig. 5. In the first step, the proposed classification scheme (Fig. ??) demonstrates good performance on the testing

set, with an accuracy of 0.84 and a confusion matrix presented in Fig. 6(a). The classifier is then applied to the entire SAR

images, including the region not overlapped by DMS DEM, and the classified maps are shown in the middle column of Fig. 5.295

In the second step, the sea ice DEM (hmod_SAR) is obtained by merging hmod and hInSAR over OI and YI.
:::
LPI

::::
and

::::
SPI.

::::
Note

:::
that

:::::::::
hmod_SAR:::::::::

represents
::::
total

::::::::
freeboard

:::::::
relative

::
to

:::
the

:::::
water

::::::
surface

:::::::
retrieved

:::::
from

:::
the

::::
pixel

::
at
:::::::::
10× 10m

:::::::
spacing

::::
size.

The retrieved sea ice elevations
:::::
DEMs

:
are compared with hDMS over the testing set, shown in Fig. 6(b). The RMSE between

hmod_SAR and hDMS is 0.26m. This result is promising as Dierking et al. (2017) suggested the satisfactory accuracy for a
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Figure 5. (a)
::::
First

::::::
column:

:
SAR backscattering intensity in HH polarization, (b)

:
.
::::::
Second

::::::
column:

:
sea ice classification, and (c) .

:::::
Third

::::::
column: sea ice DEM (hmod_SAR) over the four scenarios. Each row corresponds to Scene No.1-4 in Fig. 2, respectively. The white dashed

line indicates
:::
void

:::::
pixels

::
in the flight track overlapped by the DEM DEM (hDMS)

:::::
second

::::
and

:::
third

:::::::
columns

:::::::
represent

:::::
water

::::
areas

:::::::
excluded

:::
from

:::::::::
processing

:::
due

::
to

::::::::::
γInSAR < 0.3.

:::
The

::::
white

::::::
dashed

:::
line

:::::::
indicates

::
the

:::::
flight

::::
track

::::::::
overlapped

::
by

:::
the

::::
DEM

:::::
DEM

::::::
(hDMS).

:
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Figure 6. (a) Confusion matrix for sea ice classification. (b) Comparison between the reference height and the derived height over OI
:::
LPI

and YI
:::
SPI.

sea ice DEM being less than 0.3m. Note that the average RMSE value of LPI without compensating the penetration bias is300

∼ 1.10m (Huang et al., 2021).

The hmod_SAR over the entire SAR images are displayed in the right column of Fig. 5. For each scene, the white dash

line delineates a 50km×100m strip overlapped with DMS DEM. By extracting the values at the center of the strip, the height

profiles are presented in Fig. 7, where hmod_SAR performs good agreement with the reference data (hDMS) and well capture the

topographic variation. Considering that hDMS already contains an uncertainty of 0.2m (Dotson and Arvesen., 2012, updated305

2014), these results prove the effectiveness of the proposed two-step approach for sea ice DEM retrieval over both YI and

OI
:::
SPI

::::
and

::::
LPI.

4.2 Sea ice topography along the southwards direction

We obtain sea ice DEM over the
:::
total

:
162 images using the two-step approach, shown in .

::
A

:::::::::::
visualization

::
of

:::
the

:::::::
derived

:::
sea

::
ice

:::::
DEM

::::
can

::
be

:::::
found

::
in

:::
the

::::::::
appendix Fig. ??

::
A5

::::
and

:::
A6. The derived DEM is downsampled to a resolution of 500m, utilized310

in the subsequent analyses.

The northernmost location on each segment is selected and marked
:::
with

::::
star

::::::
symbol

:
in Fig. ??

:
1. Subsequently, we char-

acterize the variation of sea ice category, elevation
:::
total

:::::::::
freeboard, and roughness moving southward, using distances relative

to the northernmost locations and averaging over every 100km interval. These topographic variations along the distance are

illustrated in Fig. 8- 10.315

The first column shows the OI
:::
LPI

:
percentages estimated from the proposed two-step approach and compared with the

Ice Charts
:
.
::::
The

::::::
overall

:::::
trend

::
of

:::::::::
estimated

:::
LPI

::::::::::
percentages

:::::::::
correlates

::::
well

::::
with

:::::::::
dominant

:::
ice

:::::
types

:::
and

:::
ice

:::::::::::::
concentrations

::::
from

:::
the

:::
Ice

::::::
Charts

:::::
across

:::::
most

::::::::
segments

:::::::
(W1-U,

:::::
W1-L, which are used as the reference. For instance, the average ice type

of the
::::::
W2-U,

::::
W4,

::::::
W5-U,

::::::
W5-L,

::::
and

::::
R5).

::::::::::
Specifically,

:
W1-U segment is MYI within the 0− 160km range, matching the

estimated around
:::
and

:::::
W1-L

:::
are

:::::::::
explained

::
as

::::
two

::::::::
examples.

::::::
W1-U

:::::
from

::::::::::
0− 120km

::
is

:::::::
covered

::
by

::::::
100%

:::::
MYI,

::::::
where

:::
the320

:::
LPI

:::::::::
percentage

:::::::
reaches

::
its

::::::
highest

:::::
value

:
(58%OI from our method. FYI becomes dominant from 160− 320km, aligning with

15



Figure 7. Comparison between the elevation
::::
total

:::::::
freeboard

:
profiles (hmod_SAR) from the proposed method and the DMS DEM (hDMS)

along the dotted line (from A to B) over Scene No.1-4 in Fig. 5(c).
:::
The

:::
data

::::
gaps

:::
are

::
the

:::::
water

::::
areas

:::
and

:::::::
segments

:::
that

::::
were

:::::::
excluded

:::
due

::
to

::
the

::::::
absence

::
of

::::::::
distinctive

:::::::
features,

::::::
ensuring

:::::::::::
co-registration

::::::
quality.
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a decrease in OI percentage
:
).
:::
As

:::
the

:::::::::
dominant

:::
ice

:::::::::
transitions

::::
from

:::::
MYI

::
to

::::
FYI

:::::
from

::::::::::::
120− 400km,

::::
the

:::
LPI

::::::::::
percentage

::::::::
decreases

::::::::::
accordingly.

::::
The

:::::::::
dominance

::
of

:::::
MYI

::
ice

:::::
from

::::::::::::
400− 600km

:::
also

::::::::::
corresponds

:::
to

::
the

:::::::::
increasing

::::
LPI

:::::::::
percentage.

::::
For

:::::
W1-L,

::::::
where

:::
the

:::::::
distance

:::::::
between

::::::::::::
500− 600km

::
is

:::::::
covered

::
by

:::::
100%

:::::
MYI,

::::
and

:::
the

::::
LPI

:::::::::
percentage

:::::
peaks

::::::
before

:::::::::
decreasing

::::
after

::::::
650km

::::::::
distance

::
as

::::
FYI

:::::::
becomes

:::::::::
dominant.

::::
The

::::::
lowest

::::
LPI

:::::::::
percentage

::
is

:::::
found

:::::::
around

::::::::
1200km,

::::::::
consistent

:::::
with

:::
the325

:::::::::
occurrence

::
of

:::
TI

::
at

::::
this

:::::::
distance. Beyond 320km, MYI dominates again, consistent with an increase in the estimated OI

percentage.

The overall trend of estimated OI percentages aligns well with the Ice Charts across most segments (W1-U, W1-L, W2-U,

W4, W5-U, W5-L, and R5). For other segments
:::::::
observed

:::::::
similar

:::::
trend

:::
can

:::
be

::::::::
explained

:::
by

:::
the

:::::::
general

::::::::::
assumption

::::
that

::::
MYI

::
is

::::::
thicker

::::
and

:::
less

::::::
saline,

::::::::
allowing

:::
for

::::::
deeper

:::::
radar

:::::::::
penetration

:::::::::
compared

::
to

::::
FYI

::::
and

:::
TI.

::::::::
However,

::::::::::
penetration

:::::
depth330

:
is
:::::::::

influenced
:::

by
:::::::

various
::::::
factors

:::
not

:::::
only

:::
ice

::::
age,

:::
but

::::
also

:::
ice

:::::::
salinity,

:::::
snow

:::::::::
condition,

::::::::
flooding

::::::
effects,

::::
and

:::::::::::
temperature.

::::
This

:::::::
explains

:::
the

:::::::::::
discrepancies

:::
for

:::::
other

::::::::
segments

::::::
(W2-L,

::::::
W3-U,

::::::
W3-L, some discrepancies exist, which can

:::::
R1-U,

::::::
R1-L).

::::::::::
Furthermore,

::::::::::::
discrepancies

:::
can

::::
also

:
be attributed to the differences in spatial resolution and temporal gap between the

::::
gaps

:::::::
between Ice Charts and SAR imagery, considering the dynamic nature of sea ice. It should be emphasized that the proposed

method classifies ice based on electromagnetic wave penetration into snow and ice, which may have differences when compared335

with the conventional ice types in Ice Charts .

:
It
::
is

:::::::
essential

::
to

::::::
clarify

:::
that

:::
we

::::::
utilized

:::
Ice

::::::
Charts

::::
data

::
as

::::::
external

::::::::::
information

::
to

:::::::
interpret

:::
the

:::::::::::
classification

::::::
results

:::
and

::::::
spatial

:::::::
variation

::
of

:::::::::::
topography.

::::::::
However,

:::
we

:::
did

:::
not

::::
use

:::
Ice

::::::
Charts

::
to

:::::::::::
quantitatively

:::::::
validate

::::
the

::::::::
proposed

:::::::
method.

:::
For

:::::::::
validation

::::::::
purposes,

::
we

:::::::::
conducted

::::::::::::
pixel-by-pixel

:::::::::::
comparisons

::::
using

:::::::::::
co-registered

:::::
DMS

::::
data.

:

The second and third columns in Fig. 8- 10 display the distance dependency of ice elevation (hmodSAR :::
total

:::::::::
freeboard340

:::::::::
(hmod_SAR) and roughness (σR), respectively. Sea ice roughness is the standard deviation of the elevation

:::
total

:::::::::
freeboard

within a 50×50m area. For each 100km-distance interval, we calculate and display the average and median values, as well as

the first and third quartiles of hmodSAR :::::::::
hmod_SAR and σR using boxplots.

Sea ice DEM (hmod_SAR) over (a) the Weddell Sea and (b) the Ross Sea retrieved from SAR images. The northernmost

locations on each segment are marked with star symbols and serve as reference points for calculating the relative distance.345

The Ice Charts are also used to validate and explain the topographic variation of sea ice. In general, the region with thicker

ice (e.g., MYI) is anticipated to display higher elevation
::::
total

::::::::
freeboard

:
or larger roughness compared to the area with thinner

ice, such as FYI and TI. This hypothesis is substantiated by the agreement between topographical variations (elevation
::::
total

::::::::
freeboard and roughness) and ice types observed in Fig. 8 to 10 across most segments, with the exception of W3-L and W5-

L. The sea ice is identified as MYI between 450− 750km in W3-L and 650− 1000km
:::::::::::
650− 950km

:
in W5-L. However,350

neither elevation
::::
total

::::::::
freeboard nor roughness significantly increases within these specific ranges. Minor discrepancies also

persist, for instance, in W1-U and W2-L, where there is no clear reduction in either elevation
:::
total

::::::::
freeboard

:
or roughness when

FYI is present at
::::::
around 600km. Considering

:::::
These

:::::::::::
discrepancies

::::
may

:::::
arise

:::
due

::
to

:::
the

:::::
local

::::
cases

::::::
where

:::::
rough

::::
FYI

:::::::
exhibits

::::::
greater

::::::::
roughness

::::
than

::::::
smooth

:::::
level

:::::
MYI.

:::
FYI

::::
may

::::
also

::::
show

::::::
higher

:::::::::
elevations

::::
when

:::::::
covered

:::
by

::::
very

::::
thick

:::::
snow.

::
In

::::::::
addition,

:::::::::
considering

:
that the Ice Charts data are weekly average

:::::::
products, the inconsistencies could be attributed to mis-coregistration355

caused by sea ice drift during the time lag between the Ice Charts data and the SAR images.
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Figure 8. Sea ice characteristics along the southwards direction along W1 and W2 segments. The blue line in the first column displays

the OI
:::
LPI

:
percentages derived from SAR images, and the blue dot indicates the ice types obtained from the Ice Charts. The second and

third columns plot the elevation
::::
total

:::::::
freeboard

:
(hmod_SAR) and roughness (σR), respectively. Distance is measured from the northernmost

SAR image reference point towards the south. The orange line denotes the average values of hmodSAR and σR. The box’s upper and lower

boundaries represent the first (Q1) and third (Q3) quartiles, while the upper (lower) whisker extends to the last (first) sample outside of Q3

±1.5×(Q3-Q1). 18



Figure 9. Sea ice characteristics along the southwards direction along W3, W4, and R5 segments. The blue line in the first column displays

the OI
:::
LPI percentages derived from SAR images, and the blue dot indicates the ice types obtained from the Ice Charts. The second and third

columns plot the elevation
::::
total

:::::::
freeboard (hmod_SAR) and roughness (σR), respectively.
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Figure 10. Sea ice characteristics along the southwards direction along W5 and R1 segments. The blue line in the first column displays the

OI
:::
LPI

:
percentages derived from SAR images, and the blue dot indicates the ice types obtained from the Ice Charts. The second and third

columns plot the elevation
::::
total

:::::::
freeboard (hmod_SAR) and roughness (σR), respectively.
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In the northwestern Weddell Sea, we observe that the sea ice near the Antarctic Peninsula (AP) in the W1-U and W2-U

segments exhibits the highest average elevation
::::
total

::::::::
freeboard (mean > 0.7m) and roughness (mean 0.19m

::::::::
= 0.19m), shown

in the first and third rows in Fig. 8. This observation aligns with a previous study using OIB Airborne Topographic Mapper

(ATM) data from November 14 and 22, 2017 (Wang et al., 2020), which has reported that the snow
:::
total

:
freeboard near360

the eastern AP ranges from 1.5− 2.5m. Moving outwards from the AP, the sea ice elevation
:::
total

::::::::
freeboard

:
and roughness

along W1-U and W2-U demonstrate a sharp decrease within approximately 0−200km before gradually increasing as it heads

southward. Similar trends are observed in W3-U (first row in Fig. 9) and W5-U (first row in Fig. 10), with a more subtle

decrease in elevation and roughness
::::
total

::::::::
freeboard within the 0−200km range, compared to W1-U and W2-U, followed by a

southward increase. Conversely, in the initial 0−200km of W4 (third row in Fig. 9), there’s no observed decrease in elevation365

::::
total

::::::::
freeboard or roughness. Instead, a gradual increase in both parameters is evident as one moves southward, consistent with

the dominance of MYI beyond 100km from the Ice Charts data. In the southeastern region, segments W1-L, W2-L, W3-L, and

W5-L exhibit similar patterns in the topographic variation, with elevation
:::
total

::::::::
freeboard

:
and roughness generally decreasing

towards the south as they approach the Coats Land .
:::
(see

:::::::
location

::
in

:::::::
Fig. 1). This trend can be explained by the increasing

occurrence of FYI or TI beyond ∼ 1200km
:::::
around

::::::::
1000km from the Ice Charts data.370

The observed variation in sea ice topography can result from the formation and dynamics of sea ice in the East Weddell

(E-Wedd) and West Weddell (W-Wedd) regions, which are defined by specific longitude ranges: E-Wedd encompasses 15◦E

to 40◦W, while W-Wedd extends from 40◦W to 62◦W. Segments of W1-U, W2-U, W3-U, W4, and W5-U are located within

the W-Wedd, which has been reported for the presence of MYI in the Antarctic (Lange and Eicken, 1991). Sea ice initially

forms in the eastern region and then circulates clockwise within the cyclonic gyre of the southern Weddell Sea. Later, older375

sea ice drifts outward northwestern (Kacimi and Kwok, 2020). The sea ice undergoes thickening and deformation as it drifts

(Vernet et al., 2019; Kacimi and Kwok, 2020), resulting in increased elevation
::::
total

::::::::
freeboard

:
and greater roughness in the

northwestern Weddell Sea.

In the Western Ross Sea, the sea ice in
:::::
along the R5 segment (last row in Fig. 9) exhibits greater elevation

:::
total

:::::::::
freeboard

and roughness near Terra Nova Bay
::::
(see

:::::
Fig. 1

:::
for

:::
the

:::::::
location), with decreasing southeastward. This observation aligns with380

the evolution of
::::::::
transition

::
of

::::::::
dominant ice types from MTI

::::
FYI to TI in that direction. This observation is also consistent with

recent research (Rack et al., 2021), where airborne measurements in November 2017 revealed deformed sea ice exceeding 10m

in thickness within the first 100km south of Terra Nova Bay, and thinner ice was observed towards the southeastern area near

McMurdo Sound (see Fig. ??b
:
1
:
for the location). Satellite data also confirmed a region of thinner ice influenced by the Ross

Sea Polynya, with thicker ice located westward (Kurtz and Markus, 2012). The observed pattern can be attributed to significant385

deformation in the Western Ross Sea caused by wind-driven shearing, rafting, and ridging within a convergent sea ice regime

(Hollands and Dierking, 2016). This deformation leads to potentially thicker sea ice compared to the eastern part (Rack et al.,

2021).

For the R1 segment located in the Eastern Ross Sea (third and fourth rows in Fig. 10), although the sea ice exhibits relatively

stable elevation
:::
total

:::::::::
freeboard, which agrees with the consistent presence of predominantly FYI, the roughness decreases390

towards the southeastern. This may be attributed to the influence of ocean circulation, considering that the R1 segment is
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situated farther from the land than the other segments. The variation of the roughness along the R1 segment also highlights the

importance of combining topographic mapping with ice category mapping to comprehensively characterize sea ice features.

:::::::
suggests

:::
that

:::
ice

::::::::::
topography

:::::::
provides

::::::
add-on

::::::::::
information

::::
that

:::
can

:::
be

:::::
useful

::
to

:::
be

::::::::
integrated

::::
into

:::
the

:::::::::
operational

:::
ice

::::::::
charting.

::::::::::
Furthermore,

:::::
Since

:::
the

:::::
edges

::
of

:::
ice

::::
floes

::::
with

:::::
open

::::
water

::::::::
between

::
the

:::::
floes

:::
can

::::
also

::::::::
contribute

::
to

:::
the

:::
ice

:::::::::
roughness,

:::::::::
combining395

::
ice

::::::::::
topography

::::
with

:::
ice

:::::::::::
concentration

:::
can

::::
help

:::::::::::
characterize

:::
the

:::
sea

::
ice

:::::
more

::::::::::::::
comprehensively.

:

4.3 Regional variation of sea ice topography

Figure 11(a) displays the topographic variation across different segments. We present the average and median values, as well

as the first and third quartiles of elevation
::::
total

::::::::
freeboard

:
and roughness using boxplots. The mean values are listed in Table

3. Additionally, the percentages of the three ice types within each segment, calculated from the Ice Charts for reference, are400

presented in Fig. 11(b).

Generally, sea ice in the northwestern Weddell Sea (W1-U, W2-U, W3-U, W4, W5-U) exhibits higher average elevations

::::
total

::::::::
freeboard

:
(> 0.5m) compared to that in the southeastern Weddell Sea and the Ross Sea (W1-L, W2-L, W3-L, W5-L,

R1-U, R1-L, R5), see detailed values in Table 3. W1-U and W2-U exhibit the highest average elevations
::::
total

::::::::
freeboard

:
of

0.8m and 0.72m, respectively, along with the largest average roughness of 0.19m. This is comparable with the snow
::::
total405

freeboard retrieved from ICESat-2 (Kacimi and Kwok, 2020), reporting an average of 0.6−0.7m snow
::::
total freeboard nearby

the Eastern AP between April 1 and November 16, 2019. W4 and W5-U show average elevations
::::
total

::::::::
freeboard

:
of 0.57m

and 0.52m, and average roughness values of 0.18m and 0.16m, respectively. The above topographic values (i.e., elevation

::::
total

::::::::
freeboard and roughness) are consistent with the ice types presented in Fig. 11(b), where W1-U, W2-U, W4, and W5-U

exhibit a substantial proportion (≥ 57%) of MYI, known for greater elevation
::::
total

::::::::
freeboard

:
and roughness characteristics.410

W3-U, which consists of 47% MYI, exhibits an elevation a
:::::

total
::::::::
freeboard

:
of 0.50m but with relatively lower roughness at

0.11m, suggesting the possibility of a smooth snow-air interface over older and thicker ice.

For the segments in the southeastern Weddell Sea and the Ross Sea (W1-L, W2-L, W3-L, W5-L, R1-L, and R5), the average

sea ice elevation
::::
total

::::::::
freeboard

:
remains below 0.46m and roughness around 0.11m. The reduced average elevation

::::
total

::::::::
freeboard and roughness correspond to ice types with fewer MYI percentages (<∼ 50%

::::::
≤ 52%) and greater amounts of FYI415

and TI (>∼ 50%
:::::
> 52%). R1-U demonstrates an average sea ice elevation

::::
total

::::::::
freeboard of 0.49m and roughness of 0.18m,

with the presence of predominantly FYI throughout the region. This observation suggests a plausible scenario of a rougher

snow-air interface over younger and thinner ice (Tin and Jeffries, 2001; Tian et al., 2020).

4.4 Statistical analyses of sea ice topography

Studies on sea ice topography in the Arctic have extensively examined the applicability of statistical distributions such as the420

log-normal distribution (Landy et al., 2020; Duncan and Farrell, 2022) and the exponentially modified normal (exp-normal)

distribution (Yi et al., 2022). However, there remains a gap in understanding the most suitable distribution models for describing

the elevation
:::
total

::::::::
freeboard

:
of Antarctic sea ice. We aim to address this gap by evaluating three distribution models: Gaussian,
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Figure 11. (a) Sea ice elevation
::::
Total

:::::::
freeboard

:
(hmod_SAR) and roughness (σR) derived from SAR images across the 12 segments. (b) The

percentage of multi-year ice (MYI), first-year ice (FYI), and thin ice (TI) from the Ice Charts. (c) Probability density function (PDF) of

derived sea ice elevation
:::
total

::::::::
freeboard (hmodSAR) and their fits to the exponential-normal, log-normal, and normal distributions.
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Table 3. Average elevation
:::
total

::::::::
freeboard and roughness for each segment, as well as the Kolmogorov-Smirnov (KS) values between the

observed elevations
:::
total

:::::::
freeboard

:
and modeled distributions (i.e., exponential normal and log-normal). The smaller KS value is in bold.

segment
Mean

elevation
:::
total

::::::::
freeboard (m)

Mean

roughness (m)
KS exp-normal KS log-normal

W1-U 0.80 0.19 0.083 0.106

W1-L 0.46 0.12 0.064 0.05

W2-U 0.72 0.19 0.052 0.07

W2-L 0.42 0.12 0.079 0.054

W3-U 0.50 0.11 0.113 0.2

W3-L 0.39 0.12 0.065 0.05

W4 0.57 0.18 0.035 0.072

W5-U 0.52 0.16 0.074 0.076

W5-L 0.44 0.11 0.038 0.078

R1-U 0.49 0.18 0.053 0.049

R1-L 0.45 0.11 0.049 0.106

R5 0.46 0.10 0.052 0.039

Overall 0.063 0.079

log-normal, and exp-normal, to determine the most appropriate probability density function (PDF) for describing the sea-ice

elevation
:::
total

::::::::
freeboard

:
across segments.425

The PDF of the Gaussian distribution with mean µg and standard deviation σg is defined as:

G(x) =
1√
2πσ2

g

e
− (x−µg)2

2σ2
g (10)

The PDF of the log-normal distribution with mean e(µl+σl
2/2) and variance e2µl+σ2

l

(
eσ

2
l − 1

)
follows (Gaddum, 1945):

LG(x) =
1

xσl

√
2π

e
− (ln(x)−µl)

2

2σ2
l (11)

The PDF of the exp-normal distribution with mean µe+1/λ and variance σ2
e +1/λ2 is given as (Foley and Dorsey, 1984):430

EMG(x) =
λ

2
e

λ
2 (2µe+λσ2

e−2x)erfc(
µe +λσ2

e −x√
2σe

) (12)

where the erfc(·) is the complementary error function with erfc(x) = 2√
π

∫∞
x

e−t2 dt.

The observed and modeled distributions of sea ice elevation
:::
total

::::::::
freeboard

:
over each segment are depicted in the left column

of Fig. 11(c). The observed distributions of all segments exhibit asymmetrical with longer tails. A closer examination of the

tail regions (right column in Fig. 11(c)) reveals significant deviations from the Gaussian distribution, particularly in segments435
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W1-U and W2-U, which are covered by deformed and thicker sea ice. The observed non-Gaussian nature of sea ice elevation

::::
total

::::::::
freeboard distribution aligns with the previous studies (Hughes, 1991; Davis and Wadhams, 1995; Castellani et al., 2014;

Landy et al., 2019; Huang et al., 2021). To quantitatively evaluate the fit of non-Gaussian distributions (i.e., log-normal and

exp-normal) to the observed elevations
::::
total

::::::::
freeboard, we employ the Kolmogorov-Smirnov (KS) test (Massey Jr, 1951). This

test measures the goodness of fitting by calculating the distance between the observed distribution function and the theoretical440

cumulative distribution function. The values of the KS test are given in Table 3, where a lower value indicates a better fit.

In the northwestern Weddell Sea, where the segments (W1-U, W2-U, W3-U, W4-U, and W5-U) have average elevations
::::
total

::::::::
freeboard greater than 0.5m, the exp-normal distribution demonstrates superior fitting performance, as evidenced by smaller

KS values. This can be attributed to the exp-normal distribution’s incorporation of an exponential component, which enables a

better fit to data with heavy or long tails compared to the log-normal distribution. Consequently, the exp-normal distribution is445

better suited for characterizing the statistics of older and thicker sea ice, which often involves strong deformation and exhibits

significant elevations
:::
total

:::::::::
freeboard.

In the southern Weddell Sea and the Ross Sea, segments average below 0.5m in elevation
:::
total

::::::::
freeboard, with varying fits

between exp-normal and log-normal distributions. The log-normal distribution exhibits a better fit for W1-L, W2-L, W3-L,

R1-U, and R5, while the exp-normal distribution is more appropriate for W5-L and R1-L. This observation suggests that the450

two distributions perform comparably in characterizing the elevations
::::
total

::::::::
freeboard of younger and thinner sea ice.

Evaluating the overall performance across all segments, the exp-normal distribution outperforms the log-normal distribution,

as indicated by a smaller average KS value of 0.063.

5
:::::::::
Discussion

5.1
::::::
Factors

::::::::
affecting

:::
the

::::::
model

:::::::::::
performance455

::
In

:::
the

:::::::
proposed

::::::::
two-step

::::::
method

::::::
(Fig 3),

:::
we

:::::
obtain

:::::
snow

:::::
depth

::::
from

:::
the

::::::
AMSR

:::::::
products

::::::::::::::::
(Meier et al., 2018)

:
,
:::::
which

:::::::::
represents

:
a
:::::::
five-day

::::::
running

:::::::
average

::
of

:::::
snow

:::::
depth

::::
over

:::
sea

:::
ice.

::::
Due

::
to

:::
the

::::::
limited

::::::
spatial

::::::::
(12.5km)

:::
and

::::::::
temporal

::::::::
resolution

::
in

:::
the

:::::
snow

::::
depth

:::::
data,

:::
we

::::::
assume

::
a
:::::::
constant

:::::
value

::
of
:::::

snow
:::::
depth

::::::
across

::::
one

::::
SAR

::::::
image.

::::::
Hence,

:::
for

:::::
each

::::
SAR

::::::::::
acquisition

:::::::
covering

::
a

:::::
spatial

::::::
extent

::
of

::::::::::
50× 19km,

:::
we

:::::::
compute

:::
the

:::::
mean

:::::
snow

:::::
depth

:::
and

:::::
utilize

::
it
::
as

:::::
input

::::::::
parameter

:::
z1 ::

in
:::
the

:::::
TLPV

::::::
model.

:

::
In

:::::
Fig. 7,

::
it
:::::::
appears

:::
the

::::::
derived

::::
total

:::::::::
freeboard

::::::::::
(hmod_SAR)

::::::::::::
underestimates

:::::
some

::::
high

::::
and

:::
low

:::::
peaks

:::
of

:::
the

::::::::
reference

::::
data460

:::::::
(hDMS).

::::
One

:::::
factor

:::::::::::
contributing

::
to

:::
the

::::::::::::::
underestimation

::
of

:::::
total

::::::::
freeboard

:::::
could

:::
be

:::
the

::::::::::
assumption

:::
of

:
a
::::::::

constant
:::::::
average

::::
snow

:::::
depth

:::::
over

::::
one

::::
SAR

::::::
scene.

::::::
Using

:
a
::::::

single
:::::::
average

:::::
value

:::
of

:::::
snow

:::::
depth

::::
may

::::
lead

:::
to

::
an

::::::::::::::
underestimation

:::
of

:::::
snow

::::
depth

:::
in

::::::::
high-peak

:::::
areas

::::
such

::
as

::::::
ridges,

::::::::::::
consequently

:::::::
resulting

::
in
:::
an

:::::::::::::
underestimation

:::
of

:::
the

::::
total

:::::::::
freeboard.

:::
Our

:::::
prior

:::::
study

:::::::::::::::::
(Huang et al., 2021)

::::::::::
demonstrated

::
a

::::
mean

:::::::::
difference

::
of

::::::
0.31m

::
in

:::
the

::::::
derived

::::
total

::::::::
freeboard

::::
due

::
to

::::
snow

:::::
depth

::::::::
variations

:::::
from

::::
0.05

::
to

::::::
0.75m

::::
over

:::::
Scene

:::::
No.1,

::::::::::
highlighting

:::
the

::::::
impact

:::
on

::::
peak

:::::::::
estimation.

:::
In

::
the

::::::
future,

::
it
:::::
would

:::
be

:::::::::
interesting

::
to

:::::
adapt

:::
the465

:::::::
proposed

:::::::
method

::::
over

:::
the

:::
test

::::
sites

::::::::::
co-locating

::::
with

:::::::
available

:::::::::::::
high-resolution

:::::
snow

:::::
depth

::::::::::::
measurements.

:

:::::::
Another

:::::
factor

:::
that

:::::
could

:::::::::
potentially

::::
lead

::
to

:::
the

:::::::::::::
underestimation

::
of

::::
high

:::
and

::::
low

:::::
peaks

::
is

:::
the

::::::
residual

::::
shift

:::::::
between

:::
the

:::::
SAR

:::
and

:::::
DMS

::::::
images.

::::::::
Although

:::
we

::::::::
carefully

:::::::::::
co-registered

:::
the

::::
four

::::
SAR

::::::
scenes

::::
with

:::
the

:::::
DMS

::::
data,

:::
the

::::::::::::
co-registration

:::
can

:::
not

:::
be
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Figure 12.
:::
The

::::
total

:::::::
freeboard

::::::::
calculated

::::
from

:::::::
IceBridge

:::::
Laser

:::::::
Altimetry

:::::
(copy

::
of

:::::
Fig.6l

::
by

::::::::::::::
Wang et al. (2020)

:
).

::
We

::::::
labeled

:::
the

:::
two

:::::
tracks

::::::
Track-W

:::
and

:::::::
Track-E.

:::
The

:::::
region

::::
with

::::::
latitude

::::::
< 70◦S

:::::::
(> 70◦S)

::
is

::::::
referred

::
to

::
as

::
the

:::::::
northern

::::::::
(southern)

::::
track.

::::::
perfect.

::
In

:::
the

:::::::
process,

:::
we

::::::
divided

:::
the

:::::
entire

::::::::::
overlapped

::::::
transect

::::
into

:::::
small

::::::
patches

:::::
(each

::::::::::::
corresponding

::
to

:::::::::::::
100× 1000m).

:::
We

:::::::
assumed

:::
the

:::::
same

::::
drift

:::::::
location

::::
over

:::
one

:::::
patch

::::
and

::
no

::::::::
rotation;

::::
thus,

::::
only

::::
one

::::
shift

::::::
vector

:::
was

::::
used

:::
for

:::::::::::::
co-registration

::::
over470

::::
each

:::::
patch.

::::
This

:::::
could

:::::
result

::
in

:::::
small

:::::::
residual

:::::
shifts

:::::
when

:::
the

:::
ice

::::
floes

::
or

:::::::
features

::
do

::::
not

::::
drift

::
at

:::
the

::::
same

:::::::
velocity

::
or

:::::::
involve

:::::::
rotations

::::::
within

:::
the

:::::
patch.

:::
The

::::::::
presence

::
of

::::
low-

::::
and

::::::::
high-peak

:::
ice

:::::::
features

::::
with

::::::
narrow

::::
sizes

::::::::
spanning

:::
just

::
a

:::
few

::::::
pixels,

:::::
poses

:
a
:::::::::
challenge.

:::::
Even

:::::
slight

:::::::
residual

:::::
shifts,

:::
as

:::::
small

::
as

:::
1-2

::::::
pixels,

::::
can

::::
lead

::
to

::::
loss

::
or

::::::::::::
misalignment

::
of

::::
peak

:::::::::
structures

::
in

:::::
SAR

::::::
images.

::::::::::::
Consequently,

:::::
these

::::::
slightly

::::::::::
misaligned

::::
SAR

::::::
images

:::::
input

:::
into

:::
the

::::::::
proposed

::::::
model

::::
may

:::::
result

::
in

::
an

::::::::::::::
underestimation

::
of

:::
the

::::
total

::::::::
freeboard.

:
475

5.2
:::::::
Compare

::::
the

:::::::::::::
InSAR-derived

::::
total

:::::::::
freeboard

:::::
with

:::::::
existing

:::::
study

:::::::::::::::
Wang et al. (2020)

::::::::
calculated

:::
the

:::::
mean

::::
total

::::::::
freeboard

::
in

:::
the

:::::::
Weddell

:::
Sea

:::::
using

:::
the

::::::::
IceBridge

:::::
Laser

::::::::
Altimetry.

::
In

:::
this

::::::::::
subsection,

::
we

:::::::
conduct

::
a
:::::
visual

::::::::::
comparison

:::::::
between

::::::::::::::::
Wang et al. (2020)

:
’s

:::::
result

:::::
(Fig.

:::
12)

::::
with

:::
the

::::
four

::::::::
segments

:::::::
(W2-U,

::::::
W2-L,

::::::
W3-U,

:::
and

::::::
W3-L)

::
in

::::
our

:::::
study

::::::
(Fig. 8

:::
and

:::
9).

:::::
Note

::::
that

:::
the

:::::::
window

::::
size

::
is

::::::::::::::
ten-of-kilometer

:::::
scales

::
in
::::::::::::::::

Wang et al. (2020)
:
’s
::::::

study,

::::::::::
significantly

::::::::
exceeding

:::
the

:::::::::::
500× 500m

:::::::
window

::::
size

::
we

:::::
used.

:
480
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:::
We

:::::
denote

:::
the

::::::
region

::
in

::::
Fig.

::
12

::::
with

:::::::
latitude

::::::
< 70◦S

::::::::
(> 70◦S)

::
as

:::
the

::::::::
northern

::::::::
(southern)

:::::
track.

::::
The

::::::::
Northern

:::
and

::::::::
Southern

:::::::
Track-W

::::::::
segments

:::
are

::::::::
partially

:::::::
overlaid

::::
with

::::::
W2-U

:::
and

::::::
W2-L,

:::::::::::
respectively.

::
In

:::
our

::::::
study,

:::
the

::::
total

::::::::
freeboard

:::
of

:::::
W2-U

::::
and

:::::
W2-L

::
in

:::::
Fig. 8

::::::
reaches

::
a

:::::
mean

::::
value

::
of

::::::
∼ 1m

:::
and

::::
75%

:::::::::
percentile

:::::
value

::
of

:::::::
∼ 1.5m

:::::
within

:::
the

::::
first

:::::::
100km,

:::::
which

::::::
agrees

::::
with

::
the

::::
red

:::
dot

::
in

::::::
Fig. 12

:::::::::
Track-W.

:::::
Then,

:::
the

::::
total

:::::::::
freeboard

::::
goes

:::::
down

::
to

::
a
:::::
mean

:::::
value

::
as

:::::::
∼ 0.7m

::::
and

::::
75%

:::::::::
percentile

:::::
value

::
of

::::::::
∼ 0.75m

::::
from

:::::::::::
100− 200m.

::::::::
Although

:::::
there

::
is

:
a
::::
data

::::
gap

::
in

::::::
Fig. 12,

:::
we

::::
can

:::
see

:::
that

:::::
color

::
of

:::
the

::::
dots

:::::::
changes

::::
from

::::
red

::
to485

::::::
yellow,

:::::
which

::
is

::::::::
consistent

::::
with

:::
the

:::::::::
decreasing

:::::
trend

::
of

:::
the

::::
total

::::::::
freeboard

:::::
within

:::::::
300km

::::
from

:::
our

::::::
results.

:::
For

::::::
W2-L,

:::
the

:::::
mean

::::
total

::::::::
freeboard

::::
from

::::
our

:::::
result

::
is

::::::
around

::::::
0.5m,

:::::::
agreeing

::::
with

::
a
:::
mix

:::
of

:::::
green

:::
and

::::::
yellow

::::
dots

::::::::::::
(0.4− 0.9m)

::
in

:::
the

::::::::
Southern

:::::::
Track-W

::
in

:::::::
Fig. 12.

::::
Note

::::
that

:::
the

::::
OIB

::::
ATM

::::
data

::
in

:::::::::::::::::
(Wang et al., 2020)

:::
was

:::::::
acquired

:::
on

::
14

:::
and

:::
22

:::::::::
November

:::::
2017,

:::::
while

:::
the

::::
SAR

::::::
images

::
in

:::
our

:::::
study

:::::
were

:::::::
acquired

:::
on

::
30

::::
and

::
25

:::::::
October

:::::
2017

:::
for

:::::
W2-U

::::
and

:::::
W2-L,

:::::::::::
respectively.

::::
The

:::
sea

:::
ice

::::
drifts

::::
and

:::::::
potential

:::::::
melting

:::::
could

:::::
induce

:::::
slight

::::::::::
differences

:::::::
between

:::
our

::::::
results

:::
and

:::::::::::::::
Wang et al. (2020)

:
.490

:::
The

::::::
W3-U

:::
and

:::::
W3-L

:::
can

:::
be

::::::::
compared

::::
with

::::::::
Northern

:::
and

::::::::
Southern

::::::::
Track-E,

::::::::::
respectively.

:::::
From

::::::
Fig. 12,

::
a

:::
mix

::
of

:::::
green

::::
and

:::::
yellow

::::
dots

::
in

:::
the

::::::::
northern

::::::
Track-E

::::::::
represent

:::
the

::::
total

::::::::
freeboard

:::::::::::
0.5− 1.2m,

:::::
which

::::::
agrees

::::
well

::::
with

:::
our

:::::
result

:::
for

::::::
W3-U,

:::
see

::
the

::::
first

::::
row

::
in

::::::
Fig. 9.

::
At

:::::::
around

:::::
70◦S,

:::
the

::::
dots

:::::
transit

:::
to

:
a
::::
mix

::
of

:::::
cyan

:::
and

::::
blue

::::::
colors,

:::::::::::
representing

:::
the

::::
total

::::::::
freeboard

:::
of

::::::::::
0.2− 0.7m,

:::::
which

::
is

:::::::::
consistent

::::
with

:::
the

:::::
W3-L

::
in

::::::
Fig. 9.

:::
The

:::::
slight

:::::::::
difference

:::
can

:::
be

::::::::
attributed

::
to

:::
the

::::::::
temporal

::::::::
difference

:::
of

::::
SAR

::::::
images

::::
used

::
in
::::

our
:::::
study.

::::::::::
Specifically,

:::
the

::::::
image

:::
for

:::::
W3-L

::::
was

:::::::
acquired

:::
on

::
26

:::::::
October

:::::
2017,

:::::
while

:::
the

:::::::
Track-E

::::::
image495

:::
was

:::::::
acquired

:::
on

::
22

:::::::::
November

:::::
2017.

:

6 Conclusions

In this study, we proposed a novel two-step approach integrating machine learning and polarimetric-interferometry techniques

to retrieve sea ice elevation
::::
total

::::::::
freeboard

:
from dual-pol single-pass InSAR images, taking into account the variations in

penetration bias over different ice classes. Initially, a random forest classifier was employed to categorize sea ice (i.e, YI and500

OI
:::
SPI

::::
and

:::
LPI) based on microwaves’ penetration. Subsequently, the standard InSAR processing technique was applied to

retrieve the elevation over YI
::::
total

::::::::
freeboard

::::
over

:::
SPI

:
regions, where the penetration depth is negligible. For OI

:::
LPI regions,

an inversion algorithm for the TLPV model was developed. This algorithm can effectively compensate for the radar penetration

bias into snow and ice, achieving an accurate sea ice DEM (i.e., snow
:::
total

:
freeboard). Utilizing the OTASC dataset, which

spans an area of 200× 19km, the efficiency of the proposed method was validated with an RMSE of 0.26m.
:::
The

::::::::::
uncertainty505

::::
level

::
is

::::::::::
satisfactory

::
for

::::
LPI

::::
with

::::::
RMSE

:::
of

::::::
0.26m.

::::::::
However,

::::
this

:::::::
accuracy

::
is
::::::::::

insufficient
:::
for

::::::
thinner

:::
ice

::::::
whose

:::::
height

::::::
above

:::
sea

::::
level

::
is

::::
only

::::
tens

:::
of

:::::::::
centimetres

:::
or

::::
even

::::
less.

::::::
Given

:::
that

::
a
:::::::::
substantial

:::::::
portion

::
of

::::::::
Antarctic

:::
sea

:::
ice

:::::::
consists

:::
of

::::::::
first-year

::
ice

:::::
with

:
a
::::::::
thickness

::
of

:::::::::::::
approximately

:::
one

:::::
meter

:::::::::::
(Scott, 2023)

:
,
::::::::
achieving

::::::::
accurate

:::::
DEM

:::::::
retrieval

::::
over

::::::
thinner

:::
ice

:::::::
remains

::
a

::::::::
challenge.

::
In

:::
the

::::::
future,

::
a

:::::::
potential

::::::::::
single-pass

::::::
InSAR

:::::::::::
configuration

:::::
using

:
a
::::::
higher

:::::::::
frequency,

::::
such

::
as

::::::::
Ku-band,

:::::
along

::::
with

::
a

:::::
longer

:::::::::
cross-track

::::::::
baseline,

:::::
would

:::::
result

:::
in

:
a
::::::
smaller

::::::
height

::
of

:::::::::
ambiguity

:::::
(HoA)

:::
of

:::
less

::::
than

:::
5m

:::::::::::::::::::::::
(López-Dekker et al., 2011)

:
.510

::::
This

::::
setup

::::
can

:::::::
enhance

::::::
InSAR

::::::::
sensitivity

::::
and

:::::::
improve

:::
the

:::::::
accuracy

:::
of

::::
total

::::::::
freeboard

::::::::::::
measurements.

:

The proposed approach was applied to a broad area in Antarctica. Overall, sea ice in the northwestern Weddell Sea exhibits

higher average elevations
:::
total

::::::::
freeboard

:
(> 0.5m) than the southeastern region and the Ross Sea, where the average elevations
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are
::::
total

::::::::
freeboard

::
is lower (< 0.5m). In the northwestern Weddell Sea, sea ice experiences substantial deformation near the

eastern AP, followed by a pronounced decline in both elevation
::::
total

::::::::
freeboard and roughness within a range of 0− 200km.515

Subsequently, there is a gradual increase in these parameters as one moves southward. In the southeastern Weddell Sea, the sea

ice elevation
:::
total

::::::::
freeboard

:
and roughness generally decrease towards the south as they approach Coats Land. In the Western

Ross Sea, thicker and rougher ice was observed near Terra Nova Bay, while thinner ice was found in the southeastern area near

McMurdo Sound. In the Eastern Ross Sea, the stable sea ice elevation
::::
total

::::::::
freeboard

:
aligns with the prevalent presence of

FYI, but roughness decreases towards the southeastern. These findings emphasize that topographic mapping can enhance ice520

category delineation, providing an in-depth understanding of sea ice characteristics.

Furthermore, the statistical analyses of sea ice elevation
:::
total

:::::::::
freeboard confirmed its non-Gaussian distribution. The re-

sults further suggested that the exp-normal distribution outperforms the log-normal distribution in fitting the elevations
::::
total

::::::::
freeboards

:
of regions with an average elevation

::::
total

::::::::
freeboard

:
greater than 0.5m, particularly for older and thicker sea ice,

whereas both distributions perform comparably for regions with an average elevation
::::
total

::::::::
freeboard

:
lower than 0.5m.525

Future studies
:::
The

::::::
spatial

::::::::::
distribution

::
of

::::::::::
penetration

:::::
depth

:::::
(total

:::::::::
freeboard

:::::
minus

:::::
radar

:::::::::
freeboard)

:::
can

:::
be

:::
an

:::::::::
interesting

::::
topic

:::
for

::::::
future

:::::::
research.

:::
In

::::::::::::
snow-covered

:::
sea

:::
ice,

::::::::::
penetration

::
is

:::::::::::
significantly

:::::::::
influenced

::
by

:::::
local

:::::
snow

:::::::::
conditions.

:::::::
Hence,

:::::::::
conducting

:
a
::::::::::
coordinated

::::::::
campaign

::::::::::::
encompassing

::::::::::
TanDEM-X

:::::::::::
acquisitions,

::::
lidar

::::::::::::
measurements,

:::
and

::::::
in-situ

:::::
snow

::::::::::
assessments

::::
holds

:::::
great

:::::::
promise

:::
for

::::::::
analyzing

:::
the

:::::::
relation

:::::::
between

:::::
radar

::::::::
freeboard

::::
and

::::
total

::::::::
freeboard

::::::
across

:::::::
different

:::::
snow

::::::::::
conditions.

:::::
Future

::::::
studies

::::
also involve linking the derived sea ice topographic characteristics associated with oceanographic factors (ocean530

current and bathymetry) and climatology parameters (wind and temperature). We aim to further advance our comprehension

of sea ice dynamics and evolution in Antarctica.

Appendix A:
:::::::
Further

::::::
details

::
of

::::
data

::::::::::
processing

:::
and

:::::::
figures

A1
::::::
InSAR

::::::
height

:::::::::::
uncertainty

:::::
across

:::::::
various

::::::
height

::
of

:::::::::
ambiguity

::::::
values

:::
The

:::::
HoA

::::
(ha)

:
is
:::

the
::::::

height
::
of

:::::::::
ambiguity

:::::::::
determined

:::
by

:::
the

:::::::
specific

::::::
InSAR

:::::::::::
configuration

::::
such

:::
as

:::
the

::::
radar

::::::::::
wavelength,

:::::
orbit535

::::::
height,

:::::::::
incidence

:::::
angle,

:::
and

::::::::
baseline.

::
A

:::::
larger

::::
HoA

::::
will

::::::
elevate

:::
the

::::::::::
uncertainty

::
in

:::
the

::::::::::::
InSAR-derived

::::::
height.

::::
This

::::::::::
uncertainty

::::
(σh)

:::
can

::
be

::::::::
estimated

:::
by

::::::::::::::
(Madsen, 1998)

σh =
ha

2π
σ∆ϕ

::::::::::

:::::
where

::::
σ∆ϕ::

is
::::

the
:::::
phase

::::::
noise,

:::::
which

::::
can

:::
be

::::::::
expressed

:::
as

::
a

:::::::
function

:::
of

:::
the

:::::::::::::
interferometric

:::::::::
coherence

::::::::
(γInSAR)

:::
and

::::
the

::::::::::
independent

::::::
number

:::
of

::::
looks

:::::
(NL)

:::::::::::::::::
(Rosen et al., 2000)540

σ2
∆ϕ

=
1

2NL

1− γ2
InSAR

γ2
InSAR

:::::::::::::::::::
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Figure A1.
::::::::
Simulation

:
of
:::
σh::

to
::
the

::::::::
variations

::
in

::
ha:::

and
::::::
γInSAR::::

with
:::
NL ::

set
::
to

::
be

:::
73.

:::
The

:::::::::
simulated

:::
σh ::

to
:::
the

:::::::::
variations

::
in

:::
ha :::

and
:::::::
γInSAR::

is
:::::::::
illustrated

::
in

:::::::
Fig. A1.

:::
At

:::
the

:::::::::::::
γInSAR = 0.75,

:::
σh::::::::

increases
:::::
from

:::::
0.35m

::
to
::::::
0.48m

::::::::::::
corresponding

::
to
:::
ha:::::::

ranging
::::
from

::::
30m

::
to
:::::
42m.

::::::
Across

:::
the

:::::::
studied

::::::
region,

::::
both

:::
the

::::
mean

::::
and

::::::
median

::::::
values

::
of

::::::
γInSAR:::

are
::::::
around

:::::
0.75.

:::::::::::
Consequently,

::
in
:::
the

::::
case

::
of
::::
R5,

:::
the

:::::
larger

:::
ha ::::::

induces
:
a
::::::::
relatively

::::::
larger

::::::
average

::::::::::
uncertainty

::
in

:::
the

::::::
derived

::::::
InSAR

:::::
height

::::::::
(hInSAR)

:::::::::
compared

::
to

:::
the

::::::
smaller

:::
ha ::::::

InSAR
:::::::::::
configuration

::
in

:::
our

:::::::
dataset.545

A2
::::
SAR

::::::::
thermal

:::::
noise

:::::::
removal

:::
The

:::::::::::::
SAR-measured

::::::::::::
backscattering

:::::::
intensity

:::::::::
(σmeasure)

:::::::::
containing

:::::::
additive

::::::
thermal

:::::
noise

:::
can

:::
be

:::::::
denoted

::
as

σmeasure =< (Sdenoised +N)× (Sdenoised +N)∗ >
:::::::::::::::::::::::::::::::::::::::::

(A1)

:::::
where

::::::::
Sdenoised ::

is
:::
the

:::::::::::::
noise-subtracted

:::::::::::::
backscattering

:::::::::
amplitude,

:::
and

:::
N

:
is
::::

the
::::::
additive

:::::::
thermal

:::::
noise.

:::::::::::
Considering

::::::::
Sdenoised

:::
and

::
N

:::
to

::
be

:::::::::::
uncorrelated,

:::
the

::::::::::::::
noise-subtracted

::::::::::::
backscattering

::::::::
intensity

:::
can

:::
be

:::::::
obtained

:::::
from

:::
the

::::::::
following

::::::
simple

::::::::
equation550

::::::::::::::::::
(Nghiem et al., 1995)

σdenoised = σmeasure −NESZ
:::::::::::::::::::::::::

(A2)

:::::
where

:::::::
NESZ

:
is
:::
the

:::::
noise

::::
floor

:::::
(i.e.,

::
the

:::::
noise

:::::::::
equivalent

:::::
sigma

::::
zero

::::::::
(NESZ)),

::::
and

::
all

:::::
terms

:::
are

::
in

:::
the

:::::
linear

:::::
scale.
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Figure A2.
::::
NESZ

::::::
patterns

:::
for

:::
one

:::::::::
TanDEM-X

::::::::
acquisition

::::::
(Scene

::::
No.1

:
in
::::::
Fig. 2)

:
as
:::

an
:::::::
example.

:::
The

::::::::::
TanDEM-X

:::::::
product

::::::::
contains

:
a
:::

set
:::

of
::::::::::
polynomial

:::::::::
coefficients

::::
that

::::::::
describe

:::
the

::::::
NESZ

::::::
pattern

:::
for

::::
each

:::::::::::
polarization

::::
along

:::
the

:::::
range

::::::::
direction

::::::::::::::::::
(Eineder et al., 2008)

:::
for

::::
both

:::
the

::::::::::
TanDEM-X

::::::
(TDX)

:::
and

:::::::::::
TerraSAR-X

::::::
(TSX)

::::::
images.

:::
An

::::::::
example555

::
of

:::
the

:::::::::
calculated

::::::
NESZ

::
is
::::::

shown
:::
in

::::::
Fig.A2

::
in

:::
dB

:::::
scale.

:::
By

:::::::::
converting

:::
to

:::
the

:::::
linear

:::::
scale,

:::
the

::::::::
σdenoised:::

can
:::

be
:::::::::
calculated

::
by

::::::::::
subtracting

:::::::
NESZ

::::
from

::::
the

::::::::
σmeasure.

:::
We

::::::::
calculate

:::
the

::::::
NESZ

::::::
pattern

:::
for

:::::
each

:::::
SAR

:::::::::
acquisition

::::
and

:::::::
employe

:::::::
Eq. A2

::
to

:::::::
generate

::::::::
denoised

::::::::::::
backscattering

:::::::::
intensities

:::
for

:::
the

::::::::
different

:::::::::::
polarizations

::::
(i.e.,

::::
HH,

::::
VV,

::::::
Pauli-1

::::::::::
(HH+VV),

:::
and

:::::::
Pauli-2

::::::::
(HH-VV))

:::::
from

:::
the

::::
TSX

::::::
image.

::::
Note

::::
that

::
for

:::::::
Pauli-1

:::
and

:::::::
Pauli-2,

:::
we

:::
use

:::
the

::::::
average

:::::::
NESZ

:::::::
between

::::
HH

:::
and

:::
VV

::::::::
channels.

:

A3
::::::::
Ranking

::
of

::::
SAR

::::::::
features560

:::
The

::::
Gini

::::::::::
importance

::::::::
computed

::::
from

:::
the

::::::::
Random

:::::
Forest

::::
(RF)

::::::::
classifier

::
is

:::::
given

::
in

::::::
Fig A3.

:
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Figure A3.
:::
Gini

::::::::
importance

::::::::
computed

::::
from

:::
the

::::::
Random

:::::
Forest

::::
(RF)

:::::::
classifier.

:::
The

::::
Gini

::::::::::
importance

::::::::
computed

::::
from

:::
the

::::::::
Random

:::::
Forest

::::
(RF)

::::::::
regressor

:::
for

:::::::::
estimating

::
m

::::
and

::
hv::

is
:::::
given

::
in

::::::
Fig A4.

:

Figure A4.
:::
Gini

::::::::
importance

::::::::
computed

::::
from

:::
the

::::::
Random

:::::
Forest

::::
(RF)

:::::::
regressor

::
for

::::::::
estimating

::
m
:::
and

:::
hv .

A4
:::::::::
Overview

::
of

:::
the

:::::::::::::
InSAR-derived

:::::
total

:::::::::
freeboard

:::
The

:::::::
derived

::::
total

::::::::
freeboard

::::
over

:::
the

:::::::
Weddell

:::
and

:::::
Ross

::::
Seas

:::
are

:::::
given

::
in

::::::
Fig. A5

:::
and

::::
A6.
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Figure A5.
::
Sea

:::
ice

:::::
DEM

:::::::::
(hmod_SAR)

:::
over

:::
the

:::::::
Weddell

:::
Sea

:::::::
retrieved

::::
from

::::
SAR

::::::
images.

:::
The

::::::::::
northernmost

:::::::
locations

:::
on

:::
each

:::::::
segment

:::
are

:::::
marked

::::
with

:::
star

:::::::
symbols

:::
and

::::
serve

:::
as

:::::::
reference

:::::
points

::
for

:::::::::
calculating

:::
the

::::::
relative

:::::::
distance.

::::::::
hmod_SAR :::

was
::::::::::
downsampled

::
to
::::::
500m

::::
pixel

:::
size.
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Figure A6.
:::
Sea

:::
ice

::::
DEM

:::::::::
(hmod_SAR)

:::
over

:::
the

::::
Ross

:::
Sea

:::::::
retrieved

:::
from

::::
SAR

::::::
images.

:::
The

::::::::::
northernmost

:::::::
locations

::
on

::::
each

::::::
segment

:::
are

::::::
marked

:::
with

:::
star

:::::::
symbols

:::
and

::::
serve

::
as

:::::::
reference

:::::
points

::
for

:::::::::
calculating

::
the

::::::
relative

:::::::
distance.

::::::::
hmod_SAR:::

was
:::::::::::
downsampled

:
to
:::::
500m

::::
pixel

::::
size.

Data availability. TanDEM-X imagery can be acquired from the German Aerospace Center (DLR) by submitting a scientific proposal, acces-565

sible at https://eoweb.dlr.de. Additionally, DMS data can be obtained from the National Snow and Ice Data Center at https://nsidc.org/data/icebridge,

while Ice Charts data are available at https://nsidc.org/data/G10033/versions/1, also from the National Snow and Ice Data Center.
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